# Isolation, Identification and Bioactivities of Abietane Diterpenoids from Premna szemaoensis

De-Bing Pu<sup>†,§,#,⊥</sup>, Ting Wang<sup>‡,⊥</sup>, Xing-Jie Zhang<sup>†</sup>, Jun-Bo Gao<sup>§,#</sup>, Rui-Han Zhang<sup>†</sup>, Xiao-Nian Li<sup>§</sup>, Yong-Mei Wang<sup>§,#</sup>, Xiao-Li Li<sup>†,\*</sup>, He-Yao Wang<sup>‡,\*</sup>, Wei-Lie Xiao<sup>†,§,\*</sup>

<sup>†</sup>Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, People's Republic of China <sup>‡</sup>State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica,

Chinese Academy of Sciences, Shanghai 201203, People's Republic of China <sup>§</sup>State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China

<sup>#</sup>University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

#### **Corresponding author contact detail:**

\*E-mail: lixiaoli@ynu.edu.cn. Tel: (86) 871-67357014. \*E-mail: hywang@simm.ac.cn. Tel: (86) 021-50805785. \*E-mail: xiaoweilie@ynu.edu.cn. Tel: (86) 871-67357014.

# Contents

| Figure 1S-9S. NMR, MS, UV, and IR spectra of compound 1      | 3  |
|--------------------------------------------------------------|----|
| Figure 10S-18S. NMR, MS, UV, and IR spectra of compound 2    | 8  |
| Figure 19S-27S. NMR, MS, UV, and IR spectra of compound 3    | 13 |
| Figure 28S-36S. NMR, MS, UV, and IR spectra of compound 4    | 18 |
| Figure 37S-45S. NMR, MS, UV, and IR spectra of compound 5    | 23 |
| Figure 46S-54S. NMR, MS, UV, and IR spectra of compound 6    |    |
| Figure 55S-63S. NMR, MS, UV, and IR spectra of compound 7    |    |
| Figure 64S-72S. NMR, MS, UV, and IR spectra of compound 8    |    |
| Figure 73S-81S. NMR, MS, UV, and IR spectra of compound 9    | 43 |
| Figure 82S-90S. NMR, MS, UV, and IR spectra of compound 10   | 48 |
| Figure 91S-99S. NMR, MS, UV, and IR spectra of compound 11   | 53 |
| Figure 100S-108S. NMR, MS, UV, and IR spectra of compound 12 | 58 |
| Figure 109S. The pack drawing of compound 1                  | 63 |
| Figure 110S. The pack drawing of compound <b>3</b>           | 64 |
| Figure 111S. The pack drawing compound <b>10</b>             | 65 |
| Table 1S. Crystal data and structure refinement for 1        | 66 |
| Table 2S. Crystal data and structure refinement for 3        | 67 |
| Table 3S. Crystal data and structure refinement for 10.      | 68 |

### Figure 1S-9S. NMR, MS, UV, and IR spectra of compound 1



Figure 1S. <sup>1</sup>H NMR spectrum of (1) recorded in CD<sub>3</sub>OD at 600 MHz

xpp40



Figure 2S. <sup>13</sup>C NMR spectrum of (1) recorded in CD<sub>3</sub>OD at 150 MHz



Figure 3S. HSQC spectrum of (1) recorded in CD<sub>3</sub>OD



Figure 4S. HMBC spectrum of (1) recorded in CD<sub>3</sub>OD



Figure 5S. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of (1) recorded in CD<sub>3</sub>OD



Figure 6S. ROESY spectrum of (1) recorded in CD<sub>3</sub>OD



Figure 7S. HRESIMS spectrum of (1)



Figure 8S. UV spectrum of (1)



Figure 98. IR spectrum of (1)

### Figure 10S-18S. NMR, MS, UV, and IR spectra of compound 2



Figure 10S. <sup>1</sup>H NMR spectrum of (2) recorded in CD<sub>3</sub>OD at 600 MHz



Figure 11S. <sup>13</sup>C NMR spectrum of (2) recorded in CD<sub>3</sub>OD at 150 MHz



