Supporting Information

Four-Component Synthesis of Polyhydroquinolines under Catalyst- and Solvent-Free Conventional Heating Conditions: Mechanistic Studies

Pipattra Mayurachayakul, ${ }^{\text {a }}$ Wanchai Pluempanupat, ${ }^{\text {b }}$ Choladda Srisuwannaket ${ }^{\text {a }}$ and Oraphin Chantarasriwong*a
${ }^{a}$ Organic Synthesis, Electrochemistry \& Natural Product Research Unit, Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand.
${ }^{b}$ Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, and Special Research Unit for Advanced Magnetic Resonance, Kasetsart University, Bangkok 10900, Thailand.
*E-mail: oraphin.cha@kmutt.ac.th

Table of Contents

	Page
1. General procedures	S2
2. General procedure for the synthesis of polyhydroquinolines $\mathbf{5}$	S2
3. Characterization data of polyhydroquinolines $\mathbf{5}$	S3
4. Experiments of investigations on the mechanism	S8
5. The NMR spectra of polyhydroquinolines $\mathbf{5}$ and compounds M1, K2 and E2	S13
References	S24

1. General procedures

Unless indicated, all commercially available reagents were purchased at the highest commercial quality and were used as received without further purification. Column chromatography was performed on silica gel (SILICYCLE UltraPure SILICA GELS, SiliaFlah® G60, 70-230 mesh). The progress of all the reactions was monitored by thin-layer chromatography (TLC) using sheets precoated with silica gel-60 F254 to a thickness of 0.5 mm (Merck), and compounds were visualized by irradiation with UV light. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 400 or 500 MHz Bruker instrument. Chemical shifts (δ) are quoted in parts per million (ppm) referenced to the appropriate residual solvent peak reference $\left(\mathrm{CDCl}_{3}\right)$, with the abbreviations s , br $\mathrm{s}, \mathrm{d}, \mathrm{t}, \mathrm{q}, \mathrm{m}$, denoting singlet, broad singlet, doublet, triplet, quartet, multiplet, respectively. J is a coupling constant given in Hertz (Hz). High resolution mass spectra (HRMS) were recorded on a Bruker micrOTOF mass spectrometer under electrospray ionization (ESI) conditions. Melting points were measured using a SANYO melting point apparatus. Gas chromatograph-mass spectrometer (GC-MS) were recorded on an Agilent Technologies (GC-MS conditions: column DB-5, 11 m ; initial oven temp. $50^{\circ} \mathrm{C}$ for 3 min followed by a $40^{\circ} \mathrm{C} / \mathrm{min}$ ramp to $280^{\circ} \mathrm{C}$, thereafter constant temperature, hold time 10 min and run time 18.75 min ; injection temperature $250^{\circ} \mathrm{C}$; column flow $2.0 \mathrm{~mL} / \mathrm{min}$; total flow 16.909 psi ; split ratio 10 ; ion source $250^{\circ} \mathrm{C}$; interface temperature $280^{\circ} \mathrm{C}$; Mass spectrometer detector (MSD) conditions: column HP-5ms Ultra Inert $-60^{\circ} \mathrm{C}$ to $325^{\circ} \mathrm{C}$: $30 \mathrm{~m} \times 250 \mu \mathrm{~m} \times$ $0.25 \mu \mathrm{~m}$; In: back SS inlet He; Out: MSD; gain factor: 1.000; solvent delay 3 min; start mass: 45; end mass: 450; threshold: 180; scan speed: $1.562[\mathrm{~N}=2] \mu / \mathrm{s}$; frequency: $3.6 \mathrm{scans} / \mathrm{sec}$; cycle time: 279.26 ms ; step size: $0.1 \mathrm{~m} / \mathrm{z}$).

2. General procedure for the synthesis of polyhydroquinolines $\mathbf{5}$

The reaction mixture of selected aromatic aldehydes ($\mathbf{1}, 1 \mathbf{m m o l}, 1$ equiv.), dimedone ($\mathbf{2}, 140.2$ $\mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.), ethyl acetoacetate ($\mathbf{3}, 130 \mu \mathrm{~L}, 1 \mathrm{mmol}, 1$ equiv.) and ammonium acetate $\left(4,115.6 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.5\right.$ equiv.) was heated with stirring in a seal tube at $100^{\circ} \mathrm{C}$. After 5 min or indicated time in Table 2, the reaction mixture was cooled to room temperature and cold water (1 mL) was added. Then the reaction mixture was kept in ice bath for 5 min to obtain a solid. The resulting solid was filtered and recrystallized from ethanol or purified by silica gel column chromatography (EtOAc-hexane) to give polyhydroquinolines 5.

