Supporting Information

Synthesis, single crystal structure of fully-substituted

polynitrobenzene derivatives for high-energy materials

Wei Yang, ^b Huanchang Lu,^a Longyu Liao,^a Guijuan Fan,^{*a} Qing Ma,^{*a} Jinglun Huang^{*a}

^a Institute of Chemical Materials, Chinese Academy of Engineering Physics, Mianshan Road 64, Mianyang, China ^b Department of chemistry and chemical biology, Harvard University, Cambridge, Massachusetts, 02138, USA

*e-mail: fanguijuan@caep.cn, maq@caep.cn & huangjinglun@caep.cn

Contents

1.	Spectra Data	S2
2.	Crystal structure and crystalline parameters	S8
3.	DSC plot for the title compounds	S54
4.	Computational details	S57

Crystal structures and crystalline parameters

(b)

Fig. S1 (a) Thermal ellipsoid plot (50%) and labelling scheme of **6**. (b) Ball-and-stick packing diagram of **6** viewed down the *a* axis. Dashed lines indicate strong hydrogen bonding.

(b)

Fig.S2 (a) Thermal ellipsoid plot (50%) and labelling scheme of **7**. (b) Ball-and-stick packing diagram of **7** viewed down the *b* axis. Dashed lines indicate strong hydrogen bonding.

Fig.S3 Figure showing the nitro- π interactions (dashed red lines between nitro oxygen atoms and ring centroids) for each molecule of **7**

Fig.S4 (a) Thermal ellipsoid plot (50%) and labelling scheme of **8**. (b) Ball-and-stick packing diagram of **8** viewed down the *a* axis. Dashed lines indicate strong hydrogen bonding.

	4	5	6	7	8
Formula	$C_8H_2CI_3N_5O_4$	$C_{20}H_8CI_4N_{16}O_8$	$C_{16}H_{16}N_{16}O_8$	$C_8H_2N_{14}O_4$	C ₁₀ H ₈ N ₁₀ O ₄
Molecular weight [g mol ⁻¹]	338.50	742.22	560.45	358.24	332.26
T [K]	273(2)	293(2)	293(2)	293(2)	293(2)
Crystal size [mm ³]	0.21×0.16×0.13	0.22×0.17×0.13	0.20×0.17×0.11	0.18×0.16×0.13	0.17×0.13×0.07
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	P2 ₁ /n	P21/c	<i>P</i> -1	P21/c	P21/c
a [Å]	8.8432(19)	16.424(3)	7.4815(11)	11.5557(18)	8.941(3)
b [Å]	17.400(4)	10.270(2)	9.2466(13)	11.6416(19)	7.445(3)
c [Å]	16.430(4)	17.559(3)	16.151(3)	11.1129(17)	20.759(7)
α [°]	90	90	87.286(4)	90	90
β [°]	91.832(4)	92.886(4)	87.725(3)	116.222(3)	106.328(15)
۲ [°]]	90	90	89.891(3)	90	90
V [Å ³]	2526.9(9)	2958.0(10)	1115.2(3)	1341.1(4)	1326.1(8)
Ζ	8	4	2	4	4
λ [Å]	0.71073	0.71073	0.71073	0.71073	0.71073
$ ho_{ m calc}$ [g cm ⁻³]	1.780	1.667	1.669	1.774	1.664
μ [mm ⁻¹]	0.746	0.476	0.138	0.148	0.135
F (000)	1344	1488	576	720	680
ϑ range [°]	1.705-25.999	1.241-24.997	2.489-25.498	1.964-25.496	2.045-25.499
Reflections collected	14977 / 4970	15478 / 5161	6451 / 4134	7543 / 2497	7331 / 2456
Index ranges	-10≤h≤9	-19≤h≤19	-8≤h≤9	-13≤h≤13	-7≤h≤10
	-21≤k≤21	-11≤k≤12	-11≤k≤6	-13≤k≤14	-8≤k≤9
	-20≤l≤19	-15≤l≤20	-17≤l≤19	-12≤l≤13	-25≤l≤24
R _{int}	0.0357	0.0433	0.0212	0.0334	0.0749
Data / restraints / parameters	4970/0/361	5161 / 13 / 433	4134 / 0 / 361	2497 / 0 / 235	2456 / 0 / 225
Final R index [<i>l</i> >	R1=0.0413,	R1=0.0788,	R1=0.0486,	R1=0.0468,	R1=0.0522,
2 <i>σ</i> (<i>I</i>)]	wR2=0.1040	wR2=0.2088	wR2=0.1219	wR2=0.1089	wR2=0.1137
Final R index [all	R1=0.0582,	R1=0.0965,	R1=0.0647,	R1=0.0620,	R1=0.1012,
data]	wR2=0.1139	wR2=0.2193	wR2=0.1331	wR2=0.1174	wR2=0.1328
GOF on F ²	1.020	1.118	1.034	1.039	0.974
CCDC number	1552452	1552455	1552453	1552454	1552456

 Table S1.
 Crystal data and structure refinement details for 4, 5, 6, 7 and 8

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($Å^2 x \ 10^3$)

for 4. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	У	Z	U(eq)	
Cl(1)	10196(1)	3609(1)	-250(1)	67(1)	
CI(2)	4189(1)	3562(1)	-821(1)	60(1)	
CI(3)	6435(1)	4385(1)	2116(1)	62(1)	
CI(4)	7644(1)	637(1)	-1834(1)	67(1)	
CI(5)	4029(1)	1439(1)	571(1)	68(1)	
CI(6)	10048(1)	1495(1)	1070(1)	64(1)	
N(1)	7397(2)	3377(1)	-1263(1)	42(1)	
N(2)	7305(3)	2637(1)	-1491(1)	69(1)	
N(3)	7592(3)	3402(1)	-2571(1)	63(1)	
N(4)	3973(2)	4043(1)	905(1)	53(1)	
N(5)	9470(2)	4125(2)	1427(1)	57(1)	

N(6)	6870(2)	1664(1)	1551(1)	41(1)
N(7)	6885(3)	2408(1)	1775(1)	65(1)
N(8)	6722(3)	1645(1)	2862(1)	60(1)
N(9)	4682(2)	909(1)	-1104(1)	53(1)
N(10)	10194(2)	1019(2)	-674(1)	59(1)
O(1)	3371(2)	3490(1)	1172(2)	96(1)
O(2)	3413(2)	4663(1)	835(2)	102(1)
O(3)	10066(2)	3567(2)	1725(1)	87(1)
O(4)	9823(3)	4774(2)	1548(2)	103(1)
O(5)	4166(2)	1448(1)	-1468(1)	88(1)
O(6)	4204(3)	265(1)	-1138(2)	90(1)
O(7)	10673(3)	391(2)	-779(2)	108(1)
O(8)	10849(3)	1603(2)	-817(2)	97(1)
C(1)	8407(2)	3738(1)	78(1)	40(1)
C(2)	7179(2)	3600(1)	-444(1)	38(1)
C(3)	5718(2)	3702(1)	-177(1)	41(1)
C(4)	5519(2)	3944(1)	611(1)	40(1)
C(5)	6727(2)	4095(1)	1139(1)	40(1)
C(6)	8164(2)	3985(1)	861(1)	41(1)
C(7)	7565(3)	3811(2)	-1916(2)	62(1)
C(8)	7437(4)	2692(2)	-2277(2)	70(1)
C(9)	7431(3)	939(1)	-856(1)	41(1)
C(10)	6013(2)	1053(1)	-560(1)	40(1)
C(11)	5806(2)	1310(1)	220(1)	41(1)
C(12)	7063(2)	1441(1)	731(1)	38(1)
C(13)	8497(2)	1344(1)	438(1)	41(1)
C(14)	8664(2)	1096(1)	-352(1)	42(1)
C(15)	6760(3)	1228(2)	2210(2)	59(1)
C(16)	6796(3)	2350(2)	2566(2)	65(1)

Table S3.Bond lengths [Å] and angles [°] for 4.

Cl(1)-C(1)	1.703(2)
CI(2)-C(3)	1.708(2)
Cl(3)-C(5)	1.710(2)
Cl(4)-C(9)	1.707(2)
Cl(5)-C(11)	1.706(2)
Cl(6)-C(13)	1.714(2)
N(1)-C(7)	1.323(3)

N(1)-N(2)	1.343(3)
N(1)-C(2)	1.419(3)
N(2)-C(8)	1.305(3)
N(3)-C(7)	1.291(3)
N(3)-C(8)	1.334(4)
N(4)-O(1)	1.191(3)
N(4)-O(2)	1.191(3)
N(4)-C(4)	1.474(3)
N(5)-O(4)	1.187(3)
N(5)-O(3)	1.201(3)
N(5)-C(6)	1.480(3)
N(6)-C(15)	1.328(3)
N(6)-N(7)	1.346(3)
N(6)-C(12)	1.417(3)
N(7)-C(16)	1.309(3)
N(7)-O(1)	3.739(4)
N(8)-C(15)	1.296(3)
N(8)-C(16)	1.323(3)
N(9)-O(5)	1.194(3)
N(9)-O(6)	1.199(3)
N(9)-C(10)	1.477(3)
N(10)-O(7)	1.187(3)
N(10)-O(8)	1.197(3)
N(10)-C(14)	1.474(3)
C(1)-C(6)	1.380(3)
C(1)-C(2)	1.383(3)
C(2)-C(3)	1.390(3)
C(3)-C(4)	1.378(3)
C(4)-C(5)	1.379(3)
C(5)-C(6)	1.378(3)
C(7)-C(8)	2.038(4)
С(7)-Н(7)	0.9300
С(8)-Н(8)	0.9300
C(9)-C(10)	1.373(3)
C(9)-C(14)	1.375(3)
C(10)-C(11)	1.375(3)
C(11)-C(12)	1.391(3)
C(12)-C(13)	1.381(3)

C(13)-C(14)	1.381(3)
C(15)-C(16)	2.039(4)
C(15)-H(15)	0.9300
C(16)-H(16)	0.9300
C(7)-N(1)-N(2)	109.2(2)
C(7)-N(1)-C(2)	129.4(2)
N(2)-N(1)-C(2)	121.10(18)
C(8)-N(2)-N(1)	101.5(2)
C(7)-N(3)-C(8)	101.8(2)
O(1)-N(4)-O(2)	125.3(2)
O(1)-N(4)-C(4)	117.1(2)
O(2)-N(4)-C(4)	117.5(2)
O(4)-N(5)-O(3)	126.2(2)
O(4)-N(5)-C(6)	117.2(2)
O(3)-N(5)-C(6)	116.6(2)
C(15)-N(6)-N(7)	109.1(2)
C(15)-N(6)-C(12)	129.3(2)
N(7)-N(6)-C(12)	121.46(18)
C(16)-N(7)-N(6)	101.4(2)
C(16)-N(7)-O(1)	103.04(19)
N(6)-N(7)-O(1)	114.26(16)
C(15)-N(8)-C(16)	102.3(2)
O(5)-N(9)-O(6)	125.6(2)
O(5)-N(9)-C(10)	117.0(2)
O(6)-N(9)-C(10)	117.4(2)
O(7)-N(10)-O(8)	125.2(2)
O(7)-N(10)-C(14)	118.1(2)
O(8)-N(10)-C(14)	116.7(2)
N(4)-O(1)-N(7)	97.31(16)
C(6)-C(1)-C(2)	119.35(19)
C(6)-C(1)-Cl(1)	120.66(17)
C(2)-C(1)-Cl(1)	119.99(17)
C(1)-C(2)-C(3)	120.0(2)
C(1)-C(2)-N(1)	120.54(19)
C(3)-C(2)-N(1)	119.39(19)
C(4)-C(3)-C(2)	119.0(2)
C(4)-C(3)-Cl(2)	120.24(17)

C(2)-C(3)-Cl(2)	120.76(17)
C(3)-C(4)-C(5)	121.98(19)
C(3)-C(4)-N(4)	119.40(19)
C(5)-C(4)-N(4)	118.6(2)
C(6)-C(5)-C(4)	117.9(2)
C(6)-C(5)-Cl(3)	121.41(17)
C(4)-C(5)-Cl(3)	120.64(17)
C(5)-C(6)-C(1)	121.7(2)
C(5)-C(6)-N(5)	118.6(2)
C(1)-C(6)-N(5)	119.68(19)
N(3)-C(7)-N(1)	111.5(2)
N(3)-C(7)-C(8)	39.85(15)
N(1)-C(7)-C(8)	71.62(16)
N(3)-C(7)-H(7)	124.3
N(1)-C(7)-H(7)	124.3
С(8)-С(7)-Н(7)	164.1
N(2)-C(8)-N(3)	116.0(2)
N(2)-C(8)-C(7)	77.71(17)
N(3)-C(8)-C(7)	38.33(14)
N(2)-C(8)-H(8)	122.0
N(3)-C(8)-H(8)	122.0
С(7)-С(8)-Н(8)	160.3
C(10)-C(9)-C(14)	118.3(2)
C(10)-C(9)-Cl(4)	120.49(17)
C(14)-C(9)-Cl(4)	121.18(17)
C(9)-C(10)-C(11)	121.8(2)
C(9)-C(10)-N(9)	118.7(2)
C(11)-C(10)-N(9)	119.47(19)
C(10)-C(11)-C(12)	119.23(19)
C(10)-C(11)-Cl(5)	120.65(17)
C(12)-C(11)-Cl(5)	120.09(17)
C(13)-C(12)-C(11)	119.6(2)
C(13)-C(12)-N(6)	120.33(19)
C(11)-C(12)-N(6)	120.04(19)
C(14)-C(13)-C(12)	119.6(2)
C(14)-C(13)-Cl(6)	120.68(17)
C(12)-C(13)-Cl(6)	119.71(17)
C(9)-C(14)-C(13)	121.4(2)

