Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

A dual-functional luminescent Tb(III) metal-organic framework for selective sensing of acetone and TNP in water

Nidhi Goel,*^{*a,b*} and Naresh Kumar^{*c*}

^aSchool of Physical Sciences, Jawaharlal Nehru University, Delhi 110067, India

^bDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India

^cCentre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India

Figure S1. FT-IR spectrum of H₄abtc (L₂).

Figure S2. ¹H NMR spectra of L_2 .

Figure S3. ¹³C NMR spectra of L₂.

Display Report

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\January 2018\h ak-nkg-001_RA5_01_6035.d 7. LC-MS tune_low meoh.m h ak-nkg-001 Acquisition Date 1/19/2018 4:00:40 PM

Operator Instrument Ghanashyam Bhavsar micrOTOF-Q II 10348

Acquisition Parameter Positive 4500 V -500 V Source Type ESI Ion Polarity Set Nebulizer 1.0 Bar 250 ℃ 7.0 l/min Set Capillary Set End Plate Offset Focus Active Set Dry Heater Scan Begin Scan End 50 m/z Set Dry Gas 2000 m/z Set Collision Cell RF 150.0 Vpp Set Divert Valve Waste

Bruker Compass DataAnalysis 4.0

printed: 1/19/2018 4:03:01 PM

Page 1 of 1

Figure S4. HRMS spectra of L₂.

Figure S5. FT-IR spectrum of TPA-MOF.

(a)

Figure S6. (a) ORTEP representation of TPA-MOF in asymmetric unit. Thermal ellipsoids were drawn at the 30% probability level, **(b)** coordination behaviour around Tb metal centre (Hydrogens have been omitted for clarity). Color code: Tb; pink, O; red, N; blue, C; teal.

Figure S7. Micro-channel having 4Å Vander Wall radius. Color code: Tb; pink, O; red, N; blue, C; teal, and H; green.

Figure S8. Perspective view of TPA-MOF. Color code: Tb; pink, O; red, N; blue, C; teal, H; green and DMF (guest), purple.

(a)

(b)

Figure S9. (a) Simulated and experimental powder X-ray diffraction pattern of TPA-MOF and TPA-MOF in water, **(b)** magnifying PXRD images in the scan range of 6-45° (2 θ), obtained after immersing in H₂O (4 days), acetone, TNP for 72 h and recycled sample after five cycles.

Figure S10. As synthesized and activated TG of TPA-MOF.

Figure S11. Comparative absorption spectra of ligands (L_1 and L_2) and TPA-MOF.

Figure S12. Comparative emission spectra of ligands $(L_1 \text{ and } L_2)$ and TPA-MOF.

The relative fluorescence intensity is linear with TNP concentration in the range of (0-400 ppm). $F_0/F = 15.971[\text{TNP(ppm)}] + 1$, (R² = 0.99025) $K_{sv} = 15.971 \text{ ppm}^{-1}$ 1M = 35,500 ppm $1/35,500 \text{ ppm}^{-1} = 1\text{M}^{-1}$ $15.971 \text{ ppm}^{-1} = 5.67 \times 10^5 \text{ M}^{-1}$

Figure S13. Spectra of TPA-MOF in presence of variable amounts of chloroform.