3. Characterization data of polyhydroquinolines 5

Ethyl 2,7,7-trimethyl-5-oxo-4-phenyl-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5a): ${ }^{1,2}$ White solid; $R_{f}=0.37$ (50% EtOAc-hexane); m.p. 228-229 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{3} 228-229{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.11-2.30(\mathrm{~m}, 4 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.

Ethyl 2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5b): ${ }^{2,4}$ White solid; $R_{f}=0.34$ (50% EtOAc-hexane); m.p. 207-209 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{2} 207-209{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.11-2.35(\mathrm{~m}$, $4 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 8.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$.

Ethyl 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate (5c): ${ }^{2,5}$ White solid; $R_{f}=0.37\left(50 \%\right.$ EtOAc-hexane); m.p. 246-247 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{5}$ 245$246{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 2.11-2.31 (m, 4H), 2.36 (s, 3H), 4.03 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.99$ (s, 1H), 6.51 (br s, 1H), 7.13 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$.

Ethyl
4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate (5d). ${ }^{1,6-7}$ White solid; $R_{f}=0.34$ (50% EtOAc-hexane); m.p. $252-253{ }^{\circ} \mathrm{C}$ (lit., ${ }^{8} 251-$ $252{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 2.12-2.32 (m, 4H), $2.37(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.15(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.

Ethyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate (5e): ${ }^{2,7}$ White solid; $R_{f}=0.31$ (50% EtOAc-hexane); m.p. $255-256{ }^{\circ} \mathrm{C}$ (lit., ${ }^{2} 255-$ $256{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 2.09-2.25 (m, 4H), $2.31(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.

Ethyl 4-(4-(diethylamino)phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate (5f): White solid; $R_{f}=0.31$ (50% EtOAc-hexane); m.p. 225-226 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 2.10-2.29 (m, 4H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.05(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H})$, 6.43 (br s, 1H), 6.64 (m, 2H), 7.13 (m, 2H).

Ethyl 4-(4-(tert-butyl)phenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate (5g): ${ }^{1}$ White solid; $R_{f}=0.48$ (50% EtOAc-hexane); m.p. $214-215{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 2.15-2.30$ $(\mathrm{m}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 4 \mathrm{H})$

Ethyl 4-(biphenyl-4-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8- hexahydroquinoline-3-carboxylate (5h): ${ }^{1,9}$ White solid; $R_{f}=0.48$ (50% EtOAc-hexane); m.p. 195-197 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{10} 196-198{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.13-2.32(\mathrm{~m}$, $4 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.50(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$.

Ethyl 2,7,7-trimethyl-4-(3-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5i): $:{ }^{5-6,11}$ White solid; $R_{f}=0.40\left(50 \%\right.$ EtOAc-hexane); m.p. $186-187{ }^{\circ} \mathrm{C}$ (lit., ${ }^{11} 177-178{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.12-2.26(\mathrm{~m}$, $4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.71 \mathrm{H}), 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H})$.

Ethyl 4-(3-hydroxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate (5j): ${ }^{12}$ White solid; $R_{f}=0.43$ (50\% EtOAc-hexane); m.p. 221-223 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{13} 221-$ $\left.223{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 2.18-2.28 (m, 4H), $2.36(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.58(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

Ethyl 4-(2-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate (5k): ${ }^{1}$ White solid; $R_{f}=0.34\left(50 \%\right.$ EtOAc-hexane); m.p. 208-210 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{14}$ 208$\left.210{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 2.09-2.25 (m, 4H), $2.30(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.00(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$.

Ethyl 4-(2-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate (51): ${ }^{15}$ White solid; $R_{f}=0.26$ (50% EtOAc-hexane); m.p. 252-253 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{16} 248-$ $\left.250{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 2.08-2.22 (m, 4H), $2.30(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 6.77(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$.

Ethyl 4-(3,4-dichlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate (5m): ${ }^{5}$ White solid; $R_{f}=0.34$ (50% EtOAc-hexane); m.p. $227-228{ }^{\circ} \mathrm{C}$ (lit., ${ }^{5} 213-$ $225{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 2.14-2.33 (m, 4H), 2.38 (s, 3H), 4.05 (q, J = 7.1 Hz, 2H), 4.98 (s, 1H), 6.35 (br s, 1H), 7.14 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H})$.

Ethyl 4-(3,5-dibromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate (5n): White solid; $R_{f}=0.43$ (50% EtOAc-hexane); m.p. 253-254 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.19-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{~s}$, $3 \mathrm{H}), 4.06(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 14.39,19.71,27.46,29.50,33.03,36.95,41.26,50.51,60.33,105.63$, 111.19, 122.59, 130.35, 131.94, 144.29, 150.83, 166.99, 195.46; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$498.0102, found 498.0120.

