Supporting Information

Iminoxyl radicals vs. *tert*-butylperoxyl radical in competitive oxidative C-O coupling with β-dicarbonyl compounds. Oxime ether formation prevails over Kharasch peroxidation

Igor B. Krylov, Stanislav A. Paveliev, Natalia S. Shumakova, Mikhail A. Syroeshkin, Boris N. Shelimov, Gennady I. Nikishin, Alexander O. Terent'ev*

N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation

*e-mail: terentev@ioc.ac.ru

Table of contents

1. General	3
 Optimization of oxidative C-O coupling of β-keto ester 1a with oxime 2a (full Table 1 an experimental details) 	nd 4
3. Determination of the influence of the molar ratio of β -keto ester 1a, oxime 2a and <i>t</i> -BuOO on the yields of the products 3a and 4a (experiment detail for the Table 2)	Н 6
4. Oxidative C-O coupling of β -dicarbonyl compounds (experimental details for the Table 3)	7
5. Investigation into the mechanism of reaction	8
5.1 Peroxidation of β -keto esters 1a,f in the presence of Cu(II)/ <i>t</i> -BuOOH (experimental detai for the Scheme 4)	ls 8
5.2 Cyclic voltammetry study of the redox properties of oxime 2a in the absence and presence of $Cu(BF_4)_2$	ce 8
5.3 EPR monitoring of formation of iminoxyl radical IV from oxime 2a under action of Cu(BF ₄) ₂ and t-BuOOH (experiment details for Figure 2)	of 8
5.4 Cyclic voltammetry study of the effect of oxime 2a and <i>t</i>-BuOOH 70% aq. on redoproperties of Cu(BF₄)₂)X
6. Characterization of the products	. 1
7. Copies of ¹ H, ¹³ C and FT-IR Spectra of synthesized products 3a-o and 4a,b	. 8

1. General

¹H and ¹³C NMR spectra were recorded on Bruker AVANCE II 300 spectrometer (300.13 MHz and 75.48 MHz, respectively) in CDCl₃. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: ¹H (CDCl₃ δ =7.26 ppm), ¹³C (CDCl₃ δ =77.16 ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Coupling constants were reported in Hertz (Hz).

High resolution mass spectra (HR-MS) were measured on a Bruker maXis instrument using electrospray ionization (ESI). The measurements were performed in a positive ion mode (interface capillary voltage – 4500 V); mass range from m/z 50 to m/z 3000 Da; external calibration with Electrospray Calibrant Solution (Fluka). A syringe injection was used for all acetonitrile solutions (flow rate 3 μ L/min). Nitrogen was applied as a dry gas; interface temperature was set at 180 °C.

FT-IR spectra were recorded on a Bruker ALPHA FT-IR spectrometer.

Cyclic voltammograms were recorded and controlled potential electrolysis were implemented with an IPC-Pro potentiostat (Econix) (the accuracy of the scan rate is 1.0 %; the accuracy of the potential setting is 0.25 mV). Experiments were performed in a 10-mL five-neck glass conical-shaped electrochemical cell with a water jacket for thermal control. The glassy carbon disk electrode (d = 1.7 mm) served as the working electrode; a platinum wire as the auxiliary electrode. A silver chloride electrode (Ag/AgCl) served as the reference electrode, which was linked to the solution under study by a bridge with a porous ceramic diaphragm filled with the supporting electrolyte. The potentials were corrected for the ferrocene oxidation potentials under the same conditions (0.49 V vs. Ag/AgCl). The solutions were kept under thermally controlled conditions at 25±0.5 °C and deaerated by bubbling argon. Electrochemical experiments were performed under an argon atmosphere.

The EPR spectra were recorded on a Bruker ER-200D spectrometer in a X-band range ($v\sim9600$ MHz). The magnetic field strength was measured with an accuracy of ± 0.02 G using an ER 035M magnetometer built in the EPR spectrometer. The microwave frequency in the cavity was determined using a ChZ-46 frequency meter with an accuracy of ± 0.1 MHz.

Column chromatography was performed using silica gel (0.060-0.200 mm, 60 Å, Acros).

CH₂Cl₂ was distilled prior to use. EtOAc and MeCN were distilled over P₂O₅. Glacial acetic acid was used as is from commercial sources.

Cu(BF₄)₂ hydrate (anhydrous basis purity ca. 68%, corresponds to approximate formula Cu(BF₄)₂·6H₂O), Cu(ClO₄)₂·6H₂O, CuCl₂, CuI, CuCl, CuSO₄·5H₂O, Cu(OAc)₂, Cu(OTf)₂, (NH₄)₂CuCl₄·2H₂O, Mn(OAc)₃·2H₂O 95%, Mn(ClO₄)₃·6H₂O, Fe(ClO₄)₃ hydrate (anhydrous

basis purity ca. 65%, corresponds to approximate formula Fe(ClO₄)₃·11H₂O), Ni(OAc)₂·4H₂O, AgNO₃, tetrabutylammonium iodide, 2,2'-bipyridine, *tert*-butylhydroperoxide (70% aqueous solution), *tert*-butylhydroperoxide (5.0-6.0 M solution in decane), H₂O₂ (34% aqueous solution), di-*tert*-butylperoxide, (diacetoxyiodo)benzene, (NH₄)₂S₂O₈, K₂S₂O₈, Oxone (KHSO₅·0.5KHSO₄·0.5K₂SO₄), ethyl 2-methylacetoacetate **1a**, 2-acetylbutyrolactone **1b** and diethyl acetylsuccinate **1d** were commercial reagents (Acros, Sigma-Aldrich, Alfa Aesar). All the other β-dicarbonyl compounds¹⁻⁵ and all the oximes⁶⁻¹⁰ were synthesized according to the literature.

