Synthesis of the C14-C21 Acid Fragments of Cytochalasin \mathbf{Z}_{8} via anti-Selective Aldol Condensation and B-Alkyl Suzuki-Miyaura Cross-Coupling

Weiwei Han*a, b
${ }^{a}$ College of Chemistry and Chemical Engineering, Xi'an Shiyou University Xi'an, 710065, P. R. China
${ }^{b}$ Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
E-mail: vivien2014@xsyu.edu.cn

Supporting Information

Contents

Experimental details and compound characterization 2-8
Reference 8
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra 9-16

General Methods

All reactions involving air- and moisture-sensitive reagents were carried out using oven dried glassware and standard syringe-septum cap techniques. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 MHz NMR spectrometer in CDCl_{3} or acetone- $d_{6}\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$, respectively) with residual CHCl_{3} or acetone as the internal reference. IR spectra were taken on a FT-IR spectrophotometer. High-resolution mass spectra (HRMS) were measured by the + ESI method. Optical rotation data were recorded using quartz cells of 3.5 mm ID $\times 100 \mathrm{~mm}$ and 3.5 mm ID $\times 10 \mathrm{~mm}$, respectively. Silica gel plates pre-coated on glass were used for thin-layer chromatography using UV light, or 7\% ethanolic phosphomolybdic acid and heating as the visualizing methods. Silica gel was used for flash column chromatography with mixed ethyl acetate (EtOAc) and petroleum ether ($\mathrm{PE} ; \mathrm{bp} 60-90^{\circ} \mathrm{C}$) as the eluting solvents. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR) homogeneous materials. Anhydrous THF, $\mathrm{Et}_{2} \mathrm{O}$ and PhMe were freshly distilled from sodium benzophenone ketyl under N_{2}. Anhydrous triethylamine $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and $\mathrm{N}, \mathrm{N}-$ Dimethylformamide (DMF) were freshly distilled over CaH_{2}. Anhydrous cyclohexane was freshly distilled over LiAlH_{4}. Other reagents were obtained commercially and used as received. Ambient temperature ranges from $10-30^{\circ} \mathrm{C}$ unless otherwise stated.

Experimental Details and Compound Characterization

Methyl (S)-2-Methyl-3-[(4'-toluenesulfonyl)oxy]propionate ${ }^{1}$

To a solution of methyl $(S)-(+)$-3-hydroxy-2-methylpropionate (Roche ester, $2.50 \mathrm{~g}, 21.1$ mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ cooled in an ice-water bath (ca. $0^{\circ} \mathrm{C}$) was sequentially added $\mathrm{Et}_{3} \mathrm{~N}$ ($3.8 \mathrm{~mL}, 27.5 \mathrm{mmol}$), DMAP ($0.38 \mathrm{~g}, 3.2 \mathrm{mmol}$), and $p-\mathrm{TsCl}(4.84 \mathrm{~g}, 25.4 \mathrm{mmol})$ followed by stirring for overnight at room temperature. The reaction was quenched with water and the reaction mixture was extracted with EtOAc ($2 \times 60 \mathrm{~mL}$). The combined organic layer was washed with brine (40 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduce pressure. The residue was purified by flash column chromatography (silica gel, 25% EtOAc in PE) to afford the tosylate ($5.45 \mathrm{~g}, 95 \%$) as a colorless oil. [$\alpha]_{\mathrm{D}}{ }^{14}+4.27$ (c 3.36, $\left.\mathrm{CHCl}_{3}\right)$; lit. ${ }^{\text {la }}[\alpha]_{\mathrm{D}}{ }^{17.5}+3.8\left(c 2.0, \mathrm{CHCl}_{3}\right) ; R f=0.30(\mathrm{PE} / E t O A c=4 / 1) ;$ Spectroscopic data matched that previously reported. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.35 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.18 (dd, $J=6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (s, 3 H), 2.83-2.77 (m, 1 H), 2.44 (s, 3 H), 1.16 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (400 MHz , CDCl_{3}) $\delta 173.0,144.9,132.7,129.8(\times 2), 127.9(\times 2), 70.7,52.0,39.1,21.6,13.6$.

