Electronic Supplementary information (ESI)

N doped carbon coated V2O5 nanobelt arrays growing on carbon cloth toward enhanced performance cathode for lithium ion batteries

Lijun Wu,^a Yu Zhang,^a Bingjiang Li,^c Pengxiang Wang,^a Lishuang Fan,^b Naiqing Zhang^{*ab} and Kening Sun^{*b}

^aState Key Laboratory of Urban Water Resource and Environment, Harbin Institute of

Technology, Harbin, 150090, PR China

^bAcademy of Fundamental and Interdisciplinary Sciences, Harbin Institute of

Technology, Harbin, 150090, PR China.

E-mail: sunkeninghit@163.com, znqmww@163.com,

* Corresponding author. Tel.: +86-451-86412153; Fax: +86-451-86412153

Experimental Section

Materials

The carbon cloth was purchased from Tianjin Kermel Chemical reagent Co. Ltd. (Tianjin, China). All other reagents were analytically pure, and used without further purification.

Preparation of V₂O₅ nanobelt arrays

The experimental details were as follows. Clean carbon cloth 3×5 cm in size was used as the substrate. 0.5 mmol of V₂O₅ powder (Alfa Aesar) was dissolved in 35 mL of deionized water under magnetical stirring for 0.5 h in air, and 3 mL of 35% H₂O₂ (Alfa Aesar) was added under continuously stirring for 10 min. After that, 5 mg NH₄H₂PO₄ (Alfa Aesar) was dissolved into the above solution. The resulting solution was transferred into a 50 mL Teflon-lined stainless steel autoclave. The autoclave was heated to 180 °C for 5 h inside a conventional oven. Subsequently, the sample was washed with distilled water and ethanol and then dried at 60 °C. All the as-prepared samples were annealed at 400 °C for 2h in flowing argon at a ramping rate of 5 °C min⁻¹. The weights of the V₂O₅ nanobelt arrays were measured by a micro-balance (Mettler Toledo, New Classic MS) with an accuracy of 0.01 mg. The weights of all the V₂O₅ arrays were around 2 mg.

Preparation of N doped carbon coated V₂O₅ nanobelt arrays

50 mg dopamine was dissolved in 100 mL of deionized water contained 10 mM tromethamine. After that, V_2O_5 array was immersed into the above solution for 5h. Subsequently, the samples were annealed at 450 °C for 1 h in flowing argon at a ramping rate of 5 °C min⁻¹.

Characterization

The resulting sample was characterized by field emission scanning electron microscopy (FESEM, Hitachi Su8010), X-ray diffraction (XRD, Rigaku D/Max- γ B), transmission electron microscopy (TEM, FTI, Tecnai F20, 300 kV), X-ray photoelectron spectroscopy (XPS) measurements were carried out

using a spectrometer with Mg K α radiation (ESCALAB 250, Thermo Fisher Scientific Co.). In addition, nitrogen physiorption experiments were measured on a Micromeritics ASAP 2020 system, and specific surface areas and pore size distribution of samples were determined by the Brunauer-Emmett-Teller (BET).

 V_2O_5 nanobelt arrays growing on carbon cloth was used directly as the working electrode without binders and conductivity agents, 1 M LiPF₆ in ethylene carbonate (EC), dimethyl carbonate (DMC) (1:1 in volume) was used as the electrolyte, and two porous polypropylene membranes as a separator. The cells were assembled in an argon-filled glove box with high-purity argon gas (99.9995% purity). Electrochemical measurements were carried out by using coin (CR2025) testing cells, which were performed on a NEWARE battery program-control test system between 2.01 and 4.0 V at room temperature. Cyclic voltammogram (CV) tests were recorded on the electrochemical workstation (CHI, 660d) between 4.0 V and 2.01 V at a sacn rate of 0.2 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) measurements were performed on a PAR-STAT 2273 electrochemical systems in the frequency range mainly from 100 kHz to 10 mHz with an AC signal amplitude of 5 mV.

Figure S1 The XRD pattern of the prepared precursor sample scraped from the as-prepared V_3O_7 ·H₂O growing on carbon cloth.

Figure S2 The corresponding XPS spectra of V_2O_5 : (a,c) the O 1s, V 2p and N 1s bands, (b) XPS wide-scan survey.

Figure S3 SEM image of carbon cloth.

Figure S4 SEM image of sample V₂O₅@N-C.

Figure S5 N_2 adsorption/desorption isotherm of the V_2O_5 @N-C nanobelt arrays growing on the carbon cloth.

Figure S6 Nyquist plots of electrode materials.