Supporting Information for

Investigation of rotameric conformations of substituted imidazo- [1, 2-a] pyrazine: experimental and theoretical approaches

Gulshan Kumar, Richa Goel, Kamaldeep Paul and Vijay Luxami*

School of Chemistry and Biochemistry, Thapar University, Patiala, Punjab, India E-mail: vluxami@thapar.edu

	Content	Page No.
Figure S1	¹ H NMR spectra of Compound 1A	2
Figure S2	¹³ C NMR spectra of Compound 1 A	2
Figure S3	Mass spectra of compound 1A	3
Figure S4	FTIR spectra of compound 1A	3
Figure S5	¹ H NMR spectra of Compound 1B	4
Figure S6	¹³ C NMR spectra of Compound 1B	4
Figure S7	Mass spectra of compound 1B	5
Figure S8	FTIR spectra of compound 1B	5
Figure S9	Experimental and theoretical ¹ H NMR (left) and ¹³ C NMR (right) correlation for conformer $1B$	6
Table S1.	Experimental ¹ H NMR signals for conformer 1A and 1B	6
Figure S10	The absorption spectra of different compound $1A$ and $1B$ in CH ₃ CN.	7
Table S2	The calculated absorption value for conformer 1A and 1B in gas and CH_3CN solvent phase at B3LYP/6-31++G** level of theory, symmetry of frontier orbital and % contributions of Molecular orbitals	7
Figure S11	Frontier Molecular orbital for conformer 1B	8
Figure S12	¹ H NMR spectra of Compound 2A	9
Figure S13	¹³ C NMR spectra of Compound 2 A	9
Figure S14	Mass spectra of compound 2A	10
Figure S15	FTIR Spectra of compound 2A	11
Figure S16	Experimental and theoretical ¹ H NMR (left) and ¹³ C NMR (right)	11
Figure S17	¹ H NMR spectra of Compound 2 B	12
Figure S18	¹³ C NMR spectra of Compound 2B	12
Figure S19	Mass spectra of compound $2\mathbf{B}$	13
Figure S20	FTIR spectra of compound 2B	13
Table S3	Experimental ¹ H NMR signals for conformer 2A and 2B	14
Figure S21	The absorption spectra of different conformers $2A$ and $2B$ in CH ₃ CN.	14
Table S4	The calculated absorption value for conformer 2A and 2B in gas and CH ₃ CN solvent phase at B3LYP/6-31++G** level of theory, symmetry	15
	of frontier orbital and % contributions of Molecular orbitals	. –
Figure S22	Frontier Molecular orbital for conformer 2B	17

Figure S1: ¹H NMR spectra of Compound 1A

Figure S2: ¹³C NMR spectra of Compound 1A

Figure S3: Mass spectra of compound 1A

Figure S4: FTIR Spectra of compound 1A

Figure S5: ¹H NMR spectra of Compound **1B**

Figure S6: ¹³C NMR spectra of Compound 1B

Figure S7: Mass spectra of compound 1B

Figure S8: FTIR Spectra of compound 1B

Figure S9: Experimental and theoretical ¹H NMR (left) and ¹³C NMR (right) correlation for conformer 1B

Table S1. Experimental ¹ H NMR signals for conformer 1A and 1B					
H- position	$Br \stackrel{6}{{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$Br = 6 N_7 $			
A					
	13.03				
6'	9.54	7.99			
5	8.23	7.77			
2	7.90	7.68			
3	7.74	7.47			
4'	7.45	7.43			
3'	7.05	7.34			
5'	7.09	7.29			

Figure S10: The absorption spectra of different compound 1A and 1B in CH_3CN .