Figure 12S. HSQC spectrum of (2) recorded in CD<sub>3</sub>OD



Figure 13S. HMBC spectrum of (2) recorded in CD<sub>3</sub>OD



Figure 14S. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of (2) recorded in CD<sub>3</sub>OD



Figure 15S. ROESY spectrum of (2) recorded in CD<sub>3</sub>OD



Figure 16S. HRESIMS spectrum of (2)



Figure 17S. UV spectrum of (2)



Figure 18S. IR spectrum of (2)

### Figure 19S-27S. NMR, MS, UV, and IR spectra of compound 3



Figure 20S. <sup>13</sup>C NMR spectrum of (3) recorded in CD<sub>3</sub>OD at 150 MHz







Figure 22S. HMBC spectrum of (3) recorded in CD<sub>3</sub>OD



Figure 23S. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of (3) recorded in CD<sub>3</sub>OD



Figure 24S. ROESY spectrum of (3) recorded in CD<sub>3</sub>OD



Agilent Technologies

Page 1 of 1

Printed at: 3:03 PM on: 6/30/2015

Figure 25S. HRESIMS spectrum of (3)



Figure 27S. IR spectrum of (3)

### Figure 28S-36S. NMR, MS, UV, and IR spectra of compound 4



Figure 28S. <sup>1</sup>H NMR spectrum of (4) recorded in CD<sub>3</sub>OD at 600 MHz

xpp42



Figure 29S. <sup>13</sup>C NMR spectrum of (4) recorded in CD<sub>3</sub>OD at 150 MHz



Figure 30S. HSQC spectrum of (4) recorded in CD<sub>3</sub>OD



Figure 31S. HMBC spectrum of (4) recorded in CD<sub>3</sub>OD



Figure 32S. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of (4) recorded in CD<sub>3</sub>OD



Figure 33S. ROESY spectrum of (4) recorded in CD<sub>3</sub>OD



Figure 34S. HRESIMS spectrum of (4)



Figure 35S. UV spectrum of (4)



Figure 36S. IR spectrum of (4)

### Figure 37S-45S. NMR, MS, UV, and IR spectra of compound 5



Figure 38S. <sup>13</sup>C NMR spectrum of (5) recorded in CD<sub>3</sub>OD at 150 MHz



Figure 40S. HMBC spectrum of (5) recorded in CD<sub>3</sub>OD



Figure 41S. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of (5) recorded in CD<sub>3</sub>OD



Figure 42S. ROESY spectrum of (5) recorded in CD<sub>3</sub>OD



Figure 43S. HRESIMS spectrum of (5)



Figure 44S. UV spectrum of (5)



Figure 45S. IR spectrum of (5)

### Figure 46S-54S. NMR, MS, UV, and IR spectra of compound 6



Figure 46S. <sup>1</sup>H NMR spectrum of (6) recorded in CD<sub>3</sub>OD at 600 MHz

xpp43



Figure 47S. <sup>13</sup>C NMR spectrum of (6) recorded in CD<sub>3</sub>OD at 150 MHz







Figure 49S. HMBC spectrum of (6) recorded in CD<sub>3</sub>OD



Figure 50S. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of (6) recorded in CD<sub>3</sub>OD



Figure 51S. ROESY spectrum of (6) recorded in CD<sub>3</sub>OD



Agilent Technologies

Page 1 of 1

Printed at: 3:08 PM on: 6/30/2015

Figure 52S. HRESIMS spectrum of (6)



Figure 53S. UV spectrum of (6)



Figure 54S. IR spectrum of (6)

### Figure 55S-63S. NMR, MS, UV, and IR spectra of compound 7



Figure 56S. <sup>13</sup>C NMR spectrum of (7) recorded in CD<sub>3</sub>OD at 150 MHz







Figure 58S. HMBC spectrum of (7) recorded in CD<sub>3</sub>OD



Figure 59S. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of (7) recorded in CD<sub>3</sub>OD



