Supporting Information

Title: Synthesis of CHF₂-substituted 3-azabicyclo[3.1.0]hexanes by photochemical decomposition of CHF₂-pyrazolines **Author(s):** Yang Zheng, Xinling Yu, Songyang Lv, Pavel K. Mykhailiuk, Qiang Ma, Li Hai and Yong Wu

Table of Concents:

1.	General information	S2
2.	Optimization of the reaction conditions	S2
	2.1. Synthesis of 3-benzyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione by thermal decomposition of pyrazoline A'	.52
	2.2. One-pot cascade approach to formation 3a'	. S3
	2.3. The preparation of the solution of 1-methyl-2,2-difluoroethanamine 1	.S4
	2.4. General procedures for the synthesis of 6-methyl-6-difluoromethyl-3-azabicyclo[3.1.0]hexane-2,4- dione derivatives (3a as an example)	.S4
	2.5. NOESY interaction for 3a ₁ and 3a ₂	. \$5
3.	Synthesis of <i>trans</i> -3-benzyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane (4a ₁)	S6
4.	Spectroscopic characterization data of products	S7
5.	References	516
6.	¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of products	517

1. General information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Except for the specially mentioned dry solvent, all the solvents were treated according to general methods. All the reactions were monitored by thin-layer chromatography (TLC) and were visualized using UV light. The product purification was done using silica gel column chromatography. Thin layer chromatography (TLC) characterization was performed with precoated silica gel GF254 (0.2 mm), while column chromatography characterization was performed with silica gel (100-200 mesh). ¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectra were recorded with tetramethylsilane (TMS, $\delta = 0.00$ ppm) as the internal standard. ¹H-NMR spectra were recorded at 400 or 600 MHz (Varian), ¹³C NMR spectra were recorded at 100 or 150 MHz (Varian) and ¹⁹F-NMR spectra were recorded at 376 MHz (Varian). Chemical shifts are reported in ppm downfield from CDCl₃ ($\delta = 7.26$ ppm) or DMSO-*d*₆ ($\delta = 2.54$ ppm) for ¹H NMR and chemical shifts for ¹³C NMR spectra are reported in ppm relative to the central CDCl₃ ($\delta = 77.0$ ppm) or DMSO-*d*₆ ($\delta = 39.6$ ppm). Coupling constants are given in Hz. Melting points were measured with YRT-3 melting point apparatus (Shantou Keyi Instrument & Equipment Co., Ltd., Shantou, China). Photochemical reaction was done using photochemical reaction instrument (Shanghai Bilon Instrument Manufacturing Co., Ltd., model: BL-GHX-V). High resolution mass spectroscopy data of the products were collected on a Waters Micromass GCT or a Bruker Apex IV FTMS instrument.

2. Optimization of the reaction conditions

2.1. Synthesis of 3-benzyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione 3'a by thermal decomposition of pyzoline A'.

The pyzoline **A'** was synthesized as described in the literature.¹ To a stirred solution of 2,2-difluoroethanamine **1'** (648.5 mg, 8.0 mmol) in dry CHCl₃ (75 mL), *t*-BuONO (988.8 mg, 9.6 mmol) and HOAc (96.1 mg, 1.6 mmol) were added dropwisely. Then the reaction mixture was heated at 65 °C. After 10 min heating, the obtained yellow solution was cooled down to a room temperature by external water bath, and 1-benzyl-1*H*-pyrrole-2,5-dione **2a** (750.0 mg, 4.0 mmol, 1.0 equiv.) was added immediately. The reaction mixture was left at room temperature for 2 h stirring. The solvent was evaporated under vacuum. Compound **A'** could be obtained through crystallization (solvent: hexane/EA = 1:2). 592.0 mg, 53% yield, white solid, m.p. 135-136 °C.

3-(difluoromethyl)-5-benzyl-3a,6a-dihydropyrrolo[3,4-c]pyrazole-4,6(3*H***,5***H***)-dione (A'): ¹H NMR (400 MHz, CDCl₃): \delta 7.30 (s, 5H), 6.49 (td,** *J* **= 55.4, 1.6 Hz, 1H), 5.81 (dd,** *J* **= 7.8, 2.7 Hz, 1H), 5.48 (dd,** *J* **= 23.8, 4.4 Hz, 1H), 4.59 (d,** *J* **= 1.9 Hz, 2H), 3.35 (dd,** *J* **= 7.8, 2.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): \delta 173.4, 167.9, 134.5, 128.9, 128.8, 128.5, 111.1 (t,** *J* **= 245.7 Hz), 94.6, 93.6 (t,** *J* **= 22.2 Hz), 43.0, 37.2 (d,** *J* **= 4.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃): \delta -125.7 (dd,** *J* **= 291.4 Hz), -130.0 (dd,** *J* **= 291.4 Hz); HRMS (ESI) Calcd for C₁₃H₁₁F₂N₃O₂ [M+Na]⁺ 302.0712; found 302.0713.**

Scheme S2. Synthesis of 3-benzyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione 3'a.

Compound **3'a** was synthesized as described in the literature.² Pyzoline **A'** (592.0 mg, 2.1 mmol) was heated in an oil bath under vacuum (20 mmHg) at 150 °C during 1 h; an exothermic evolution of N₂ was observed. The crude product was dissolved in CH₂Cl₂ (10 mL), triturated with 5% aq KMnO₄ (10 mL), washed with H₂O (10 mL), dried (MgSO₄), and evaporated. The obtained residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 10/1). Yield: **3'a**₁: (213.2 mg, 40% yield, white solid, m.p. 72-73 °C), and **3'a**₂: (58.9 mg, 11% yield, white solid, m.p. 137-139 °C).

The total yield of **3a'** was obtained only in 27% based on the maleimide **1b**.

trans-3-benzyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione (3'a₁): ¹H NMR (600 MHz, CDCl₃): δ 7.43-7.21 (m, 5H), 5.92 (td, *J* = 56.2, 2.2 Hz, 1H), 4.54 (s, 2H), 2.72 (d, *J* = 3.1 Hz, 2H), 2.04 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 172.2, 135.5, 128.7, 128.5, 128.1, 111.2 (t, *J* = 242.3 Hz), 42.0, 32.9 (t, *J* = 26.5 Hz), 21.5 (t, *J* = 4.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -125.7 (dd, *J* = 291.4, 10.2 Hz); HRMS (ESI) Calcd for $C_{13}H_{11}F_2NO_2$ [M+H]⁺ 251.0758; found 251.0759.

cis-3-benzyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione (3'a₂): ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.23 (m, 5H), 5.14 (td, *J* = 54.7, 6.6 Hz, 1H), 4.56 (s, 2H), 2.74 (d, *J* = 8.5 Hz, 2H), 2.24 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 170.6, 135.1, 129.0, 128.8, 128.4, 112.5 (t, *J* = 240.8 Hz), 42.2, 33.2 (t, *J* = 33.5 Hz), 24.0 (t, *J* = 3.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -115.2 (dd, *J* = 54.6 Hz, 6.7 Hz); HRMS (ESI) Calcd for C₁₃H₁₁F₂NO₂ [M+H]⁺ 251.0758; found 251.0759.