C(9)-C(14)-N(10)	119.1(2)	
C(13)-C(14)-N(10)	119.5(2)	
N(8)-C(15)-N(6)	111.0(2)	
N(8)-C(15)-C(16)	39.34(15)	
N(6)-C(15)-C(16)	71.69(16)	
N(8)-C(15)-H(15)	124.5	
N(6)-C(15)-H(15)	124.5	
C(16)-C(15)-H(15)	163.8	
N(7)-C(16)-N(8)	116.2(2)	
N(7)-C(16)-C(15)	77.83(17)	
N(8)-C(16)-C(15)	38.38(13)	
N(7)-C(16)-H(16)	121.9	
N(8)-C(16)-H(16)	121.9	
C(15)-C(16)-H(16)	160.3	

Table S4. Anisotropic displacement parameters (Å²x 10³) for **4**. The anisotropic displacement factorexponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2hka^*b^*U^{12}].$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
CI(1)	38(1)	110(1)	54(1)	-10(1)	9(1)	3(1)
CI(2)	43(1)	91(1)	44(1)	-6(1)	-9(1)	-3(1)
CI(3)	67(1)	83(1)	35(1)	-14(1)	8(1)	-3(1)
Cl(4)	71(1)	94(1)	35(1)	-16(1)	6(1)	10(1)
Cl(5)	39(1)	112(1)	52(1)	-12(1)	8(1)	8(1)
Cl(6)	42(1)	97(1)	50(1)	-9(1)	-10(1)	-5(1)
N(1)	49(1)	46(1)	30(1)	-2(1)	3(1)	0(1)
N(2)	116(2)	49(1)	44(1)	-8(1)	4(1)	-2(1)
N(3)	74(2)	82(2)	32(1)	-4(1)	5(1)	2(1)
N(4)	40(1)	72(2)	47(1)	0(1)	7(1)	0(1)
N(5)	46(1)	83(2)	42(1)	-6(1)	-2(1)	-9(1)
N(6)	48(1)	44(1)	30(1)	-3(1)	1(1)	1(1)
N(7)	104(2)	49(1)	44(1)	-5(1)	5(1)	-2(1)
N(8)	73(2)	73(2)	32(1)	-4(1)	0(1)	-5(1)
N(9)	45(1)	76(2)	38(1)	-4(1)	-3(1)	0(1)
N(10)	44(1)	87(2)	48(1)	6(1)	9(1)	4(1)
O(1)	60(1)	115(2)	114(2)	44(2)	32(1)	-2(1)
O(2)	67(1)	76(2)	165(3)	-6(2)	32(2)	25(1)
O(3)	64(1)	121(2)	75(2)	19(1)	-26(1)	5(1)

O(4)	92(2)	95(2)	121(2)	-26(2)	-33(2)	-27(1)
O(5)	65(1)	119(2)	76(2)	28(1)	-28(1)	-1(1)
O(6)	84(2)	82(2)	103(2)	-20(1)	-30(1)	-20(1)
O(7)	79(2)	106(2)	143(3)	0(2)	47(2)	38(1)
O(8)	63(1)	121(2)	109(2)	23(2)	32(1)	-11(1)
C(1)	36(1)	48(1)	37(1)	1(1)	4(1)	0(1)
C(2)	43(1)	42(1)	28(1)	2(1)	1(1)	-1(1)
C(3)	38(1)	47(1)	37(1)	1(1)	-3(1)	-3(1)
C(4)	38(1)	46(1)	35(1)	4(1)	6(1)	0(1)
C(5)	45(1)	44(1)	30(1)	0(1)	4(1)	-3(1)
C(6)	38(1)	49(1)	34(1)	0(1)	-4(1)	-4(1)
C(7)	90(2)	57(2)	38(1)	3(1)	11(1)	-4(1)
C(8)	97(2)	68(2)	44(2)	-19(1)	1(2)	5(2)
C(9)	47(1)	48(1)	29(1)	0(1)	3(1)	5(1)
C(10)	42(1)	47(1)	32(1)	1(1)	-4(1)	1(1)
C(11)	37(1)	49(1)	36(1)	1(1)	4(1)	4(1)
C(12)	43(1)	41(1)	29(1)	0(1)	0(1)	3(1)
C(13)	39(1)	49(1)	35(1)	2(1)	-3(1)	0(1)
C(14)	35(1)	53(1)	39(1)	4(1)	3(1)	6(1)
C(15)	88(2)	54(2)	35(1)	4(1)	-2(1)	-3(1)
C(16)	87(2)	64(2)	43(2)	-17(1)	0(1)	0(1)

Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 4.

	x	У	Z	U(eq)
H(7)	76524344	-190474		
H(8)	74242262	-261384		
H(15)	6716694	220471		
H(16)	67842781	290278		

Table S6. Torsion angles [°] for 4.

C(7)-N(1)-N(2)-C(8)	0.3(3)
C(2)-N(1)-N(2)-C(8)	174.7(2)
C(15)-N(6)-N(7)-C(16)	0.6(3)
C(12)-N(6)-N(7)-C(16)	-175.2(2)
C(15)-N(6)-N(7)-O(1)	-109.48(19)
C(12)-N(6)-N(7)-O(1)	74.8(2)
O(2)-N(4)-O(1)-N(7)	-157.5(3)

C(4)-N(4)-O(1)-N(7)	24.8(2)
C(6)-C(1)-C(2)-C(3)	-0.7(3)
Cl(1)-C(1)-C(2)-C(3)	179.73(17)
C(6)-C(1)-C(2)-N(1)	177.2(2)
Cl(1)-C(1)-C(2)-N(1)	-2.3(3)
C(7)-N(1)-C(2)-C(1)	-87.8(3)
N(2)-N(1)-C(2)-C(1)	99.1(3)
C(7)-N(1)-C(2)-C(3)	90.1(3)
N(2)-N(1)-C(2)-C(3)	-83.0(3)
C(1)-C(2)-C(3)-C(4)	0.2(3)
N(1)-C(2)-C(3)-C(4)	-177.7(2)
C(1)-C(2)-C(3)-Cl(2)	177.97(17)
N(1)-C(2)-C(3)-Cl(2)	0.0(3)
C(2)-C(3)-C(4)-C(5)	0.6(3)
Cl(2)-C(3)-C(4)-C(5)	-177.12(17)
C(2)-C(3)-C(4)-N(4)	-179.1(2)
Cl(2)-C(3)-C(4)-N(4)	3.1(3)
O(1)-N(4)-C(4)-C(3)	86.1(3)
O(2)-N(4)-C(4)-C(3)	-91.9(3)
O(1)-N(4)-C(4)-C(5)	-93.7(3)
O(2)-N(4)-C(4)-C(5)	88.4(3)
C(3)-C(4)-C(5)-C(6)	-1.0(3)
N(4)-C(4)-C(5)-C(6)	178.8(2)
C(3)-C(4)-C(5)-Cl(3)	-179.28(18)
N(4)-C(4)-C(5)-Cl(3)	0.5(3)
C(4)-C(5)-C(6)-C(1)	0.5(3)
Cl(3)-C(5)-C(6)-C(1)	178.78(18)
C(4)-C(5)-C(6)-N(5)	-178.4(2)
Cl(3)-C(5)-C(6)-N(5)	-0.1(3)
C(2)-C(1)-C(6)-C(5)	0.3(3)
Cl(1)-C(1)-C(6)-C(5)	179.89(18)
C(2)-C(1)-C(6)-N(5)	179.2(2)
Cl(1)-C(1)-C(6)-N(5)	-1.3(3)
O(4)-N(5)-C(6)-C(5)	-77.7(3)
O(3)-N(5)-C(6)-C(5)	101.7(3)
O(4)-N(5)-C(6)-C(1)	103.4(3)
O(3)-N(5)-C(6)-C(1)	-77.2(3)
C(8)-N(3)-C(7)-N(1)	-0.3(3)

N(2)-N(1)-C(7)-N(3)	0.0(3)
C(2)-N(1)-C(7)-N(3)	-173.8(2)
N(2)-N(1)-C(7)-C(8)	-0.2(2)
C(2)-N(1)-C(7)-C(8)	-174.0(2)
N(1)-N(2)-C(8)-N(3)	-0.5(4)
N(1)-N(2)-C(8)-C(7)	-0.20(19)
C(7)-N(3)-C(8)-N(2)	0.5(4)
C(14)-C(9)-C(10)-C(11)	-0.5(3)
Cl(4)-C(9)-C(10)-C(11)	-178.71(18)
C(14)-C(9)-C(10)-N(9)	178.1(2)
Cl(4)-C(9)-C(10)-N(9)	-0.1(3)
O(5)-N(9)-C(10)-C(9)	-94.1(3)
O(6)-N(9)-C(10)-C(9)	86.6(3)
O(5)-N(9)-C(10)-C(11)	84.6(3)
O(6)-N(9)-C(10)-C(11)	-94.8(3)
C(9)-C(10)-C(11)-C(12)	-1.6(3)
N(9)-C(10)-C(11)-C(12)	179.7(2)
C(9)-C(10)-C(11)-Cl(5)	-179.60(18)
N(9)-C(10)-C(11)-Cl(5)	1.8(3)
C(10)-C(11)-C(12)-C(13)	2.8(3)
Cl(5)-C(11)-C(12)-C(13)	-179.26(17)
C(10)-C(11)-C(12)-N(6)	-176.3(2)
Cl(5)-C(11)-C(12)-N(6)	1.6(3)
C(15)-N(6)-C(12)-C(13)	-88.8(3)
N(7)-N(6)-C(12)-C(13)	86.0(3)
C(15)-N(6)-C(12)-C(11)	90.3(3)
N(7)-N(6)-C(12)-C(11)	-94.9(3)
C(11)-C(12)-C(13)-C(14)	-1.7(3)
N(6)-C(12)-C(13)-C(14)	177.3(2)
C(11)-C(12)-C(13)-Cl(6)	-179.33(17)
N(6)-C(12)-C(13)-Cl(6)	-0.2(3)
C(10)-C(9)-C(14)-C(13)	1.6(3)
Cl(4)-C(9)-C(14)-C(13)	179.74(18)
C(10)-C(9)-C(14)-N(10)	-176.6(2)
Cl(4)-C(9)-C(14)-N(10)	1.5(3)
C(12)-C(13)-C(14)-C(9)	-0.4(3)
Cl(6)-C(13)-C(14)-C(9)	177.11(18)
C(12)-C(13)-C(14)-N(10)	177.8(2)

Cl(6)-C(13)-C(14)-N(10)	-4.7(3)
O(7)-N(10)-C(14)-C(9)	-73.5(3)
O(8)-N(10)-C(14)-C(9)	105.7(3)
O(7)-N(10)-C(14)-C(13)	108.2(3)
O(8)-N(10)-C(14)-C(13)	-72.5(3)
C(16)-N(8)-C(15)-N(6)	0.7(3)
N(7)-N(6)-C(15)-N(8)	-0.9(3)
C(12)-N(6)-C(15)-N(8)	174.5(2)
N(7)-N(6)-C(15)-C(16)	-0.40(19)
C(12)-N(6)-C(15)-C(16)	174.9(2)
N(6)-N(7)-C(16)-N(8)	-0.2(3)
O(1)-N(7)-C(16)-N(8)	118.3(2)
N(6)-N(7)-C(16)-C(15)	-0.38(18)
O(1)-N(7)-C(16)-C(15)	118.10(13)
C(15)-N(8)-C(16)-N(7)	-0.3(4)

Table S7. Hydrogen bonds for 4 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
C(7)-H(7)O(2)#1	0.93	2.66	3.323(4)	129.1	
C(8)-H(8)O(1)#2	0.93	2.55	3.396(4)	151.6	
C(15)-H(15)O(6)#3	0.93	2.53	3.237(3)	132.6	
C(16)-H(16)O(8)#4	0.93	2.52	3.348(4)	147.7	

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z #2 x+1/2,-y+1/2,z-1/2 #3 -x+1,-y,-z