Tb1—O1	2.283(3)	C4—C11	1.403(5)	
Tb1—O2 ⁱ	2.346(4)	C4—C5	1.437(6)	
Tb1—O5	2.360(4)	C5—C6	1.349(7)	
Tb1—O7 ⁱⁱ	2.402(4)	С5—Н5	0.950(4)	
Tb1—O4	2.474(5)	C6—C7	1.431(6)	
Tb1—O6 ⁱⁱ	2.486(4)	С6—Н6	0.950(4)	
Tb1—N1	2.538(6)	C7—C12	1.403(6)	
Tb1—O3	2.595(4)	C7—C8	1.404(7)	
Tb1—N2	2.599(5)	C8—C9	1.365(5)	
Tb1—C20 ⁱⁱ	2.800(5)	C8—H8	0.950(4)	
Tb1—N3	2.953(5)	C9—C10	1.395(6)	
O1—C13	1.261(5)	С9—Н9	0.950(5)	
O2—C13	1.252(6)	C10—H10	0.950(4)	
O2—Tb1 ⁱ	2.346(4)	C11—C12	1.443(7)	
O3—N3	1.267(5)	C13—C14	1.503(6)	
O4—N3	1.265(5)	C14—C19	1.392(6)	
O5—C21	1.240(5)	C14—C15	1.407(7)	
O6—C20	1.256(5)	C15—C16	1.395(6)	
O6—Tb1 ⁱⁱ	2.486(4)	C15—H15	0.950(4)	
O7—C20	1.268(5)	C16—C17	1.397(6)	
O7—Tb1 ⁱⁱ	2.402(4)	C16—C20	1.500(7)	
O8—N3	1.228(6)	C17—C18	1.390(7)	
O9—C24	1.275(9)	С17—Н17	0.950(4)	
N1-C1	1.326(6)	C18—C19	1.390(6)	
N1-C11	1.363(5)	С19—Н19	0.950(5)	
N2-C10	1.326(6)	C20—Tb1 ⁱⁱ	2.800(5)	
N2-C12	1.359(5)	C21—H21	0.951(5)	
N4—N4 ⁱⁱⁱ	1.245(4)	C22—H22A	0.979(7)	
N4-C18	1.442(5)	C22—H22B	0.980(6)	
N5-C21	1.311(7)	C22—H22C	0.980(6)	
N5-C23	1.455(8)	С23—Н23А	0.980(6)	
N5-C22	1.459(6)	С23—Н23В	0.980(5)	
N6-C24	1.302(7)	С23—Н23С	0.979(6)	
N6-C26	1.443(7)	C24—H24	0.950(6)	
N6-C25	1.458(9)	C25—H25A	0.980(6)	
C1—C2	1.399(6)	C25—H25B	0.979(7)	
C1—H1	0.950(4)	C25—H25C	0.980(6)	
C2—C3	1.365(7)	C26—H26A	0.981(8)	
C2—H2	0.950(5)	C26—H26B	0.980(7)	
C3—C4	1.412(7)	C26—H26C	0.980(8)	
C3—H3	0.950(4)			

Table S1. Bond lengths (Å) for TPA-MOF.

