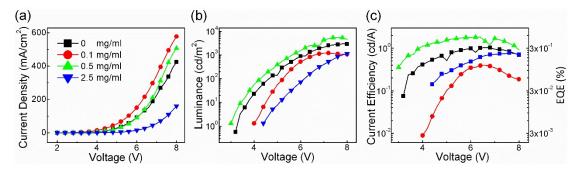
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018


Supporting Information

84% efficiency improvement in all-inorganic perovskite lightemitting diodes assisted by a phosphorescent material

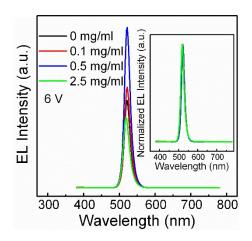
Chun-Hong Gao^{a†*}, Xing-Juan Ma^{a†}, Yue Zhang^a, Fu-Xing Yu^a, Zi-Yang Xiong^a, Zhi-Qiang Wang^a, Run Wang^a, Ya-Lan Jia^a, Dong-Ying Zhou^b, Zu-Hong Xiong^{a*}

^aSchool of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real Time Analysis, Southwest University, Chongqing, 400715, China. E-mail: gch0122@swu.edu.cn

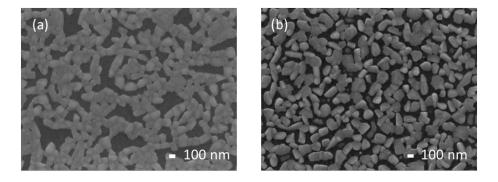
^bSoochow Institute for Energy and Materials Innovations (SIEMIS), College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China. E-mail: dyzhou@suda.edu.cn

Figure S1. EL performances of devices with different concentrations of FIrpic: (a) current density-voltage (*J-V*); (b) luminance-voltage (*L-V*); (c) current efficiency-voltage-EQE (CE-*V*-EQE) of four PeLEDs with structured as: ITO (120 nm)/PEDOT:PSS (30 nm)/CsPbBr₃:FIrpic (X mg/ml)/TPBi (65 nm)/Liq (2.5 nm)/ Al (120 nm), where "X" stands for 0, 0.1, 0.5, 2.5.

Table S1. Summary of performances for 5 PeLEDs in a single batch with composite emitter layer CsPbBr₃:FIrpic (0.5 mg/ml).


Device No.	V _(turn-on) (V)	$L_{\text{max}} (\text{cd/m}^2)^{\text{b}}$	CE _{max} (cd/A) ^c	EQE _{max} (%) ^d
1	3.0	5486	1.80	0.47
2	2.8	5214	1.64	0.43
3	2.8	6470	1.68	0.44
4	3.3	4510	1.87	0.49
5	3.0	3093	1.54	0.40

^a Turn-on voltage at 1 cd/m².


^b Maximum luminance.

^c Maximum current efficiency.

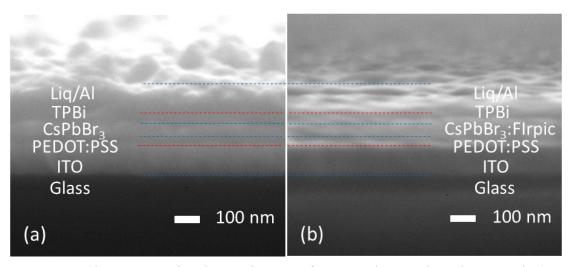

^d Maximum external quantum efficiency.

Figure S2. EL spectra and the Normalized EL spectra of the PeLEDs with different concentrations of FIrpic under the driving voltages of 6 V. The four PeLEDs are structured as: ITO (120 nm)/PEDOT:PSS (30 nm)/CsPbBr₃:FIrpic (X mg/ml)/TPBi (65 nm)/Liq (2.5 nm)/ Al (120 nm), where "X" stands for 0, 0.1, 0.5, 2.5.

Figure S3. Top-view SEM images of perovskite films of (a) pristine CsPbBr₃, (b) CsPbBr₃ with FIrpic (0.5 mg/ml). It can be found, higher coverage is achieved in the perovskite film with suitable concentration of FIrpic (0.5 mg/ml) added in the CsPbBr₃ (77.7%, estimated from SEM images by using ImageJ software) than the one without FIrpic (76.1%), which benefit to the EL efficiency of PeLEDs.

Figure S4. The cross-sectional SEM images of neat CsPbBr₃ and CsPbBr₃:FIrpic (0.5 mg/ml) based PeLED. The thickness of both the neat CsPbBr₃ film and CsPbBr₃:FIrpic film (0.5 mg/ml) are estimated to \sim 30 nm.