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S1 Numerical method
In the present section, the population balance equations (cf.
equation 4-7 in the main text) will be treated with the Gaussian
basis function method. The key idea is to approximate the distri-
bution function Q(x, t) as a sum of Gaussian functions:

Q(x, t) =
NG

∑
i=1

αi(t)e−si(x−xi)
2

(S1)

Here the approximation is done by using a number NG of Gaus-
sians. Note that αi(t) are the time-dependent Gaussian heights,
centered in position xi, while si is a parameter related to the width
of the overlapping Gaussians:

si =
1

(xi+1− xi)2 (S2)

It is now necessary to introduce the selected locations of the Gaus-
sian centers xi in a vector:

x = {x1,x2, ...xNG} (S3)

Accordingly, it is possible to define a corresponding α vector:

α = {α1,α2, ...,αNG} (S4)

Introducing then the change of basis matrix C:

C =


e−s1(x1−x1)

2
e−s2(x1−x2)

2
. . . e−sNG (x1−xNG )

2

e−s1(x2−x1)
2

e−s2(x2−x2)
2

. . . e−sNG (x2−xNG )
2

...
...

. . .
...

e−s1(x jmax−x1)
2

e−s2(x jmax−x2)
2

. . . e−sNG (x jmax−xNG )
2


(S5)
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it can be shown that the following correlation holds:1–4

Q(t) =C×α(t) (S6)

Where Q(t) = {Q(x1, t),Q(x2, t), ...,Q(xNG , t)}. The approximation
S6 has been applied starting from the QD of size x = 57. The
equations corresponding to the first 50 QDs (between x = 6, i.e.
the nucleus, and x = 56) were solved explicitly, assuming that for
x > 57 the distribution can be considered continuous and that it
can be approximated with the Gaussian basis functions. In other
words, the two differential equations describing precursor and
monomer time-evolution (equation 4 and 5 in the main text) were
solved along with the equation for the nuclei (equation 6 in the
main text) and the 49 following QDs, up to size x = 56. Start-
ing from x = 57 the Gaussian basis function (GBF) method has
been applied, using NG = 150 and a logarithmic spaced grid up
to xmax = 104. When treating the generic PBE (cf. equation 7 in
the main text) with the GBF method, one gets the following set
of ordinary differential equations:

dα

dt
=C−1

[
kG,0e−κGtM(D−C)(2αws +αwr +αwt)+

+ kD,0eκDt(E αwu−C αwu)
] (S7)

The new unknowns are the α(t), through which the Q(t) can be
reconstructed, using equation S6. C is the aforementioned change
of base matrix (cf. equation S5) and C−1 the inverse of it. The
matrices D and E are defined instead as:

D=


e−s1(x1−1−x1)

2
e−s2(x1−1−x2)

2
. . . e−sNG (x1−1−xNG )

2

e−s1(x2−1−x1)
2

e−s2(x2−1−x2)
2

. . . e−sNG (x2−1−xNG )
2

...
...

. . .
...

e−s1(x jmax−1−x1)
2

e−s2(x jmax−1−x2)
2

. . . e−sNG (x jmax−1−xNG )
2


(S8)
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E =


e−s1(x1+1−x1)

2
e−s2(x1+1−x2)

2
. . . e−sNG (x1+1−xNG )

2

e−s1(x2+1−x1)
2

e−s2(x2+1−x2)
2

. . . e−sNG (x2+1−xNG )
2

...
...

. . .
...

e−s1(x jmax+1−x1)
2

e−s2(x jmax+1−x2)
2

. . . e−sNG (x jmax+1−xNG )
2


(S9)

The vectors αwr, αwr, αwr and αwu in equation S7 are defined
using the following equations:

αwr =C−1 Wr C α (S10)

αws =C−1 Ws C α (S11)

αwt =C−1 Wt C α (S12)

αwu =C−1 Wu C α (S13)

Where the following diagonal weighting matrices have been
used:

Wr =


x1/3

1 0 . . . 0

0 x1/3
2 . . . 0

...
...

. . .
...

0 0 . . . x1/3
NG

 (S14)

Ws =


x2/3

1 0 . . . 0

0 x2/3
2 . . . 0

...
...