Figure 60S. ROESY spectrum of (7) recorded in CD<sub>3</sub>OD



Agilent Technologies

Page 1 of 1

Printed at: 3:01 PM on: 6/30/2015

Figure 61S. HRESIMS spectrum of (7)



Figure 62S. UV spectrum of (7)



Figure 63S. IR spectrum of (7)

### Figure 64S-72S. NMR, MS, UV, and IR spectra of compound 8



xpp55



Figure 65S. <sup>13</sup>C NMR spectrum of (8) recorded in CD<sub>3</sub>OD at 150 MHz







Figure 67S. HMBC spectrum of (8) recorded in CD<sub>3</sub>OD



Figure 68S. <sup>1</sup>H-<sup>1</sup>H COESY spectrum of (8) recorded in CD<sub>3</sub>OD



Figure 69S. ROESY spectrum of (8) recorded in CD<sub>3</sub>OD



Agilent Technologies

Page 1 of 1

Printed at: 3:06 PM on: 6/30/2015

Figure 70S. HRESIMS spectrum of (8)



Figure 71S. UV spectrum of (8)



Figure 72S. IR spectrum of (8)

### Figure 73S-81S. NMR, MS, UV, and IR spectra of compound 9



Figure 73S. <sup>1</sup>H NMR spectrum of (9) recorded in CD<sub>3</sub>OD at 600 MHz

xpp56



Figure 74S. <sup>13</sup>C NMR spectrum of (9) recorded in CD<sub>3</sub>OD at 150 MHz







Figure 76S. HMBC spectrum of (9) recorded in CD<sub>3</sub>OD



Figure 77S. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of (9) recorded in CD<sub>3</sub>OD



Figure 78S. ROESY spectrum of (9) recorded in CD<sub>3</sub>OD



Figure 79S. HRESIMS spectrum of (9)



Technique:KBr压片 Customer:151104IR9 Acquisition : Double Sided,For Zerofilling : 2

Figure 81S. IR spectrum of (9)



### Figure 82S-90S. NMR, MS, UV, and IR spectra of compound 10

Figure 83S. <sup>13</sup>C NMR spectrum of (10) recorded in acetone- $d_6$  at 150 MHz

120 100 f1 (ppm)



Figure 84S. HSQC spectrum of (10) recorded in acetone- $d_6$ 



Figure 858. HMBC spectrum of (10) recorded in acetone- $d_6$ 



Figure 86S. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of (10) recorded in acetone-*d*<sub>6</sub>



Figure 878. ROESY spectrum of (10) recorded in acetone-d<sub>6</sub>



Agilent Technologies

Page 1 of 1

Printed at: 10:10 AM on: 6/15/2015

Figure 88S. HRESIMS spectrum of (10)



Figure 89S. UV spectrum of (10)



Figure 90S. IR spectrum of (10)

### Figure 91S-99S. NMR, MS, UV, and IR spectra of compound 11



Figure 91S. <sup>1</sup>H NMR spectrum of (11) recorded in acetone-d<sub>6</sub> at 600 MHz

xpp15



Figure 928. <sup>13</sup>C NMR spectrum of (11) recorded in acetone- $d_6$  at 150 MHz



Figure 93S. HSQC spectrum of (11) recorded in acetone- $d_6$ 



Figure 948. HMBC spectrum of (11) recorded in acetone- $d_6$ 



Figure 958. <sup>1</sup>H-<sup>1</sup>H COSYspectrum of (11) recorded in acetone-*d*<sub>6</sub>



Figure 96S. ROESY spectrum of (11) recorded in acetone- $d_6$ 



Figure 97S. HRESIMS spectrum of (11)



Figure 98S. UV spectrum of (11)



Figure 99S. IR spectrum of (11)

### Figure 100S-108S. NMR, MS, UV, and IR spectra of compound 12



Figure 100S. <sup>1</sup>H NMR spectrum of (12) recorded in acetone-*d*<sub>6</sub> at 600 MHz

xpp17 C13DEPT135-sxhuo Acetone D:\\ root 5 -102.6 207.0 158.9 154.2 152.1 ~135.6 ~133.4 -117.3 --111.5 -57.5 -50.9 19.8 36.9 220 120 100 f1 (ppm) 200 180 160 140 80 60 40 20 0 Figure 3018. <sup>13</sup>C NMR spectrum of (12) recorded in acetone-d<sub>6</sub> at 150MHz HO