Ethyl 4-(2-hydroxy-5-nitrophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3carboxylate (50): White solid; $R_{f}=0.43$ (50\% EtOAc-hexane); m.p. 229-230 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.36(\mathrm{~m}, 4 \mathrm{H}), 2.52(\mathrm{~s}$, $3 \mathrm{H}), 3.97$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $5.08(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}$, $1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 10.40(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.89$, 19.43, $27.25,28.97,30.31,32.79,41.36,49.78,60.32$, 105.71, 110.64, 118.50, 124.26, 124.66, 134.47, 141.40, 144.52, 151.30, 160.19, 166.27, 198.53; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$ 401.1713, found 401.1713.

4. Experiments of investigations on the mechanism

4.1 Four-component reaction of benzaldehyde, dimedone, ethyl acetoacetate and ammonium acetate

A mixture of benzaldehyde (1a, $315 \mu \mathrm{~L}, 3 \mathrm{mmol}, 1$ equiv.), dimedone ($\mathbf{2}, 421.0 \mathrm{mg}, 3 \mathrm{mmol}$, 1 equiv.), ethyl acetoacetate ($\mathbf{3}, 390 \mu \mathrm{~L}, 3 \mathrm{mmol}, 1$ equiv.) and ammonium acetate ($\mathbf{4}, 371.7$ $\mathrm{mg}, 4.8 \mathrm{mmol}, 1.6$ equiv.) was heated with stirring in a seal tube at $100^{\circ} \mathrm{C}$. After 1 min , the reaction mixture was cooled to room temperature. Then the reaction mixture was purified by silica gel column chromatography (30% EtOAc-hexane) to give compounds 5a (300.4 mg , 30%), M1 ($249.1 \mathrm{mg}, 45 \%$) and K2 ($48.4 \mathrm{mg}, 7 \%$).
2,2'-(Phenylmethylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (M1): ${ }^{17}$ White solid; R_{f} $=0.80\left(50 \%\right.$ EtOAc-hexane); m.p. 194-195 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{18} 193-195{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.08(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 2.27-2.47(\mathrm{~m}, 8 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 11.89(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.53$, 29.47, 31.61, 32.94, 46.64, 47.26, 115.79, 126.04, 128.41, 138.26, 189.60, 190.66; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+} 369.2066$, found 369.2061.
(Z and E)-ethyl 2-benzylidene-3-oxobutanoate (K2): ${ }^{19}$ Yellow oil; $R_{f}=0.31(10 \%$ EtOAchexane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): a mixture of Z and E isomers (1:2 ratio); Z-isomer: δ $1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H})$; E-isomer: $\delta 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.38(\mathrm{~m}, 5 \mathrm{H})$, 7.65 (s, 1H).

4.2 Two-component reaction of benzaldehyde and dimedone

A mixture of benzaldehyde (1a, $715 \mu \mathrm{~L}, 7 \mathrm{mmol}, 1$ equiv.) and dimedone ($\mathbf{2}, 0.9815 \mathrm{~g}, 7 \mathrm{mmol}$, 1 equiv.) was heated with stirring in a seal tube at $100^{\circ} \mathrm{C}$. After 5 min , the reaction mixture was cooled to room temperature. The crude mixture was purified by silica gel column
chromatography (9\% EtOAc-hexane) to give compound M1 as a white solid (1.1841 g, 92\% yield).

4.3 Two-component reaction of benzaldehyde and ethyl acetoacetate

A mixture of benzaldehyde ($\mathbf{1 a}, 715 \mu \mathrm{~L}, 1 \mathrm{mmol}, 1$ equiv.) and ethyl acetoacetate ($\mathbf{3}, 895 \mu \mathrm{~L}$, $1 \mathrm{mmol}, 1$ equiv.) was heated with stirring in a seal tube at $100^{\circ} \mathrm{C}$. After 57 hours, the reaction mixture was cooled to room temperature. The crude mixture was purified by silica gel column chromatography ($50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) to give compound $\mathbf{K} 2$ as a yellow oil ($887.0 \mathrm{mg}, 58 \%$ yield). The purity of this compound determined by GC-MS analysis is 93% ($\mathrm{t}_{\mathrm{R}} 7.69 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$ found 218.1, calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$ 218.1).