2.2. One-pot cascade approach to formation 3a'.

Table S1. The conditions for the one-pot cascade approach.

Entry	Conditions of nitrogen removal	T (°C)	Time (h)	Yield(%) ^a	
				3'a1	3′a₂
1	Thermal decomposition	150	1	26	6
2	Thermal decomposition	150	5	27	6
3	Thermal decomposition	180	1	27	7
4	Photodecomposition by high-pressure mercury lamp, solvent-free	r.t.	24	25	5
5	Photodecomposition by high-pressure mercury lamp, toluene as the solvent	r.t.	24	31	8
6	Photodecomposition by blue LED	r.t.	24	Trace	Trace

^a Isolated yield by chromatography on silicagel.

Considering the low yield and the tedious operation, we tried to develop a one-pot cascade approach: CHF2CHN₂ was generated *in situ* according to the above procedure. 1-benzyl-1*H*-pyrrole-2,5-dione **2a** (750.0 mg, 4.0 mmol, 1.0 equiv.) was added immediately. The reaction mixture was left at room temperature for 2 h stirring. After evaporating the solvent, the residue was heated in an oil bath under vacuum (20 mmHg) at 150 °C during 1 h. The crude product was purified according to the above procedure. The **3'a**₁ and **3'a**₂ were isolated in 26% and 6% yields, respectively (Table S1, entry 1). And we accidentally discovered that photochemical process was more effective than thermal decomposition, and the total yield of **3'a** was up to 39% (entry 5), but it was still less than satisfactory, which might be because of the quantitative formation of the isomeric Δ^2 -pyrazoline **B'** (See Scheme S3). Therefore, we decided to block the formation of pyrazoline **B'** by taking the simplest higher homologue - CF₂HC(CH₃)NH₂.

2.3. The preparation of the solution of 1-methyl-2,2-difluoroethanamine 1.

Scheme S3. The preparation of the solution of 1-methyl-2,2-difluoroethanamine 1.

1-Methyl-2,2-difluoroethanamine was synthesized as described in the literature.³ 1,1-Difluoroacetone (5.0 g, 53.2 mmol), benzylamine (5.7 g, 53.2 mmol) and NaBH(OAc)₃ (STAB, 33.8 g, 159.5 mmol) were dissolved in DCM (200 ml) and stirred for 18 h. The reaction mixture was diluted with DCM (3×100 mL), washed with saturated Na₂CO₃ (2×100 mL), brine (2×100 mL), dried with MgSO₄, and concentrated in vacuo. Then the residue was dissolved in MeOH (100 mL), and 10% Pd/C (0.5 g) was added. After stirring for 4 days under an atmosphere of H₂, the reaction mixture was filtered through celite and the filtrate was diluted with 30% HCl/EtOH. After 2 h of stirring, the solvent was evaporated under vacuum to afford 1-methyl-2,2-difluoroethanamine hydrochloride (4.9 g, 70% yield) as a gray solid. M.p. 43-45 °C.

The solid was dispersed in 100 mL CHCl₃ and 2 mL saturated K_2CO_3 was added. After stirring for 1 h, the organic layer was separated and dried with MgSO₄, Then the solids were filtered, and appropriate amount of anhydrous CHCl₃ was added to afford the CHCl₃ solution of **1** (*c* = 0.1 M).

2.4. General procedures for the synthesis of 6-methyl-6-difluoromethyl-3-azabicyclo[3.1.0]hexane-2,4-dione derivatives (3a as an example).

Scheme S4. Synthesis of 3-benzyl-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione 3a.

To a stirred solution of 1-methyl-2,2-difluooethanamine **1** (285.3 mg, 3.0 mmol) in dry CHCl₃ (30 mL), *t*-BuONO (371.2 mg, 3.6 mmol) and HOAc (36.0 mg, 0.6 mmol) were added in turn. Then the reaction mixture was heated at 65 °C. After 10 min heating, the obtained yellow solution was cooled down to a room temperature by external water bath, and 1-benzyl-1*H*-pyrrole-2,5-dione **2a** (187.2 mg, 1.0 mmol) was added immediately. The reaction mixture was stirred at 45 °C for 12 h. After removing CHCl₃, the residue was dissolved by acetonitrile (5 ml) and transferred into a quartz tube which was irradiated with a 1000 W high-pressure mercury lamp (250–720 nm) for 28 h. Then the solvent was removed and the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate = 5/1 as an eluent, to afford the desired product **3a**₁ (169.7 mg, 64% yield, white solid, m.p. 120-121 °C) and **3a**₂ (42.4 mg, 16% yield, white solid, m.p. 131-132 °C).

2.5. NOESY interaction for 3a1 and 3a2.

Take diastereoisomer **3a**₁ for example, the bridgehead protons (δ = 2.67 ppm) were correlated through space to the nearby difluromethyl protons (δ = 5.59 ppm), indicating they were on the same convex side of the bicyclic system (Figure S1); As for **3a**₂, the bridgehead protons (δ = 2.55 ppm) were correlated through space to the nearby methyl protons (δ = 1.31 ppm), indicating they were on the same convex side of the bicyclic system (Figure S2).

Figure S2. NOESY of 3a₂.

3. Synthesis of trans-3-benzyl-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane (4a1).

Scheme S5. Synthesis of 3-azabicyclo[3.1.0]hexane 4a1.