OH

Ò

Υ



Figure 102S. HSQC spectrum of (12) recorded in acetone- $d_6$ 



Figure 1038. HMBC spectrum of (12) recorded in acetone- $d_6$ 





Figure 104S. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of (12) recorded in acetone- $d_6$ 



Figure 1058. ROESY spectrum of (12) recorded in acetone- $d_6$ 



Figure 106S. HRESIMS spectrum of (12)





#



Figure 108S. IR spectrum of (12)

### Figure 109S. The pack drawing of compound 1

![](_page_62_Figure_1.jpeg)

Figure 109S. View of the Pack drawing motif of 1

(Hydrogen-bonds are shown as dashed lines)

Figure 110S. The pack drawing of compound 3

![](_page_63_Figure_1.jpeg)

Figure 110S. View of the pack drawing of 3.

(Hydrogen-bonds are shown as dashed lines)

Figure 111S. The pack drawing compound 10

![](_page_64_Figure_1.jpeg)

Figure 111S. View of the pack drawing of 10

(Hydrogen-bonds are shown as dashed lines)

## Table 1S. Crystal data and structure refinement for 1

deg.

| Identification code               | cu_xpp40_0m                                 |
|-----------------------------------|---------------------------------------------|
| Empirical formula                 | C26 H38 011                                 |
| Formula weight                    | 526.56                                      |
| Temperature                       | 100(2) K                                    |
| Wavelength                        | 1.54178 A                                   |
| Crystal system, space group       | Monoclinic, P 21                            |
| Unit cell dimensions              | a = 5.70480(10) A alpha = 90 deg.           |
|                                   | b = 23.8602(5) A $beta = 90.6040(10)$       |
|                                   |                                             |
|                                   | c = 9.3419(2) A gamma = 90 deg.             |
| Volume                            | 1271.53(4) A <sup>3</sup>                   |
| Z, Calculated density             | 2, 1.375 Mg/m <sup>3</sup>                  |
| Absorption coefficient            | 0.898 mm <sup>-1</sup>                      |
| F (000)                           | 564                                         |
| Crystal size                      | 0.67 x 0.62 x 0.38 mm                       |
| Theta range for data collectio    | n 3.70 to 69.31 deg.                        |
| Limiting indices                  | -6<=h<=6, -26<=k<=24, -11<=1<=11            |
| Reflections collected / unique    | 10232 / 3499 [R(int) = 0.0328]              |
| Completeness to theta = 69.31     | 93.3 %                                      |
| Absorption correction             | Semi-empirical from equivalents             |
| Max. and min. transmission        | 0.7267 and 0.5846                           |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters    | 3499 / 1 / 344                              |
| Goodness-of-fit on F <sup>2</sup> | 1.113                                       |
| Final R indices [I>2sigma(I)]     | R1 = 0.0300, wR2 = 0.0884                   |
| R indices (all data)              | R1 = 0.0300, wR2 = 0.0885                   |
| Absolute structure parameter      | 0.17(14)                                    |

| Extinction coefficient      | 0.0128(8)               |
|-----------------------------|-------------------------|
| Largest diff. peak and hole | 0.222 and -0.238 e.A^-3 |

