Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2017

Lipase immobilised silica monoliths as continuous-flow microreactors for triglyceride transesterification

Mohammed Alotaibi ^{a,b}, Jinesh C. Manayil^b, Gillian M Greenway^a, Stephen J. Haswell^a, Stephen M. Kelly, Adam F. Lee^{d*}, Karen Wilson^d and Georgios Kyriakou ^{a,b,c*}

Characterisation

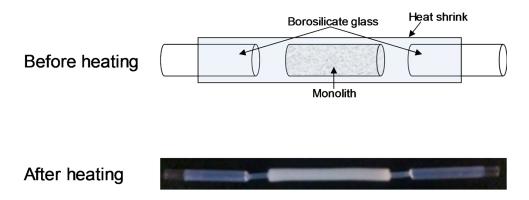
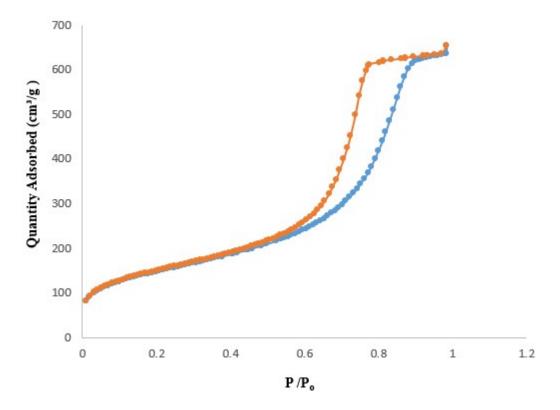
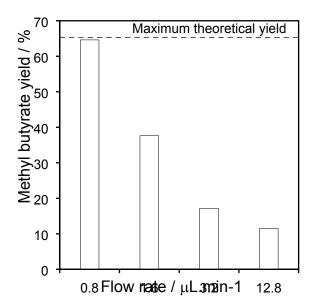
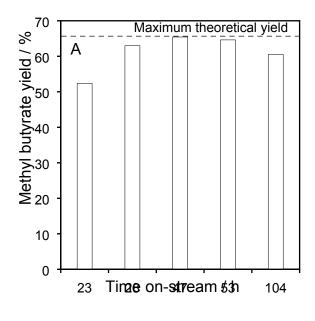



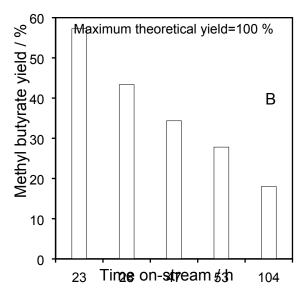
Fig. S1. Interfacing of monolithic microreactor to borosilicate glass tubes using PTFE heat shrinkable tubing.

Fig. S2 Nitrogen adsorption-desorption isotherm for M1.


^a.Department of Chemistry, The University of Hull, Cottingham Rd., Hull HU6 7RX, United Kingdom.

^b European Bioenergy Research Institute, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom


^c Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.


^d School of Science, RMIT University, Melbourne VIC3000, Australia

Reactivity

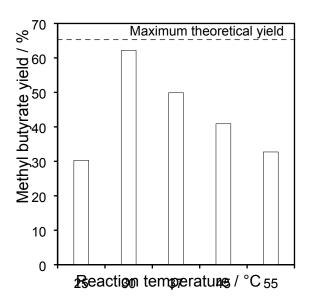


Fig. S3 Methyl butyrate yield over M2 catalyst as a function of flow rate. Reaction conditions: methanol:tributyrin molar ratio = 2:1, 30 °C and 20 h on-stream.

Fig. S4 Methyl butyrate yield over M2 catalyst as a function of time on-stream for (A) 2:1 and (B) 3:1 methanol: tributyrin molar ratio. Reaction conditions: $0.8 \mu L.min^{-1}$ and $30 \,^{\circ}C$.

Fig. S5 Methyl butyrate yield over M2 catalyst as a function of reaction temperature. Reaction conditions: $0.8 \mu L.min^{-1}$, methanol:tributyrin molar ratio = 2:1 and 20 h on-stream