($2 R, 3 R, 4 S$)-($1 R, 2 S$)-2-(N-benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl 3-

 hydroxy-2,4-dimethyl-5-(tosyloxy)pentanoate (8)

To a solution of above tosylate $(1.18 \mathrm{~g}, 4.3 \mathrm{mmol})$ in anhydrous toluene $(20 \mathrm{~mL})$ cooled in a EtOH-liquid nitrogen bath (ca. $-90^{\circ} \mathrm{C}$) was slowly added via syringe a solution of Dibal-H (1.0 M in hexane, $4.8 \mathrm{~mL}, 4.8 \mathrm{mmol}$) followed by stirring for 1 h at the same temperature. The reaction was quenched by adding EtOAc $(10 \mathrm{~mL})$ and the resultant mixture was allowed to warm up to room temperature. To the mixture was added an aqueous solution of citric acid $(1.0 \mathrm{M}, 15 \mathrm{~mL})$ with vigorous stirring. The organic layer was separated and the aqueous layer was extracted with EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated, and condensed under reduced pressure to afford the
unstable crude aldehyde $\mathbf{6}^{1,2}(\mathrm{ca} .1 \mathrm{~g})$ as a colorless oil which was immediately used for the next step.

To a stirred solution of ester $7(1.0 \mathrm{~g}, 2.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ cooled at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.46 \mathrm{~mL}, 10.5 \mathrm{mmol})$ under a nitrogen atmosphere. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 5 $\mathrm{min}, \mathrm{Cy}_{2} \mathrm{BOTf}(1.0 \mathrm{M}$ in hexane, $6.3 \mathrm{~mL}, 6.3 \mathrm{mmol}$) was added dropwise over 20 min . The resultant solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h . Then the above crude aldehyde $\mathbf{6}$ was added dropwise followed by stirring at $-78{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was allowed towarm to $-78{ }^{\circ} \mathrm{C}$ over 1 h and the reaction was quenched by addition of $\mathrm{pH}=7$ buffer and $\mathrm{MeOH}(1 / 1, \mathrm{v} / \mathrm{v}, 20$ $\mathrm{mL})$. The reaction mixture was diluted with $\mathrm{MeOH}(20 \mathrm{~mL})$ to make a homogeneous solution. After careful addition of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(20 \mathrm{~mL})$, the mixture was stirred at room temperature for 14 h and then concentrated under reduced pressure. The residue was partitioned between water $(50 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ for three times. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was puried by column chromatography (silica gel; $\mathrm{EtOAc} / \mathrm{PE}=1 / 10)$ to afford the anti-aldol product $\mathbf{8}(1.06 \mathrm{~g}, 70 \%$ yield for two steps) as a white solid. mp 123.4~125.3 ${ }^{\circ} \mathrm{C}$ (EtOAc-hexane); $[\alpha]_{\mathrm{D}}{ }^{24}+1.7$ ($c=$ $\left.1.000, \mathrm{CHCl}_{3}\right) ; R_{f}=0.16(\mathrm{PE} / \mathrm{EtOAc}=4 / 1)$; IR (film) $3511,2979,1737,1318,1152 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.76 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.32 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26-7.15$ (m, 8 H), $6.92(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 5.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68,4.55$ (ABq, $J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.02$ (t, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (dd, $J=9.6,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.77-3.72(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 6 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.39$ (m, 1 H), 2.27 ($\mathrm{s}, 3 \mathrm{H}$), 2.01-1.94 (m, 1H), 1.15 (d, $J=8.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.01 (d, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$), $0.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 174.5, 144.8, 142.6, 140.1 ($\times 2$), 138.3, $138.0,133.3,132.8,132.1(\times 2), 129.8(\times 2), 128.4(\times 2), 128.3(\times 2), 128.0,127.8(\times 2), 127.4$ ($\times 2$), 127.1, 125.7 ($\times 2$), 78.5, 72.4, 70.8, 56.8, 48.2, 43.0, 34.3, 22.9 ($\times 2$), 21.6, 20.8, 13.4, 13.0, 8.5; HRMS (ESI+) calcd for $\mathrm{C}_{39} \mathrm{H}_{47} \mathrm{NO}_{8} \mathrm{~S}_{2} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 744.2635$, found 744.2640.
($2 R, 3 R, 4 S$)-($1 R, 2 S$)-2-(N-benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl 2,4-dimethyl-5-(tosyloxy)-3-((triethylsilyl)oxy) pentanoate (9)

