Supplementary information

Figure S1. Pathways of lithium-ion transport in two different structures

Figure S2. SEM images of the anode before and after the cycling tests for 23 cycles, in which the current density cycle is 100 mA g⁻¹ for the first three cycles and 500 mA g⁻¹ for the followed 20 cycles. The top-view images were shown in the left while the cross-section was laid in the right. a) and b) anode befor cycling, c) and d) Si@C-1@SiO₂ after cycling. e) and f) Si@C@SiO₂ after cycling.

Figure S3. Schematic illustration of the possible structure evolutions of double core-shell Si@C-1@SiO₂ and Si@C@SiO₂ during cycling

Table S1. The comparision of the performance and preparation method between this paper and previous work

Figure S1

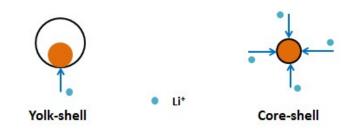


Figure S2

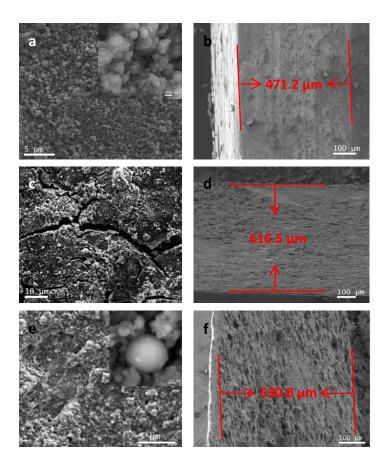
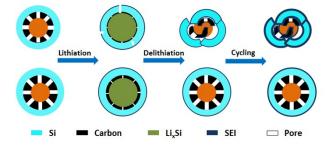



Figure S3

Table S1

Anode materials	Graphene preparation method	Graphene content (wt%)	Initial CE	Initial capacity	Capacity remained	Current density	Ref.
microparticles/RGO				200 mA g ⁻¹	cycles		
C coated Si	GO Ar/H ₂ reduced	_	~71%	4209 mAh g⁻¹ at	~38.1% after 350	2 A g ⁻¹	2
nanoparticles/RGO				200 mA g ⁻¹	cycles		
5i nanoparticles/	CVD graphene growth	~8%	83.4%	2330 mAh g ⁻¹ at	95% after 510	500 mA g ⁻¹	3
nanographene				250 mA g^{-1}	cycles		
Si nanoparticles/RGO	GO Ar/H ₂ reduced	~60%	83%	645 mAh g ⁻¹ at	98.5% after 100	50 mA g ⁻¹	4
				50 mA g ⁻¹	cycles		
2D Ag coated Si	GO N ₂ reduced	~10%	70%	2419 mAh g ⁻¹ at	70.2% after 100	1 A g ⁻¹	5
nanoparticles/RGO				100 mA g ⁻¹	cycles		
Microsized porous	GO aluminum reduced	~80%	80.96%	~3150 mAh g ⁻¹ at	39.9% after 300	1 A g ⁻¹	6
silicon/graphenen				1000 mA g ⁻¹	cycles		
Yolk-shell Si@RGO/a-	GO Ar reduced	~6%	76 %	~2200 mAh g ⁻¹ at	75% after	400 mA g ⁻¹	7
:				400 mA g ⁻¹	101cycles		
Double core-shell Si	GO Ar/H ₂ reduced	~8.1%	80.7%	1263 mAh g ⁻¹ at	91% after 500	500 mA g ⁻¹	This
nanoparticles/RGO				100 mA g ⁻¹	cycles		work

- 1. X. Han, H. Chen, Z. Zhang, D. Huang, J. Xu, C. Li, S. Chen and Y. Yang, *Journal of Materials Chemistry A*, 2016, **4**, 17757-17763.
- 2. Z. Liu, P. Guo, B. Liu, W. Xie, D. Liu and D. He, *Applied Surface Science*, 2017, **396**, 41-47.
- 3. C. Zhang, T.-H. Kang and J.-S. Yu, *Nano Research*, 2018, **11**, 233-245.
- 4. C. Botas, D. Carriazo, W. Zhang, T. Rojo and G. Singh, *ACS Applied Materials & Interfaces*, 2016, **8**, 28800-28808.
- 5. W. Yao, Y. Cui, L. Zhan, F. Chen, Y. Zhang, Y. Wang and Y. Song, *Applied Surface Science*, 2017, **425**, 614-621.
- 6. W. Zhai, Q. Ai, L. Chen, S. Wei, D. Li, L. Zhang, P. Si, J. Feng and L. Ci, *Nano Research*, 2017, **10**, 4274-4283.
- M.-H. Lin, S. Hy, C.-Y. Chen, J.-H. Cheng, J. Rick, N.-W. Pu, W.-N. Su, Y.-C. Lee and B.-J. Hwang, *ChemElectroChem*, 2016, 3, 1446-1454.