		~ ~ ~ ~ .	
$Ol-Tbl-O2^1$	82.13(10)	<u>C2—C3—C4</u>	118.65(44)
01-161-05	86.76(10)	С2—С3—Н3	120.67(44)
<u>O21</u> —Tb1—O5	141.45(11)	С4—С3—Н3	120.68(37)
01—Tb1—O7 ¹¹	128.54(9)	C11—C4—C3	118.53(34)
02 ⁱ —Tb1—O7 ⁱⁱ	137.02(10)	C11—C4—C5	119.94(37)
O5—Tb1—O7 ⁱⁱ	76.94(10)	C3—C4—C5	121.51(40)
01—Tb1—O4	90.08(10)	C6—C5—C4	120.32(39)
O2 ⁱ —Tb1—O4	72.91(11)	С6—С5—Н5	119.86(37)
O5—Tb1—O4	144.15(11)	С4—С5—Н5	119.81(39)
O7 ⁱⁱ —Tb1—O4	77.36(10)	C5—C6—C7	121.30(35)
01—Tb1—O6 ⁱⁱ	75.26(10)	С5—С6—Н6	119.36(43)
O2 ⁱ —Tb1—O6 ⁱⁱ	136.16(11)	С7—С6—Н6	119.34(39)
O5—Tb1—O6 ⁱⁱ	74.57(11)	С12—С7—С8	117.53(39)
O7 ⁱⁱ —Tb1—O6 ⁱⁱ	53.44(11)	С12—С7—С6	119.73(37)
O4—Tb1—O6 ⁱⁱ	70.12(10)	C8—C7—C6	122.73(34)
01—Tb1—N1	147.03(10)	С9—С8—С7	119.12(35)
O2 ⁱ —Tb1—N1	92.21(10)	С9—С8—Н8	120.43(41)
O5—Tb1—N1	77.59(10)	С7—С8—Н8	120.45(42)
O7 ⁱⁱ —Tb1—N1	76 1(1)	C8-C9-C10	119 48(38)
O4—Tb1—N1	119 37(10)	С8—С9—Н9	120 25(37)
0.101 M	126 31(10)	С10—С9—Н9	120.27(41)
01 - Tb1 - 03	135 14(9)	N2-C10-C9	123 38(39)
02^{i} Th $1-03$	67 87(11)	N2_C10_H10	125.30(37) 118 30(37)
02 Tb1 03	137 13(11)	C9-C10-H10	118.30(57) 118.32(40)
03^{ii} Th1-03	69 31(10)	N1-C11-C4	122.05(37)
04—Th1—03	50 35(11)	N1_C11_C12	118 56(38)
04^{ii} Tb1 03	10373(10)	$\frac{11}{C4} - \frac{C11}{C12} - \frac{C12}{C12}$	110.30(30) 110.38(34)
$N1_Th1_03$	69 38(10)	N2 - C12 - C7	123 13(37)
$\frac{N1-101-03}{01}$	93.38(10)	$N_2 - C_{12} - C_{11}$	123.13(37) 117 54(24)
$\frac{01-101-N2}{02i}$	60.05(11)	$N_2 - C_{12} - C_{11}$	117.34(34) 110.20(28)
$\frac{02-101-N2}{05-Th1-N2}$	72 12(11)	$02 \ 012 \ 01$	119.30(38)
03-101-N2	(75.13(11))	02-013-01	124.00(37) 119.27(29)
$\frac{0}{101} - \frac{1}{101} - \frac{1}{102}$	134.02(11)	02-013-014	118.27(38)
04-101-N2	141.94(11)	01 - 013 - 014	117.03(32)
$\frac{\text{O6}^{\text{n}}-\text{I0I}-\text{N2}}{\text{N1}-\text{T1}}$	142.20(11)	C19-C14-C15	119.5/(37)
NI - IbI - N2	64.01(11)	CI9—CI4—CI3	119.96(33)
03—1b1—N2	113.22(10)	CI5-CI4-CI3	120.47(38)
$OI - IbI - C20^{II}$	101.91(11)	<u>CI6—CI5—CI4</u>	119.35(39)
02 ¹ —1b1—C20 ¹¹	143.18(12)	С16—С15—Н15	120.37(37)
O5—Tb1—C20 ⁿ	75.25(12)	C14—C15—H15	120.27(39)
07 ⁿ —Tb1—C20 ⁿ	26.84(11)	<u>C15—C16—C17</u>	120.78(35)
04—Tb1—C20 ⁱⁱ	70.52(12)	C15—C16—C20	121.15(38)
O6 ⁿ —Tb1—C20 ⁱⁱ	26.66(12)	C17—C16—C20	118.00(36)
N1—Tb1—C20 ⁱⁱ	101.85(11)	C18—C17—C16	119.43(37)
O3—Tb1—C20 ⁱⁱ	85.41(11)	C18—C17—H17	120.25(42)
N2—Tb1—C20 ⁱⁱ	147.47(12)	С16—С17—Н17	120.31(37)
01—Tb1—N3	112.82(11)	C17—C18—C19	120.26(40)
$O2^{i}$ —Tb1—N3	67.98(12)	C17—C18—N4	123.78(36)

Table S2. Bond angles (°) for TPA-MOF.