Compound **4a**₁ was synthesized as described in the literature.² A solution of compound **3a**₁ (132.6 mg, 0.5 mmol) in anhyd Et₂O (3 mL) was added dropwisely to a stirred suspension of LiAlH₄ (49.3 mg, 1.3 mmol) in anhydrous Et₂O (2 mL). The formed suspension was heated at reflux for 3 h. The reaction mixture was cooled to room temperature. And H₂O (0.5 mL) was added. The solution was evaporated under vacuum and H₂O (10 mL)

was added. The mixture was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phases were dried (MgSO₄) and evaporated under vacuum. The residue was purified by column chromatography on silica gel using PE/EtOAc = 15/1 as an eluent, to afford the desired product **4a**₁ (115.1 mg, 97 % yield, colorless oil).

trans-3-benzyl-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane (4a₁): ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.16 (m, 5H), 5.24 (t, *J* = 57.4 Hz, 1H), 3.60 (s, 2H), 2.95 (d, *J* = 9.6 Hz, 2H), 2.66 (d, *J* = 9.6 Hz, 2H), 1.58 (s, 2H), 1.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.8, 128.2, 128.2, 126.8, 119.4 (t, *J* = 239.2 Hz), 59.6, 52.1, 29.7, 23.0 (t, *J* = 4.9 Hz), 6.0; ¹⁹F NMR (376 MHz, CDCl₃): δ -119; HRMS (ESI) Calcd for C₁₄H₁₇F₂N [M+Na]⁺ 260.1221; found 260.1223.

4. Spectroscopic characterization data of products

3-methyl-3-(difluoromethyl)-5-benzyl-3a,6a-dihydropyrrolo[3,4-c]pyrazole-4,6(3H,5H)-dione (A)

White solid; m.p. 95-96 °C; PE/ EtOAc = 3/1, $R_f = 0.61$. ¹H NMR (400 MHz, CDCl₃): δ 7.29 (s, 5H), 6.16 (t, J = 55.3 Hz, 1H), 5.87 (d, J = 8.2 Hz, 1H), 4.61 (s, 2H), 3.27 (d, J = 8.2 Hz, 1H), 1.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 167.9, 134.7, 128.8, 128.7, 128.4, 113.9 (t, J = 247.0 Hz), 98.5 (t, J = 20.1 Hz), 95.6, 42.9, 39.6, 15.9; ¹⁹F NMR (376 MHz, CDCl₃): δ -127.9 (d, J = 285.8 Hz), -131.3 (d, J = 285.8 Hz); HRMS (ESI) Calcd for C₁₄H₁₃F₂N₃O₂ [M+Na]⁺ 316.0868; found 316.0869.

trans-3-benzyl-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione (3a1)

Yield: 63%; white solid; m.p. 120-122 °C; Hexane/ Et₂O = 1/1, R_f = 0.52. ¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, *J* = 5.8 Hz, 2H), 7.33-7.25 (m, 3H), 5.59 (t, *J* = 56.4 Hz, 1H), 4.57 (s, 2H), 2.67 (s, 2H), 1.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 135.2, 129.2, 128.6, 128.1, 114.1 (t, *J* = 245.0 Hz), 42.1, 29.6, 27.0, 8.2; ¹⁹F NMR (376 MHz, CDCl₃): δ -123.5; HRMS (ESI) Calcd for $C_{14}H_{13}F_2NO_2$ [M+H]⁺ 265.0914; found 265.0916.

cis-3-benzyl-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione (3a2)

Yield: 16%; white solid; m.p. 131-132 °C; Hexane/ Et₂O = 1/1, R_f = 0.38. ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, *J* = 6.5 Hz, 2H), 7.34-7.29 (m, 3H), 5.06 (t, *J* = 54.5 Hz, 1H), 4.57 (s, 2H), 2.55 (s, 2H), 1.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ = 170.3, 135.0, 128.9, 128.7, 128.3, 113.0 (t, *J* = 241.5 Hz), 42.1, 31.6, 29.6, 16.2; ¹⁹F NMR (376 MHz, CDCl₃): δ -117.6; HRMS (ESI) Calcd for C₁₄H₁₃F₂NO₂ [M+H]⁺ 265.0914; found 265.0916.

trans-3-(p-methoxybenzyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione (3b1)

Yield: 66%; white solid; m.p. 135-137 °C; Hexane/ Et₂O = 1/1, R_f = 0.50. ¹H NMR (400 MHz, CDCl₃): δ 7.32 (d, *J* = 8.5 Hz, 2H), 6.82 (d, *J* = 8.5 Hz, 2H), 5.58 (t, *J* = 56.4 Hz, 1H), 4.51 (s, 2H), 3.78 (s, 3H), 2.65 (s, 2H), 1.03 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 171.6, 159.3, 134.1, 130.6, 127.6, 114.1 (t, *J* = 244.2 Hz), 113.8, 55.2, 41.5, 26.9, 8.2; ¹⁹F NMR (376 MHz, CDCl₃): δ -123.6; HRMS (ESI) Calcd for $C_{15}H_{15}F_2NO_3$ [M+H]⁺ 295.1020; found 295.1021.

cis-3-(p-methoxybenzyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione (3b₂)

Yield: 15%; white solid; m.p. 139-140 °C; Hexane/ Et₂O = 1/1, R_f = 0.40. ¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, *J* = 8.4 Hz, 2H), 6.82 (d, *J* = 8.4 Hz, 2H), 5.05 (t, *J* = 54.4 Hz, 1H), 4.50(s, 2H), 3.78 (s, 3H), 2.53 (s, 2H), 1.25 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 170.5, 159.6, 130.5, 129.7, 114.1, 113.9 (t, *J* = 244.2 Hz), 55.2, 41.6, 31.7, 29.7, 16.3; ¹⁹F NMR (376 MHz, CDCl₃): δ -117.6; HRMS (ESI) Calcd for C₁₅H₁₅F₂NO₃ [M+H]⁺ 295.1020; found 295.1021.

trans-3-phenethyl-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3c1)

Yield: 56%; white solid; m.p. 99-100 °C; Hexane/ Et₂O = 1/1 , R_f = 0.55. ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.27 (m, 2H), 7.25-7.19 (m, 3H), 5.62 (t, *J* = 56.4 Hz, 1H), 3.67 (t, *J* = 8.0 Hz, 2H), 2.87 (t, *J* = 8.0 Hz, 2H), 2.66 (s, 2H), 1.19 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.7, 137.4, 128.7, 128.6, 126.8, 114.2 (t, *J* = 245.4 Hz), 39.6, 36.8 (t, *J* = 23.6 Hz), 33.6, 27.2 (t, *J* = 4.3 Hz), 8.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.6; HRMS (ESI) Calcd for C₁₅H₁₅F₂NO₂ [M+H]⁺ 279.1071; found 279.1073.