Figure S1: The GC-MS of compound K2
4.4 Competitive three-component reaction of benzaldehyde, dimedone and ethyl acetoacetate

A mixture of benzaldehyde ($\mathbf{1 a}, 105 \mu \mathrm{~L}, 1 \mathrm{mmol}, 1$ equiv.), dimedone ($\mathbf{2}, 140.6 \mathrm{mg}, 1 \mathrm{mmol}$, 1 equiv.) and ethyl acetoacetate ($\mathbf{3}, 130 \mu \mathrm{~L}, 1 \mathrm{mmol}, 1$ equiv.) was heated with stirring in a seal tube at $100^{\circ} \mathrm{C}$. After 2 min , the reaction mixture was cooled to room temperature. The crude mixture was purified by silica gel column chromatography (9% EtOAc-hexane) to give compound M1 as a white solid ($157.9 \mathrm{mg}, 86 \%$ yield).

4.5 Procedure for synthesis of ethyl 3-aminobut-2-enoate (E1)

Method A:

A mixture of ethyl acetoacetate ($\mathbf{3}, 895 \mu \mathrm{~L}, 7 \mathrm{mmol}, 1$ equiv.) and ammonium acetate ($\mathbf{4}, 836.1$ $\mathrm{mg}, 10.5 \mathrm{mmol}, 1.5$ equiv.) was heated with stirring in a seal tube at $100^{\circ} \mathrm{C}$. The reaction was analyzed by GC-MS after 30 min and the analysis shows 77% conversion ($\mathrm{t}_{\mathrm{R}} 6.11 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$ found 129.1, calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{2}$ 129.1).

Figure S2: The GC-MS of compound E1 (method A)

Method B: ${ }^{20}$

A mixture of ethyl acetoacetate ($\mathbf{3}, 510 \mu \mathrm{~L}, 4 \mathrm{mmol}, 1$ equiv.) and ammonium acetate ($\mathbf{4}, 536.3$ $\mathrm{mg}, 6.96 \mathrm{mmol}, 1.74$ equiv.) was stirred in $\mathrm{EtOH}(1 \mathrm{~mL})$ at room temperature. GC-MS analysis after 27 hours shows 64% conversion. Then, ammonium acetate ($4,530.8 \mathrm{mg}, 6.89 \mathrm{mmol}, 1.72$ equiv.) was added and the reaction mixture was stirred at room temperature for another 39 hours. GC-MS analysis after 66 hours (total time) reveals 91% conversion. ($\mathrm{t}_{\mathrm{R}} 6.11 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$ found 129.1, calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{2}$ 129.0).

Figure S3: The GC-MS of compound E1 (method B)

4.6 Procedure for synthesis of 3-amino-5,5-dimethylcyclohex-2-enone (E2)

A mixture of dimedone ($\mathbf{2}, 981.6 \mathrm{mg}, 7 \mathrm{mmol}, 1$ equiv.) and ammonium acetate ($\mathbf{4}, 840.8 \mathrm{mg}$, $10.9 \mathrm{mmol}, 1.5$ equiv.) was heated with stirring in a seal tube at $100{ }^{\circ} \mathrm{C}$. After 5 min , the reaction mixture was cooled to room temperature. The crude mixture was purified by silica gel column chromatography (90% EtOAc-hexane) to give compound $\mathbf{E 2}$ ($961.8 \mathrm{mg}, 99 \%$ yield) as a white solid. E2: $R_{f}=0.65$ ($50 \% \mathrm{MeOH}-\mathrm{EtOAc}$); m.p. $166-168{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{~s}, 6 \mathrm{H}), 2.16(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.53,33.10,42.85,49.78,99.33,164.37,197.38$.

4.7 Two-component reaction of M1 and E1

M1

E1

A mixture of M1 ($36.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.) and $\mathbf{E} 1(23.4 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.8$ equiv.) was heated with stirring in a seal tube at $100^{\circ} \mathrm{C}$. After 6 hours, the reaction mixture was cooled to room temperature. The crude mixture was purified by silica gel column chromatography (30% EtOAc-hexane) to give compound $\mathbf{5 a}$ as a white solid ($22.5 \mathrm{mg}, 66 \%$ yield).

4.8 Two-component reaction of $\mathbf{K} \mathbf{2}$ and $\mathbf{E 2}$

K2

E2

5a (62\%)

A mixture of $\mathbf{K} 2(23.9 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.) and $\mathbf{E} 2(13.9 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.) was heated with stirring in a seal tube at $100{ }^{\circ} \mathrm{C}$. After 1 hour, the reaction mixture was cooled to room temperature. The crude mixture was purified by silica gel column chromatography (30% EtOAc-hexane) to give compound $\mathbf{5 a}$ as a white solid ($21.1 \mathrm{mg}, 62 \%$ yield).