O5—Tb1—N3	148.83(12)	C19—C18—N4	115.94(32)
O7 ⁱⁱ —Tb1—N3	71.89(11)	C18—C19—C14	120.60(35)
O4—Tb1—N3	25.00(11)	С18—С19—Н19	119.71(42)
O6 ⁱⁱ —Tb1—N3	86.84(11)	С14—С19—Н19	119.68(40)
N1—Tb1—N3	94.58(11)	O6—C20—O7	121.17(34)
O3—Tb1—N3	25.35(11)	O6-C20-C16	120.13(36)
N2—Tb1—N3	130.63(11)	O7—C20—C16	118.67(38)
C20 ⁱⁱ —Tb1—N3	77.02(12)	O6—C20—Tb1 ⁱⁱ	62.58(22)
C13—O1—Tb1	154.63(24)	O7—C20—Tb1 ⁱⁱ	58.78(22)
C13—O2—Tb1 ⁱ	150.65(29)	C16—C20—Tb1 ⁱⁱ	173.45(30)
N3—O3—Tb1	93.33(26)	O5-C21-N5	124.10(44)
N3—O4—Tb1	99.22(27)	O5—C21—H21	117.95(51)
C21—O5—Tb1	145.17(32)	N5-C21-H21	117.96(47)
C20—O6—Tb1 ⁱⁱ	90.76(26)	N5—C22—H22A	109.52(49)
C20—O7—Tb1 ⁱⁱ	94.38(25)	N5—C22—H22B	109.43(49)
C1—N1—C11	117.82(36)	H22A—C22—H22B	109.52(55)
C1—N1—Tb1	121.59(27)	N5—C22—H22C	109.49(50)
C11—N1—Tb1	120.02(26)	H22A—C22—H22C	109.49(58)
C10—N2—C12	117.34(35)	H22B—C22—H22C	109.38(56)
C10—N2—Tb1	123.36(28)	N5—C23—H23A	109.41(49)
C12—N2—Tb1	118.58(27)	N5—C23—H23B	109.49(45)
08—N3—O4	121.79(42)	H23A—C23—H23B	109.50(51)
08—N3—O3	121.09(42)	N5—C23—H23C	109.41(49)
O4—N3—O3	117.09(34)	H23A—C23—H23C	109.49(63)
08—N3—Tb1	177.45(37)	H23B—C23—H23C	109.53(49)
O4—N3—Tb1	55.78(22)	O9—C24—N6	125.59(55)
O3—N3—Tb1	61.32(23)	O9—C24—H24	117.22(63)
N4 ⁱⁱⁱ —N4—C18	113.74(26)	N6—C24—H24	117.19(59)
C21—N5—C23	121.20(43)	N6—C25—H25A	109.43(63)
C21—N5—C22	122.27(44)	N6—C25—H25B	109.45(56)
C23—N5—C22	116.40(44)	H25A—C25—H25B	109.44(66)
C24—N6—C26	121.53(47)	N6—C25—H25C	109.47(55)
C24—N6—C25	122.30(46)	H25A—C25—H25C	109.51(62)
C26—N6—C25	116.03(49)	H25B—C25—H25C	109.51(65)
N1—C1—C2	123.64(36)	N6—C26—H26A	109.49(57)
N1—C1—H1	118.23(41)	N6—C26—H26B	109.48(55)
C2—C1—H1	118.14(40)	H26A—C26—H26B	109.42(61)
C3—C2—C1	119.29(40)	N6—C26—H26C	109.49(57)
С3—С2—Н2	120.34(49)	H26A—C26—H26C	109.49(65)
C1—C2—H2	120.36(37)	H26B—C26—H26C	109.45(73)

Phen (L ₁)					
Centre	Atomic	Atomic	Coor	dinates (Angstr	oms)
Number	Number	Туре	X	Y	Z
1	6	C	3.469208	-0.362207	0.000469
2	6	C	2.815625	0.844984	0.001390
3	6	С	1.409083	0.862424	0.000325
4	6	С	0.719870	-0.379404	-0.000261
5	6	С	2.708066	-1.545443	-0.000923
6	6	C	0.677902	2.098675	0.000011
7	6	С	-0.719867	-0.379408	-0.000218
8	6	С	-1.409072	0.862402	-0.000598
9	6	С	-0.677920	2.098662	-0.000817
10	6	С	-2.815634	0.845000	-0.000339
11	1	Н	-3.363771	1.783984	-0.000609
12	6	С	-3.469197	-0.362196	0.000433
13	6	С	-2.708047	-1.545448	0.000844
14	1	Н	1.238186	3.031105	0.000227
15	1	Н	4.555802	-0.409375	0.000741
16	1	Н	3.363702	1.784007	0.002544
17	1	Н	3.204108	-2.511981	-0.001944
18	1	Н	-1.238089	3.031159	-0.001364
19	1	Н	-4.555792	-0.409381	0.000745
20	1	Н	-3.204201	-2.511932	0.001515
21	7	Ν	1.380688	-1.572547	-0.000978
22	7	N	-1.380694	-1.572572	0.000442

Table S3.	Coordinates for I	L_1 , L_2 and selected	d NAC explosives.

$H_4abtc (L_2)$						
Centre	Atomic	Atomic	Cool	rdinates (Angstr	oms)	
Number	Number	Туре	X	Y	Z	
1	6	C	-1.762238	-0.181573	-0.005030	
2	6	C	-2.292627	1.110762	0.021986	
3	6	C	-2.618328	-1.286227	-0.027001	
4	6	C	4.161500	-2.726844	0.031232	
5	6	C	-4.002892	-1.112272	-0.020543	
6	6	C	-4.528215	0.182039	-0.016461	
7	6	С	-3.674130	1.287889	0.015234	
8	6	C	-4.192934	2.688766	0.035583	
9	6	С	1.770723	0.193509	0.003969	
10	6	C	2.630484	1.294809	-0.003602	
11	6	C	2.292120	-1.103420	0.016747	
12	6	C	4.010775	1.097714	-0.001454	
13	6	C	4.527940	-0.199214	0.002101	
14	6	С	3.671557	-1.303318	0.000776	
15	6	С	-4.978850	-2.255926	-0.069081	
16	6	C	4.981562	2.229156	0.005240	
17	1	Н	-2.153136	-2.264932	-0.078246	
18	1	Н	-5.601474	0.311152	-0.039348	

