Supporting Information

Magnetic carbon nanotubes for self-regulating temperature hyperthermia †

Xudong Zuo,^a Chengwei Wu,^a Wei Zhang *^a and Wei Gao^b

Table 1s The theoretical and measured element ratios of MNPs and MCNTs

Sample name	Theoretical molar ratio (Zn:Co:Cr:Fe)	Measured molar ratio (Zn:Co:Cr:Fe)
MNPs	0.54:0.46:0.6:1.4	0.539:0.461:0.54:1.46
MCNTs	0.54:0.46:0.6:1.4	0.545:0.455:0.56:1.44

^aState Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, P. R. China. Email: wei.zhang@dlut.edu.cn

^bDepartment of Chemical and Materials Engineering, the University of Auckland, Auckland 1142, New Zealand.

[†]Electronic supplementary information available: Table S1-The theoretical and measured element ratios of MNPs and MCNTs, Figure S1- UV-vis spectra of MNPs and MCNTs aqueous solution at the moment of dispersion and after 12 h.

Figure 1s (a) UV-vis spectra of MCNTs aqueous solution at the moment of dispersion and after 12 h; (b) UV-vis spectra of MNPs aqueous solution at the moment of dispersion and after 12 h.