2. Optimization of oxidative C-O coupling of β-keto ester 1a with oxime 2a (full Table 1 and experimental details)

Table S1.

Entry	Metal salt	Oxidant (mole per mole of 1a)	Solvent	Yield of
	(mole per mole of 1a)			3a (%)
1	$Cu(BF_4)_2 \cdot 6H_2O(0.1)$	O ₂	MeCN	14
2	$Cu(BF_4)_2 \cdot 6H_2O(0.1)$	$H_2O_2(2)$	MeCN	38
3	$Cu(BF_4)_2 \cdot 6H_2O(0.1)$	$K_{2}S_{2}O_{8}(2)$	MeCN	46
4	$Cu(BF_4)_2 \cdot 6H_2O(0.1)$	Oxone (2)	MeCN	28
5	$Cu(BF_4)_2 \cdot 6H_2O(0.1)$	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	64
6	$Cu(BF_4)_2 \cdot 6H_2O(0.1);$	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	64
	bpy (0.1)			
7 ^a	$Cu(BF_4)_2 \cdot 6H_2O(0.1)$	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	64
8	$Cu(BF_4)_2 \cdot 6H_2O(0.1)$	$(t-BuO)_2(2)$	MeCN	39
9	$Cu(BF_4)_2 \cdot 6H_2O(0.1)$	$PhI(OAc)_2(2)$	MeCN	Trace
10	$Cu(ClO_4)_2 \cdot 6H_2O(0.1)$	O ₂	MeCN	24
11	$Cu(ClO_4)_2 \cdot 6H_2O(0.1)$	$H_2O_2(2)$	MeCN	21
12	$Cu(ClO_4)_2 \cdot 6H_2O(0.1)$	$K_2S_2O_8(2)$	MeCN-H ₂ O (3:2 v/v)	54
13	$Cu(ClO_4)_2 \cdot 6H_2O(0.1)$	$(NH_4)_2S_2O_8(2)$	MeCN-H ₂ O (3:2 v/v)	56
14	$Cu(ClO_4)_2 \cdot 6H_2O(0.1)$	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	51
15	$Cu(ClO_4)_2 \cdot 6H_2O(0.1)$	<i>t</i> -BuOOH (5.0-6.0 M in decane) (3)	MeCN	50
16	$Cu(ClO_4)_2 \cdot 6H_2O(0.05)$	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	45
17	CuCl ₂ (0.1)	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	58

18	CuI (0.1)	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	13
19	CuCl (0.1)	H_2O_2 (34% aq.) (3)	MeCN	35
20	CuCl (0.1)	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	40
21	$CuSO_4 \cdot 5H_2O(0.1)$	$K_2S_2O_8(2)$	MeCN-H ₂ O (3:2 v/v)	43
22	$CuSO_4 \cdot 5H_2O(0.1)$	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	11
23	$Cu(OAc)_2(0.1)$	$(NH_4)_2S_2O_8(2)$	MeCN-H ₂ O (3:2 v/v)	Trace
24	$Cu(OAc)_2(0.1)$	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	27
25	Cu(OTf) ₂ (0.1)	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	50
26	$(NH_4)_2CuCl_4 \cdot 2H_2O(0.1)$	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	3
27	$Mn(OAc)_{3} \cdot 2H_{2}O(0.1)$	<i>t</i> -BuOOH (70% aq.) (3)	АсОН	26
28	$Mn(OAc)_{3} \cdot 2H_{2}O(0.1)$	<i>t</i> -BuOOH (5.0-6.0 M in decane) (3)	АсОН	45
29 ^b	$Mn(OAc)_{3} \cdot 2H_{2}O(0.1)$	<i>t</i> -BuOOH (70% aq.) (3)	АсОН	20
30	$Mn(ClO_4)_2 \cdot 6H_2O(0.1)$	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	Not detected
31	$Fe(ClO_4)_3 \cdot 11H_2O(0.1)$	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	34
32	$Ni(OAc)_2 \cdot 4H_2O(0.1)$	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	Not detected
33	AgNO ₃ (0.1)	$(NH_4)_2S_2O_8(2)$	MeCN	Trace
34	<i>n</i> -Bu ₄ NI (0.1)	<i>t</i> -BuOOH (70% aq.) (3)	MeCN	Trace
35	$n-{ m Bu}_4{ m NI}(0.1)$	<i>t</i> -BuOOH (5.0-6.0 M in decane) (3)	MeCN	Trace

General reaction conditions: 2-Methylacetoacetate 1a (144 mg, 1 mmol), 3-(hydroxyimino)pentan-2,4-dione 2a (129 mg, 1 mmol), solvent (5 mL), and metal salt (10-55 mg, 0.1 mmol) were successively loaded into a round bottom flask. The mixture was heated on oil bath (80 °C) with stirring by a magnetic bar and an oxidant (200-615 mg, 2-3 mmol) was added for 10 seconds; stirring was continued for 1 h at 80 °C. In the entries 1 and 10 oxygen gas was bubbled through the reaction mixture (0.3 mL/sec.) until the end of the synthesis; entries 2-9, 11-35 were carried out in air atmosphere. Reaction mixture was cooled to the room temperature, diluted with CH_2Cl_2 (10 mL) and water (30 mL) and shaken. Organic layer was separated and aqueous layer was extracted with CH_2Cl_2 (3×10 mL). All the organic extracts were combined, washed with aqueous solution of $Na_2S_2O_4$ (200 mg in 20 mL of water), then with water (20 mL), dried over Na_2SO_4 , rotary evaporated at 40-60 °C under water-jet vacuum (20-30 mmHg). C-O coupling product **3a** was isolated by column chromatography on silica gel using $CH_2Cl_2/EtOAc$ eluent with volume part of EtOAc 2.5%.