cis-3-phenethyl-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3c₂)

Yield: 18%; white solid; m.p. 105-106 °C; Hexane/ Et₂O = 1/1, R_f = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 7.2 Hz, 2H), 7.25-7.19 (m, 3H), 5.01 (t, *J* = 54.4 Hz, 1H), 3.71 (t, *J* = 7.6 Hz, 2H), 2.91 (t, *J* = 7.6 Hz, 2H), 2.51 (s, 2H), 1.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.6, 137.1, 128.6, 128.5, 126.9, 113.4 (t, *J* = 242.1 Hz), 39.4, 39.0 (t, *J* = 29.8 Hz), 32.9, 31.9, 16.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.2; HRMS (ESI) Calcd for C₁₅H₁₅F₂NO₂ [M+H]⁺ 279.1071; found 279.1073.

trans-3-phenyl-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3d1)

Yield: 54%; white solid; m.p. 139-140 °C; Hexane/ Et₂O = 1/1, R_f = 0.52. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.49(t, *J* = 7.2 Hz, 2H), 7.42(t, *J* = 7.2 Hz, 1H), 7.25(d, *J* = 7.2 Hz, 2H), 5.89(t, *J* = 55.6 Hz, 1H), 3.11(s, 2H), 1.37(s, 3H); ¹³C NMR(150 MHz, DMSO-*d*₆): δ 171.2, 131.5, 129.2, 128.7, 127.0, 115.8(t, *J* = 240.3 Hz), 36.6, 27.5, 7.4; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -121.6; HRMS (ESI) Calcd for $C_{13}H_{11}F_2NO_2$ [M+H]⁺ 251.0758; found 251.0759.

cis-3-phenyl-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3d₂)

Yield: 18%; white solid; m.p. 147-148 °C; Hexane/ Et₂O = 1/1, R_f = 0.35. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.47(t, *J* = 7.8 Hz, 2H), 7.41(t, *J* = 7.8 Hz, 1H), 7.27(d, *J* = 7.8 Hz, 2H), 6.18(t, *J* = 54.2 Hz, 1H), 3.08(s, 2H), 1.33(s, 3H); ¹³C NMR(150 MHz, DMSO-*d*₆): δ 170.9, 131.7, 129.3, 128.8, 127.4, 115.4 (t, *J* = 239.1 Hz), 39.4(t, *J* = 27.8 Hz), 32.1, 16.7; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -116.2; HRMS (ESI) Calcd for C₁₃H₁₁F₂NO₂ [M+H]⁺ 251.0758; found 251.0759.

trans-3-(o-methylphenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3e1)

Hexane/ $Et_2O = 1/1$, $R_f = 0.48$. ¹H NMR (400 MHz, CDCl₃) (mixture) δ 7.35-7.25 (m, 3H), 6.96 (d, J = 7.7 Hz, 1H), 5.72 (t, J = 56.4 Hz, 1H), 2.88 (s, 2H), 2.18 (s, 3H), 1.58 (s, 3H); HRMS (ESI) Calcd for $C_{14}H_{13}F_2NO_2$ [M+H]⁺ 265.0914; found 265.0916.

cis-3-(o-methylphenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3e₂)

Hexane/ $Et_2O = 1/1$, $R_f = 0.48$. ¹H NMR (400 MHz, $CDCl_3$) (mixture) δ 7.35-7.25 (m, 3H), 6.96 (d, J = 7.7 Hz, 1H), 5.72 (t, J = 56.4Hz , 1H), 2.88 (s, 2H), 2.18 (s, 3H), 1.58 (s, 3H); HRMS (ESI) Calcd for $C_{14}H_{13}F_2NO_2$ [M+H]⁺ 265.0914; found 265.0916.

trans-3-(o-chlorophenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3f1)

Hexane/ $Et_2O = 1/1$, $R_f = 0.46$. ¹H NMR (400 MHz, CDCl₃)(mixture) δ 7.56 (d, J = 7.9 Hz, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.35 (d, J = 7.5 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 5.73 (t, J = 56.4 Hz, 1H), 2.92 (s, 2H), 1.58 (s, 3H); ; HRMS (ESI) Calcd for $C_{13}H_{10}ClF_2NO_2$ [M+H]⁺ 285.0368; found 285.0369.

cis-3-(o-chlorophenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3f₂)

Hexane/ $Et_2O = 1/1$, $R_f = 0.46$. ¹H NMR (400 MHz, CDCl₃)(mixture) 7.54-7.50 (m, 1H), 7.39 (dd, J = 5.9, 3.2 Hz, 2H), 7.25-7.22 (m, 1H), 5.74 (t, J = 56.4 Hz, 1H), 2.87 (s, 2H), 1.74 (s, 3H) ; HRMS (ESI) Calcd for $C_{13}H_{10}CIF_2NO_2$ [M+H]⁺ 285.0368; found 285.0369.

trans-3-(m-methylphenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3g1)

Yield: 50%; white solid; m.p. 120-121 °C; Hexane/ Et₂O = 1/1, R_f = 0.55. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (t, *J* = 8.1 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 5.0 Hz, 2H), 5.71 (t, *J* = 56.4 Hz, 1H), 2.85 (s, 2H), 2.38 (s, 3H), 1.51 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 139.4, 130.8, 129.6, 129.0, 126.7, 123.2, 114.2 (t, *J* = 245.7 Hz), 36.7 (t, *J* = 23.8 Hz), 27.2, 21.3, 8.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.5; HRMS (ESI) Calcd for C₁₄H₁₃F₂NO₂ [M+H]⁺ 265.0914; found 265.0916.

cis-3-(m-methylphenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3g2)

Yield: 1 %; white solid; m.p. 115-116 °C; Hexane/ Et₂O = 1/1, R_f = 0.35. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (t, *J* = 8.1 Hz, 1H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.01 (s, 2H), 5.81 (t, *J* = 54.8 Hz, 1H), 2.71 (s, 2H), 2.38 (s, 3H), 1.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.8, 139.3, 130.6, 129.6, 129.0, 126.5, 123.0, 113.9 (t, *J* = 243.3 Hz), 39.2 (t, *J* = 29.1 Hz), 32.1, 21.3, 16.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.6; HRMS (ESI) Calcd for C₁₄H₁₃F₂NO₂ [M+H]⁺ 265.0914; found 265.0916.

trans-3-(m-fluorophenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3h1)