. . .
...

0 0 . . . x2/3
NG

 (S15)

Wt =


x1

1 0 . . . 0
0 x1

2 . . . 0
...

...
. . .

...
0 0 . . . x1

NG

 (S16)

Wu =


xεD

1 0 . . . 0
0 xεD

2 . . . 0
...

...
. . .

...
0 0 . . . xεD

NG

 (S17)

More details about the method and its derivation can be found
in the literature.1–4

S2 Experiments and QDs size distribution
Experimental data on QDs formation are typically obtained of-
fline, by using UV-vis absorbance and/or microscopy data.5–8

Microscopy data allows to retrieve information on the full QDs
size distribution, with the disadvantage that at least several hun-
dreds particles need to be analyzed to have statistically mean-
ingful data. Although very informative, microscopy is not ideal
when the kinetic evolution of a size distribution is sought, given
that the aforementioned lengthy procedure has to be repeated at
every time point of interest.

Absorption spectroscopy data is in comparison much faster to
be obtained and processed, but has the drawback of being an in-
direct measurement of the QDs size distribution, providing only

average properties thereof. Recently though, it has been shown
that UV-vis absorption spectra can be obtained also in-situ, dur-
ing the QDs formation process, by using an oscillatory microflow
reactor.9 Such on-line obtained data set allows to have a direct
"view" on the QDs formation process, and has been therefore em-
ployed to validate the present model. Among the available ex-
peirmental data provided by Abolhasani et al.,9 the CdSe data set
was selected for model validation.

In what follows, the procedure to transform the CdSe ab-
sorbance data to average properties of the QDs size distribution
is briefly reviewed.6,7 In particular, the experimental information
on the total concentration of QDs, Ctot,exp(t), the average QDs
size, D̄exp(t) and the polydispersity σ2

D,exp(t) are sought.
As discussed by Jaseniak et al.7, the concentration of QDs

Ctot,exp(t) is directly linked to the absorbance A, through the fol-
lowing relation:

Ctot,exp(t) =
A

lε1S

∆EHWHM
1,S

0.06
(S18a)

ε1S = 1.55507x105 +6.67054x1013exp
(

E1S

0.10551

)
(S18b)

∆EHWHM
1,S = 1240

λ2−λ1S

λ1Sλ2
(S18c)

λ2 = λ1S +HWHM (S18d)

where l is the path the light travels through the sample, ε1S is
the molar extinsion coefficient at the maximum of the first absorp-
tion peak. ∆EHWWM

1S is the half-width-half-maximum (HWHM) of
the first absorption peak on the low energy side. λ1S is the wave-
length of the E1S absorption maximum. The estimated error on
the molar extinsion coefficient is said to be around 15%7. There-
fore, the experimental concentrations Ctot,exp(t) have all been as-
sumed to have the same uncertainty of 15%. Note that the latter
estimation is a lower error bound, given that in subequation S18a
only ε1S is considered to be affected by error.

Jaseniak et al.7 also provide an empirical formula that relates
the wavelength at the absorption maximum, λ1S (in [nm]), to the
average size of QDs, D̄exp(t) (in [nm]). In particular, the following
correlation is reported:7

D̄exp(t) =1.62974×10−9
λ

4
1S−2.85743×10−6

λ
3
1S

+1.8873×10−3
λ

2
1S−0.54736λ1S +59.60816

(S19)

Using equation S19, the average size of QDs is readily obtained.
To establish the link between absorbance and polydispersity it

is necessary to reacll that the HWHM values offer accurate mea-
sures of polydispersities.6 Knowing that CdSe size distributions
have been reported to be normal ones,7 and assuming that this
holds throughout the CdSe formation process, the following rela-
tionship holds:

σ
2
D,exp(t) =

(2HWHM(t))2

8ln(2)
(S20)

Notably, the same procedure reported (cf. equation S18 - S20)
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could be performed with any other QDs type (InP, CdTe, etc.)
provided that one has: i) the corresponding molar extinsion coef-
ficient, ii) a correlation of the type D̄ = D̄(λ1S), and iii) the distri-
bution of the QDs can be assumed to be normal.