#4 x-1/2,-y+1/2,z+1/2

Table S8. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for **5**.U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U(eq)
Cl(1)	8688(1)	9094(2)	2716(1)	65(1)
CI(2)	11001(1)	6901(2)	1115(1)	62(1)
CI(3)	6554(1)	547(2)	7501(1)	67(1)
CI(4)	4189(1)	3308(2)	6054(1)	58(1)
N(1)	10231(3)	7638(6)	2532(3)	54(1)
N(2)	9990(3)	7643(5)	-258(2)	45(1)
N(3)	8521(2)	9081(4)	-211(2)	42(1)
N(4)	8913(3)	9584(5)	-807(3)	54(1)

N(5)	7589(3)	9256(9)	-1126(4)	101(3)
N(6)	7897(2)	9796(4)	1214(3)	40(1)
N(7)	7201(3)	9116(5)	1310(4)	63(2)
N(8)	6953(3)	11239(5)	1227(4)	78(2)
N(9)	5050(3)	2180(6)	7417(3)	54(1)
N(10)	4981(3)	2572(5)	4623(3)	50(1)
N(11)	6412(3)	1060(4)	4594(3)	44(1)
N(12)	6356(4)	-109(6)	4272(4)	82(2)
N(13)	7157(4)	1156(8)	3609(3)	85(2)
N(14)	7201(2)	201(4)	5944(3)	43(1)
N(15)	7858(3)	854(5)	5703(4)	64(2)
N(16)	8194(3)	-1189(5)	6032(5)	89(2)
O(1)	10768(3)	8341(7)	2775(3)	101(2)
O(2)	10038(4)	6608(5)	2786(3)	86(2)
O(3)	9619(3)	6760(5)	-568(3)	72(1)
O(4)	10603(3)	8148(5)	-470(2)	67(1)
O(5)	5293(4)	3156(6)	7711(3)	97(2)
O(6)	4551(4)	1484(7)	7622(3)	113(2)
O(7)	4459(3)	1955(6)	4321(3)	92(2)
O(8)	5242(4)	3588(5)	4398(3)	104(2)
C(1)	9072(3)	8739(5)	1848(3)	36(1)
C(2)	9786(3)	8063(5)	1815(3)	38(1)
C(3)	10106(3)	7738(5)	1128(3)	36(1)
C(4)	9679(3)	8095(5)	472(3)	32(1)
C(5)	8954(3)	8776(4)	480(3)	32(1)
C(6)	8651(3)	9123(4)	1185(3)	34(1)
C(7)	7740(4)	11049(5)	1179(4)	61(2)
C(8)	6658(4)	10034(6)	1304(4)	67(2)
C(9)	7739(4)	8880(9)	-412(4)	82(3)
C(10)	8322(4)	9653(8)	-1333(4)	72(2)
C(11)	6098(3)	1102(5)	6661(3)	37(1)
C(12)	5410(3)	1854(5)	6675(3)	38(1)
C(13)	5039(3)	2348(5)	6016(3)	38(1)
C(14)	5375(3)	2056(5)	5333(3)	36(1)
C(15)	6073(3)	1323(4)	5304(3)	34(1)
C(16)	6448(3)	850(4)	5971(3)	35(1)
C(17)	7415(4)	-1013(6)	6128(4)	66(2)
C(18)	8422(4)	-10(6)	5775(5)	81(2)

C(19)	6877(4)	1825(7)	4170(4)		75(2)
C(20)	6808(5)	15(8)	3688(4)	82(2)	

Table S9. Bond lengths [Å] and angles [°] for 5.

Cl(1)-C(1)	1.717(5)
CI(2)-C(3)	1.704(5)
Cl(3)-C(11)	1.717(5)
Cl(4)-C(13)	1.713(5)
N(1)-O(2)	1.196(7)
N(1)-O(1)	1.201(7)
N(1)-C(2)	1.489(7)
N(2)-O(3)	1.207(6)
N(2)-O(4)	1.208(6)
N(2)-C(4)	1.478(6)
N(3)-C(9)	1.331(7)
N(3)-N(4)	1.359(6)
N(3)-C(5)	1.410(6)
N(4)-C(10)	1.306(8)
N(5)-C(9)	1.322(8)
N(5)-C(10)	1.339(8)
N(6)-C(7)	1.313(7)
N(6)-N(7)	1.356(6)
N(6)-C(6)	1.421(6)
N(7)-C(8)	1.297(7)
N(8)-C(7)	1.315(7)
N(8)-C(8)	1.338(8)
N(9)-O(6)	1.158(7)
N(9)-O(5)	1.187(7)
N(9)-C(12)	1.495(7)
N(10)-O(7)	1.172(6)
N(10)-O(8)	1.203(7)
N(10)-C(14)	1.474(7)
N(11)-N(12)	1.328(7)
N(11)-C(19)	1.346(8)
N(11)-C(15)	1.417(6)
N(12)-C(20)	1.302(8)
N(13)-C(19)	1.303(9)
N(13)-C(20)	1.316(10)
	· · ·

N(14)-C(17)	1.331(7)
N(14)-N(15)	1.356(6)
N(14)-C(16)	1.408(6)
N(15)-C(18)	1.284(8)
N(16)-C(17)	1.310(8)
N(16)-C(18)	1.352(9)
C(1)-C(2)	1.366(7)
C(1)-C(6)	1.382(7)
C(2)-C(3)	1.381(7)
C(3)-C(4)	1.367(7)
C(4)-C(5)	1.382(6)
C(5)-C(6)	1.402(7)
С(7)-Н(7)	0.9300
С(8)-Н(8)	0.9300
С(9)-Н(9)	0.9300
C(10)-H(10)	0.9300
C(11)-C(12)	1.371(7)
C(11)-C(16)	1.390(7)
C(12)-C(13)	1.377(7)
C(13)-C(14)	1.377(7)
C(14)-C(15)	1.375(7)
C(15)-C(16)	1.384(7)
C(17)-H(17)	0.9300
C(18)-H(18)	0.9300
C(19)-C(20)	2.043(10)
C(19)-H(19)	0.9300
С(20)-Н(20)	0.9300
O(2)-N(1)-O(1)	127.1(6)
O(2)-N(1)-C(2)	116.4(5)
O(1)-N(1)-C(2)	116.4(5)
O(3)-N(2)-O(4)	126.4(5)
O(3)-N(2)-C(4)	116.0(4)
O(4)-N(2)-C(4)	117.5(5)
C(9)-N(3)-N(4)	110.0(5)
C(9)-N(3)-C(5)	129.2(5)
N(4)-N(3)-C(5)	120.7(4)
C(10)-N(4)-N(3)	101.6(4)

C(9)-N(5)-C(10)	102.6(5)
C(7)-N(6)-N(7)	110.2(4)
C(7)-N(6)-C(6)	130.0(4)
N(7)-N(6)-C(6)	119.7(4)
C(8)-N(7)-N(6)	102.0(5)
C(7)-N(8)-C(8)	103.4(5)
O(6)-N(9)-O(5)	127.9(6)
O(6)-N(9)-C(12)	116.7(5)
O(5)-N(9)-C(12)	115.4(5)
O(7)-N(10)-O(8)	125.8(6)
O(7)-N(10)-C(14)	118.0(5)
O(8)-N(10)-C(14)	116.2(5)
N(12)-N(11)-C(19)	108.7(5)
N(12)-N(11)-C(15)	121.7(4)
C(19)-N(11)-C(15)	129.4(5)
C(20)-N(12)-N(11)	102.5(6)
C(19)-N(13)-C(20)	102.6(6)
C(17)-N(14)-N(15)	109.5(5)
C(17)-N(14)-C(16)	131.0(5)
N(15)-N(14)-C(16)	119.5(4)
C(18)-N(15)-N(14)	102.0(5)
C(17)-N(16)-C(18)	102.0(5)
C(2)-C(1)-C(6)	120.2(4)
C(2)-C(1)-Cl(1)	120.0(4)
C(6)-C(1)-Cl(1)	119.8(4)
C(1)-C(2)-C(3)	121.6(4)
C(1)-C(2)-N(1)	119.9(4)
C(3)-C(2)-N(1)	118.4(4)
C(4)-C(3)-C(2)	118.0(4)
C(4)-C(3)-Cl(2)	122.0(4)
C(2)-C(3)-Cl(2)	120.0(4)
C(3)-C(4)-C(5)	122.1(4)
C(3)-C(4)-N(2)	117.5(4)
C(5)-C(4)-N(2)	120.2(4)
C(4)-C(5)-C(6)	118.8(4)
C(4)-C(5)-N(3)	120.0(4)
C(6)-C(5)-N(3)	121.1(4)
C(1)-C(6)-C(5)	119.1(4)

120.5(4)
120.3(4)
109.5(5)
125.3
125.3
114.9(5)
122.6
122.6
109.7(6)
125.1
125.1
116.0(6)
122.0
122.0
119.8(4)
119.8(4)
120.4(4)
121.6(5)
120.3(5)
118.1(5)
118.1(4)
120.4(4)
121.5(4)
121.6(4)
119.8(4)
118.7(4)
119.8(4)
120.2(4)
120.0(4)
119.1(4)
119.4(4)
121.3(4)
110.2(6)
124.9
124.9
116.2(6)
121.9
121.9

N(13)-C(19)-N(11)	110.0(6)
N(13)-C(19)-C(20)	38.9(4)
N(11)-C(19)-C(20)	71.2(4)
N(13)-C(19)-H(19)	125.0
N(11)-C(19)-H(19)	125.0
C(20)-C(19)-H(19)	163.7
N(12)-C(20)-N(13)	116.0(6)
N(12)-C(20)-C(19)	77.6(4)
N(13)-C(20)-C(19)	38.5(4)
N(12)-C(20)-H(20)	122.0
N(13)-C(20)-H(20)	122.0
C(19)-C(20)-H(20)	160.4

Table S10. Anisotropic displacement parameters ($Å^2 x \ 10^3$) for **5**. The anisotropic displacement factorexponent takes the form: $-2\mathbb{P}^2$ [$h^2 \ a^{*2} \cup^{11} + ... + 2 \ h \ k \ a^* \ b^* \cup^{12}$]

exponen	t takes the form	nz⊡ [n a' U	+ + Z II K d	D 0]		
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
CI(1)	73(1)	78(1)	46(1)	-15(1)	23(1)	5(1)
Cl(2)	46(1)	78(1)	61(1)	21(1)	12(1)	32(1)
Cl(3)	65(1)	85(1)	50(1)	23(1)	-12(1)	2(1)
Cl(4)	43(1)	62(1)	70(1)	-10(1)	3(1)	17(1)
N(1)	53(3)	71(4)	38(3)	9(3)	-1(2)	6(3)
N(2)	43(2)	52(3)	39(2)	-3(2)	6(2)	6(2)
N(3)	32(2)	48(3)	44(3)	17(2)	-1(2)	-5(2)
N(4)	44(3)	72(3)	46(3)	22(2)	0(2)	-10(2)
N(5)	50(3)	179(8)	70(4)	58(5)	-21(3)	-29(4)
N(6)	31(2)	29(2)	63(3)	4(2)	12(2)	-1(2)
N(7)	35(2)	39(3)	117(5)	11(3)	23(3)	0(2)
N(8)	48(3)	44(3)	145(6)	23(3)	34(3)	17(2)
N(9)	46(3)	76(4)	40(3)	-8(3)	7(2)	-12(3)
N(10)	45(3)	61(3)	42(3)	8(2)	0(2)	1(2)
N(11)	38(2)	50(3)	47(3)	-8(2)	11(2)	-4(2)
N(12)	91(4)	80(4)	80(4)	-38(3)	43(3)	-39(3)
N(13)	69(4)	128(6)	62(4)	-25(4)	30(3)	-25(4)
N(14)	35(2)	27(2)	65(3)	1(2)	2(2)	2(2)
N(15)	37(3)	37(3)	118(5)	6(3)	8(3)	1(2)
N(16)	54(3)	37(3)	175(7)	15(4)	13(4)	17(3)
O(1)	84(4)	161(6)	55(3)	20(3)	-28(3)	-35(4)