Yield: 58%; white solid; m.p. 107-108 °C; Hexane/ Et₂O = 1/1, R_f=0.55. ¹H NMR (600 MHz, CDCl₃) δ 7.44 (q, *J* = 8.1 Hz, 1H), 7.13-7.11 (m, 1H), 7.09 (d, *J* = 7.7 Hz, 1H), 7.05 (d, *J* = 9.4 Hz, 1H), 5.74 (t, *J* = 56.3 Hz, 1H), 2.87 (s, 2H), 1.49 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.4, 162.6 (d, *J* = 246.6 Hz), 132.1 (d, *J* = 9.9 Hz), 130.4 (d, *J* = 8.7 Hz), 121.5, 115.7 (d, *J* = 20.9 Hz), 113.9 (t, *J* = 246.6 Hz), 113.5 (d, *J* = 24.6 Hz), 39.3 (t, *J* = 28.4 Hz), 32.1, 17.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.6, -116.5; HRMS (ESI) Calcd for C₁₃H₁₀F₃NO₂ [M+H]⁺ 269.0664; found 269.0665.

cis-3-(m-fluorophenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3h₂)

Yield: 18%; white solid; m.p. 113-114 °C; Hexane/ Et₂O = 1/1, $R_f = 0.35$. ¹H NMR (600 MHz, CDCl₃) δ 7.43 (q, J = 7.8 Hz, 1H), 7.11 (d, J = 8.2 Hz, 1H), 7.08 (d, J = 8.2 Hz, 1H), 7.04 (d, J = 9.3 Hz, 1H), 5.81 (t, J = 54.8 Hz, 1H), 2.74 (s, 2H), 1.44 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.5, 162.6 (d, J = 246.6 Hz), 132.2 (d, J = 10.0 Hz), 130.4 (d, J = 8.7 Hz), 121.6, 115.7 (d, J = 21.2 Hz), 113.7 (t, J = 243.8 Hz), 112.4, 36.9 (t, J = 23.5 Hz), 27.3, 9.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.6, -123.6; HRMS (ESI) Calcd for C₁₃H₁₀F₃NO₂ [M+H]⁺ 269.0664; found 269.0665.

trans-3-(m-bromophenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3i1)

Yield: 50%; yellow solid; m.p. 115-118 °C; Hexane/ Et₂O = 1/1, R_f = 0.55. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.4 Hz, 2H), 7.26 (t, *J* = 8.4 Hz, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 6.86 (t, *J* = 56.3 Hz, 1H), 2.87 (s, 2H), 1.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 133.3, 131.4, 131.3, 126.5, 126.3, 121.5, 113.1 (t, *J* = 244.5 Hz), 28.7 (t, *J* = 71.7 Hz), 26.3 (t, *J* = 4.4 Hz), 8.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.5; HRMS (ESI) Calcd for C₁₃H₁₀BrF₂NO₂ [M+H]⁺ 328.9863; found 328.9865.

cis-3-(m-bromophenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3i2)

Yield: 16%; yellow solid; m.p. 109-110 °C; Hexane/ Et₂O = 1/1, R_f = 0.50. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.6 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 5.80 (t, J = 54.8 Hz, 1H), 2.72 (s, 2H), 1.43 (s, 3H); ³C NMR (100 MHz, CDCl₃) δ 169.5, 133.3, 131.4, 131.3, 126.5, 126.3, 121.5, 113.1 (t, J = 244.5 Hz), 28.7 (t, J = 71.7 Hz), 26.3 (t, J = 4.4 Hz), 8.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.5; HRMS (ESI) Calcd for C₁₃H₁₀BrF₂NO₂ [M+H]⁺ 328.9863; found 328.9865.

trans-3-(p-methylphenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3j1)

Yield: 49%; white solid; m.p. 129-130 °C; Hexane/ Et₂O = 1/1,R_f = 0.55. ¹H NMR (400 MHz, CDCl₃): δ 7.27 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 8.2 Hz, 2H), 5.72 (t, *J* = 56.3 Hz, 1H), 2.85 (s, 2H), 2.38 (s, 3H), 1.50 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.0, 138.9, 129.8, 128.3, 125.9, 114.1 (t, *J* = 244.2 Hz), 29.6, 27.2, 21.17, 8.96; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.7; HRMS (ESI) Calcd for $C_{14}H_{13}F_2NO_2$ [M+H]⁺ 265.0914; found 265.0916.

cis-3-(p-methylphenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3j₂)

Yield: 17%; white solid; m.p. 136-138 °C; Hexane/ Et₂O = 1/1, R_f = 0.35. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 7.8 Hz, 2H), 7.11 (d, *J* = 7.8 Hz, 2H), 5.80 (t, *J* = 54.8 Hz, 1H), 2.72 (s, 2H), 2.37 (s, 3H), 1.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.9, 138.9, 129.8, 128.1, 125.7, 113.9 (t, *J* = 241.5), 32.02, 29.6, 21.1, 16.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.6; HRMS (ESI) Calcd for C₁₄H₁₃F₂NO₂ [M+H]⁺ 265.0914; found 265.0916.

trans-3-(p-chlorophenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3k1)

Yield: 55%; yellow solid; m.p. 124-125 °C; Hexane/ Et₂O = 1/1, R_f = 0.50. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.56 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 5.89 (t, *J* = 55.4 Hz, 1H), 3.12 (s, 2H), 1.36 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 171.0, 133.1,130.2, 129.3, 128.7, 115.8 (t, *J* = 241.3 Hz), 36.7 (t, *J* = 25.8 Hz), 27.6, 7.4; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -121.6; HRMS (ESI) Calcd for C₁₃H₁₀ClF₂NO₂ [M+H]⁺ 285.0368; found 285.0369.

cis-3-(p-chlorophenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3k2)

Yield: 18%; yellow solid; m.p. 132-133 °C; Hexane/ Et₂O =1/1, R_f = 0.36. ¹H NMR (400 MHz, DMSO- d_6) δ 7.89 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 5.90 (t, J = 55.4 Hz, 1H), 3.17 (s, 2H), 1.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.4, 132.4, 129.8, 127.4, 122.5, 114.0 (t, J = 244.0 Hz), 39.3 (t, J = 29.1 Hz), 32.1, 17.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.5; HRMS (ESI) Calcd for C₁₃H₁₀ClF₂NO₂ [M+H]⁺ 285.0368; found 285.0369.

trans-3-(p-bromophenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3l1)

