Supporting Information for

Kinetics study of heterogeneously continuous-flow nitration of trifluoromethoxybenzene

Zhenghui Wen^{a,b}, Mei Yang^a, Shuainan Zhao^{a,b}, Feng Zhou^{a,b} and Guangwen Chen^{a,*}

- ^a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- ^b University of Chinese Academy of Sciences, Beijing 100049, China
- * Corresponding author. Tel.: +86-411-8437-9031, Fax.: +86-411-8469-1570
- E-mail: gwchen@dicp.ac.cn (G.W. Chen).

	Temperature	μ	ρ	
substance	К	mPa∙s	kg/m ³	
TFMB	278	1.25	1226.3	
	283	1.23		
	288	1.20		
	293	1.17		
Sulfuric acid (84 wt %)	278	35.1	1787.6	
	283	28.9	1782.0	
	288	24.5	1776.4	
	293	20.5	1770.9	
Sulfuric acid (82 wt %)	278	32.9	1769	
	283	27.9	1762.9	
	288	23.3	1758.6	
	293	19.1	1753.2	
Sulfuric acid (80 wt %)	278	29.6	1739.9	
	283	25.3	1734.6	
	288	21.7	1729.3	
	293	18.3	1724.2	
Sulfuric acid (75 wt %)	278	24.6	1687.3	
	283	20.2	1682.4	
	288	17.1	1677.4	
	293	14.7	1672.6	

Physical properties of TFMB and sulfuric acid solutions

Table S1 Physical properties of TFMB and sulfuric acid solutions

TFMB: molecular weight=162.11 g/mol, boiling point=375 K.

Sulfuric acid: molecular weight=98.1 g/mol, boiling point=613 K.

Schematic diagram of setup for flow pattern observational experiment

Figure S1 Schematic diagram of experimental setup for the flow pattern observation.

GC spectrogram of compounds involved in reaction

Figure S2 GC spectrogram of all compounds involved in the reaction.

Mass spectrum of p-(trifluoromethoxy) benzene sulfonic acid

Comparison of observed second-order rate constant

 $\varphi / wt\%$ Figure S4 Comparison between experimental (dot) and calculated (line) values of observed secondorder rate constant at different sulfuric acid strengths and temperatures (a) *o*-NB (b) *p*-NB.

Flow chart of the kinetic study

MATLAB program used for solving Eq.6

function odes_fit format long clear all clc

k0 = [0 0];	% Parameter initial value	
lb = [0 0];	% Parameter lower limit	
ub = [+inf +inf];	% Parameter upper limit	

%Experimental data

%	t	В	рNB	oNB
dat	ta=			
	[0]	0	0	0
	5.03	0.110439016	0.100248547	0.009951361
	7.54	0.155662656	0.141088625	0.014227765
	10.06	0.195082447	0.177579731	0.017108608
	12.57	0.251992372	0.227500878	0.023543548
	15.09	0.280506122	0.253835865	0.02528611

```
];
```

x0=data(1,2:end);

tspan = [data(:,1)'];

yexp = [data(2:end,2) data(2:end,3) data(2:end,4)];

% Using the function lsqnonlin()to estimate the parameters

[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...

lsqnonlin(@ObjFunc,k0,lb,ub,[],tspan,x0,yexp);

ci = nlparci(k,residual,jacobian);

fprintf('\n\nUsing the function lsqnonlint() to estimate the parameter values as follows:\n')
fprintf('\tk1 = %.9f \n',k(1))
fprintf('\tk2 = %.9f \n',k(2))

figure(1)

```
ts=0:((max(tspan)-min(tspan))/100):max(tspan);
[ts ys] = ode45(@KineticsEqs,ts,x0,[],k);
yy = [data(:,2) data(:,3) data(:,4)];
figure(1)
plot(ts,ys(:,1),'b',tspan,yy(:,1),'bo');
figure(2)
plot(ts,ys(:,2),'r',tspan,yy(:,2),'ro');
figure(3)
plot(ts,ys(:,3),'g',tspan,yy(:,3),'go');
figure(4)
```

plot(ts,ys(:,1),'b',tspan,yy(:,1),'bo',ts,ys(:,2),'r',tspan,yy(:,2),'ro',ts,ys(:,3),'k',tspan,yy(:,3),'ko') legend('Calculated value of C1','Experimental value of C1','Calculated value of C2','Experimental value of C2','Calculated value of C3','Experimental value of C3','Location','best');

% Objective function

```
function f = ObjFunc(k,tspan,x0,yexp)
[t Xsim] = ode45(@KineticsEqs,tspan,x0,[],k);
Xsim1=Xsim(:,1);
Xsim2=Xsim(:,2);
Xsim3=Xsim(:,3);
```

ysim(:,1) = Xsim1(2:end); ysim(:,2) = Xsim2(2:end); ysim(:,3) = Xsim3(2:end);

f = [(ysim(:,1)-yexp(:,1)) (ysim(:,2)-yexp(:,2)) (ysim(:,3)-yexp(:,3))];

```
function dCdt = KineticsEqs(t,C,k) % ODE model equation
C1=C(1);C2=C(2);C3=C(3);
k1=k(1);k2=k(2);
C0=8.4096; % Saturate concentration of TFMB in sulfuric acid, mol/m<sup>3</sup>
M=0.8987; % Ratio of initial molar of TFMB and nitric acid
dC1dt = (k(1)+k(2))*C0*(M-C(1));
dC2dt = k(1)*C0*(M-C(1));
dC3dt = k(2)*C0*(M-C(1));
```

dCdt = [dC1dt;dC2dt;dC3dt];