^a In the entry 7 *t*-BuOOH (70% aq.) was added dropwise for 30 min and reaction continued for an additional 30 min.

^b In the entry 29 mixture of β -keto ester **1a** (1 mmol), oxime **2a** (1.5 mmol), Mn(OAc)₃·2H₂O (0.1 mmol, 10 mol%), *t*-BuOOH (70% aq.) (3 mmol) and MeCN (2.5 mL) was stirred at 20-25 °C for 48 h.

3. Determination of the influence of the molar ratio of β -keto ester 1a, oxime 2a and *t*-BuOOH on the yields of the products 3a and 4a (experiment detail for the Table 2)

Scheme S1.

2-Methylacetoacetate **1a** (144-288 mg, 1-2 mmol), 3-(hydroxyimino)pentan-2,4-dione **2a** (129-387 mg, 1-3 mmol), MeCN (5 mL), and Cu(BF₄)₂•6H₂O (35 mg, 0.1 mmol) were successively loaded into a round bottom flask. The mixture was heated on oil bath (80 °C) with stirring by a magnetic bar and *t*-BuOOH (70% aqueous solution, 257-386 mg, 2-3 mmol) was added for 10 seconds; stirring was continued for 1 h at 80 °C.

Reaction mixture was cooled to the room temperature, diluted with CH_2Cl_2 (10 mL) and water (30 mL) and shaken. Organic layer was separated and aqueous layer was extracted with CH_2Cl_2 (3×10 mL). All the organic extracts were combined, washed with aqueous solution of $Na_2S_2O_4$ (200 mg in 20 mL of water), then with water (20 mL), dried over Na_2SO_4 , rotary evaporated at 40-60 °C under water-jet vacuum (20-30 mmHg). Yields of **3a** and **4a** were determined by ¹H NMR using *p*-methoxyacetophenone as an internal standard. In the entries 2 and 3 product **3a** was isolated by column chromatography on silica gel using $CH_2Cl_2/EtOAc$ eluent with volume part of EtOAc 2.5% (isolated yields are given in parenthesis).

4. Oxidative C-O coupling of β-dicarbonyl compounds (experimental details for the Table 3)

Scheme S2.

β-Dicarbonyl compound **1a-h** (114-254 mg, 1 mmol), oxime **2a-f** (194-380 mg, 1.5 mmol), MeCN (5 mL), and Cu(BF₄)₂•6H₂O (35 mg, 0.1 mmol) were successively loaded into a round bottom flask. The mixture was heated on oil bath (80 °C) with stirring by a magnetic bar and *t*-BuOOH (70% aqueous solution, 257 mg, 2 mmol) was added for 10 seconds; stirring was continued for 1 h at 80 °C.

Reaction mixture was cooled to the room temperature, diluted with CH_2Cl_2 (10 mL) and water (30 mL) and shaken. Organic layer was separated and aqueous layer was extracted with CH_2Cl_2 (3×10 mL). All the organic extracts were combined, washed with aqueous solution of $Na_2S_2O_4$ (200 mg in 20 mL of water), then with water (20 mL), dried over Na_2SO_4 , rotary evaporated at 40-60 °C under water-jet vacuum (20-30 mmHg). C-O coupling product **3a-o** was isolated by column chromatography on silica gel using $CH_2Cl_2/EtOAc$ eluent.

5. Investigation into the mechanism of reaction

5.1 Peroxidation of β-keto esters 1a,f in the presence of Cu(II)/t-BuOOH (experimental details for the Scheme 4)

Scheme S3.

To a stirred at 80 °C mixture of β -keto ester **1a,f** (144-220 mg, 1 mmol), Cu(BF₄)₂·6H₂O (35 mg, 0.1 mmol) and MeCN (5 mL) *t*-BuOOH (70% aqueous solution, 257 mg, 2 mmol) was added for 10 seconds; stirring was continued at 80 °C for 1 h.

Reaction mixture was cooled to the room temperature, diluted with CH_2Cl_2 (10 mL) and water (30 mL) and shaken. Organic layer was separated and aqueous layer was extracted with CH_2Cl_2 (3×10 mL). All the organic extracts were combined, washed with aqueous solution of $Na_2S_2O_4$ (200 mg in 20 mL of water), then with water (20 mL), dried over Na_2SO_4 , rotary evaporated at 40-60 °C under water-jet vacuum (20-30 mmHg). Peroxidation products **4a,b** were isolated by column chromatography on silica gel using $CH_2Cl_2/EtOAc$ eluent with volume part of EtOAc 3%.

5.2 Cyclic voltammetry study of the redox properties of oxime 2a in the absence and presence of $Cu(BF_4)_2$

Oxime **2a** (3.22 mg, 0.025 mmol) and 0.1 M *n*-Bu₄NBF₄/MeCN (2.5 mL) were placed into electrochemical cell, the resultant solution was stirred by bubbling with argon at 25 °C. Then a solution of Cu(BF₄)₂·6H₂O (8.62 mg, 0.025 mmol) in 0.1 M *n*-Bu₄NBF₄/MeCN (2.5 mL) was added. The bubbling was stopped after 15 min and voltammetry curve was recorded.