To a solution of $8(356 \mathrm{mg}, 0.49 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ cooled at $0{ }^{\circ} \mathrm{C}$ was
sequentially added 2,6 -lutidine ($0.19 \mathrm{~mL}, 0.98 \mathrm{mmol}$) and TESOTf ($0.17 \mathrm{~mL}, 0.74 \mathrm{mmol}$) under a nitrogen atmosphere. After stirring at $0{ }^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched by addition of saturated aqueous NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$. The resultant reaction mixture was extracted with EtOAc and the combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, fltered, and concentrated under reduced pressure. The residue was puried by column chromatography (silica gel; EtOAc/Petroleum Ethers $=1 / 20)$ to give the product $9(400 \mathrm{mg}$, 98%) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{25}+10.26\left(c=1.000, \mathrm{CHCl}_{3}\right) ; R_{f}=0.46$ ($4: 1 \mathrm{PE} / \mathrm{EtOAc}$); IR (film) 2956, 1740, 1150, $1012 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.73 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 $7.16(\mathrm{~m}, 7 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.64(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77,4.38(\mathrm{ABq}, J=16.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-4.07(\mathrm{~m}, 1 \mathrm{H})$, $3.87-3.83(\mathrm{~m}, 3 \mathrm{H}), 2.52-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.83$ $(\mathrm{m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89-0.84(\mathrm{~m}, 12 \mathrm{H}), 0.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.56-0.41$ (m, 6 H); ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 172.7, 144.7, 142.3, 140.4 ($\times 2$), 138.2, 137.8, 132.9, $132.8,132.1(\times 2), 129.7(\times 2), 128.4(\times 2), 128.3(\times 2), 128.2(\times 2), 127.9(\times 3), 127.4,126.7$ $(\times 2), 77.8,72.7,72.6,56.4,48.0,44.6,35.7,22.8(\times 2), 21.6,20.9,15.1,13.6,10.4,7.0(\times 3)$, $5.2(\times 3)$; HRMS (ESI +) calcd for $\mathrm{C}_{45} \mathrm{H}_{61} \mathrm{NO}_{8} \mathrm{~S}_{2} \mathrm{Si}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 858.3500$, found 858.3506 .

(2R,3S,4R)-(1R,2S)-2-(N-benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl

5-iodo-2,4-dimethyl-3-((triethylsilyl)oxy) pentanoate (5)