### Table 2S. Crystal data and structure refinement for 3

| Identification code                      | cu_xpp57_0m-sr                              |                        |
|------------------------------------------|---------------------------------------------|------------------------|
| Empirical formula                        | C104 H146 O45                               |                        |
| Formula weight                           | 2116.20                                     |                        |
| Temperature                              | 100(2) K                                    |                        |
| Wavelength                               | 1.54178 Å                                   |                        |
| Crystal system                           | Orthorhombic                                |                        |
| Space group                              | P212121                                     |                        |
| Unit cell dimensions                     | a = 17.5477(6) Å                            | α= 90°.                |
|                                          | b = 21.7199(7) Å                            | β= 90°.                |
|                                          | c = 33.3592(12) Å                           | $\gamma = 90^{\circ}.$ |
| Volume                                   | 12714.3(8) Å <sup>3</sup>                   |                        |
| Z                                        | 4                                           |                        |
| Density (calculated)                     | 1.106 Mg/m <sup>3</sup>                     |                        |
| Absorption coefficient                   | 0.728 mm <sup>-1</sup>                      |                        |
| F(000)                                   | 4520                                        |                        |
| Crystal size                             | 0.980 x 0.660 x 0.470 mm <sup>3</sup>       |                        |
| Theta range for data collection          | 2.427 to 69.708°.                           |                        |
| Index ranges                             | -21<=h<=21, -26<=k<=25, -3                  | 7<=1<=40               |
| Reflections collected                    | 112641                                      |                        |
| Independent reflections                  | 23429 [R(int) = 0.0484]                     |                        |
| Completeness to theta = $67.679^{\circ}$ | 99.7 %                                      |                        |
| Absorption correction                    | Semi-empirical from equivalents             |                        |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |                        |

| Data / restraints / parameters    | 23429 / 9 / 1386                   |
|-----------------------------------|------------------------------------|
| Goodness-of-fit on F <sup>2</sup> | 1.044                              |
| Final R indices [I>2sigma(I)]     | R1 = 0.0744, wR2 = 0.2065          |
| R indices (all data)              | R1 = 0.0759, wR2 = 0.2083          |
| Absolute structure parameter      | 0.11(3)                            |
| Extinction coefficient            | n/a                                |
| Largest diff. peak and hole       | 1.030 and -0.370 e.Å <sup>-3</sup> |

# Table 3S. Crystal data and structure refinement for 10

deg.

| Identification code             | cu_xpp14_0m                                                  |  |
|---------------------------------|--------------------------------------------------------------|--|
| Empirical formula               | C20 H26 05                                                   |  |
| Formula weight                  | 346. 41                                                      |  |
| Temperature                     | 100(2) K                                                     |  |
| Wavelength                      | 1.54178 A                                                    |  |
| Crystal system, space group     | Monoclinic, P 21                                             |  |
| Unit cell dimensions            | a = 11.5843(7) A alpha = 90 deg.                             |  |
|                                 | b = 9.5501(6) A beta = 92.859(4)                             |  |
|                                 |                                                              |  |
|                                 | c = 15.2093(10) A gamma = 90 deg.                            |  |
| Volume                          | 1680.53(18) A <sup>3</sup>                                   |  |
| Z, Calculated density           | 4, 1.369 Mg/m <sup>3</sup>                                   |  |
| Absorption coefficient          | 0.794 mm <sup>-1</sup>                                       |  |
| F (000)                         | 744                                                          |  |
| Crystal size                    | 0.40 x 0.28 x 0.02 mm                                        |  |
| Theta range for data collection | 2.91 to 69.25 deg.                                           |  |
| Limiting indices                | $-14 \le h \le 13$ , $-11 \le k \le 11$ , $-18 \le 1 \le 17$ |  |
| Reflections collected / unique  | 10384 / 4801 [R(int) = 0.0536]                               |  |

| Completeness to theta = $69.25$ | 92.0 %                             |
|---------------------------------|------------------------------------|
| Absorption correction           | Semi-empirical from equivalents    |
| Max. and min. transmission      | 0.9843 and 0.7419                  |
| Refinement method               | Full-matrix least-squares on $F^2$ |
| Data / restraints / parameters  | 4801 / 1 / 464                     |
| Goodness-of-fit on F^2          | 1.058                              |
| Final R indices [I>2sigma(I)]   | R1 = 0.0627, wR2 = 0.1682          |
| R indices (all data)            | R1 = 0.0701, $wR2 = 0.1743$        |
| Absolute structure parameter    | 0.0(2)                             |
| Largest diff. peak and hole     | 0.444 and -0.561 e.A <sup>-3</sup> |