O(2)	119(4)	81(4)	58(3)	31(3)	1(3)	11(3)
O(3)	89(3)	72(3)	56(3)	-24(2)	15(2)	-9(3)
O(4)	52(2)	98(4)	54(3)	2(2)	23(2)	-2(2)
O(5)	104(4)	121(5)	67(3)	-44(3)	25(3)	-24(4)
O(6)	120(5)	163(6)	60(3)	-11(3)	43(3)	-62(5)
O(7)	72(3)	139(5)	63(3)	27(3)	-24(3)	-41(3)
O(8)	140(5)	76(4)	91(4)	41(3)	-37(4)	-24(4)
C(1)	41(3)	34(3)	35(3)	-3(2)	9(2)	-7(2)
C(2)	38(3)	38(3)	37(3)	6(2)	-1(2)	-1(2)
C(3)	26(2)	42(3)	40(3)	6(2)	4(2)	6(2)
C(4)	31(2)	35(3)	30(2)	3(2)	9(2)	0(2)
C(5)	28(2)	27(2)	39(3)	7(2)	-1(2)	-6(2)
C(6)	33(2)	22(2)	48(3)	1(2)	11(2)	-3(2)
C(7)	48(3)	32(3)	106(5)	11(3)	29(3)	4(2)
C(8)	38(3)	49(4)	116(6)	17(4)	30(3)	9(3)
C(9)	41(3)	142(7)	62(4)	41(5)	-12(3)	-21(4)
C(10)	56(4)	109(6)	49(4)	32(4)	-8(3)	-14(4)
C(11)	37(3)	37(3)	36(3)	7(2)	-4(2)	-6(2)
C(12)	35(3)	44(3)	35(3)	-2(2)	8(2)	-9(2)
C(13)	34(3)	33(3)	46(3)	-3(2)	3(2)	-2(2)
C(14)	34(2)	36(3)	39(3)	3(2)	-2(2)	-2(2)
C(15)	30(2)	31(2)	41(3)	-5(2)	6(2)	-3(2)
C(16)	33(2)	24(2)	49(3)	0(2)	-1(2)	0(2)
C(17)	51(4)	30(3)	117(6)	11(3)	2(4)	5(3)
C(18)	45(4)	42(4)	157(8)	4(4)	17(4)	6(3)
C(19)	78(4)	78(4)	72(4)	-8(4)	25(4)	-26(4)
C(20)	84(5)	101(5)	65(4)	-33(4)	34(4)	-24(4)

Table S11. Hydrogen coordinates ($x \ 10^4$) and isotropicdisplacement parameters (Å²x 10³)

for **5**.

	x	У	Z	U(eq)
H(7)	812711701	112773		
H(8)	61069867	134980		
H(9)	73568529	-9899		
H(10)	84069958	-182186		
H(17)	7063-1645	629979		
H(18)	8956165	565797		
H(19)	69822701	426390		
	S 2	8 / S60		

H(20) 6879	-663 334699
Table S12. Torsion angles [°] for 5.	
C(9)-N(3)-N(4)-C(10)	0.1(8)
C(5)-N(3)-N(4)-C(10)	176.6(6)
C(7)-N(6)-N(7)-C(8)	1.7(7)
C(6)-N(6)-N(7)-C(8)	-179.6(5)
C(19)-N(11)-N(12)-C(20)	1.7(8)
C(15)-N(11)-N(12)-C(20)	-173.5(6)
C(17)-N(14)-N(15)-C(18)	-1.2(8)
C(16)-N(14)-N(15)-C(18)	178.1(6)
C(6)-C(1)-C(2)-C(3)	-0.3(7)
Cl(1)-C(1)-C(2)-C(3)	178.8(4)
C(6)-C(1)-C(2)-N(1)	-179.2(5)
Cl(1)-C(1)-C(2)-N(1)	-0.1(7)
O(2)-N(1)-C(2)-C(1)	87.6(7)
O(1)-N(1)-C(2)-C(1)	-95.4(7)
O(2)-N(1)-C(2)-C(3)	-91.4(6)
O(1)-N(1)-C(2)-C(3)	85.6(7)
C(1)-C(2)-C(3)-C(4)	-1.1(8)
N(1)-C(2)-C(3)-C(4)	177.9(5)
C(1)-C(2)-C(3)-Cl(2)	179.7(4)
N(1)-C(2)-C(3)-Cl(2)	-1.4(7)
C(2)-C(3)-C(4)-C(5)	0.9(7)
Cl(2)-C(3)-C(4)-C(5)	-179.9(4)
C(2)-C(3)-C(4)-N(2)	-174.8(4)
Cl(2)-C(3)-C(4)-N(2)	4.4(7)
O(3)-N(2)-C(4)-C(3)	104.7(6)
O(4)-N(2)-C(4)-C(3)	-72.4(6)
O(3)-N(2)-C(4)-C(5)	-71.1(6)
O(4)-N(2)-C(4)-C(5)	111.8(5)
C(3)-C(4)-C(5)-C(6)	0.6(7)
N(2)-C(4)-C(5)-C(6)	176.2(4)
C(3)-C(4)-C(5)-N(3)	-177.7(4)
N(2)-C(4)-C(5)-N(3)	-2.1(7)
C(9)-N(3)-C(5)-C(4)	129.1(7)
N(4)-N(3)-C(5)-C(4)	-46.6(7)
C(9)-N(3)-C(5)-C(6)	-49.1(9)
N(4)-N(3)-C(5)-C(6)	135.2(5)

C(2)-C(1)-C(6)-C(5)	1.8(7)
Cl(1)-C(1)-C(6)-C(5)	-177.3(3)
C(2)-C(1)-C(6)-N(6)	178.3(4)
Cl(1)-C(1)-C(6)-N(6)	-0.8(6)
C(4)-C(5)-C(6)-C(1)	-2.0(7)
N(3)-C(5)-C(6)-C(1)	176.3(4)
C(4)-C(5)-C(6)-N(6)	-178.4(4)
N(3)-C(5)-C(6)-N(6)	-0.2(7)
C(7)-N(6)-C(6)-C(1)	97.1(7)
N(7)-N(6)-C(6)-C(1)	-81.3(6)
C(7)-N(6)-C(6)-C(5)	-86.4(8)
N(7)-N(6)-C(6)-C(5)	95.2(6)
N(7)-N(6)-C(7)-N(8)	-1.7(8)
C(6)-N(6)-C(7)-N(8)	179.8(6)
C(8)-N(8)-C(7)-N(6)	0.8(9)
N(6)-N(7)-C(8)-N(8)	-1.3(9)
C(7)-N(8)-C(8)-N(7)	0.3(10)
C(10)-N(5)-C(9)-N(3)	1.4(11)
N(4)-N(3)-C(9)-N(5)	-1.0(10)
C(5)-N(3)-C(9)-N(5)	-177.1(7)
N(3)-N(4)-C(10)-N(5)	0.8(9)
C(9)-N(5)-C(10)-N(4)	-1.4(11)
C(16)-C(11)-C(12)-C(13)	1.5(7)
Cl(3)-C(11)-C(12)-C(13)	178.2(4)
C(16)-C(11)-C(12)-N(9)	-177.3(4)
Cl(3)-C(11)-C(12)-N(9)	-0.7(7)
O(6)-N(9)-C(12)-C(11)	-92.1(7)
O(5)-N(9)-C(12)-C(11)	90.5(7)
O(6)-N(9)-C(12)-C(13)	89.0(8)
O(5)-N(9)-C(12)-C(13)	-88.4(7)
C(11)-C(12)-C(13)-C(14)	0.6(7)
N(9)-C(12)-C(13)-C(14)	179.5(4)
C(11)-C(12)-C(13)-Cl(4)	-178.9(4)
N(9)-C(12)-C(13)-Cl(4)	0.0(6)
C(12)-C(13)-C(14)-C(15)	-1.8(7)
Cl(4)-C(13)-C(14)-C(15)	177.7(4)
C(12)-C(13)-C(14)-N(10)	179.6(4)
Cl(4)-C(13)-C(14)-N(10)	-0.9(7)

O(7)-N(10)-C(14)-C(15)	93.5(7)
O(8)-N(10)-C(14)-C(15)	-85.0(7)
O(7)-N(10)-C(14)-C(13)	-87.8(7)
O(8)-N(10)-C(14)-C(13)	93.7(7)
C(13)-C(14)-C(15)-C(16)	0.8(7)
N(10)-C(14)-C(15)-C(16)	179.4(4)
C(13)-C(14)-C(15)-N(11)	-178.8(4)
N(10)-C(14)-C(15)-N(11)	-0.2(7)
N(12)-N(11)-C(15)-C(14)	-106.3(7)
C(19)-N(11)-C(15)-C(14)	79.6(8)
N(12)-N(11)-C(15)-C(16)	74.1(7)
C(19)-N(11)-C(15)-C(16)	-100.0(7)
C(14)-C(15)-C(16)-C(11)	1.4(7)
N(11)-C(15)-C(16)-C(11)	-179.0(4)
C(14)-C(15)-C(16)-N(14)	-174.3(4)
N(11)-C(15)-C(16)-N(14)	5.3(7)
C(12)-C(11)-C(16)-C(15)	-2.5(7)
Cl(3)-C(11)-C(16)-C(15)	-179.1(4)
C(12)-C(11)-C(16)-N(14)	173.1(4)
Cl(3)-C(11)-C(16)-N(14)	-3.6(6)
C(17)-N(14)-C(16)-C(15)	-118.5(7)
N(15)-N(14)-C(16)-C(15)	62.4(7)
C(17)-N(14)-C(16)-C(11)	65.9(8)
N(15)-N(14)-C(16)-C(11)	-113.2(6)
C(18)-N(16)-C(17)-N(14)	-0.5(9)
N(15)-N(14)-C(17)-N(16)	1.1(8)
C(16)-N(14)-C(17)-N(16)	-178.1(6)
N(14)-N(15)-C(18)-N(16)	0.9(10)
C(17)-N(16)-C(18)-N(15)	-0.3(11)
C(20)-N(13)-C(19)-N(11)	3.7(9)
N(12)-N(11)-C(19)-N(13)	-3.6(9)
C(15)-N(11)-C(19)-N(13)	171.1(6)
N(12)-N(11)-C(19)-C(20)	-1.1(6)
C(15)-N(11)-C(19)-C(20)	173.6(6)
N(11)-N(12)-C(20)-N(13)	0.7(10)
N(11)-N(12)-C(20)-C(19)	-1.1(5)
C(19)-N(13)-C(20)-N(12)	-2.8(11)

Table S13. Hydrogen bonds for	5	[Å and ˈ	°].
-------------------------------	---	----------	-----

D-HA	d(D-H)	d(HA)	d(DA)<(DHA)) C(17)-
H(17)N(7)#1	0.93	2.55	3.225(7)	129.9
C(9)-H(9)N(7)	0.93	2.57	3.202(10)	125.6
C(8)-H(8)O(6)#2	0.93	2.56	3.211(8)	127.4
C(7)-H(7)O(4)#3	0.93	2.44	3.158(7)	134.1
C(7)-H(7)N(15)#4	0.93	2.65	3.296(7)127.2	C(17)-
H(17)N(7)#1	0.93	2.55	3.225(7)	129.9
C(9)-H(9)N(7)	0.93	2.57	3.202(10)	125.6
C(8)-H(8)O(6)#2	0.93	2.56	3.211(8)	127.4
С(7)-Н(7)О(4)#3	0.93	2.44	3.158(7)	134.1
C(7)-H(7)N(15)#4	0.93	2.65	3.296(7)	127.2
C(7)-H(7)N(15)#4	0.93	2.65	3.296(7)	127.2
С(7)-Н(7)О(4)#3	0.93	2.44	3.158(7)	134.1
C(8)-H(8)O(6)#2	0.93	2.56	3.211(8)	127.4
C(9)-H(9)N(7)	0.93	2.57	3.202(10)	125.6
C(17)-H(17)N(7)#1	0.93	2.55	3.225(7)	129.9
C(7)-H(7)N(15)#4	0.93	2.65	3.296(7)	127.2
C(7)-H(7)O(4)#3	0.93	2.44	3.158(7)	134.1
C(8)-H(8)O(6)#2	0.93	2.56	3.211(8)	127.4
C(9)-H(9)N(7)	0.93	2.57	3.202(10)	125.6
C(17)-H(17)N(7)#1	0.93	2.55	3.225(7)	129.9

#1 x,-y+1/2,z+1/2 #2 -x+1,-y+1,-z+1 #3 -x+2,-y+2,-z #4 x,-y+3/2,z-1/2

Table S14. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for **6**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	У	Z	U(eq)
N(1)	-3441(3)	6019(2)	4186(1)	48(1)
N(2)	-1015(3)	4617(2)	3979(1)	46(1)
N(3)	-953(2)	5810(2)	3452(1)	30(1)
N(4)	-1034(3)	4585(2)	1973(1)	50(1)
N(5)	1859(3)	4794(2)	772(1)	44(1)
N(6)	4618(3)	6733(3)	1094(1)	64(1)
N(7)	4533(2)	8320(2)	2542(1)	36(1)
N(8)	1763(3)	7640(2)	3746(1)	44(1)

N(9)	-1904(2)	-330(2)	456(1)	40(1)
N(10)	-39(3)	-1298(2)	1389(1)	41(1)
N(11)	-212(2)	162(2)	1470(1)	30(1)
N(12)	-1793(2)	426(2)	2993(1)	43(1)
N(13)	14(3)	1612(2)	4320(1)	37(1)
N(14)	3329(3)	2950(3)	3906(1)	60(1)
N(15)	4871(2)	2926(2)	2296(1)	41(1)
N(16)	3177(2)	1159(2)	1160(1)	43(1)
O(1)	648(2)	3933(2)	650(1)	56(1)
O(2)	3055(3)	4978(3)	222(1)	79(1)
O(3)	5816(2)	8554(2)	2031(1)	57(1)
O(4)	4472(2)	9038(2)	3172(1)	48(1)
O(5)	-1556(2)	1239(2)	4463(1)	55(1)
O(6)	903(2)	2007(2)	4905(1)	51(1)
O(7)	5554(2)	3753(2)	2782(1)	72(1)
O(8)	5650(2)	2786(2)	1614(1)	64(1)
C(1)	-2535(3)	4814(3)	4394(2)	46(1)
C(2)	-2400(3)	6611(3)	3595(1)	42(1)
C(3)	486(3)	6049(2)	2851(1)	31(1)
C(4)	397(3)	5369(2)	2102(1)	32(1)
C(5)	1861(3)	5554(2)	1505(1)	34(1)
C(6)	3289(3)	6527(2)	1647(1)	37(1)
C(7)	3241(3)	7282(2)	2407(1)	31(1)
C(8)	1832(3)	7009(2)	3026(1)	31(1)
C(9)	-1077(3)	-1517(3)	779(1)	42(1)
C(10)	-1325(3)	691(2)	910(1)	35(1)
C(11)	703(3)	882(2)	2094(1)	29(1)
C(12)	-158(3)	965(2)	2872(1)	30(1)
C(13)	796(3)	1607(2)	3513(1)	31(1)
C(14)	2493(3)	2287(2)	3332(1)	33(1)
C(15)	3265(3)	2219(2)	2508(1)	31(1)
<u>C(16)</u>	2411(3)	1404(2)	1894(1)	30(1)

Table S15. Bond lengths [Å] and angles [°] for 6.