To a solution of $9(1.47 \mathrm{~g}, 1.76 \mathrm{mmol})$ in THF (18 mL) was added LiI ($353 \mathrm{mg}, 2.64 \mathrm{mmol}$) followed by heating at $60^{\circ} \mathrm{C}$ for 5 h . The reaction was quenched by water and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was puried by column chromatography (silica gel; $\mathrm{EtOAc} / \mathrm{PE}=1 / 20$) to give the product $5(1.32 \mathrm{~g}, 95 \%)$ as a white solid. $[\alpha]_{D^{24}}+19.8\left(c=1.000, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{f}=0.5$ ($8: 1 \mathrm{PE} / E t O A c$); IR (film) 2953, 1737, 1455, 1320, 1151, $1006 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.30-7.17 (m, 4H), 7.11 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.84 ($\mathrm{s}, 3 \mathrm{H}$), 6.81 (s, 1 H), 5.70 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.80, 4.44 (ABq, $J=16.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-2.98(\mathrm{~m}, 2 \mathrm{H})$, 2.58-2.51 (m, 1 H), 2.39 (s, 6 H), 2.29 (s, $3 H$), 1.69-1.65 (m, 1 H), 1.22 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), $1.10-0.92(\mathrm{~m}, 15 \mathrm{H}), 0.65-0.58(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz , acetone- d_{6}) δ 173.1, 143.5 ,
$140.9(\times 2), 139.9,139.2,134.2,133.0(\times 2), 129.1(\times 2), 129.0(\times 2), 128.9(\times 2), 128.7,128.1$, $127.4(\times 2), 78.8,77.3,57.6,48.8,45.1,40.0,23.1(\times 2), 20.8,15.7,15.3,14.2,13.5,7.4(\times 3)$, $6.0(\times 3)$; $\mathrm{HRMS}(\mathrm{ESI}+)$ calcd for $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{INO}_{5} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$814.2429, found 814.2433.
(2R,3R,4S,Z)-(1R,2S)-2-(N-benzyl-2,4,6-trimethylphenylsulfonamido)-1-phenylpropyl

2,4-dimethyl-3-((triethylsilyl)oxy)oct-6-enoate (11)

A flame-dried two-neck round bottom flask of 50 mL capacity was charged with the alkyl iodide 5 ($245.0 \mathrm{mg}, 0.31 \mathrm{mmol}$) and was then evacuated and backfilled with argon (5 times). A solution of $9-\mathrm{MeO}-9-\mathrm{BBN}(1 \mathrm{M}$ in hexanes, $1.4 \mathrm{~mL}, 1.4 \mathrm{mmol})$ and freshly distilled dry $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ were added with a syringe at room temperature. The colorless solution was cooled to $-78^{\circ} \mathrm{C}$ in a dry ice/acetone bath. After stirring for 5 min , a solution of t-BuLi $(1.6$ M in heptane, $0.78 \mathrm{~mL}, 1.24 \mathrm{mmol}$) was rapidly added with a syringe in one portion at $-78^{\circ} \mathrm{C}$. The resulting milky suspension was stirred for 30 min at the same temperature, and freshly distilled dry THF (5.0 mL) was added. The mixture turned clear and was stirred sequentially at $-40^{\circ} \mathrm{C}$ for 30 min , at $-20^{\circ} \mathrm{C}$ for 30 min , and then at room temperature for another 1.5 h to form a homogeneous pale yellow solution of the alkyl borinate.

A two-neck round bottom flask of 100 mL capacity was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(6.6 \mathrm{mg}, 0.03$ mmol), Aphos-Y ($25.3 \mathrm{mg}, 0.05 \mathrm{mmol}$), 4 and $\mathrm{K}_{3} \mathrm{PO}_{4}(197 \mathrm{mg}, 0.93 \mathrm{mmol})$ and was evacuated and backfilled with argon (5 times). A solution of the (Z)-1-bromoprop-1-ene ($132 \mu \mathrm{~L}, 1.55$ mmol) in degassed THF (5.0 mL) was added with a syringe, followed by the addition of degassed $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L}, 5.58 \mathrm{mmol})$. The mixture was stirred at room temperature for 5 min , and then the above alkyl boriante was transferred with a syringe. After being stirred at room temperature overnight the reaction mixture was filtered off through a plug of Celite and rinsed with EtOAc. The combined organic layer was concentrated under reduced pressure and the residue was purified by column chromatography (silica gel, $\mathrm{EtOAc} / \mathrm{PE}=1 / 20$) to give 11 $(88.0 \mathrm{mg}, 40 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{26}+11.2\left(c=1.000, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{f}=0.22(\mathrm{PE} / \mathrm{EtOAc}=$ 20:1); IR (film) 2955, 1742, 1456, 1324, 1152, $1011 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}) δ $7.47(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 4 \mathrm{H}), \quad 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), \quad 5.50-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.91,4.53$ $(\mathrm{ABq}, J=16.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=6.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.64(\mathrm{~m}, 1$
H), $2.41(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.52(\mathrm{~m}, 3$ H) $1.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-0.93(\mathrm{~m}, 12 \mathrm{H}), 0.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.64(\mathrm{dd}, J=8.0$, 8.0 Hz, 6 H); ${ }^{13} \mathrm{C}$ NMR (400 MHz , acetone- d_{6}) $\delta 173.5,143.5,140.9,139.9,139.3,134.2$, $133.0(\times 2), 129.9,129.1(\times 2), 129.0(\times 5), 128.7,128.1,127.3(\times 2), 125.4,78.6,78.0,57.6$, $48.9,45.8,37.1,32.2,23.1(\times 2), 20.8,15.4,13.9,13.7,13.1,7.4(\times 3), 6.0(\times 3) ; H R M S(E S I+)$ calcd for $\mathrm{C}_{41} \mathrm{H}_{59} \mathrm{NO}_{5} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 728.3775$, found 728.3779 .
(2S,3R,4S,Z)-2,4-dimethyl-3-((triethylsilyl)oxy)oct-6-en-1-ol (13)