It is important to remark that the UV-vis absorption data con-
sidered,9 was obtained during the QDs formation process, hence
at much higher temperatures than standard UV-vis data. As ab-
sorbance curves are known to red-shift with temperature,10 the
obtained spectra were corrected by ∆λ :

∆λ = 0.1282T −3.205 (S21)

Here ∆λ represents the wavelength [nm] to be subtracted from
the measured one. Note that equation S21 has been obtained by
assuming that the observed 25 nm shift of the absorbance singal9

between 220oC and 23oC, scales linearly with temperature.

S3 Parametric study - Role of εD,κN ,κG,κD

The discretized equation set (cf. vector of equations S7 ) have
been solved using the Matlab function ode15s. In particular, the
number of Gaussian functions considered was set to be NG = 250,
using a linear grid up to x = 36 and a logarithmically spaced grid
up to xmax = 3×104 for all parametric studies considered.

In order to investigate the role of εD, the following sim-
ulations have been performed. The kinetic rate constants
kP,kN,0,kG,0,kD,0,kD,nuc (already explored in the main text) have
been kept constant while the time-dependent pre-factors κN ,κG

and κD have been put equal to zero to better appreciate the role
of εD. In Figure S1 the total concentration of QDs Ctot(t) (sub-
figure a)), the average diameter D̄(t) (subfigure b)) and the dis-
tributions Q(D, t = 600s) (subfigure c)), are reported. Notably,
the values explored for εD change from negative values (-1, blue
curve and -0.5, green curve), to 0 (yellow curve) and positive val-
ues (0.5, red curve), in order to explore all the possible ways QDs
can dissociate, cf. Figure 3 in the main text. As can be seen in
Figure 3 (in the main text), having negative values of εD implies
to have smaller QDs to dissociate more than larger ones. Hav-
ing εD = 0 means all QDs dissociate the same way, disregardful of
their mass, while εD > 0 means that larger QDs dissociate more
than smaller ones. Notably, εD is extremely sensitive to the expo-
nent value, as the axes of Figure 3 (in the main text) prove, by
spanning over 20 orders of magnitude, whereas εD varied only
between −2 ≤ εD ≤ 2. Keeping this in mind, the trends in Figure
S1 can be rationalized as follows. Upon increasing εD, the QDs
concentration Ctot(t) decreases significantly (cf. Figure S1a), as
larger values of εD imply an overall faster dissociation reaction,
and therefore also a faster dissociation of nuclei to monomers,
reducing the total amount of available clusters. As the total QDs
concentration decreases and more free monomers are released in
solution, less QDs will incorporate more free monomers. This re-
sults in an increase of the average diameter D̄(t) (cf. Figure S1b)
and a right shift of the distribution, that also becomes significantly
broader (cf. Figure S1c)). By this brief analysis it becomes evident
that εD plays a very important role, being able to strongly affect
all properties of the QDs size distribution by very small changes.

When studying the role of the remaining parameters κN ,κG and
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Fig. S1 Impact of εD on a) Ctot(t), b) D̄(t) and c) Q(D, t = 600s). Color
code: εD = [−1,−0.5,0,0.5] for the blue, green, yellow and red curves,
respectively. εD increases along the direction of the arrows in the order:
blue - green - yellow - red. Notably, kP = 10−1 s−1, kN,0 = 2×10−1 s−1,
kG,0 = 3×10−24l/(# s), kD,0 = kD,nuc = 10−1 s−1, κN = κG = κG = 0 in all
simulations.
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Fig. S2 Diameter D̄(t) and QDs size distribution QD(D, t = 600s) for
varying κN (a) and b), κG, c) and d) and κD, e) and f). The parameters
values employed are reported in the supplementary information. †

