Electronic Supplementary Information

A hierarchical approach to chemical reactor engineering: an application to micro packed-bed reactors

Stefano Rebughini^{a,b §}, Mauro Bracconi^{a §}, Anthony G. Dixon^{b*} and Matteo Maestri^{a*}

^aLaboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Campus Bovisa, Via La Masa 34, 20156 Milano, Italy

^bDepartment of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA, 01609

[§] these authors contributed equally to this work

* corresponding authors: agdixon@wpi.edu (A.G. Dixon), matteo.maestri@polimi.it (M. Maestri)

1. Equations of Wellauer correlation

Herein the correlation for the effective radial thermal conductivity and the wall heat transfer coefficient, suggested by Wellauer et al. [23], is reported. These equations should be applied to estimate $k_{r,eff}$ and h_W in Eq. (15). In the following equations the superscripts f and s represent the fluid and solid properties, respectively.

$$k_{r,eff} = k_r^f + \frac{k_r^s \left(1 - \frac{4}{Bi^f}\right)}{\left(1 - \frac{8}{N_s}\right)}$$
(A.1)

$$Bi^f = \frac{h_w^f D_C}{2k_r^f} \tag{A.2}$$

$$Bi^{f} = 5.73 \left(\frac{D_{c}}{D_{P}}\right)^{1/2} \text{Re}^{-0.26}$$
 (A.2)

$$N_s = \frac{1.5(1-\varepsilon)hD_c^2}{k_r^s D_P}$$
(A.3)

$$k_r^f = \frac{Gc_p D_p}{8.6 \left(1 + 19.4 \left(\frac{D_p}{D_c}\right)^2\right)}$$
(A.4)

$$k_r^s = k_r^s \left(1 + 2.66 \sqrt{\frac{1}{N}} \right) \tag{A.5}$$

$$k_r^s = \frac{k^f \left(1 - \varepsilon\right)}{\left[\frac{2}{3A} + \phi\right]} \tag{A.6}$$

$$\phi = \phi_2 + \frac{(\phi_1 - \phi_2)(\varepsilon - 0.26)}{0.216} \tag{A.7}$$

$$\phi_{1} = \frac{\frac{1}{3} \left(1 - \frac{1}{A}\right)^{2}}{\ln\left(A - 0.577(A - 1)\right) - 0.423 \left(1 - \frac{1}{A}\right)} - \frac{2}{3A}$$

$$\phi_2 = \frac{0.072 \left(1 - \frac{1}{A}\right)^2}{\ln\left(A - 0.925 \left(A - 1\right)\right) - 0.075 \left(1 - \frac{1}{A}\right)} - \frac{2}{3A}$$
(A.9)

$$A = \frac{k^s}{k^f} \tag{A.10}$$

$$h = \frac{0.574}{\varepsilon} (Gc_P) \operatorname{Re}^{-0.407}$$
(A.11)

(A.8)

2. Details on notation, symbols and unit of measurements

Latin letters

D_{C}	honeycomb channel diameter	[m]
D_P	particle diameter	[m]
C _P	gas specific heat at constant temperature	[J/kg/K]
G	specific mass flow rate	$[kg/m^2/s]$
$h_{\scriptscriptstyle W}$	wall heat transfer coefficient	[W/m ² /K]
$k_{e\!f\!f,ax}$	effective axial thermal conductivity of honeycomb matrix	[W/m/K]
$k_{e\!f\!f,r}$	effective radial thermal conductivity of honeycomb matrix	[W/m/K]
k	thermal conductivity	[W/m/K]
L	reactor length	[m]
Ν	tube-to-particle diameter ratio	[-]
Q^{REACT}	heat generated by the reaction	[W/m ³ cat]
R_i	reaction rate of the i-th species	[kg/m ³ cat/s]
R	tube radius	[m]
r	radial coordinate	[m]
S _v	exchange area between the packing and the honeycomb matrix	[1/m]
Т	temperature	[K]
T _{wall}	external wall temperature	[K]
T _{cool}	coolant temperature	[K]
U	overall heat transfer coefficient	[W/m ² /K]
и	velocity	[m/s]
Z.	axial coordinate	[m]

Greek symbols

Е	void fraction	[-]
ρ	density	[kg/m ³]
ω_{i}	mass fraction of the i-th species	[-]
μ	molecular viscosity	[kg/m/s]

Superscript

G	gas phase
Н	honeycomb matrix
Р	micro-packing
0	inlet value

Dimensionless numbers

 $\operatorname{Bi} = \frac{h_W D_C}{2k_{eff,r}} \qquad \operatorname{Biot number}$

3. Kinetic scheme

The kinetic scheme proposed by Froment et al.² for the selective oxidation of o-xylene to phthalic anhydride on V_2O_5 catalysts has been adopted in this work. It consists of the reactions of partial and total oxidation of o-xylene to phthalic anhydride and CO_x . Moreover, the subsequent oxidation of phthalic anhydride and CO_x is considered, as shown in Scheme S1.

Scheme S1 Reaction scheme for the selective oxidation of o-xylene to phthalic anhydride.

The reaction rates have been rederived as a function of the partial pressure of the species. The kinetic parameters are reported in Table S1.

Table S1.	. Reaction	rate express	ion and ki	netic cons	tant for the	selective	oxidation o	f o-xyle	ene to
phthalic a	anhydride ²								

Reaction rates	Kinetic constant	
$r_1 = k_1 p_{O_2} p_{O-xy}$	$k_1 = \exp\left(-\frac{13588}{T} + 19.837\right)$	$\left[\frac{kmol\ bar^2}{kg_{cat}s}\right]$
$r_2 = k_2 p_{O_2} p_{pa}$	$k_2 = \exp\left(-\frac{15803}{T} + 20.860\right)$	$\left[\frac{kmol\ bar^2}{kg_{cat}s}\right]$
$r_3 = k_3 p_{O_2} p_{O-xy}$	$k_3 = \exp\left(-\frac{14394}{T} + 18.970\right)$	$\left[\frac{kmol\ bar^2}{kg_{cat}s}\right]$