19	1	Н	-1.635764	1.969333	0.041695
20	1	Н	2.209272	2.290964	-0.006554
21	1	Н	1.628465	-1.956387	0.041478
22	1	Н	5.607469	-0.298753	0.035532
23	1	Н	5.847969	-2.137530	-0.685031
24	1	Н	-5.784481	3.680147	0.041624
25	1	Н	-3.629187	-3.409529	0.673822
26	1	Н	5.080109	4.101516	0.014118
27	7	Ν	0.384759	0.503299	0.010150
28	7	Ν	-0.377221	-0.488637	-0.019272
29	8	0	-5.542441	2.742477	0.030943
30	8	0	-6.122661	-2.120129	-0.404295
31	8	0	-4.509123	-3.477473	0.285979
32	8	0	6.181157	2.096070	0.004135
33	8	0	-3.497063	3.673426	0.054271
34	8	0	5.451949	-2.938823	-0.323596
35	8	0	3.461572	-3.646899	0.352506
36	8	0	4.376525	3.435887	0.010880

NB						
Centre	Atomic	Atomic	Coor	dinates (Angstr	oms)	
Number	Number	Туре	X	Y	Z	
1	6	C	-0.432283	1.216904	0.000440	
2	6	С	0.240633	-0.000015	0.000542	
3	6	С	-0.432255	-1.216858	0.000202	
4	6	С	-1.822620	-1.209207	-0.000271	
5	6	С	-2.517471	-0.000035	-0.000364	
6	6	С	-1.822583	1.209228	0.000026	
7	1	Н	0.132736	2.136105	0.000705	
8	1	Н	0.132649	-2.136120	0.000319	
9	1	Н	-2.361108	-2.147204	-0.000565	
10	1	Н	-3.599743	0.000016	-0.000705	
11	1	Н	-2.361211	2.147156	-0.000049	
12	7	Ν	1.724881	-0.000003	0.001048	
13	8	0	2.293882	-1.083401	-0.000320	
14	8	0	2.293866	1.083398	-0.000991	

1,3-DNB						
Centre	Atomic	Atomic	Cool	rdinates (Angstr	oms)	
Number	Number	Туре	X	Y	Z	
1	6	С	1.198840	1.557649	-0.000230	
2	6	С	-0.100360	2.042293	0.000042	
3	6	С	-1.225145	1.201843	-0.000020	
4	6	С	-0.962443	-0.183144	-0.000378	
5	6	С	0.329016	-0.698692	-0.000651	
6	6	С	1.394481	0.182320	-0.000593	
7	1	Н	2.053675	2.219547	-0.000183	
8	1	Н	-0.260666	3.113683	0.000315	

9	1	Н	0.490970	-1.765766	-0.000918
10	7	Ν	2.772913	-0.357687	-0.000906
11	8	0	2.903080	-1.572068	0.001395
12	8	0	3.689264	0.451992	0.001727
13	7	Ν	-2.053160	-1.196623	-0.000486
14	8	0	-1.727623	-2.373904	-0.000658
15	8	0	-3.209576	-0.797314	-0.000141
16	1	Н	-2.194715	1.654430	0.000206

4-NT						
Centre	Atomic	Atomic	Coor	dinates (Angstr	oms)	
Number	Number	Туре	X	Y	Z	
1	6	С	-0.003372	-1.209901	0.000306	
2	6	С	1.383628	-1.201558	0.000299	
3	6	С	2.076616	0.015200	-0.000004	
4	6	С	1.372752	1.226090	-0.000282	
5	6	С	-0.011282	1.219253	-0.000274	
6	6	С	-0.688486	0.000622	0.000008	
7	1	Н	-0.562488	-2.135012	0.000494	
8	1	Н	1.930584	-2.139067	0.000480	
9	1	Н	1.929928	2.154175	-0.000519	
10	1	Н	-0.579306	2.138964	-0.000471	
11	7	Ν	-2.158243	-0.006856	0.000008	
12	8	0	-2.732887	1.075226	0.000720	
13	8	0	-2.722394	-1.094902	-0.000747	
14	6	С	3.614503	0.095837	-0.000027	
15	1	Н	3.944266	0.618026	-0.873797	
16	1	Н	3.944272	0.618421	0.873506	
17	1	Н	4.023504	-0.892909	0.000196	