κD, a different set of simulations has been performed. In particu-
lar, Figure S2a) and b) show average diameter and size distribu-
tion when changing κN , Figure S2c) and d) illustrate the impact
of κG on D̄(t) and QD(D, t = 600s) and S2e) and f) expose the
role of κD. It is important to recall that the variables κN ,κG and
κD, appear in exponential functions (cf.equation 8, 14 and 17 in
the main text), in the form eκX t and that the corresponding time-
dependent quantities decrease in time (nucleation (X = N) and
growth (X = G)) or increase in time (dissociation (X = D)). As
a result, when κN is increased, the overall nucleation rate de-
creases faster in time (cf. equation S8). Therefore, when in-
creasing κN , the QDs distribution shifts to the right (cf. Figure
S2b) and the corresponding average diameter increase ((cf. Fig-
ure S2a)). When κG increases, then the growth rate is decreas-
ing faster along the QDs formation process. Therefore, smaller
clusters are formed and the QDs size distribution becomes nar-
rower and shifts to the left ((cf. Figure S2c) and d)). Conversely,
when increasing κD the dissociation rate is increasing in time
(cf. equation 21 in the main text). Given that in this simulation
set εD = −2 and therefore smaller clusters are dissociating more
than larger ones, an increase of κD implies that larger clusters are
formed at expenses of smaller QDs. Therefore, D̄(t) increases and
QD(D, t = 600s) shifts to the right.

S4 Fitted parameter values
The discretized equation set (cf. vector of equations S7 ) have
been solved using the Matlab function ode15s. In particular, the
number of Gaussian functions considered was set to be NG = 150,
using a linear grid up to x = 56 and a logarithmically spaced grid
up to xmax = 104 for the optimizations with the generic algorithm.
The initial species concentration were all equal to zero, apart from
the precursor, for which P(t = 0) = 15mM.9 The optimized param-
eters leading to the continuous curves in Figure 5 in the main text
are reported in Table S1:

Table S1 Fitted parameters

Parameter T = 180oC T = 210oC Units
kP 1.99×101 8.65×100 s−1

kN,0 1.18×10−1 6.81 ×10−2 s−1

kG,0 4.51×10−24 3.72×10−24 l/(# s)
kD,0 1.26×100 6.91×100 s−1

kD,nuc 1.10×101 3.71×101 s−1

εD −2 −2 [-]
κN 4.44×10−1 9.32×10−2 s−1

κG 2.03×10−2 1.14×10−2 s−1

κD 1.44×10−3 1.74×10−2 s−1
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S5 List of symbols

Table S2 List of Symbols

Parameter Meaning Units
C change of basis matrix −
Ctot,mod ,Ctot,exp QDs concentration # L−1

D̄mod , D̄exp QDs average diameter m
D QD Diameter m
D matrix used in numerical method −
Dnuc Diameter of the QD nuclei m
d f fractal dimension −
dN(t) concentration of QDs at time t # L−1

E matrix used in numerical method −
fD(t) time-dependent dissociation function s−1

fG(t) time-dependent growth function −
hD(x) mass-dependent dissociation function −
hG(x) mass-dependent growth function −
kB Boltzmann constant J K−1

kD(x, t) dissociation rate constant s−1

kD,0 dissociation rate prefactor for x > n s−1

kD,nuc dissociation rate prefactor for x = n s−1

kG(x, t) growth rate constant # L−1 s−1

kG,0 growth rate prefactor # L−1 s−1

kN(t) nucleation rate constant s−1

kN,0 nucleation rate prefactor s−1

kP precursor conversion rate constant s−1

M Monomer # L−1

n size of the nuclei −
NG number of Gaussians used −
P Precursor # L−1

Q(D, t)dD QDs number concentration
with diameter comprised
between D and D+∆D # L−1

Q(x, t)dx QDs number concentration
with mass comprised between
x and x+∆x # L−1

rD(t) dissociation rate s−1

rG(t) growth rate s−1

rN(t) nucleation rate s−1

si Gaussian overlapping parameter −
s Vector containing si −
T temperature K
W Fuchs stability factor −
Wr,Ws,Wt ,Wu, weighting matrices for numerical method −
x number of monomers

building up one QD of size Q(x,t) −
xi selected grid points −
x vector containing xi −
Greek Letters
αi Gaussian heights −
α vector containing αi −
αr,αs,α t ,αu weighted α vectors −
εD mass exponent in hD(x) −
η solution viscosity Pa s
κD,κG,κN exponential factor in

fD(t), fG(t),kN(t) s−1

λ mass exponent in hG(x) −
µk(t) kth moment of the distribution mk # L−1

σD(t) standard deviation of the distribution m
σ2

D(t) variance of the distribution m2
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