N(1)-C(2)	1.308(3)
N(1)-C(1)	1.340(3)
N(2)-C(1)	1.313(3)
N(2)-N(3)	1.361(3)

N(3)-C(2)	1.329(3)
N(3)-C(3)	1.431(2)
N(4)-C(4)	1.323(3)
N(4)-H(4A)	0.8600
N(4)-H(4B)	0.8600
N(5)-O(1)	1.236(2)
N(5)-O(2)	1.242(2)
N(5)-C(5)	1.404(3)
N(6)-C(6)	1.318(3)
N(6)-H(6A)	0.8600
N(6)-H(6B)	0.8600
N(7)-O(4)	1.240(2)
N(7)-O(3)	1.253(2)
N(7)-C(7)	1.394(3)
N(8)-C(8)	1.325(3)
N(8)-H(8A)	0.8600
N(8)-H(8B)	0.8600
N(9)-C(10)	1.307(3)
N(9)-C(9)	1.352(3)
N(10)-C(9)	1.303(3)
N(10)-N(11)	1.368(2)
N(11)-C(10)	1.329(3)
N(11)-C(11)	1.430(2)
N(12)-C(12)	1.325(3)
N(12)-H(12A)	0.8600
N(12)-H(12B)	0.8600
N(13)-O(5)	1.234(2)
N(13)-O(6)	1.246(2)
N(13)-C(13)	1.408(3)
N(14)-C(14)	1.314(3)
N(14)-H(14A)	0.8600
N(14)-H(14B)	0.8600
N(15)-O(8)	1.238(2)
N(15)-O(7)	1.245(2)
N(15)-C(15)	1.392(3)
N(16)-C(16)	1.325(3)
N(16)-H(16A)	0.8600
N(16)-H(16B)	0.8600

C(1)-H(1A)	0.9300
C(2)-H(2A)	0.9300
C(3)-C(8)	1.390(3)
C(3)-C(4)	1.393(3)
C(4)-C(5)	1.436(3)
C(5)-C(6)	1.431(3)
C(6)-C(7)	1.440(3)
C(7)-C(8)	1.438(3)
С(9)-Н(9)	0.9300
C(10)-H(10)	0.9300
C(11)-C(16)	1.388(3)
C(11)-C(12)	1.394(3)
C(12)-C(13)	1.433(3)
C(13)-C(14)	1.432(3)
C(14)-C(15)	1.433(3)
C(15)-C(16)	1.443(3)
C(2)-N(1)-C(1)	101.80(19)
C(1)-N(2)-N(3)	101.54(19)
C(2)-N(3)-N(2)	108.93(18)
C(2)-N(3)-C(3)	129.31(19)
N(2)-N(3)-C(3)	121.75(17)
C(4)-N(4)-H(4A)	120.0
C(4)-N(4)-H(4B)	120.0
H(4A)-N(4)-H(4B)	120.0
O(1)-N(5)-O(2)	117.77(18)
O(1)-N(5)-C(5)	120.82(18)
O(2)-N(5)-C(5)	121.40(19)
C(6)-N(6)-H(6A)	120.0
C(6)-N(6)-H(6B)	120.0
H(6A)-N(6)-H(6B)	120.0
O(4)-N(7)-O(3)	117.33(17)
O(4)-N(7)-C(7)	121.66(17)
O(3)-N(7)-C(7)	121.01(17)
C(8)-N(8)-H(8A)	120.0
C(8)-N(8)-H(8B)	120.0
H(8A)-N(8)-H(8B)	120.0
C(10)-N(9)-C(9)	102.19(18)

C(9)-N(10)-N(11)	101.89(19)
C(10)-N(11)-N(10)	109.01(17)
C(10)-N(11)-C(11)	129.89(18)
N(10)-N(11)-C(11)	121.09(17)
C(12)-N(12)-H(12A)	120.0
C(12)-N(12)-H(12B)	120.0
H(12A)-N(12)-H(12B)	120.0
O(5)-N(13)-O(6)	118.72(17)
O(5)-N(13)-C(13)	121.19(17)
O(6)-N(13)-C(13)	120.08(18)
C(14)-N(14)-H(14A)	120.0
C(14)-N(14)-H(14B)	120.0
H(14A)-N(14)-H(14B)	120.0
O(8)-N(15)-O(7)	117.57(18)
O(8)-N(15)-C(15)	121.55(17)
O(7)-N(15)-C(15)	120.85(17)
C(16)-N(16)-H(16A)	120.0
C(16)-N(16)-H(16B)	120.0
H(16A)-N(16)-H(16B)	120.0
N(2)-C(1)-N(1)	116.2(2)
N(2)-C(1)-H(1A)	121.9
N(1)-C(1)-H(1A)	121.9
N(1)-C(2)-N(3)	111.5(2)
N(1)-C(2)-H(2A)	124.2
N(3)-C(2)-H(2A)	124.2
C(8)-C(3)-C(4)	123.80(18)
C(8)-C(3)-N(3)	118.31(17)
C(4)-C(3)-N(3)	117.78(18)
N(4)-C(4)-C(3)	118.53(19)
N(4)-C(4)-C(5)	123.00(18)
C(3)-C(4)-C(5)	118.47(18)
N(5)-C(5)-C(6)	120.29(19)
N(5)-C(5)-C(4)	119.42(18)
C(6)-C(5)-C(4)	120.27(18)
N(6)-C(6)-C(5)	120.9(2)
N(6)-C(6)-C(7)	120.6(2)
C(5)-C(6)-C(7)	118.52(18)
N(7)-C(7)-C(8)	119.06(17)

N(7)-C(7)-C(6)	120.33(18)
C(8)-C(7)-C(6)	120.58(18)
N(8)-C(8)-C(3)	119.20(19)
N(8)-C(8)-C(7)	122.79(18)
C(3)-C(8)-C(7)	118.01(17)
N(10)-C(9)-N(9)	115.7(2)
N(10)-C(9)-H(9)	122.1
N(9)-C(9)-H(9)	122.1
N(9)-C(10)-N(11)	111.2(2)
N(9)-C(10)-H(10)	124.4
N(11)-C(10)-H(10)	124.4
C(16)-C(11)-C(12)	124.35(18)
C(16)-C(11)-N(11)	117.92(17)
C(12)-C(11)-N(11)	117.69(18)
N(12)-C(12)-C(11)	119.15(18)
N(12)-C(12)-C(13)	122.93(19)
C(11)-C(12)-C(13)	117.90(18)
N(13)-C(13)-C(14)	120.09(17)
N(13)-C(13)-C(12)	119.20(18)
C(14)-C(13)-C(12)	120.67(18)
N(14)-C(14)-C(13)	121.04(19)
N(14)-C(14)-C(15)	120.75(19)
C(13)-C(14)-C(15)	118.21(17)
N(15)-C(15)-C(14)	120.02(17)
N(15)-C(15)-C(16)	119.18(17)
C(14)-C(15)-C(16)	120.80(18)
N(16)-C(16)-C(11)	119.80(18)
N(16)-C(16)-C(15)	122.97(18)
C(11)-C(16)-C(15)	117.23(17)

Table S16. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **6**. The anisotropicdisplacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2hka^* \ b^* \ U^{12}]$

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	36(1)	63(1)	45(1)	-10(1)	8(1)	-9(1)
N(2)	51(1)	44(1)	43(1)	4(1)	10(1)	-4(1)
N(3)	30(1)	32(1)	29(1)	-3(1)	4(1)	-6(1)
N(4)	45(1)	58(1)	50(1)	-26(1)	14(1)	-26(1)
			S 38 / S60			

N(5)	42(1)	50(1)	39(1)	-18(1)	7(1)	-8(1)
N(6)	47(1)	96(2)	52(1)	-36(1)	24(1)	-35(1)
N(7)	29(1)	45(1)	36(1)	-4(1)	-2(1)	-10(1)
N(8)	40(1)	61(1)	34(1)	-17(1)	7(1)	-20(1)
N(9)	35(1)	57(1)	31(1)	-13(1)	-1(1)	-13(1)
N(10)	48(1)	35(1)	41(1)	-12(1)	-2(1)	-5(1)
N(11)	32(1)	31(1)	27(1)	-9(1)	-1(1)	-7(1)
N(12)	38(1)	57(1)	34(1)	-14(1)	5(1)	-22(1)
N(13)	42(1)	39(1)	30(1)	-7(1)	6(1)	-11(1)
N(14)	48(1)	98(2)	35(1)	-33(1)	9(1)	-37(1)
N(15)	33(1)	55(1)	35(1)	-17(1)	5(1)	-16(1)
N(16)	33(1)	67(1)	30(1)	-21(1)	4(1)	-13(1)
O(1)	64(1)	56(1)	49(1)	-27(1)	7(1)	-24(1)
O(2)	58(1)	123(2)	59(1)	-54(1)	29(1)	-34(1)
O(3)	42(1)	84(1)	46(1)	-12(1)	10(1)	-36(1)
O(4)	43(1)	53(1)	49(1)	-21(1)	3(1)	-17(1)
O(5)	49(1)	74(1)	42(1)	-18(1)	17(1)	-30(1)
O(6)	53(1)	76(1)	26(1)	-14(1)	1(1)	-16(1)
O(7)	58(1)	106(2)	53(1)	-44(1)	17(1)	-52(1)
O(8)	48(1)	100(2)	45(1)	-35(1)	20(1)	-35(1)
C(1)	49(2)	51(2)	38(1)	-2(1)	10(1)	-13(1)
C(2)	33(1)	46(1)	44(1)	1(1)	0(1)	-1(1)
C(3)	27(1)	36(1)	29(1)	-3(1)	5(1)	-7(1)
C(4)	32(1)	30(1)	33(1)	-5(1)	2(1)	-6(1)
C(5)	31(1)	38(1)	32(1)	-11(1)	3(1)	-5(1)
C(6)	30(1)	46(1)	35(1)	-8(1)	6(1)	-4(1)
C(7)	26(1)	37(1)	29(1)	-5(1)	0(1)	-8(1)
C(8)	29(1)	37(1)	28(1)	-6(1)	-1(1)	-2(1)
C(9)	44(1)	48(2)	36(1)	-18(1)	5(1)	-18(1)
C(10)	33(1)	43(1)	30(1)	-6(1)	-1(1)	-4(1)
C(11)	31(1)	32(1)	24(1)	-9(1)	-3(1)	-5(1)
C(12)	30(1)	27(1)	33(1)	-4(1)	-1(1)	-6(1)
C(13)	36(1)	34(1)	23(1)	-9(1)	4(1)	-7(1)
C(14)	32(1)	40(1)	28(1)	-11(1)	0(1)	-7(1)
C(15)	27(1)	38(1)	29(1)	-11(1)	2(1)	-8(1)
C(16)	32(1)	33(1)	25(1)	-6(1)	-2(1)	-3(1)

Table S17. Hydrogen coordinates ($x \ 10^4$) and isotropicdisplacement parameters ($Å^2 x \ 10^3$) for 6.

	x	У	Z	U(eq)
H(4A)	-18824503	234861		
H(4B)	-11164156	151561		
H(6A)	46346280	64077		
H(6B)	54707321	118677		
H(8A)	8937453	409953		
H(8B)	25898236	386153		
H(12A)	-231032	259451		
H(12B)	-2337471	347051		
H(14A)	28572980	439971		
H(14B)	43483354	378871		
H(16A)	2615678	80951		
H(16B)	42361481	103551		
H(1A)	-29574154	480856		
H(2A)	-26417483	331150		
H(9)	-1239-2432	57851		
H(10)	-16491660	84942		

Table S18. Torsion angles [°] for 6.