5.3 EPR monitoring of formation of iminoxyl radical IV from oxime 2a under action of Cu(BF₄)₂ and t-BuOOH (experiment details for Figure 2)

EPR spectra were recorded at 18-22 °C using following parameters: microwave frequency — ≈ 9.6 GHz, central field — 3340 G, hf (100 kHz) field modulation amplitude — 1.0 G, microwave power — 31 mW, scan range — 300 G, receiver gain — 1.25×10^4 . Sample solutions in 100-µL glass capillaries (inner diameter 1.2 mm) were placed into the EPR cavity. In all runs, EPR spectra were recorded after 5, 30 and 60 min of reaction. In runs 3 and 4 conducted at 80

°C, samples were taken from the reaction mixture at given times (5, 30 and 60 min), allowed to cool to 18-22 °C in air (about 5 min) and then EPR spectra were recorded. In all cases, EPR signal of diacetyliminoxyl radical **IV** (g = 2.0044, $a_N = 28.1$ G)¹¹ was observed (Figure S1). The amount of radical **IV** formed in the reaction was estimated by double integration of its EPR spectrum. A 0.002M solution of 4-benzoyloxy-2,2,6,6-tetramethylpiperidine 1-oxyl (4-BzO-TEMPO) in MeCN was used as external concentration standard. It should be noted that addition of *t*-BuOOH 70% aq. (515 mg, 4 mmol) to a 0.002M solution of 4-BzO-TEMPO in MeCN (10 ml) did not lead to the decrease in the EPR signal intensity. This means that the decrease in intensity of EPR signal of **IV** in run 2 (with *t*-BuOOH 70% aq.) compared to that in run 1 (without *t*-BuOOH 70% aq.) is due to decrease in radical **IV** concentration and that the effect of solvent composition change on EPR sensitivity in negligible. Detailed procedures for runs 1-4 are given below.

Figure S1

Run 1. To a stirred at 18-22 °C solution of oxime **2a** (387.3 mg, 3 mmol) in MeCN (5 mL) a solution of $Cu(BF_4)_2 \cdot 6H_2O$ (69.0 mg, 0.2 mmol) in MeCN (5 mL) was added.

Run 2. To a stirred at 18-22 °C solution of oxime **2a** (387.3 mg, 3 mmol) in MeCN (5 mL) a solution of $Cu(BF_4)_2$ ·6H₂O (69.0 mg, 0.2 mmol) in MeCN (5 mL) was added, then *t*-BuOOH 70% aq. (515 mg, 4 mmol) was added.

Run 3. To a stirred at 18-22 °C solution of oxime **2a** (387.3 mg, 3 mmol) in MeCN (5 mL) a solution of $Cu(BF_4)_2 \cdot 6H_2O$ (69.0 mg, 0.2 mmol) in MeCN (5 mL) was added, then *t*-BuOOH

70% aq. (515 mg, 4 mmol) was added. Then the obtained solution was stirred on the oil bath (80 °C).

Run 4. To a stirred at 18-22 °C solution of oxime **2a** (387.3 mg, 3 mmol) in MeCN (5 mL) a solution of *t*-BuOOH 70% aq. (515 mg, 4 mmol) in MeCN (5 mL) was added. Then the obtained solution was stirred on the oil bath (80 °C).

5.4 Cyclic voltammetry study of the effect of oxime 2a and *t*-BuOOH 70% aq. on redox properties of $Cu(BF_4)_2$

Three solutions were studied by CV with scan rate 100 mV s⁻¹. Solution of $Cu(BF_4)_2$: Cu(BF₄)₂•6H₂O (34.5 mg, 0.1 mmol) was dissolved in 0.1 M *n*-Bu₄NBF₄/MeCN (5 mL). Solution of $Cu(BF_4)_2 + Oxime 2a$: Cu(BF₄)₂•6H₂O (34.5 mg, 0.1 mmol) was dissolved in 0.1 M *n*-Bu₄NBF₄/MeCN (5 mL), then oxime 2a (193.7 mg, 1.5 mmol) was added. Solution of $Cu(BF_4)_2 + Oxime 2a + t$ -BuOOH: Cu(BF₄)₂•6H₂O (34.5 mg, 0.1 mmol) was dissolved in 0.1 M *n*-Bu₄NBF₄/MeCN (5 mL), then oxime 2a (194 mg, 1.5 mmol) and *t*-BuOOH 70% aq. (257 mg, 2 mmol) were added. Solutions were deaerated by bubbling argon for 15 min before recording a cyclic voltammogram.

6. Characterization of the products

All the new compounds (**3b**, **3c**, **3e-3i**, **3k**, **3l**, **3n**, **3o** and **4a**) were characterized using ¹H and ¹³C NMR spectroscopy, FT-IR spectroscopy, HR-MS and/or elemental analysis. ¹H and ¹³C NMR spectra of the known compounds (**3a**, **3d**, **3j**, **3m** and **4b**) were in agreement with the literature data.^{11, 12}

Ethyl 2-{[(2,4-dioxopentan-3-ylidene)amino]oxy}-2-methyl-3-oxobutanoate (3a)

Colorless oil (209 mg, 77%). ¹**H NMR** (300.13 MHz, CDCl₃) δ 4.25-4.18 (m, 2H, OCH₂), 2.40 (s, 3H, CH₃), 2.34 (s, 3H, CH₃), 2.23 (s, 3H, CH₃), 1.72 (s, 3H, CH₃), 1.28 (t, *J* = 7.1 Hz, 3H, CH₃). ¹³**C NMR** (75.47 MHz, CDCl₃) δ 201.05, 197.2, 193.6 (C=O), 167.4 (COO), 157.3 (C=N), 91.5 (CON), 62.4 (CH₂O), 30.4, 25.8, 25.6, 19.3, 14.1 (CH₂, CH₃).