Yield: 54%; yellow solid; m.p. 127-128 °C; Hexane/ Et₂O = 1/1, R_f = 0.60. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.89 (d, *J* = 8.3 Hz, 2H), 7.55 (d, *J* = 8.3 Hz, 2H), 5.90 (t, *J* = 55.4 Hz, 1H), 3.17 (s, 2H), 1.38 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ 171.1, 135.1, 127.9, 126.6, 126.5, 116.0 (t, *J* = 241.4 Hz), 37.0 (t, *J* = 26.0 Hz), 27.9, 7.7; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -116.8; HRMS (ESI) Calcd for C₁₃H₁₀BrF₂NO₂ [M+H]⁺ 328.9863; found 328.9865.

cis-3-(p-bromophenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3l₂)

Yield: 14%; yellow solid; m.p. 138-139 °C; Hexane/ Et₂O = 1/1, R_f = 0.40. ¹H NMR (600 MHz, DMSO- d_6) δ 7.86 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 6.24 (t, J = 54.0 Hz, 1H), 3.11 (s, 2H), 1.32 (s, 3H); ¹³C NMR (150 MHz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 6.24 (t, J = 54.0 Hz, 1H), 3.11 (s, 2H), 1.32 (s, 3H); ¹³C NMR (150 MHz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 6.24 (t, J = 54.0 Hz, 1H), 3.11 (s, 2H), 1.32 (s, 3H); ¹³C NMR (150 MHz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 6.24 (t, J = 54.0 Hz, 1H), 3.11 (s, 2H), 1.32 (s, 3H); ¹³C NMR (150 MHz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 6.24 (t, J = 54.0 Hz, 1H), 3.11 (s, 2H), 1.32 (s, 3H); ¹³C NMR (150 MHz, 2H), 7.53 (s, 3H); ¹³C NMR (150 MZ), 7.53 (s, 3H); ¹³C NMR (150 MZ), 7.53 (s, 3H); ¹³C NMZ (s,

DMSO- d_6) δ 170.3, 135.1, 127.9, 126.1, 126.1, 115.2 (t, J = 239.4 Hz), 32.0, 29.2, 16.5; ¹⁹F NMR (376 MHz, DMSO- d_6) δ -116.3; HRMS (ESI) Calcd for C₁₃H₁₀BrF₂NO₂ [M+H]⁺ 328.9863; found 328.9865.

trans-3-(3',5'-dimethoxy-1'-phenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3m1)

Yield: 56%; white solid; m.p. 140-141 °C; Hexane/ Et₂O = 1/1, R_f = 0.5. ¹H NMR (600 MHz, CDCl₃) δ 6.48 (s, 1H), 6.38 (s, 2H), 5.71 (t, *J* = 56.3 Hz, 1H), 3.79 (s, 6H), 2.84 (s, 2H), 1.49 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.7, 161.0, 132.4, 114.1 (t, *J* = 242.7 Hz), 104.7 (d, *J* = 6.6 Hz), 100.7, 55.5 (d, *J* = 7.1 Hz), 36.8 (t, *J* = 23.6 Hz), 27.2, 9.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.6; HRMS (ESI) Calcd for $C_{15}H_{15}F_2NO_4$ [M+H]⁺ 311.0969; found 311.0971.

cis-3-(3',5'-dimethoxy-1'-phenyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3m₂)

Yield: 19%; white solid; m.p. 147-148 °C; Hexane/ Et₂O = 1/1, R_f = 0.4. ¹H NMR (600 MHz, CDCl₃) δ 6.48 (s, 1H), 6.37 (s, 2H), 5.80 (t, *J* = 54.8 Hz, 1H), 3.79 (s, 6H), 2.71 (s, 2H), 1.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 169.6, 161.0, 132.2, 113.9 (t, *J* = 243.5Hz), 104.5, 100.8, 55.5, 39.1 (t, *J* = 28.9 Hz), 32.0, 17.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.5; HRMS (ESI) Calcd for C₁₅H₁₅F₂NO₄ [M+H]⁺ 311.0969; found 311.0971.

trans-3-(2'-naphthyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3n1)

Yield: 60%; white solid; m.p. 152-153 °C; Hexane/ $Et_2O = 1/1$, $R_f = 0.45$. ¹H NMR (400 MHz, DMSO- d_6) δ 8.04-7.98 (m, 3H), 7.86 (d, J = 1.9 Hz, 1H), 7.62-7.57 (m, 2H), 7.38 (dd, J = 8.8, 1.9 Hz, 1H), 5.92 (t, J = 55.4 Hz, 1H), 3.17 (s, 2H), 1.45 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 176.4, 137.9, 137.5, 134.0, 134.0, 133.1, 132.9, 132.2, 132.0, 130.9, 129.7, 120.9 (t, J = 241.0 Hz), 41.8 (t, J = 25.9 Hz), 32.7 (t, J = 3.9 Hz), 12.6; ¹⁹F NMR (376 MHz, DMSO- d_6) δ -121.5; HRMS (ESI) Calcd for $C_{17}H_{13}F_2NO_2$ [M+H]⁺ 301.0914; found 301.0916.

cis-3-(2'-naphthyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3n₂)

Yield: 18%; white solid; m.p. 163-164 °C; Hexane/ Et₂O = 1/1, R_f = 0.35. ¹H NMR (400 MHz, DMSO- d_6) δ 8.01 (d, J = 8.8 Hz, 1H), 8.00-7.92 (m, 2H), 7.91-7.87 (m, 1H), 7.64-7.54 (m, 2H), 7.40 (dd, J = 8.8, 1.9 Hz, 1H), 6.27 (t, J = 54.0 Hz, 1H), 3.14 (s, 2H), 1.36 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ 171.0, 133.0, 132.7, 129.3, 128.9, 128.4, 128.1, 127.4, 127.1, 126.3, 125.2, 115.4 (t, J = 240.7 Hz), 39.3, 32.2, 16.6; ¹⁹F NMR (376 MHz, DMSO- d_6) δ -116.2; HRMS (ESI) Calcd for C₁₇H₁₃F₂NO₂ [M+H]⁺ 301.0914; found 301.0916.

trans-3-(n-propyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3o1)

Yield: 48%; colorless oil; Hexane/ Et₂O = 2/1, R_f = 0.5. ¹H NMR (400 MHz, CDCl₃) δ 5.64 (t, *J* = 56.4 Hz, 1H), 3.37 (t, *J* = 7.4 Hz, 2H), 2.69 (s, 2H), 1.57 (m, 2H), 1.30 (s, 3H), 0.92 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.9, 114.2 (t, *J* = 245.3 Hz), 40.2, 36.9 (t, *J* = 23.4 Hz), 27.1 (t, *J* = 4.3 Hz), 21.2, 11.3, 8.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.5; HRMS (ESI) Calcd for C₁₀H₁₃F₂NO₂ [M+H]⁺ 217.0914; found 217.0915.