C(1)-N(2)-N(3)-C(2)	0.5(2)
C(1)-N(2)-N(3)-C(3)	-178.47(18)
C(9)-N(10)-N(11)-C(10)	0.0(2)
C(9)-N(10)-N(11)-C(11)	179.02(18)
N(3)-N(2)-C(1)-N(1)	-0.4(3)
C(2)-N(1)-C(1)-N(2)	0.1(3)
C(1)-N(1)-C(2)-N(3)	0.2(2)
N(2)-N(3)-C(2)-N(1)	-0.4(3)
C(3)-N(3)-C(2)-N(1)	178.40(19)
C(2)-N(3)-C(3)-C(8)	80.7(3)
N(2)-N(3)-C(3)-C(8)	-100.6(2)
C(2)-N(3)-C(3)-C(4)	-95.5(3)
N(2)-N(3)-C(3)-C(4)	83.1(3)
C(8)-C(3)-C(4)-N(4)	-173.6(2)
N(3)-C(3)-C(4)-N(4)	2.4(3)
C(8)-C(3)-C(4)-C(5)	6.3(3)
N(3)-C(3)-C(4)-C(5)	-177.70(19)
O(1)-N(5)-C(5)-C(6)	178.7(2)

O(2)-N(5)-C(5)-C(6)	-2.2(4)
O(1)-N(5)-C(5)-C(4)	-2.6(3)
O(2)-N(5)-C(5)-C(4)	176.4(2)
N(4)-C(4)-C(5)-N(5)	-4.7(3)
C(3)-C(4)-C(5)-N(5)	175.4(2)
N(4)-C(4)-C(5)-C(6)	174.0(2)
C(3)-C(4)-C(5)-C(6)	-6.0(3)
N(5)-C(5)-C(6)-N(6)	0.3(4)
C(4)-C(5)-C(6)-N(6)	-178.3(2)
N(5)-C(5)-C(6)-C(7)	-179.9(2)
C(4)-C(5)-C(6)-C(7)	1.5(3)
O(4)-N(7)-C(7)-C(8)	-1.9(3)
O(3)-N(7)-C(7)-C(8)	177.6(2)
O(4)-N(7)-C(7)-C(6)	176.3(2)
O(3)-N(7)-C(7)-C(6)	-4.3(3)
N(6)-C(6)-C(7)-N(7)	4.6(4)
C(5)-C(6)-C(7)-N(7)	-175.2(2)
N(6)-C(6)-C(7)-C(8)	-177.3(2)
C(5)-C(6)-C(7)-C(8)	3.0(3)
C(4)-C(3)-C(8)-N(8)	177.6(2)
N(3)-C(3)-C(8)-N(8)	1.6(3)
C(4)-C(3)-C(8)-C(7)	-1.9(3)
N(3)-C(3)-C(8)-C(7)	-177.89(18)
N(7)-C(7)-C(8)-N(8)	-4.2(3)
C(6)-C(7)-C(8)-N(8)	177.6(2)
N(7)-C(7)-C(8)-C(3)	175.33(19)
C(6)-C(7)-C(8)-C(3)	-2.9(3)
N(11)-N(10)-C(9)-N(9)	0.1(2)
C(10)-N(9)-C(9)-N(10)	-0.2(3)
C(9)-N(9)-C(10)-N(11)	0.2(2)
N(10)-N(11)-C(10)-N(9)	-0.2(2)
C(11)-N(11)-C(10)-N(9)	-179.06(19)
C(10)-N(11)-C(11)-C(16)	-92.1(3)
N(10)-N(11)-C(11)-C(16)	89.1(2)
C(10)-N(11)-C(11)-C(12)	90.2(3)
N(10)-N(11)-C(11)-C(12)	-88.5(2)
C(16)-C(11)-C(12)-N(12)	-179.9(2)
N(11)-C(11)-C(12)-N(12)	-2.4(3)

C(16)-C(11)-C(12)-C(13)	-1.2(3)
N(11)-C(11)-C(12)-C(13)	176.33(18)
O(5)-N(13)-C(13)-C(14)	168.6(2)
O(6)-N(13)-C(13)-C(14)	-10.9(3)
O(5)-N(13)-C(13)-C(12)	-9.1(3)
O(6)-N(13)-C(13)-C(12)	171.5(2)
N(12)-C(12)-C(13)-N(13)	3.2(3)
C(11)-C(12)-C(13)-N(13)	-175.42(18)
N(12)-C(12)-C(13)-C(14)	-174.4(2)
C(11)-C(12)-C(13)-C(14)	6.9(3)
N(13)-C(13)-C(14)-N(14)	-1.5(3)
C(12)-C(13)-C(14)-N(14)	176.1(2)
N(13)-C(13)-C(14)-C(15)	178.09(19)
C(12)-C(13)-C(14)-C(15)	-4.3(3)
O(8)-N(15)-C(15)-C(14)	173.7(2)
O(7)-N(15)-C(15)-C(14)	-8.0(3)
O(8)-N(15)-C(15)-C(16)	-5.4(3)
O(7)-N(15)-C(15)-C(16)	172.9(2)
N(14)-C(14)-C(15)-N(15)	-3.5(3)
C(13)-C(14)-C(15)-N(15)	176.9(2)
N(14)-C(14)-C(15)-C(16)	175.5(2)
C(13)-C(14)-C(15)-C(16)	-4.0(3)
C(12)-C(11)-C(16)-N(16)	173.9(2)
N(11)-C(11)-C(16)-N(16)	-3.5(3)
C(12)-C(11)-C(16)-C(15)	-6.9(3)
N(11)-C(11)-C(16)-C(15)	175.63(18)
N(15)-C(15)-C(16)-N(16)	7.7(3)
C(14)-C(15)-C(16)-N(16)	-171.4(2)
N(15)-C(15)-C(16)-C(11)	-171.5(2)
C(14)-C(15)-C(16)-C(11)	9.4(3)

Table S19. Hydrogen bonds for 6 [A and].					
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
C(10)-H(10)O(8)#1	0.93	2.57	3.187(3)	124.1	
C(9)-H(9)O(1)#2	0.93	2.50	3.293(3)	143.5	
C(2)-H(2A)O(4)#1	0.93	2.60	3.308(3)	133.0	
C(2)-H(2A)O(3)#1	0.93	2.56	3.350(3)	142.4	

_

Table S19. Hydrogen bonds for 6 [Å and °].

C(2)-H(2A)N(7)#1	0.93	2.59	3.270(3)	130.2
N(16)-H(16B)O(8)	0.86	1.91	2.539(2)	129.0
N(16)-H(16A)N(9)#2	0.86	2.17	2.949(2)	150.5
N(14)-H(14B)O(7)	0.86	1.85	2.501(3)	131.2
N(14)-H(14A)O(6)	0.86	1.86	2.510(3)	131.2
N(14)-H(14A)N(1)#3	0.86	2.56	3.273(3)	141.0
N(12)-H(12B)O(5)	0.86	1.90	2.538(2)	130.0
N(12)-H(12A)O(3)#4	0.86	2.21	3.016(2)	155.9
N(8)-H(8B)O(4)	0.86	1.89	2.527(2)	129.5
N(8)-H(8A)O(6)#3	0.86	2.13	2.924(2)	153.0
N(6)-H(6B)O(3)	0.86	1.85	2.507(2)	132.3
N(6)-H(6A)O(2)#5	0.86	2.50	3.172(3)	135.9
N(6)-H(6A)O(2)	0.86	1.86	2.518(3)	132.3
N(4)-H(4B)O(1)	0.86	1.90	2.534(2)	129.1
N(4)-H(4A)O(7)#1	0.86	2.12	2.909(3)	151.8

#1 x-1,y,z #2 -x,-y,-z #3 -x,-y+1,-z+1 #4 x-1,y-1,z

#5 -x+1,-y+1,-z

Table S20. Atomic coordinates ($x 10^4$) and equivalent isotropic displacement parameters (Å ² x 10 ³) fo
7 . U(eq) is defined as one third of the trace of the orthogonalized U ^{jj} tensor.

	х	У	Z	U(eq)
O(1)	5350(2)	10302(2)	1634(2)	63(1)
O(2)	6340(2)	11033(2)	3585(2)	55(1)
O(3)	6822(2)	6506(2)	5847(2)	68(1)
O(4)	6251(2)	7473(2)	7136(2)	65(1)
N(1)	3040(2)	9992(2)	1687(2)	42(1)
N(2)	1980(2)	10312(2)	1583(2)	46(1)
N(3)	1018(2)	10695(3)	1350(3)	77(1)
N(4)	5626(2)	10327(2)	2815(2)	36(1)
N(5)	7260(2)	8895(2)	5212(2)	43(1)
N(6)	7910(2)	9235(2)	4647(2)	43(1)
N(7)	8623(2)	9512(2)	4290(2)	66(1)
N(8)	6209(2)	7246(2)	6054(2)	40(1)
N(9)	3646(2)	6828(2)	4879(2)	37(1)
N(10)	2661(2)	6294(2)	4148(2)	37(1)
N(11)	1811(2)	5717(2)	3650(2)	58(1)
N(12)	1913(2)	8181(2)	2589(2)	32(1)

N(13)	1166(2)	8464(2)	3216(2)	43(1)
N(14)	-22(2)	7655(2)	1201(2)	55(1)
C(1)	3773(2)	9258(2)	2753(2)	30(1)
C(2)	5109(2)	9429(2)	3356(2)	30(1)
C(3)	5924(2)	8786(2)	4456(2)	32(1)
C(4)	5359(2)	7953(2)	4913(2)	31(1)
C(5)	4050(2)	7716(2)	4303(2)	30(1)
C(6)	3260(2)	8391(2)	3214(2)	29(1)
C(7)	31(2)	8129(2)	2331(3)	53(1)
C(8)	1170(2)	7699(2)	1398(2)	43(1)

Table S21. Bond lengths [Å] and angles [°] for 7.

O(1)-N(4)	1.207(2)
O(2)-N(4)	1.210(2)
O(3)-N(8)	1.200(3)
O(4)-N(8)	1.211(2)
N(1)-N(2)	1.237(3)
N(1)-C(1)	1.402(3)
N(2)-N(3)	1.117(3)
N(4)-C(2)	1.459(3)
N(5)-N(6)	1.238(3)
N(5)-C(3)	1.399(3)
N(6)-N(7)	1.109(3)
N(8)-C(4)	1.466(3)
N(9)-N(10)	1.235(3)
N(9)-C(5)	1.400(3)
N(10)-N(11)	1.114(3)
N(12)-C(8)	1.341(3)
N(12)-N(13)	1.368(2)
N(12)-C(6)	1.418(3)
N(13)-C(7)	1.304(3)
N(14)-C(8)	1.297(3)
N(14)-C(7)	1.348(3)
C(1)-C(6)	1.379(3)
C(1)-C(2)	1.399(3)
C(2)-C(3)	1.387(3)
C(3)-C(4)	1.385(3)

C(5)-C(6)	1.392(3)
С(7)-Н(7)	0.9300
C(8)-H(8)	0.9300
N(2)-N(1)-C(1)	117.77(18)
N(3)-N(2)-N(1)	170.4(3)
O(1)-N(4)-O(2)	123.7(2)
O(1)-N(4)-C(2)	118.12(18)
O(2)-N(4)-C(2)	118.09(18)
N(6)-N(5)-C(3)	118.71(18)
N(7)-N(6)-N(5)	171.2(2)
O(3)-N(8)-O(4)	125.3(2)
O(3)-N(8)-C(4)	117.7(2)
O(4)-N(8)-C(4)	117.0(2)
N(10)-N(9)-C(5)	117.87(18)
N(11)-N(10)-N(9)	169.8(2)
C(8)-N(12)-N(13)	109.34(17)
C(8)-N(12)-C(6)	129.82(18)
N(13)-N(12)-C(6)	120.83(16)
C(7)-N(13)-N(12)	101.20(19)
C(8)-N(14)-C(7)	102.7(2)
C(6)-C(1)-C(2)	119.38(19)
C(6)-C(1)-N(1)	124.21(19)
C(2)-C(1)-N(1)	116.41(19)
C(3)-C(2)-C(1)	121.42(19)
C(3)-C(2)-N(4)	120.53(18)
C(1)-C(2)-N(4)	118.04(18)
C(4)-C(3)-C(2)	117.01(18)
C(4)-C(3)-N(5)	114.68(19)
C(2)-C(3)-N(5)	128.3(2)
C(5)-C(4)-C(3)	123.40(19)
C(5)-C(4)-N(8)	118.76(18)
C(3)-C(4)-N(8)	117.75(18)
C(4)-C(5)-C(6)	117.89(19)
C(4)-C(5)-N(9)	115.85(18)
C(6)-C(5)-N(9)	126.24(18)
C(1)-C(6)-C(5)	120.77(18)