Ethyl 2-{[(1-ethoxy-1,3-dioxobutan-2-ylidene)amino]oxy}-2-methyl-3-oxobutanoate (mixture of E and Z isomers 1:1) (3b)

Colorless oil (105 mg, 35%). ¹**H NMR** (300.13 MHz, CDCl₃) δ 4.45-4.15 (m, 4H, OCH₂), 2.47 (s, 1.5H, CH₃), 2.34 (s, 1.5H, CH₃), 2.23 (s, 1.5H, CH₃), 2.21 (s, 1.5H, CH₃), 1.71 (s, 3H, CH₃), 1.40-1.19 (m, 6H, CH₃). ¹³**C NMR** (75.47 MHz, CDCl₃) δ 201.5, 201.3, 195.9, 192.2 (C=O), 167.5, 167.1, 160.4, 159.7 (COO), 152.1, 151.8 (C=N), 91.8, 91.7 (CON), 62.7, 62.4 (CH₂O), 30.1, 25.8, 25.5, 19.3, 14.3, 14.1 (CH₃). **FT-IR** (KBr, thin layer) ν_{max} (cm⁻¹): 2987 (CH₃), 1752, 1732 (C=O), 1372, 1359, 1321, 1272, 1224, 1132, 1105, 1086, 1019, 981, 955. **HRMS** (ESI) *m/z* calc. for C₁₃H₁₉NO₇, [M+Na]⁺: 324.1054; Found 324.1051.

Diethyl 2-{[(1-ethoxy-2-methyl-1,3-dioxobutan-2-yl)oxy]imino}malonate (3c)

Colorless oil (179 mg, 54%). ¹**H NMR** (300.13 MHz, CDCl₃) δ 4.41 (q, *J* = 7.2 Hz, 2H, OCH₂), 4.33 (q, *J* = 7.1 Hz, 2H, OCH₂), 4.29-4.16 (m, 2H, OCH₂), 2.24 (s, 3H, CH₃), 1.72 (s, 3H, CH₃), 1.40-1.24 (m, 9H, CH₃). ¹³**C NMR** (75.47 MHz, CDCl₃) δ 201.8 (C=O), 167.1, 160.0, 159.2 (COO), 146.0 (C=N), 91.9 (CON), 62.8, 62.6, 62.4 (CH₂O), 25.8, 19.3, 14.2, 14.1 (CH₃). **FT-IR** (KBr, thin layer) v_{max} (cm⁻¹): 2987, 2943, 2910 (CH₂, CH₃), 1752 (C=O), 1468, 1447, 1394, 1373, 1329, 1298, 1259, 1222, 1174, 1132, 1093, 1017, 983, 860. **HRMS** (ESI) *m/z* calc. for C₁₄H₂₁NO₈, [M+Na]⁺: 354.1161; Found 354.1159. **Elemental analysis** found: C, 50.65; H, 6.38; N, 4.25. Calc. for C₁₄H₂₁NO₈: C 50.75, H 6.39, N 4.23%.

Ethyl 2-{[(1-ethoxy-1-oxopropan-2-ylidene)amino]oxy}-2-methyl-3-oxobutanoate (mixture of *E* and *Z* isomers 10:1) (3d)

Colorless oil (104 mg, 38%). ¹H NMR (300.13 MHz, CDCl₃) δ 4.38-4.12 (m, 4H, OCH₂), 2.25 (s, 2.87H, CH₃), 2.22 (s, 0.7H, CH₃), 2.15 (s, 2.73H, CH₃), 2.05 (s, 0.27H, CH₃), 1.68 (s, 2.73H,

CH₃), 1.61 (s, 0.27H, CH₃), 1.40-1.18 (m, 6H, CH₃). ¹³C NMR (75.47 MHz, CDCl₃) δ 202.8 (C=O), 168.2, 163.5 (COO), 151.4 (C=N), 90.8 (CON), 62.1, 61.9 (CH₂O), 25.9, 19.7, 14.2, 14.1, 11.9 (CH₃).

Ethyl 2-{[(1,3-dioxo-1,3-diphenylpropan-2-ylidene)amino]oxy}-2-methyl-3-oxobutanoate (3e)

Colorless oil (158 mg, 40%). ¹H NMR (300.13 MHz, CDCl₃) δ 8.13-8.06 (m, 2H, ArH), 7.71-7.59 (m 2H, ArH), 7.59-7.43 (m, 2H, ArH), 4.22 (q, *J* = 7.1 Hz, 2H, OCH₂), 1.96 (s, 3H, CH₃), 1.66 (s, 3H, CH₃), 1.24 (t, *J* = 7.1 Hz, 3H, CH₃). ¹³C NMR (75.47 MHz, CDCl₃) δ 201.9, 190.5, 187.5 (C=O), 167.7 (COO), 156.0 (C=N), 135.3, 134.9, 134.6, 134.3, 130.7, 129.5, 129.1, 128.6 (C_{Ar}), 91.8 (CON), 62.4 (CH₂O), 25.6, 19.6, 14.1 (CH₃). **FT-IR** (KBr, thin layer) v_{max} (cm⁻¹): 1752, 1731, 1689, 1657 (C=O), 1597, 1450, 1325, 1264, 1116, 945. **Elemental analysis** found: 66.79, H, 5.41, N, 3.76. Calc. for C₂₂H₂₁NO₆: C 66.83, H 5.35, N 3.54 %.