To a solution of the TES ether $11(35 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}(1 \mathrm{~mL})$ cooled at $-78{ }^{\circ} \mathrm{C}$ was added Dibal-H (1.0 M in hexane, $0.18 \mathrm{~mL}, 0.18 \mathrm{mmol}$) under a nitrogen atmosphere. The resultant mixture was stirred at the same temperature for 1 h and then allowed to warm to room temperature. The reaction mixture was quenched by carefully adding saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(5 \mathrm{~mL})$ and the resultant mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ with vigorous stirring till the mixture became clear. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel; $\mathrm{EtOAc} / \mathrm{PE}=1 / 20$) to give the alcohol 13 as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}-3.0\left(c=1.000, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{f}=0.44(6: 1 \mathrm{PE} / \mathrm{EtOAc})$; IR (film) 2923, 1461, $1378,1239,1009 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}) $\delta 5.49-5.39(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.63(\mathrm{~m}$, $2 \mathrm{H}), 3.50-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.60$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.10(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.67(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz , acetone- d_{6}) $\delta 130.4,125.0,78.6,64.8,40.6$, $37.2,32.7,14.7,13.5,13.0,7.3(\times 3), 6.0(\times 3) ; \mathrm{HRMS}(\mathrm{EI}+)$ calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}^{+}\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}$ 257.1931, found 257.1940 .

(2R,3R,4S,Z)-2,4-dimethyl-3-((triethylsilyl)oxy)oct-6-enal (14)

To a solution of the alcohol $\mathbf{1 3}(12 \mathrm{mg}, 0.03 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ cooled in an icewater bath (ca. $0{ }^{\circ} \mathrm{C}$) was added powdered $\mathrm{NaHCO}_{3}(25 \mathrm{mg}, 0.3 \mathrm{mmol})$ and Dess-Martin periodinane ($27 \mathrm{mg}, 0.06 \mathrm{mmol}$) followed by stirring at room temperature for 1.5 h . The reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3} and the resultant mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and stirred for 15 min . The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, $\mathrm{EtOAc} / \mathrm{PE}=1 / 50$) to give the aldehyde 14 as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{21}-8.36\left(c=1.000, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{f}=0.58(10: 1$ PE/EtOAc) IR (film) 2923, 2854, 1728, 1463, 1262, 1099, $1016 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone $\left.-d_{6}\right) \delta 9.78(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.37(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=$ $4.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{q}, J$ $=8.0 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (400 MHz , acetone- d_{6}) $\delta 204.6,129.8,125.6,78.6,50.9,38.6,31.5$, 14.3, 13.1, 12.0, $7.3(\times 2), 5.9(\times 2)$; HRMS (EI+) calcd for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}^{+}\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+} 255.1775$, found 255.1775 .