2,4-DNT						
Centre	Atomic	Atomic	Cool	rdinates (Angstr	roms)	
Number	Number	Туре	X	Y	Z	
1	6	С	1.198844	1.557965	0.000353	
2	6	С	-0.100721	2.042311	0.000329	
3	6	С	-1.225385	1.201998	0.000114	
4	6	С	-0.962043	-0.182770	-0.000076	
5	6	С	0.328884	-0.698346	-0.000051	
6	6	С	1.394562	0.182721	0.000164	
7	1	Н	2.053433	2.220161	0.000514	
8	1	Н	-0.261137	3.113682	0.000480	
9	1	Н	0.491224	-1.765495	-0.000194	
10	7	Ν	2.772845	-0.357500	0.000192	
11	8	0	2.902924	-1.571945	-0.000077	
12	8	0	3.689377	0.451976	0.000175	
13	6	С	-2.590942	1.837854	0.000107	
14	1	Н	-3.172201	1.533877	-0.871596	
15	1	Н	-3.172339	1.533597	0.871620	

16	1	Н	-2.488703	2.923796	0.000289
17	7	Ν	-2.052817	-1.196439	-0.000318
18	8	0	-1.726421	-2.373708	-0.000467
19	8	0	-3.209586	-0.797877	-0.000366

TNT					
Centre	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	X	Y	Z
1	6	C	0.84356	-1.23139	0.00529
2	6	C	1.55185	-0.04249	0.00582
3	6	C	0.9074	1.18209	-0.00982
4	6	C	-0.47916	1.18913	-0.04283
5	6	С	-1.27769	0.03185	-0.09211
6	6	С	-0.54142	-1.16537	-0.02853
7	1	Н	1.34803	-2.18712	0.02407
8	1	Н	1.46178	2.10993	-0.00275
9	7	N	-1.10171	2.54526	0.00205
10	8	0	-2.17797	2.64913	0.5687
11	8	0	-0.44823	3.46714	-0.45659
12	7	N	3.03407	-0.0815	0.03489
13	8	0	3.61309	0.99016	0.10654
14	8	0	3.55562	-1.18126	0.12072
15	7	N	-1.23486	-2.48597	0.0329
16	8	0	-2.34323	-2.51444	0.54376
17	8	0	-0.65844	-3.43619	-0.46919
18	6	С	-2.76555	0.06946	-0.3036
19	1	Н	-3.29303	0.0846	0.6531
20	1	Н	-3.05745	0.96694	-0.84215
21	1	Н	-3.1024	-0.81485	-0.83798

4-NP					
Centre	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	X	Y	Z
1	6	С	0.363080	-1.556813	0.000682
2	6	С	1.758240	-1.556813	0.000682
3	6	С	2.455778	-0.349062	0.000682
4	6	С	1.758124	0.859447	-0.000517
5	6	С	0.363299	0.859369	-0.000996
6	6	С	-0.334302	-0.348837	0.000000
7	1	Н	-0.186679	-2.509130	0.001132
8	1	Н	2.307748	-2.509326	0.001997
9	1	Н	2.308324	1.811590	-0.000576
10	1	Н	-0.186823	1.811650	-0.001949
11	7	N	-1.804302	-0.348593	-0.000241
12	8	0	-2.374441	0.706566	-0.000830
13	8	0	-2.374777	-1.403565	0.000161
14	8	0	3.885777	-0.348958	0.001506
15	1	Н	4.206754	-0.350230	-0.903244

2,6-DNP					
Centre	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	X	Y	Z
1	6	С	1.207504	1.542137	0.000222
2	6	С	0.000462	2.235170	0.000136
3	6	С	-1.207115	1.542031	-0.000065
4	6	С	-1.183179	0.151545	-0.000177
5	6	С	0.000168	-0.572733	-0.000090
6	6	С	1.183096	0.150954	0.000121
7	1	Н	2.160116	2.053113	0.000397
8	1	Н	-0.000011	3.317768	0.000237
9	1	Н	-0.000345	-1.652510	-0.000156
10	7	Ν	2.468965	-0.590427	0.000235
11	8	0	2.413454	-1.809944	0.000279
12	8	0	3.495766	0.072260	0.000513
13	7	Ν	-2.469490	-0.590280	-0.000369
14	8	0	-2.413150	-1.809592	-0.000430
15	8	0	-3.496342	0.072052	-0.000397
16	1	Н	-2.159523	2.053757	-0.000140