Ethyl 2-methyl-3-oxo-2-{[(2,2,6,6-tetramethyl-3,5-dioxoheptan-4-ylidene)amino]oxy}butanoate (3f)

Colorless oil (89 mg, 25%). ¹**H NMR** (300.13 MHz, CDCl₃) δ 4.23 (q, *J* = 7.1 Hz, 2H, OCH₂), 2.22 (s, 3H, CH₃), 1.70 (s, 3H, CH₃), 1.27 (t, *J* = 7.1 Hz, 3H, CH₃), 1.26 (s, 9H, 3CH₃), 1.20 (s, 9H, CH₃). ¹³**C NMR** (75.47 MHz, CDCl₃) δ 208.4, 201.7, 201.5 (C=O), 167.7 (COO), 156.7 (C=N), 91.2 (CON), 62.5 (CH₂O), 45.0 (<u>C</u>(CH₃)₃), 43.6 (<u>C</u>(CH₃)₃), 27.0, 26.3, 25.7, 19.8, 14.1 (CH₃). **FT-IR** (KBr, thin layer) ν_{max} (cm⁻¹): 2977 (CH₃), 1754, 1734, 1716 (C=O), 1677 1840, 1366, 1269, 1125, 937. **HRMS** (ESI) *m*/*z* calc. for C₁₈H₂₉NO₆, [M+Na]⁺: 378.1887; Found 378.1887.

3-{[(3-acetyl-2-oxotetrahydrofuran-3-yl)oxy]imino}pentane-2,4-dione (3g)

Colorless oil (166 mg, 65%). ¹**H NMR** (300.13 MHz, CDCl₃) δ 4.55-4.37 (m, 2H, OCH₂), 3.02-2.90 (m, 1H, CH₂), 2.70-2.53 (m, 1H, CH₂), 2.43 (s, 3H, CH₃), 2.39 (s, 3H, CH₃) 2.37 (s, 3H, CH₃). ¹³**C NMR** (75.47 MHz, CDCl₃) δ 200.6, 196.7, 193.2 (C=O), 169.4 (COO), 158.5 (C=N), 91.3 (CON), 66.1 (CH₂O), 30.7, 30.6, 26.1, 26.0 (CH₂, CH₃). **FT-IR** (KBr, thin layer) ν_{max} (cm⁻ ¹): 2928 (CH₂, CH₃), 1782, 1726, 1696 (C=O), 1421, 1362, 1295, 1216, 1187, 1056, 1024, 984, 935. **HRMS** (ESI) *m/z* calc. for C₁₁H₁₃NO₆, [M+Na]⁺: 278.0635; Found 278.0635.

Diethyl 2-{[(3-acetyl-2-oxotetrahydrofuran-3-yl)oxy]imino}malonate (3h)

Colorless oil (158 mg, 50%). ¹H NMR (300.13 MHz, CDCl₃) δ 4.54-4.26 (m, 6H, OCH₂), 3.06-2.93 (m, 1H, CH₂), 2.66-2.51 (m, 1H, CH₂), 2.36 (s, 3H, CH₃), 1.37 (t, *J* = 7.1 Hz, CH₃), 1.33 (t, *J* = 7.1 Hz, CH₃). ¹³C NMR (75.47 MHz, CDCl₃) δ 201.3 (C=O), 169.0, 159.5, 158.7 (COO), 147.5 (C=N), 91.3 (CON), 66.4, 63.2, 63.0 (OCH₂), 30.9, 26.2, 14.2, 14.1 (CH₂, CH₃). **FT-IR** (KBr, thin layer) v_{max} (cm⁻¹): 2988, 2941 (CH₂, CH₃), 1788, 1749, 1726 (C=O), 1376, 1330, 1300, 1259, 1095, 1063, 1021, 988. **HRMS** (ESI) *m/z* calc. for C₁₄H₂₁NO₈, [M+Na]⁺: 338.0846; Found 338.0853. **Elemental analysis** found: C, 49.30; H, 5.42; N, 4.46. Calc. for C₁₄H₂₁NO₈: C, 49.53; H, 5.44; N, 4.44%.

Ethyl 1-{[(2,4-dioxopentan-3-ylidene)amino]oxy}-2-oxocyclododecanecarboxylate (3i) Colorless oil (198 mg, 52%). ¹H NMR (300.13 MHz, CDCl₃) δ 4.33-4.16 (m, 2H, OCH₂), 2.81-1.51 (m, 2H, CH₂), 2.42 (s, 3H, CH₃), 2.39-2.08 (m, 2H, CH₂), 2.31 (s, 3H, CH₃), 1.96-1.76 (m, 1H, CH₂), 1.72-1.54 (m, 1H, CH₂), 1.45-1.13 (m, 17H, CH₂, CH₃). ¹³C NMR (75.47 MHz, CDCl₃) δ 202.9, 197.6, 193.9 (C=O), 168.0 (COO), 156.9 (C=N), 94.8 (CON), 62.2 (CH₂O), 35.5, 32.1, 30.5, 26.8, 26.3, 25.9, 23.8, 23.1, 23.0, 22.7, 21.3, 19.7, 14.2 (CH₂, CH₃). **FT-IR** (KBr, thin layer) v_{max} (cm⁻¹): 2935, 2866 (CH₂, CH₃), 1751, 1728, 1694 (C=O), 1470, 1364, 1297, 1279, 1256, 1243, 1024, 982, 956. **HRMS** (ESI) *m/z* calc. for C₂₀H₃₁NO₆, [M+Na]⁺: 404.2044; Found 404.2039. **Elemental analysis** found: C, 62.93; H, 8.23; N 3.71. Calc. for C₂₀H₃₁NO₆: C, 62.97; H, 8.19; N, 3.67%.