1.385(3)

C(4)-C(5)

C(1)-C(6)-N(12)	120.20(18)
C(5)-C(6)-N(12)	119.02(18)
N(13)-C(7)-N(14)	116.2(2)
N(13)-C(7)-H(7)	121.9
N(14)-C(7)-H(7)	121.9
N(14)-C(8)-N(12)	110.6(2)
N(14)-C(8)-H(8)	124.7
N(12)-C(8)-H(8)	124.7

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	77(1)	72(1)	47(1)	2(1)	36(1)	-20(1)
O(2)	56(1)	43(1)	68(1)	-7(1)	27(1)	-15(1)
O(3)	51(1)	63(1)	78(1)	11(1)	19(1)	25(1)
O(4)	72(1)	81(2)	33(1)	9(1)	14(1)	4(1)
N(1)	34(1)	46(1)	44(1)	12(1)	16(1)	5(1)
N(2)	44(1)	47(1)	41(1)	10(1)	14(1)	7(1)
N(3)	54(2)	92(2)	82(2)	31(2)	27(1)	34(2)
N(4)	34(1)	37(1)	40(1)	-2(1)	20(1)	-2(1)
N(5)	25(1)	60(1)	41(1)	6(1)	11(1)	-6(1)
N(6)	26(1)	53(1)	46(1)	4(1)	12(1)	-3(1)
N(7)	37(1)	91(2)	74(2)	12(1)	29(1)	-4(1)
N(8)	28(1)	45(1)	41(1)	5(1)	9(1)	-2(1)
N(9)	32(1)	40(1)	35(1)	3(1)	11(1)	-5(1)
N(10)	36(1)	35(1)	43(1)	5(1)	20(1)	-1(1)
N(11)	47(1)	48(1)	67(2)	6(1)	14(1)	-14(1)
N(12)	24(1)	38(1)	34(1)	0(1)	11(1)	0(1)
N(13)	28(1)	55(1)	48(1)	-2(1)	19(1)	3(1)
N(14)	30(1)	67(2)	54(1)	-1(1)	6(1)	-10(1)
C(1)	31(1)	32(1)	27(1)	-2(1)	12(1)	3(1)
C(2)	31(1)	32(1)	32(1)	-3(1)	17(1)	-3(1)
C(3)	28(1)	38(1)	31(1)	-4(1)	14(1)	-2(1)
C(4)	27(1)	36(1)	29(1)	1(1)	11(1)	3(1)
C(5)	29(1)	33(1)	30(1)	-2(1)	16(1)	0(1)
C(6)	24(1)	32(1)	30(1)	-1(1)	11(1)	0(1)

Table S22. Anisotropic displacement parameters (Å²x 10³) for **7**. The anisotropicdisplacement factor exponent takes the form: $-2p^{2}[h^{2} a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

C(7)	28(1)	66(2)	65(2)	2(1)	20(1)	1(1)
C(8)	33(1)	51(2)	37(1)	-3(1)	9(1)	-7(1)

Table S23. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 7.

	x	У	Z	U(eq)
H(7)	-7018213	247164		
H(8)	14697434	79751		

 Table S24.
 Torsion angles [°] for 7.

C(5)-N(9)-N(10)-N(11)	176.4(13)
C(8)-N(12)-N(13)-C(7)	-0.4(3)
C(6)-N(12)-N(13)-C(7)	-179.4(2)
N(2)-N(1)-C(1)-C(6)	37.8(3)
N(2)-N(1)-C(1)-C(2)	-143.0(2)
C(6)-C(1)-C(2)-C(3)	-3.5(3)
N(1)-C(1)-C(2)-C(3)	177.3(2)
C(6)-C(1)-C(2)-N(4)	177.90(18)
N(1)-C(1)-C(2)-N(4)	-1.3(3)
O(1)-N(4)-C(2)-C(3)	126.8(2)
O(2)-N(4)-C(2)-C(3)	-50.7(3)
O(1)-N(4)-C(2)-C(1)	-54.6(3)
O(2)-N(4)-C(2)-C(1)	127.8(2)
C(1)-C(2)-C(3)-C(4)	1.2(3)
N(4)-C(2)-C(3)-C(4)	179.70(18)
C(1)-C(2)-C(3)-N(5)	-176.1(2)
N(4)-C(2)-C(3)-N(5)	2.5(3)
N(6)-N(5)-C(3)-C(4)	151.4(2)
N(6)-N(5)-C(3)-C(2)	-31.4(3)
C(2)-C(3)-C(4)-C(5)	2.2(3)
N(5)-C(3)-C(4)-C(5)	179.83(19)
C(2)-C(3)-C(4)-N(8)	178.55(19)
N(5)-C(3)-C(4)-N(8)	-3.8(3)
O(3)-N(8)-C(4)-C(5)	101.1(2)
O(4)-N(8)-C(4)-C(5)	-80.2(3)
O(3)-N(8)-C(4)-C(3)	-75.4(3)
O(4)-N(8)-C(4)-C(3)	103.3(2)

C(3)-C(4)-C(5)-C(6)	-3.1(3)
N(8)-C(4)-C(5)-C(6)	-179.42(19)
C(3)-C(4)-C(5)-N(9)	178.50(19)
N(8)-C(4)-C(5)-N(9)	2.2(3)
N(10)-N(9)-C(5)-C(4)	-152.95(19)
N(10)-N(9)-C(5)-C(6)	28.9(3)
C(2)-C(1)-C(6)-C(5)	2.6(3)
N(1)-C(1)-C(6)-C(5)	-178.27(19)
C(2)-C(1)-C(6)-N(12)	-178.06(18)
N(1)-C(1)-C(6)-N(12)	1.1(3)
C(4)-C(5)-C(6)-C(1)	0.6(3)
N(9)-C(5)-C(6)-C(1)	178.80(19)
C(4)-C(5)-C(6)-N(12)	-178.73(18)
N(9)-C(5)-C(6)-N(12)	-0.6(3)
C(8)-N(12)-C(6)-C(1)	73.4(3)
N(13)-N(12)-C(6)-C(1)	-107.8(2)
C(8)-N(12)-C(6)-C(5)	-107.3(3)
N(13)-N(12)-C(6)-C(5)	71.5(3)
N(12)-N(13)-C(7)-N(14)	0.3(3)
C(8)-N(14)-C(7)-N(13)	-0.1(3)
C(7)-N(14)-C(8)-N(12)	-0.2(3)
N(13)-N(12)-C(8)-N(14)	0.4(3)
C(6)-N(12)-C(8)-N(14)	179.3(2)

Table S25. Hydrogen bonds for 7 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

Table S26. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($\mathbb{A}^2 x \ 10^3$) for**8.** U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	У	Z	U(eq)
N(1)	6391(3)	1625(3)	1331(1)	30(1)
N(2)	5398(3)	266(4)	1373(1)	44(1)
N(3)	6335(3)	1640(4)	2372(1)	45(1)
N(4)	4033(3)	2320(4)	204(2)	42(1)
N(5)	4586(3)	3580(3)	-1008(1)	36(1)
N(6)	7745(3)	3631(4) -1032(1)		54(1)
	S	48 / S60		

N(7)	10180(3)	2393(4)	66(1)	36(1)
N(8)	9422(3)	1677(3)	1281(1)	34(1)
N(9)	10470(3)	2973(4)	1576(1)	49(1)
N(10)	10973(4)	343(5)	2133(2)	69(1)
O(1)	3245(3)	3633(4)	-966(1)	61(1)
O(2)	4836(2)	3994(3)	-1534(1)	58(1)
O(3)	10609(3)	3248(4)	-338(1)	62(1)
O(4)	11022(2)	1296(3)	446(1)	54(1)
C(1)	6717(3)	2005(4)	714(1)	28(1)
C(2)	5463(3)	2446(4)	143(1)	28(1)
C(3)	5830(3)	3051(4)	-440(1)	29(1)
C(4)	7404(3)	3127(4)	-482(1)	32(1)
C(5)	8583(3)	2580(4)	96(1)	32(1)
C(6)	8221(3)	2063(4)	684(1)	28(1)
C(7)	6926(3)	2417(4)	1933(1)	38(1)
C(8)	5415(4)	351(5)	2004(2)	48(1)
C(9)	9759(4)	148(5)	1620(2)	51(1)
C(10)	11351(4)	2078(6)	2082(2)	64(1)

Table S27. Bond lengths [Å] and angles [°] for 8.

N(1)-C(7)	1.342(3)
N(1)-N(2)	1.365(3)
N(1)-C(1)	1.419(3)
N(2)-C(8)	1.306(4)
N(3)-C(7)	1.311(4)
N(3)-C(8)	1.353(4)
N(4)-C(2)	1.324(4)
N(4)-H(4B)	0.84(3)
N(4)-H(4A)	0.91(3)
N(5)-O(2)	1.214(3)
N(5)-O(1)	1.227(3)
N(5)-C(3)	1.430(3)
N(6)-C(4)	1.316(3)
N(6)-H(6A)	0.8600
N(6)-H(6B)	0.8600
N(7)-O(3)	1.197(3)
N(7)-O(4)	1.234(3)

N(7)-C(5)	1.454(4)
N(8)-C(9)	1.328(4)
N(8)-N(9)	1.365(3)
N(8)-C(6)	1.422(3)
N(9)-C(10)	1.305(4)
N(10)-C(9)	1.298(4)
N(10)-C(10)	1.347(5)
C(1)-C(6)	1.365(4)
C(1)-C(2)	1.423(4)
C(2)-C(3)	1.413(4)
C(3)-C(4)	1.435(4)
C(4)-C(5)	1.416(4)
C(5)-C(6)	1.402(4)
С(7)-Н(7)	0.9300
С(8)-Н(8)	0.9300
С(9)-Н(9)	0.9300
C(10)-H(10)	0.9300
C(7)-N(1)-N(2)	109.5(2)
C(7)-N(1)-C(1)	130.0(2)
N(2)-N(1)-C(1)	120.5(2)
C(8)-N(2)-N(1)	101.8(2)
C(7)-N(3)-C(8)	102.7(2)
C(2)-N(4)-H(4B)	115(2)
C(2)-N(4)-H(4A)	115(2)
H(4B)-N(4)-H(4A)	128(3)
O(2)-N(5)-O(1)	119.0(2)
O(2)-N(5)-C(3)	121.0(2)
O(1)-N(5)-C(3)	120.0(2)
C(4)-N(6)-H(6A)	120.0
C(4)-N(6)-H(6B)	120.0
H(6A)-N(6)-H(6B)	120.0
O(3)-N(7)-O(4)	122.8(3)
O(3)-N(7)-C(5)	119.4(3)
O(4)-N(7)-C(5)	117.7(3)
C(9)-N(8)-N(9)	110.1(2)
C(9)-N(8)-C(6)	129.7(3)
N(9)-N(8)-C(6)	120.2(2)

C(10)-N(9)-N(8)	100.6(3)
C(9)-N(10)-C(10)	102.3(3)
C(6)-C(1)-N(1)	120.2(2)
C(6)-C(1)-C(2)	120.7(2)
N(1)-C(1)-C(2)	119.0(2)
N(4)-C(2)-C(3)	124.7(3)
N(4)-C(2)-C(1)	117.3(3)
C(3)-C(2)-C(1)	118.0(2)
C(2)-C(3)-N(5)	118.6(2)
C(2)-C(3)-C(4)	122.2(2)
N(5)-C(3)-C(4)	119.2(2)
N(6)-C(4)-C(5)	121.2(3)
N(6)-C(4)-C(3)	122.3(3)
C(5)-C(4)-C(3)	116.5(2)
C(6)-C(5)-C(4)	121.2(2)
C(6)-C(5)-N(7)	118.8(2)
C(4)-C(5)-N(7)	119.8(2)
C(1)-C(6)-C(5)	121.3(2)
C(1)-C(6)-N(8)	117.8(2)
C(5)-C(6)-N(8)	120.8(2)
N(3)-C(7)-N(1)	110.3(3)
N(3)-C(7)-H(7)	124.9
N(1)-C(7)-H(7)	124.9
N(2)-C(8)-N(3)	115.8(3)
N(2)-C(8)-H(8)	122.1
N(3)-C(8)-H(8)	122.1
N(10)-C(9)-N(8)	110.6(3)
N(10)-C(9)-H(9)	124.7
N(8)-C(9)-H(9)	124.7
N(9)-C(10)-N(10)	116.4(3)
N(9)-C(10)-H(10)	121.8
N(10)-C(10)-H(10)	121.8