(2E,4S,5R,6S,8Z)-methyl 4,6-dimethyl-5-((triethylsilyl)oxy)deca-2,8-dienoate (15)

To a solution of the previous aldehyde $\mathbf{1 4}$ in dry toluene (2 mL) were added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$ $\left(25.4 \mathrm{mg}, 0.076 \mathrm{mmol}\right.$), and the solution was stirred at $60^{\circ} \mathrm{C}$ for 24 h . Then the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purification by flash chromatography (silica gel; $\mathrm{EtOAc} / \mathrm{PE}=1 / 50$) to afford the α, β-unsaturated ester $\mathbf{1 5}$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{23}-8.88\left(c=1.000, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{f}=0.29(50: 1 \mathrm{PE} / \mathrm{EtOAc}) \mathrm{IR}$ (film) 2957, 2878, 1726, 1657, 1459, 1240, 1099, $1010 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}) $\delta 7.04$ (dd, $J=15.6,8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=16.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.35(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$, $3.64(\mathrm{dd}, J=5.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.66(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz , acetone- d_{6}) $\delta 167.2,153.2,130.1,125.4$, $121.4,80.5,51.4,41.5,38.5,31.9,17.8,14.3,13.1,7.4(\times 3)$, $6.1(\times 3)$; HRMS (EI+) calcd for
$\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}^{+}\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}$311.2037, found 311.2052.

(2E,4S,5R,6S,8Z)-4,6-dimethyl-5-((triethylsilyl)oxy)deca-2,8-dienoic acid (4)

To a solution of the methyl ester 15 in a mixture of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1: 1)$ was added an aqueous solution of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.38 \mathrm{~mL}, 0.38 \mathrm{mmol})$ and MeOH . The resultant solution was stirred for 12 h at room temperature, and 1 N HCI was added dropwise to reaction mixture till $\mathrm{pH}=3-4$. The reaction mixture was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, $\mathrm{EtOAc} / \mathrm{PE}=1 / 10)$ to give the acid $4(7 \mathrm{mg}, 72 \%$ yield for three steps from 13$)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{23}-17.5\left(c=1.000, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; R_{f}=0.56$ (4:1 PE/EtOAc); IR (film) 2960, 2878, 2334, 1698, 1652, 1417, 1279, 1101, $1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}) δ $7.04(\mathrm{dd}, J=15.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=15.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.53-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.41-5.34$ $(\mathrm{m}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=5.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.67(\mathrm{~m}$, $1 \mathrm{H}), 1.59(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.67(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz , acetone- d_{6}) $\delta 167.3,153.0,130.0$, 125.2, 121.7, 80.4, 41.3, 38.3, 31.7, 17.7, 14.1, 13.0, $7.2(\times 3), 5.9(\times 3) ;$ HRMS (Maldi-Tof) $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}^{+}\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}^{+}\right]$298.196, found 298.184.

Reference

[^0]
NMR spectra.

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{8}$

${ }^{1} \mathrm{H}$ NMR of 9

${ }^{13} \mathrm{C}$ NMR of 9

${ }^{13} \mathrm{C}$ NMR of 5

${ }^{1} \mathrm{H}$ NMR of 11

${ }^{13} \mathrm{C}$ NMR of 11

${ }^{1} \mathrm{H}$ NMR of 13

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 4}$

${ }^{13}$ C NMR of 14

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 5}$

${ }^{1} \mathrm{H}$ NMR of 4

${ }^{13} \mathrm{C}$ NMR of 4

[^0]: ${ }^{1}$ (a) C. Aissa, R. Riveiros, J. Ragot and A. Fürstner, J. Am. Chem. Soc., 2003, 125, 15512-15520. (b) D. A. Kummer, J. B. Brenneman, S. F. Martin, Org. Lett., 2005, 7, 4621-4623.
 ${ }^{2}$ H. Li, J. Wu, J. Luo and W. M. Dai, Chem. Eur. J., 2010, 16, 11530.