Diethyl 2-acetyl-2-{[(2,4-dioxopentan-3-ylidene)amino]oxy}malonate (3j)

Colorless oil (86 mg, 25%). ¹**H NMR** (300.13 MHz, CDCl₃) 4.25 (q, *J* = 7.0 Hz, 2H, OCH₂), 4.10 (q, *J* = 7.1 Hz, 2H, OCH₂), 3.47 (d, *J* = 17.2 Hz, 1H, CH₂), 3.32 (d, *J* = 17.2 Hz, 1H, CH₂), 2.39 (s, 3H, CH₃), 2.332 (s, 3H, CH₃), 2.326 (s, 3H, CH₃), 1.35–1.13 (m, 6H, CH₃). ¹³**C NMR** (75.47 MHz, CDCl₃) δ 200.9, 196.9, 193.5 (C=O), 168.7, 165.7 (COO), 157.8 (C=N), 91.7 (CON), 62.9, 61.4 (OCH₂), 38.6, 30.5, 26.5, 26.0, 14.2, 14.1 (CH₃, CH₂).

Ethyl 2-{[(2,4-dioxopentan-3-ylidene)amino]oxy}-2-methyl-3-oxohexanoate (3k)

Colorless oil (161 mg, 54%). ¹H NMR (300.13 MHz, CDCl₃) δ 4.33-4.16 (m, 2H, OCH₂), 2.52 (t, *J* = 7.3 Hz, 2H, CH₂), 2.40 (s, 3H, CH₃), 2.34 (s, 3H, CH₃), 1.72 (s, 3H, CH₃), 1.69-1.50 (m, 2H, CH₂), 1.27 (t, *J* = 7.1 Hz, 3H, CH₃), 0.90 (t, *J* = 7.4 Hz, 3H, CH₃). ¹³C NMR (75.47 MHz, CDCl₃) δ 203.4, 197.4, 193.8 (C=O), 167.7 (COO), 157.4 (C=N), 91.7 (CON), 62.4 (OCH₂), 39.7, 30.5, 25.9, 19.5, 16.8, 14.2, 13.7 (CH₃, CH₂). **FT-IR** (KBr, thin layer) v_{max} (cm⁻¹): 2696, 2940 (CH₂, CH₃), 1754, 1728, 1695 (C=O), 1365, 1296, 1268, 1129, 961. **Elemental analysis** found: C, 56.03; H, 7.03; N, 4.69. Calc. for C₁₄H₂₁NO₆: C, 56.18; H, 7.07; N, 4.68%.

Ethyl 2-benzyl-2-{[(2,4-dioxopentan-3-ylidene)amino]oxy}-3-oxobutanoate (31)

White powder (153 mg, 44%); mp = 70-71 °C. ¹H NMR (300.13 MHz, CDCl₃) δ 7.34-7.20 (m, 3H, ArH), 7.18-7.07 (m, 2H, ArH), 4.35-4.15 (m, 2H, OCH₂), 3.56 (s, 2H, CH₂), 2.39 (s, 3H, CH₃), 2.24 (s, 3H, CH₃), 2.05 (s, 3H, CH₃), 1.26 (t, *J* = 7.1 Hz, 3H, CH₃). ¹³C NMR (75.47 MHz, CDCl₃) δ 201.5, 197.2, 193.6 (C=O), 166.6 (COO), 157.5 (C=N), 133.7, 130.4, 128.6, 127.6 (C_{Ar}), 94.3 (CON), 62.5 (OCH₂), 39.0 (<u>C</u>H₂Ph), 30.1, 27.1, 26.0, 14.2 (CH₃). **FT-IR** (KBr, thin layer) v_{max} (cm⁻¹): 3604, 3047, 3007, 2979, 2926 (CH₂, CH₃), 1756, 1731, 1721, 1693

(C=O), 1355, 1298, 1239, 1186, 938. **Elemental analysis** found: C, 61.90; H, 6.17; N, 4.08. Calc. for C₁₈H₂₁NO₆: C, 62.24; H, 6.09; N, 4.03%.

Ethyl 2-benzyl-2-{[(2,4-dioxopentan-3-ylidene)amino]oxy}-3-oxobutanoate (3m)

Pale yellow oil (147 mg, 36%). ¹H NMR (300.13 MHz, CDCl₃) δ 7.34-7.22 (m, 3H, ArH), 7.18-7.08 (m, 2H, ArH), 4.47-4.13 (m, 6H, CH₂), 3.59 (s, 2H, PhCH₂), 1.98 (s, 3H, CH₃), 1.39 (t, J = 7.1 Hz, 3H, CH₃), 1.31 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹³C NMR (75.47 MHz, CDCl₃) δ 202.1 (C=O), 166.2, 160.0, 159.2 (COO), 146.3 (C=N), 133.9, 130.6, 128.3, 127.2 (C_{Ar}), 94.8 (CON), 62.9, 62.6, 62.4 (OCH₂), 38.9 (CH₂Ph), 27.2, 14.14, 14.10, 14.0 (CH₃).

3-{[(2,4-dioxopentan-3-ylidene)amino]oxy}-3-methylpentane-2,4-dione (3n)

Colorless oil (123 mg, 51%). ¹H NMR (300.13 MHz, CDCl₃) δ 2.41 (s, 3H, CH₃), 2.33 (s, 3H, CH₃), 2.19 (s, 3H, CH₃), 1.67 (s, 3H, CH₃). ¹³C NMR (75.47 MHz, CDCl₃) δ 201.95, 197.5, 193.7 (C=O), 157.8 (C=N), 96.7 (CON), 30.5, 26.2, 25.9, 19.2 (CH₃). FT-IR (KBr, thin layer) v_{max} (cm⁻¹): 3006, 2930 (CH₃), 1721, 1695 (C=O), 1421, 1360, 1297, 1245, 1195, 1119, 1102, 1067, 967, 945. Elemental analysis found: C, 54.67; H, 6.23; N 5.80. Calc. for C₁₁H₁₅NO₅: C, 54.77; H, 6.27; N, 5.81%.

