Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information for

Green synthesis of α-amino acids by electrochemical carboxylation of imines in a flow microreactor

Yang Qu^a, Ciaki Tsuneishi^a, Hiroyuki Tateno^a, Yoshimasa Matsumura^b, and Mahito Atobe^{a*} ^aDepartment of Environment and System Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 2408501, Japan

^bDepartment of Chemistry and Chemical Engineering, Faculty of Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan

*To whom the correspondence should be addressed. E-mail: atobe@ynu.ac.jp

Contents:

- 1. Linear Sweep Voltammograms
- 2. Determination of ¹H NMR Yields

1. Linear Sweep Voltammograms

Fig. S1 Linear sweep voltammograms of the saturated CO₂ in 0.1 M Bu₄NBF₄/THF at various disk electrodes at 0.1 V s⁻¹ in the scan rate at 25 ± 2 °C.

2. Determination of ¹H NMR Yields

After the electrolyses of imines **3-6**, 0.15 mL of their reaction mixtures were extracted with diethyl ether. Then, nitromethane (0.30 μ L, 0.0056 mmol) as an internal standard was added to the evaporated residues. The yields of **3a-6a** were calculated by ¹H NMR measurements of these reaction mixtures with nitromethane (at 4.42 ppm) as an internal standard. Characteristic peaks of purpose products were determined by referring to the previous synthetic report [1]. The NMR yields of **3a-6a** were determined by following equation (2).

$$I_{1} / 3N_{1} = I_{2} / N_{2}$$
(1)
Yield (%) = N_{2} / N_{lmine} • 100% (2)

where I_1 and I_2 are NMR integral values of nitromethane and product peaks, respectively; N_1 and N_2 are mole quantities of nitromethane and product in ¹H NMR, respectively.

However, the amino acids **3a** and **4a** were not detected at all in the corresponding ¹H NMR spectra. On the other hand, as shown in Figs. **S2** and **S3**, the amino acids **5a** and **6a** were detected in the corresponding ¹H NMR spectra, and their yields were calculated from I_1 and I_2 values shown in Table S2.

Fig. S2 ¹H NMR spectrum of reaction mixture after the electrochemical carboxylation of imine **5** for synthesis of **5a**.

Fig. S3 ¹H NMR spectrum of reaction mixture after the electrochemical carboxylation of imine 6 for synthesis of **6a**.

Amino acid	<i>I</i> ₁	I ₂	Yield (%)
н соон	1	0.17	32
5a			
H ₃ CO COOH	1	0.22	41
6a			

Table S1 The I_1 and I_2 values for ¹H NMR yields determination

Reference

1. A. A. Sathe, D. R. Hartline and A. T. Radosevich, Chem. Commun., 2013, 49, 5040.