cis-3-(n-propyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3o₂)

Yield: 23%; colorless oil; Hexane/ Et₂O = 2/1, R_f = 0.35. ¹H NMR (400 MHz, CDCl₃) δ 5.50 (t, *J* = 54.7 Hz, 1H), 3.36 (t, *J* = 7.5 Hz, 2H), 2.57 (s, 2H), 1.55 (m, 2H), 1.36 (s, 3H), 0.91 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 113.6 (t, *J* = 242.5 Hz), 40.2, 39.0 (t, *J* = 29.4 Hz), 31.9, 21.1, 16.4, 11.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.4; HRMS (ESI) Calcd for C₁₀H₁₃F₂NO₂ [M+H]⁺ 217.0914; found 217.0915.

trans-3-(3-chloropropyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3p1)

Yield: 45%; colorless oil; Hexane/ Et₂O = 2/1, R_f = 0.5. ¹H NMR (400 MHz, CDCl₃) δ 5.65 (t, *J* = 56.3 Hz, 1H), 3.57 (t, *J* = 7.2 Hz, 2H), 3.52 (t, *J* = 7.2 Hz, 2H), 2.71 (s, 2H), 2.03 (m, 2H), 1.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.7, 114.1 (t, *J* = 242.7 Hz), 41.8, 36.2, 30.7, 29.6, 27.2 (t, *J* = 4.5 Hz), 8.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.6; HRMS (ESI) Calcd for C₁₀H₁₂ClF₂NO₂ [M+H]⁺ 251.0525; found 251.0526.

cis-3-(3-chloropropyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3p₂)

Yield: 23%; colorless oil; Hexane/ Et₂O = 2/1, R_f = 0.35. ¹H NMR (400 MHz, CDCl₃) δ 5.53 (t, *J* = 54.8 Hz, 1H), 3.55 (m, 4H), 2.59 (s, 2H), 2.03 (m, 2H), 1.36 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 113.6 (t, *J* = 242.5 Hz), 40.2, 39.0, 31.8, 21.1, 16.4, 11.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.4; HRMS (ESI) Calcd for C₁₀H₁₂ClF₂NO₂ [M+H]⁺ 251.0525; found 251.0526.

trans-3-(2-bromoethyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3q1)

Yield: 45%; yellow oil; Hexane/ Et₂O = 2/1, R_f = 0.6. ¹H NMR (400 MHz, CDCl₃) δ 5.81 (t, *J* = 54.4 Hz, 1H), 3.87 (t, *J* = 6.3 Hz, 2H), 3.52 (t, *J* = 6.3 Hz, 2H), 2.61 (s, 2H), 1.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.4, 113.7 (t, *J* = 242.7 Hz), 40.2, 32.1, 29.7, 27.2, 16.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.5; HRMS (ESI) Calcd for C₉H₁₀BrF₂NO₂ [M+H]⁺ 280.9863; found 280.9865.

cis-3-(2-bromoethyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3q2)

Yield: 23%; yellow oil; Hexane/ Et₂O = 2/1, R_f = 0.5. ¹H NMR (400 MHz, CDCl₃) δ 5.68 (t, *J* = 56.4 Hz, 1H), 3.87 (t, *J* = 6.5 Hz, 2H), 3.50 (t, *J* = 6.5 Hz, 2H), 2.74 (s, 2H), 1.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 113.7 (t, *J* = 241.2 Hz), 38.5, 31.9, 29.8, 20.1, 13.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.5; HRMS (ESI) Calcd for C₉H₁₀BrF₂NO₂ [M+H]⁺ 280.9863; found 280.9865.

trans-3-(n-butyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3r1)

Yield: 42%; colorless oil; Hexane/ Et₂O = 2/1, R_f = 0.6. ¹H NMR (400 MHz, CDCl₃) δ 5.64 (t, *J* = 56.4 Hz, 1H), 3.40 (t, *J* = 7.6 Hz, 2H), 2.68 (s, 2H), 1.55-1.47 (m, 2H), 1.35-1.25 (m, 2H), 1.29(s, 3H), 0.92 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.9, 114.3 (t, *J* = 243.2 Hz), 38.4, 36.9 (t, *J* = 23.5 Hz), 29.9, 27.1 (t, *J* = 4.3 Hz), 20.1, 13.5, 8.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.5; HRMS (ESI) Calcd for C₁₁H₁₅F₂NO₂ [M+H]⁺ 231.1071; found 231.1072.

cis-3-(n-butyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3r₂)

Yield: 22%; colorless oil; Hexane/ Et₂O = 2/1, R_f = 0.45. ¹H NMR (400 MHz, CDCl₃) δ 5.48 (t, *J* = 54.4 Hz, 1H), 3.44-3.35 (m, 2H), 2.56 (s, 2H), 1.50 (m, 2H), 1.36 (s, 3H), 1.34-1.27 (m, 2H), 0.93 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 113.7 (t, *J* = 242.6 Hz), 39.1 (t, *J* = 29.4 Hz), 38.5, 31.9 (t, *J* = 2.7 Hz), 29.8, 20.1, 16.4 (t, *J* = 2.8 Hz), 13.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.3; HRMS (ESI) Calcd for C₁₁H₁₅F₂NO₂ [M+H]⁺ 231.1071; found 231.1072.

trans-3-(1-isobutyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3s1)

Yield: 45%; colorless oil; Hexane/ Et₂O = 2/1, R_f = 0.5. ¹H NMR (400 MHz, CDCl₃) δ 5.49 (t, *J* = 54.7 Hz, 1H), 3.22 (d, *J* = 7.2 Hz, 2H), 2.58 (s, 2H), 1.95 (m, 1H), 1.36 (s, 3H), 0.89 (d, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 114.3 (t, *J* = 243.2 Hz), 38.4, 29.8, 27.1 (t, *J* = 4.3 Hz), 20.1, 13.5, 8.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.5; HRMS (ESI) Calcd for C₁₁H₁₅F₂NO₂ [M+H]⁺ 231.1071; found 231.1072.

cis-3-(1-isobutyl)-6-methyl-6-(difluoromethyl)-3-azabicyclo[3.1.0]hexane-2,4-dione(3s₂)

Yield: 21%; colorless oil; Hexane/ Et₂O = 2/1, R_f = 0.38. ¹H NMR (400 MHz, CDCl₃) δ 5.42 (t, *J* = 54.7 Hz, 1H), 3.15 (d, *J* = 7.2 Hz, 2H), 2.51 (s, 2H), 1.87 (m, 1H), 1.29 (s, 3H), 0.82 (d, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 114.3 (t, *J* = 242.6 Hz), 40.2, 36.9 (t, *J* = 32.1 Hz), 27.1 (t, *J* = 28.0 Hz), 21.3, 11.4, 8.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.3; HRMS (ESI) Calcd for $C_{11}H_{15}F_2NO_2$ [M+H]⁺ 231.1071; found 231.1072.