3-benzyl-3-{[(2,4-dioxopentan-3-ylidene)amino]oxy}pentane-2,4-dione (30)

Pale yellow powder (79 mg, 25%); mp = 77-78 °C. ¹H NMR (300.13 MHz, CDCl₃) δ 7.32-7.22 (m, 3H, ArH), 7.08-6.99 (m, 2H, ArH), 3.52 (s, 2H, CH₂), 2.41 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 2.03 (s, 6H, CH₃). ¹³C NMR (75.47 MHz, CDCl₃) δ 201.4, 197.3, 193.6 (C=O), 158.0 (C=N), 133.8, 130.2, 128.7, 127.6 (C_{Ar}), 99.5 (CON), 39.1 (CH₂), 30.1, 27.4, 26.0 (CH₃). **FT-IR** (KBr, thin layer) ν_{max} (cm⁻¹): 1739, 1719, 1693 (C=O), 1418, 1355, 1296, 1189, 974, 962, 941, 706,

563, 506. **Elemental analysis** found: C, 64.29; H, 6.22; N, 4.31. Calc. for C₁₇H₁₉NO₅: C, 64.34; H, 6.04; N, 4.41%.

Ethyl 2-(tert-butylperoxy)-2-methyl-3-oxobutanoate (4a)

Pale yellow oil (109 mg, 47%). ¹**H NMR** (300.13 MHz, CDCl₃) 4.20 (q, J = 7.1 Hz, 2H, OCH₂), 2.27 (s, 3H, CH₃), 1.56 (s, 3H, CH₃), 1.25 (t, J = 7.1 Hz, 3H, CH₃), 1.24 (s, 9H, *t*-Bu). ¹³**C NMR** (75.47 MHz, CDCl₃) δ 203.8 (C=O), 168.15 (COO), 89.8 (<u>C</u>OO*t*-Bu), 80.8 (<u>C</u>(CH₃)₃), 61.8 (CH₂O), 26.5, 25.7, 18.4, 14.1 (CH₃). **FT-IR** (KBr, thin layer) v_{max} (cm⁻¹): 2983, 2940 (CH₂, CH₃), 1754, 1733 (C=O), 1366, 1261, 1196, 1150, 1132, 1109, 1021. **HRMS** (ESI) *m/z* calc. for C₁₁H₂₀O₅, [M+Na]⁺: 255.1203; Found 255.1199.

Ethyl 2-(*tert*-butylperoxy)-2-benzyl-3-oxobutanoate (4b)

Pale yellow oil (126 mg, 41%). ¹**H NMR** (300.13 MHz, CDCl₃) δ 7.28-7.14 (m, 5H, ArH), 4.28-4.08 (m, 2H, OCH₂), 3.57 (d, *J* = 14.3 Hz, 1H, CH₂Ph), 3.34 (d, *J* = 14.3 Hz, 1H, CH₂Ph), 1.90 (s, 3H, CH₃), 1.32 (s, 9H, *t*-Bu), 1.23 (t, *J* = 7.1 Hz, 3H, CH₃). ¹³**C NMR** (75.47 MHz, CDCl₃) δ 203.7 (C=O), 167.8 (COOt), 135.1, 130.8, 128.1, 126.9 (C_{Ar}), 92.8 (<u>COOt-Bu</u>), 81.3 (<u>C</u>(CH₃)₃), 61.8 (CH₂O), 37.3 (<u>C</u>H₂Ph), 27.3, 26.7, 14.1 (CH₃).

References:

- 1. J. A. Marshall and V. H. Audia, J. Org. Chem., 1987, 52, 1106-1113.
- 2. S. N. Huckin and L. Weiler, J. Am. Chem. Soc., 1974, 96, 1082-1087.
- 3. H. S. Lee, J. S. Park, B. M. Kim and S. H. Gellman, J. Org. Chem., 2003, 68, 1575-1578.
- 4. A. W. Johnson, E. Markham and R. Price, *Org. Synth.*, 1962, **42**, 75.
- 5. K. G. Thorat, P. Kamble, R. Mallah, A. K. Ray and N. Sekar, *J. Org. Chem.*, 2015, **80**, 6152-6164.
- 6. P. A. Nikitina, L. G. Kuz'mina, V. P. Perevalov and I. I. Tkach, *Tetrahedron*, 2013, **69**, 3249-3256.
- 7. F. R. Trull, R. W. Franklin and D. A. Lightner, J. Heterocycl. Chem., 1987, 24, 1573-1579.
- A. M. Mfuh, Y. Zhang, D. E. Stephens, A. X. Vo, H. D. Arman and O. V. Larionov, J. Am. Chem. Soc., 2015, 137, 8050-8053.
- 9. M. C. Rebstock, J. Am. Chem. Soc., 1951, 73, 3671-3674.
- 10. C. W. Shoppee and D. Stevenson, J. Chem. Soc., Perkin Trans. 1, 1972, DOI: 10.1039/p19720003015, 3015-3020.
- I. B. Krylov, A. O. Terent'ev, V. P. Timofeev, B. N. Shelimov, R. A. Novikov, V. M. Merkulova and G. I. Nikishin, *Adv. Synth. Catal.*, 2014, 356, 2266-2280.
- 12. A. O. Terent'ev, D. A. Borisov, I. A. Yaremenko, V. V. Chernyshev and G. I. Nikishin, J. Org. Chem., 2010, 75, 5065-5071.

7. Copies of ¹H, ¹³C and FT-IR Spectra of synthesized products 3a-o and 4a,b