ТЛР						
Centre	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	X	Y	Z	
1	6	C	0.75179	-1.28867	-0.0274	
2	6	С	1.54418	-0.14728	-0.06905	
3	6	С	0.99525	1.12222	-0.03557	
4	6	С	-0.38332	1.23846	0.02249	
5	6	С	-1.24837	0.11188	0.01733	
6	6	С	-0.62204	-1.15007	-0.00739	
7	1	Н	1.2105	-2.26817	-0.02676	
8	7	N	-1.42767	-2.39996	-0.02459	
9	8	0	-2.41505	-2.42257	-0.72917	
10	8	0	-1.13044	-3.22789	0.82212	
11	7	Ν	-0.95324	2.58883	0.08881	
12	8	0	-2.1414	2.72357	-0.23756	
13	8	0	-0.2132	3.51619	0.33088	
14	1	Н	1.62834	1.99875	-0.03066	
15	8	0	-2.56828	0.17068	0.08474	
16	1	Н	-2.82225	1.11621	0.05867	
17	7	N	3.0139	-0.29178	-0.13743	
18	8	0	3.67326	0.73456	-0.07467	
19	8	0	3.46107	-1.42525	-0.05775	

Table S4. A comparative study of the K_{sv} , and medium used for TNP detection of some recent representative reports.

Tb-MOFs	K _{sv}	Medium used	Publications
[Tb(1,3,5-BTC)] _n			J. Mater. Chem. A,
BTC = 1,3,5-benzenetricarboxylate	34182.1 M ⁻¹	Ethanol	2013, 1, 8745-8752
${[Tb(L_1)_{1.5}(H_2O)] \cdot 3H_2O}_n$			<i>Chem. Eur. J.</i> , 2015,
$H_2L_1 = 2-(2-Hydroxy-propionylamino)-$ terephthalic acid	$7.47 \times 10^4 \text{ M}^{-1}$	H ₂ O	21, 15705–15712
[Tb(BTB)H ₂ O]			Dalton Trans., 2015,
$H_3BTB = 1,3,5$ -Benzenetrisbenzoic acid	$3.25 \times 10^{-2} \text{ ppm}^{-1}$	H_2O	44 , 14594–14603
[Y _{0.9} Tb _{0.1} (OBA)(Ox) _{0.5} (H ₂ O) ₂]			<i>RSC Adv.</i> , 2015, 5,
OBA = 4,4'- Oxybis(benzoic acid), Ox = Oxalate	$3.19 \times 10^4 \text{ M}^{-1}$	Acetonitrile	102076-102084
[Tb(L)(OH)]·x(solv)			J. Mater. Chem. A,
$H_2L = 5-(4-carboxyphenyl)$ pyridine-2- carboxylate	7.73 × 10 ⁻² ppm ⁻¹	H ₂ O	2015, 3, 12690–12697
[Tb ₂ (H ₂ L) ₃ (H ₂ O) ₂]·21H ₂ O			J. Mater. Chem. A,
$H_4L = 1,4-C_6H_4(CH(OH)(PO_3H_2))_2$	$9.2 \times 10^{3} \text{ M}^{-1}$	Ethanol	2017, 5, 1952–1956
${[Tb_2(L)_2(OH)(HCOO)] \cdot [H_2O]}_n$			Dalton Trans., 2017, 46,
$H_2L = 4'-(4-(3,5-dicarboxylphenoxy))$ phenyl)-4,2':6',4"-terpyridine	5.1 × 10 ⁻² ppm ⁻¹	H ₂ O	15434-15442
${[Tb(L_1)(L_2)_{0.5}(NO_3)(DMF)].DMF}_nL_1$			
= 1,10-phenanthroline (phen),	15.97 ppm ⁻¹	H ₂ O	Present work
$L_2 = 3,3',5,5'$ -azobenzene-tetra carboxylic acid	$(5.67 \times 10^5 \mathrm{M}^{-1})$		