5. References

- 1 J. Li, X.L. Yu, J. Cossy, S.Y. Lv, H.L. Zhang, F. Su, P. K. Mykhailiuk, Y. Wu, Eur. J. Org. Chem., 2017, 2017, 266.
- 2 O. S. Artamonov, E. Y. Slobodyanyuk, O. V. Shishkin, I. V. Komarov, P. K. Mykhailiuk, *Synthesis* 2012, **45**, 225.
- 3 G. Brown, M. Higginbottom, A. Stewart, L. Patient, A. Carley, I. Simpson, E. D. Savory, K. Oliver, A. G. Cole, WO Patent 2012049277, *Chem. Abs.* 2012, 156, 560431m.

6. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of products

Figure 1. The ¹H NMR (400 MHz, CDCl₃) of A'

Figure 3. The ¹⁹F NMR (376 MHz, CDCl₃) of A'

Figure 5. The ¹³C NMR (100 MHz, CDCl₃) of **3'a**₁

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 ff (ppm)

Figure 9. The ¹⁹F NMR (376 MHz, CDCl₃) of 3'a₂

i0 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -2(f1 (ppm) Figure 13. The ¹H NMR (400 MHz, CDCl₃) of **3a**₁

S23

Figure 15. The ¹⁹F NMR (376 MHz, CDCl₃) of **3a**₁

Figure 17. The ^{13}C NMR (150 MHz, CDCl_3) of $3a_2$

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -2(f1 (ppm)

Figure 19. The ¹H NMR (400 MHz, CDCl₃) of **3b**₁

Figure 21. The 19 F NMR (376 MHz, CDCl₃) of **3b**₁

50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -155 -160 -165 -170 -175 -180 -185 -190 -195 ff (ppm)

S29

Figure 27. The 19 F NMR (376 MHz, CDCl₃) of $3c_1$

io -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -155 -160 -165 -170 -175 -180 -185 -190 -195 ff (ppm) Figure 31. The ¹H NMR (400 MHz, DMSO-d₆) of **3d**₁

Figure 33. The ¹⁹F NMR (376 MHz, DMSO-d₆) of **3d**₁

Figure 35. The 13 C NMR (150 MHz, DMSO-d₆) of **3d**₂

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -110 ppm)

Figure 37. The ^1H NMR (400 MHz, CDCl_3) of $3e_1$ and $3e_2$

Figure 39. The ¹H NMR (400 MHz, CDCl₃) of **3g**₁

Figure 41. The ¹⁹F NMR (376 MHz, CDCl₃) of **3g**₁

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -21 f1 (ppm) Figure 45. The ¹H NMR (600 MHz, CDCl₃) of **3h**₁

Figure 47. The ¹⁹F NMR (376 MHz, CDCl₃) of **3h**₁

Figure 49. The ¹³C NMR (150 MHz, CDCl₃) of **3h**₂

50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -21 f1 (ppm)

Figure 51. The ¹H NMR (400 MHz, DMSO- d_6) of $3i_1$

Figure 53. The ¹⁹F NMR (376 MHz, DMSO- d_6) of **3i**₁

Figure 55. The ¹³C NMR (150 MHz, DMSO- d_6) of **3i**₂

-65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 f1 (ppm)

Figure 57. The ¹H NMR (400 MHz, CDCl₃) of **3j**₁

Figure 59. The 19 F NMR (376 MHz, CDCl₃) of $3j_1$

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 ff (ppm)

Figure 63. The ¹H NMR (400 MHz, DMSO- d_6) of $3k_1$

Figure 65. The ¹⁹F NMR (376 MHz, DMSO-*d*₆) of **3k**₁

50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 f1 (ppm)

Figure 71. The 19 F NMR (376 MHz, CDCl₃) of **3**I₁

Figure 73. The ¹³C NMR (100 MHz, CDCl₃) of **3l**₂

Figure 75. The ¹H NMR (600 MHz, CDCl₃) of **3m**₁

Figure 77. The ¹⁹F NMR (376 MHz, CDCl₃) of **3m₁**

Figure 83. The ¹⁹F NMR (376 MHz, DMSO- d_6) of $3n_1$

50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -155 -160 -165 -170 -175 -180 -185 -190 -195 ff (ppm) Figure 87. The ¹H NMR (400 MHz, CDCl₃) of **30**₁

Figure 89. The ¹⁹F NMR (376 MHz, CDCl₃) of **30**₁

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 f1 (ppm) Figure 93. The ¹H NMR (400 MHz, CDCl₃) of **3p**₁

Figure 95. The ¹⁹F NMR (376 MHz, CDCl₃) of **3p**₁

5.0 4.5 f1 (ppm) 1.0 0.5 0.0 7.5 7.0 6.5 6.0 4.0 9.5 9.0 8.5 8.0

50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -155 -160 -165 -170 -175 -180 -185 -190 -195 f1 (ppm) Figure 99. The ¹H NMR (400 MHz, CDCl₃) of **3q**₁

Figure 101. The 19 F NMR (376 MHz, CDCl₃) of $3q_1$

i0 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 ff (ppm)

Figure 105. The ¹H NMR (400 MHz, CDCl₃) of **3r**₁

Figure 107. The 19 F NMR (376 MHz, CDCl₃) of $3r_1$

50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -155 -160 -165 -170 -175 -180 -185 -190 -195 ff (ppm)

250 230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)
Figure 113. The ¹⁹F NMR (376 MHz, CDCl₃) of **3s**₁

50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -155 -160 -165 -170 -175 -180 -185 -190 -195 f1 (ppm)

Figure 119. The 19 F NMR (376 MHz, CDCl₃) of $4a_1$

i0 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -2ι f1 (ppm)