Table S2: The calculated absorption value for conformer 1A and 1B in gas and CH ₃ CN solvent phase at
B3LYP/6-31++G** level of theory, symmetry of frontier orbital and % contributions of Molecular
orbitals

Excited State	λ _{ACN} (nm)	λ _{Gas} (nm)	λ _{Exp} (nm)	Osc. Strength	Symmetry	% Major Orbital Contribution	
1A							
S ₀ -S ₁	370.20	388.50	200	0.2567	Singlet-A	H→L	94
S_0-S_2	329.15	326.29	380,	0.1214	Singlet-A	H-1→L	89
S ₀ -S ₃	311.03	309.84	361	0.184	Singlet-A	H-2→L	86
S_0-S_4	274.96	281.59	501,	0.0001	Singlet-A	H-4→L	96
$S_0 - S_5$	270.69	281.16	318	0.155	Singlet-A	H-3→L	57
S ₀ -S ₆	262.13	269.59	510	0.0688	Singlet-A	$H \rightarrow L+1$	53
1B							
S ₀ -S ₁	381.54	402.60		0.2699	Singlet-A	H→L	94
S_0-S_2	333.23	336.02		0.1178	Singlet-A	H-1→L	94
S ₀ -S ₃	300.16	300.28	200	0.1204	Singlet-A	H-2→L	81
S ₀ -S ₄	280.89	288.76	290	0.0006	Singlet-A	H-4→L	95
$S_0 - S_5$	278.85	288.73		0.1195	Singlet-A	H-3→L	44
S ₀ -S ₆	265.55	274.51		0.0294	Singlet-A	H-3→L	43

Figure S12: ¹H NMR spectra of Compound 2A

Figure S14: Mass spectra of compound 2A

Figure S15: FTIR Spectra of compound 2A

Experimental and theoretical ¹H NMR (left) and ¹³C

Figure S17: ¹H NMR spectra of Compound 2B

Figure S18: ¹³C NMR spectra of Compound 2B

Figure S19: Mass spectra of compound 2B

Figure S20: FTIR spectra of compound 2B

Table S3. Experimental ¹ H NMR signals for conformer 2A and 2B					
	5" 6" 6 7 8 6' 5' 4" 2" OHHO 2' 3' 4' 2A	$\begin{array}{c} 3 & 2 \\ 5 & 4 \\ 5 & 6 \\ 4 \\ 4 \\ 3 \\ 3 \\ 3 \\ 2 \\ \mathbf{B} \end{array} \xrightarrow{\mathbf{C}^{1}} \mathbf{OH} \\ OH$			
	2A	2B			
6'	8.59	10.7			
5	8.29	7.84			
2	7.88	7.8			
3	7.65	7.5			
4'	7.48	7.39			
4"	7.33	7.29			
6"	7.26				
3'	7.18				
3"	7.12				
5'	7.06	7.18			
5"	6.97	6.82			

Figure S21: The absorption spectra of different conformers 2A and 2B in CH₃CN.

Table S4: The calculated absorption value for conformer **2A** and **2B** in gas and CH_3CN solvent phase at B3LYP/6-31++G** level of theory, symmetry of frontier orbital and % contributions of Molecular orbitals

2A							
Excitation λ		λ_{ACN} λ_{Exp}			Major orbital		
S_0-S_n	λ _{Gas} (nm)	(nm)	(nm)	Osc. Strength	Symmetry	contribs.	
1	387.15	377.15	380,	0.1640	Singlet-A	H→L	96%
2	375.78	357.40	360,	0.0624	Singlet-A	H-1→L	98%
3	326.38	325.97	265	0.0625	Singlet-A	H-2→L	89%
4	315.62	313.60		0.1080	Singlet-A	H-3→L	63%
5	297.45	290.59		0.4008	Singlet-A	$H \rightarrow L+1$	55%
6	292.17	286.91		0.2020	Singlet-A	H-4→L	81%
28							
1	406.33	391.19	375,	0.1003	Singlet-A	H→L	91%
2	389.98	362.46	315,	0.1141	Singlet-A	H-1→L	93%
3	335.74	329.86	260	0.073	Singlet-A	H-2→L	93%
4	321.73	317.88		0.1328	Singlet-A	$H \rightarrow L+1$	80%
5	306.73	297.46		0.2859	Singlet-A	H-1 \rightarrow L+1	61%
6	301.69	292.03		0.2095	Singlet-A	H-3→L	59%

Figure S22: Frontier Molecular orbital for conformer 2B

Figure S23: Frontier Molecular orbital for conformer 2A