Table S28. Anisotropic displacement parameters (Å 2 x 10 3) for 8. The anisotropic

displacement factor exponent takes the form: -2p²[$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	31(1)	36(2)	26(1)	-1(1)	12(1)	-7(1)
			S 51 / S60			

N(2)	54(2)	45(2)	38(2)	0(1)	19(1)	-18(1)
N(3)	52(2)	57(2)	29(1)	-1(1)	17(1)	-3(2)
N(4)	26(2)	67(2)	34(2)	5(2)	10(1)	-1(1)
N(5)	33(2)	47(2)	28(1)	2(1)	7(1)	8(1)
N(6)	36(2)	96(2)	34(2)	17(2)	16(1)	3(2)
N(7)	26(1)	55(2)	29(1)	2(1)	10(1)	6(1)
N(8)	26(1)	45(2)	31(1)	2(1)	6(1)	0(1)
N(9)	38(2)	63(2)	39(2)	-6(2)	-2(1)	-6(1)
N(10)	56(2)	86(3)	53(2)	17(2)	-5(2)	12(2)
O(1)	27(1)	108(2)	47(1)	18(1)	11(1)	18(1)
O(2)	49(2)	95(2)	31(1)	21(1)	13(1)	16(1)
O(3)	39(1)	95(2)	58(2)	15(1)	22(1)	0(1)
O(4)	36(1)	69(2)	61(2)	7(1)	18(1)	10(1)
C(1)	31(2)	31(2)	23(1)	-1(1)	10(1)	-3(1)
C(2)	28(2)	28(2)	29(2)	-4(1)	10(1)	-2(1)
C(3)	29(2)	33(2)	25(1)	-1(1)	7(1)	2(1)
C(4)	33(2)	38(2)	28(2)	-3(1)	11(1)	-1(1)
C(5)	25(2)	39(2)	32(2)	-1(1)	11(1)	-4(1)
C(6)	26(2)	30(2)	28(2)	-3(1)	7(1)	2(1)
C(7)	38(2)	50(2)	24(2)	-5(1)	8(1)	-6(2)
C(8)	59(2)	57(2)	36(2)	4(2)	25(2)	-11(2)
C(9)	47(2)	50(2)	53(2)	15(2)	8(2)	6(2)
C(10)	47(2)	87(3)	46(2)	1(2)	-8(2)	-1(2)

Table S29. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 8.

	х	У	Z	U(eq)
H(6A)	86983632	-104565		
H(6B)	70153960	-137965		
H(7)	76173380	202545		
H(8)	4831-426	218858		
H(9)	9202-916	150661		
H(10)	121952609	239177		
H(4B)	3320(40)	2520(40)	-149(15)	32(9)
H(4A)	3960(40)	1750(40)	584(17)	53(10)

Table S30. Torsion angles [°] for 8.

C(7)-N(1)-N(2)-C(8)	0.0(3)
C(1)-N(1)-N(2)-C(8)	179.9(3)
C(9)-N(8)-N(9)-C(10)	-0.6(3)
C(6)-N(8)-N(9)-C(10)	-178.9(3)
C(7)-N(1)-C(1)-C(6)	53.7(4)
N(2)-N(1)-C(1)-C(6)	-126.1(3)
C(7)-N(1)-C(1)-C(2)	-121.9(3)
N(2)-N(1)-C(1)-C(2)	58.3(4)
C(6)-C(1)-C(2)-N(4)	178.5(3)
N(1)-C(1)-C(2)-N(4)	-5.9(4)
C(6)-C(1)-C(2)-C(3)	-3.9(4)
N(1)-C(1)-C(2)-C(3)	171.7(2)
N(4)-C(2)-C(3)-N(5)	0.4(4)
C(1)-C(2)-C(3)-N(5)	-177.1(3)
N(4)-C(2)-C(3)-C(4)	-178.8(3)
C(1)-C(2)-C(3)-C(4)	3.8(4)
O(2)-N(5)-C(3)-C(2)	-175.0(3)
O(1)-N(5)-C(3)-C(2)	5.4(4)
O(2)-N(5)-C(3)-C(4)	4.2(4)
O(1)-N(5)-C(3)-C(4)	-175.3(3)
C(2)-C(3)-C(4)-N(6)	177.6(3)
N(5)-C(3)-C(4)-N(6)	-1.6(4)
C(2)-C(3)-C(4)-C(5)	-0.6(4)
N(5)-C(3)-C(4)-C(5)	-179.8(3)
N(6)-C(4)-C(5)-C(6)	179.2(3)
C(3)-C(4)-C(5)-C(6)	-2.5(4)
N(6)-C(4)-C(5)-N(7)	-6.3(4)
C(3)-C(4)-C(5)-N(7)	172.0(3)
O(3)-N(7)-C(5)-C(6)	-159.7(3)
O(4)-N(7)-C(5)-C(6)	22.9(4)
O(3)-N(7)-C(5)-C(4)	25.7(4)
O(4)-N(7)-C(5)-C(4)	-151.7(3)
N(1)-C(1)-C(6)-C(5)	-174.7(2)
C(2)-C(1)-C(6)-C(5)	0.9(4)
N(1)-C(1)-C(6)-N(8)	2.0(4)
C(2)-C(1)-C(6)-N(8)	177.5(2)
C(4)-C(5)-C(6)-C(1)	2.5(4)
N(7)-C(5)-C(6)-C(1)	-172.1(3)

C(4)-C(5)-C(6)-N(8)	-174.1(3)
N(7)-C(5)-C(6)-N(8)	11.4(4)
C(9)-N(8)-C(6)-C(1)	66.7(4)
N(9)-N(8)-C(6)-C(1)	-115.5(3)
C(9)-N(8)-C(6)-C(5)	-116.7(4)
N(9)-N(8)-C(6)-C(5)	61.2(4)
C(8)-N(3)-C(7)-N(1)	-0.3(3)
N(2)-N(1)-C(7)-N(3)	0.2(3)
C(1)-N(1)-C(7)-N(3)	-179.6(3)
N(1)-N(2)-C(8)-N(3)	-0.2(4)
C(7)-N(3)-C(8)-N(2)	0.3(4)
C(10)-N(10)-C(9)-N(8)	-0.2(4)
N(9)-N(8)-C(9)-N(10)	0.5(4)
C(6)-N(8)-C(9)-N(10)	178.6(3)
N(8)-N(9)-C(10)-N(10)	0.5(4)
C(9)-N(10)-C(10)-N(9)	-0.2(5)

Table S31. Hydrogen bonds for 8 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

Fig. S5 DSC plot for compound 4

Fig. S6 DSC plot for compound 5

Fig. S7 DSC plot for compound 6

Fig. S8 DSC plot for compound 7

Fig. S9 DSC plot for compound 8

Fig. S10 DSC plot for compound 9

Theoretical study

All calculations were carried out at Gaussian 09 package.² All molecules were optimized at DFT/B3LYP³ functional 6-31G^{**} basis set,⁴ and the structures were conformed to be true local-energy minima on the potenital-energy surface with frequency analysis. The change of enthalpy for the reactions at 298 K can be expressed as

$$\Delta H_{298} = \sum \Delta_{\rm f} H_{\rm P} - \sum \Delta_{\rm f} H_{\rm R} \tag{1}$$

where $\Delta_f H_R$ and $\Delta_f H_P$ are the HOF of reactants and products at 298 K, respectively, and ΔH_{298} can be calculated using the following expression:

$$\Delta H_{298} = \Delta E_{298} + \Delta (PV) = \Delta E_0 + \Delta ZPE + \Delta H_T + \Delta nRT$$
⁽²⁾

where ΔE_0 is the change in total energy between the products and the reactants at 0 K; ΔZPE is the difference between the zero-point energies (*ZPE*) of the products and the reactants at 0 K; ΔH_T is thermal correction from 0 to 298 K. The $\Delta(PV)$ value in eq (2) is the *PV* work term. It equals $\Delta(nRT)$ for the reactions of ideal gas. For the isodesmic reactions, $\Delta n = 0$, so $\Delta(PV) = 0$. On the left side of Eq. (1), apart from target compound, all the others are called reference compounds. The HOF of reference compounds are available either from the experiments⁵ or from the high level computing like G2 method.⁶ Molar enthalpy of formation in solid state calculated by $\Delta_f H_s = \Delta_f H_g - \Delta_f H_{sub}$, enthalpy of formation in gas state ($\Delta_f H_g$) was calculated by DFT method in combination with the isodesmic reactions, the sublimation enthalpy ($\Delta_f H_{sub}$) was evaluated by the electrostatic potential method.

The detonation velocity and detonation pressure were calculated by the Kamlet-Jacobs formulas (3) and $(4)^7$ as follows:

$$D=1.01(NM^{1/2}Q^{1/2})^{1/2}(1+1.30\rho)$$
(3)

$$P=1.558\rho^2 N M^{1/2} Q^{1/2}$$
(4)

where D is the detonation velocity (km s⁻¹), P is the detonation pressure (GPa), N is the moles of detonation gases per gram of explosive, M is the average molecular weight (g mol⁻¹) of these gases. Q is the heat of detonation (cal g⁻¹), and is the loaded density (g cm⁻³) of explosives.

Scheme 1 Isodesmic reaction

Table S32 Calculated total energy (E_0), zero point energy (ZPE), and thermal correction (H_T) and experimental gaseous heat of formation ($\Delta_f H_{gas}$) for the reference compounds. E_0 and ZPE are in (a.u.), H_{uvb} and HQE are in (kI mol⁻¹).

Compd.	ZPE	Η _T	E ₀	E _{cor.}	ΔH_{T}	$\Delta_{f}H_{\text{gas}}$	ΔH_{sub}	$\Delta H_{f,solid}$
CH ₄	0.04416	0.04692	-40.478950	-40.432030	10.01	-74.6ª		
NH_3	0.03377	0.03674	-56.523305	-56.486565	10.00	-45.9 ^a		
CH_3CH_3	0.07303	0.07537	-79.759748	-79.684378	10.47	-84.0 ^a		
CH_3NO_2	0.04894	0.05219	-244.963435	-244.911245	11.62	-74.7 ^a		
CH_3N_3	0.04945	0.05364	-204.046787	-203.993147	14.22	238.4ª		
NH_2NH_2	0.05224	0.05522	-111.815351	-111.760131	11.06	93.4ª		
benzene	0.09861	0.10171	-232.157596	-232.055886	14.00	82.9 ^a		
1,2,4-triazole	0.05877	0.06189	-242.195875	-242.133985	11.83	192.7ª		
6	0.19248	0.20531	-1048.21335	-1048.00804	45.84	207.40	175.63	31.77
7	0.14956	0.16824	-1372.852635	5-1372.684395	59.44	1253.6	239.01	1014.68
						5		
8	0.21441	0.22927	-1233.851790)-1233.622520	52.61	537.43	221.19	316.24
9	0.18548	0.20439	-1450.281089	9-1450.076699	62.08	1239.2	264.66	974.62

8

^a The experimental data are taken from Ref.4.

-					
Comp.	∆H _{f,solid} (kJ mol⁻¹)	ρ(g cm ⁻³) D(km s ⁻¹)	P(GPa)	OB(%)
6	31.77	1.73	6.55	18.53	-91.36
7	1014.68	1.77	7.50	24.67	-58.07
8	316.24	1.73	6.56	18.67	-96.32
9	974.62	1.75	7.13	22.19	-74.95
TNT	-67.36	1.65	6.94	22.00	-73.97

Table S33 Predicted heats of formation ($\Delta H_{f,solid}$), densities (ρ), detonation velocities (D), detonation pressures (P), and oxygen balance (OB) for the title compounds together with TNT, RDX and HMX

References

- (a) G. M. Sheldrick, SHELXS-97, Program for solution of crystal structures, University of Gottingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL-97, Program for refinement of crystal structures, University of Gottingen, Germany, 1997.
- [2] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, *Gaussian 09 D.01*, Gaussian Inc, Wallingford, 2010.
- [3] (a) L. Turker, T. Atalar, S. Gumus, Y. C. Camur, J. Hazard. Mater., 2009, 167, 440-448. (b) G. Zhao, M. Lu, J. Phys. Org. Chem., 2012, 26, 211-217.
- [4] A. D. Becke, J. Chem. Phys., 1992, 97, 9173-9177.
- [5] D. R. Lide, Handbook of Chemistry and Physics, 84th ed., CRC Press, Boca Raton, FL, 2003-2004.
- [6] L. A. Curtiss, K. Raghavachari, P. C. Redfern, J. A. Pople, J. Chem. Phys., 1997, 106, 1063-1079.
- [7] M. J. Kamlet, S. T. Jacobs, J. Chem. Phys., 1968, 48, 23-35.