K2

E2

5a (69\%)

A mixture of $\mathbf{K 2}$ ($24.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.), $\mathbf{E 2}$ ($13.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.) and glacial acetic acid ($6 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1$ equiv.) were heated with stirring in a seal tube at $100^{\circ} \mathrm{C}$. After 1 hour, the reaction mixture was cooled to room temperature. The crude mixture was purified by silica gel column chromatography ($30 \% \mathrm{EtOAc}$-hexane) to give compound 5a as a white solid ($23.4 \mathrm{mg}, 69 \%$ yield).

5. The NMR spectra of polyhydroquinolines 5 and compounds M1, K2 and E2

Figure S4: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5a

Figure S5: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 5b

Figure S6: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 c}$

Figure S7: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 d}$

Figure S8: The ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 e}$

Figure S9: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 f}$

Figure S10: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 g}$

Figure S11: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5} \mathbf{h}$

Figure S12: The ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5 i}$

Figure S13: The ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5 j}$

Figure S14: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 k}$

Figure S15: The ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5 1}$

Figure S16: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 m}$

Figure S17: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 n}$

Figure S18: The ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 n}$

Figure S19: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5 0}$

Figure S20: The ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 50

		$\stackrel{\rightharpoonup}{\underset{\sim}{c}}$													-						'			管			
3.0	12.5	12.0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-

Figure S21: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound M1

Figure S22: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{K} \mathbf{2}$

Figure S23: The ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{E 2}$

M
$\stackrel{2}{2}$
1

Figure S24: The ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{E 2}$

References

1. C. G. Evans and J. E. Gestwicki, Org. Lett., 2009, 11, 2957-2959.
2. A. Amoozadeh, S. Rahmani, M. Bitaraf, F. B. Abadi and E. Tabrizian, New J. Chem., 2016, 40, 770-780.
3. B. P. Bandgar, P. E. More, V. T. Kamble and J. V. Totre, Arkivoc, 2008, xv, 1-8.
4. M. Ghorbani, S. Noura, M. Oftadeh, E. gholami and M. A. Zolfigol, RSC Adv., 2015, 5, 55303-55312.
5. A. Kumar and R. A. Maurya, Tetrahedron, 2007, 63, 1946-1952.
6. G. B. Dharma Rao, S. Nagakalyan and G. K. Prasad, RSC Adv., 2017, 7, 36113616.
7. L.-M. Wang, J. Sheng, L. Zhang, J.-W. Han, Z.-Y. Fan, H. Tian and C.-T. Qian, Tetrahedron, 2005, 61, 1539-1543.
8. M. Hajjarni and B. Tahmasbi, RSC Adv., 2015, 5, 59194-59203.
9. D. Schade, M. Lanier, E. Willems, K. Okolotowicz, P. Bushway, C. Wahlquist, C. Gilley, M. Mercola and J. R. Cashman, J. Med. Chem., 2012, 55, 9946-9957.
10. M. A. Zolfigol, S. Baghery, A. R. Moosavi-Zare, S. M. Vahdat, H. Alinezhadd and M. Norouzid, RSC Adv., 2014, 4, 57662-57670.
11. R. A. Mekheimer, A. A. Hameed and K. U. Sadek, Green Chem., 2008, 10, 592593.
12. M. B. Gawande, V. D. B. Bonifacio, R. S. Varma, I. D. Nogueira, N. Bundaleski, C. A. A. Ghumman, O. M. N. D. Teodoro and P. S. Branco, Green Chem., 2013, 15, 1226-1231.
13. S. Das, S. Santra, A. Roy, S. Urinda, A. Majee and A. Hajra, Green chem. Lett. Rev., 2012, 5, 97-100.
14. S.-J. Ji, Z.-Q. Jiang, J. Lu and T.-P. Loh, Synlett, 2004, 5, 831-835.
15. A. Kumar and R. A. Maurya, Tetrahedron Lett., 2007, 48, 3887-3890.
16. O. Goli-Jolodar, F. Shirini and M. Seddighi, RSC Adv., 2016, 6, 26026-26037.
17. T.-W. Chung, B. D. Narhe, C.-C. Lin and C.-M. Sun, Org. Lett., 2015, 17, 5368-5371.
18. M. de S. Ferreira and J. D. Figueroa-Villar, J. Braz. Chem. Soc., 2014, 25, 935-946.
19. W. H. Correa and J. L. Scott, Green Chem., 2001, 3, 296-301.
20. V. G. Santos, M. N. Godoi, T. Reqiani, F. H. S. Gama, M. B. Coelho, R. O. M. A. de Souza, M. N. Eberlin and S. J. Garden, Chem. Eur. J., 2014, 20, 12808-12816.
