Electronic Supplementary Information

Oxidative coupling of methane at elevated pressures:

Reactor concept and its validation

M. Albrecht, U. Rodemerck, D. Linke*, E.V. Kondratenko*

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29 A D-18059 Rostock, Germany

- * To whom correspondence should be addressed:
- E-mail: <u>Evgenii.kondratenko@catalysis.de</u> (EVK)

David.linke@catalysis.de (DL)

$$X (CH_4 \text{ or } O_2) = 1 - \frac{\dot{n}_{CH_4 \text{ or } O_2}^{\text{outlet}}}{\dot{n}_{CH_4 \text{ or } O_2}} \cdot \frac{\dot{n}_{N_2}^{\text{outlet}}}{\dot{n}_{N_2}^{\text{inlet}}}$$
(eq.1)

$$Y_i = 1 - \frac{a_i \cdot \dot{n}_i^{outlet}}{\dot{n}_{CH_4}^{inlet}} \cdot \frac{\dot{n}_{N_2}^{outlet}}{\dot{n}_{N_2}^{inlet}} <$$
(eq.2)

$$S_i = \frac{Y_i}{X_{CH_4}} \tag{eq.3}$$

X(i)	conversion of component <i>i</i>
n ^{inlet}	molar flow of component <i>i</i> at the reactor inlet
n ^{outlet}	molar flow of component <i>i</i> at the reactor outlet
Y _i	Yield of component <i>i</i> , relative to methane
a_i	number of carbon atoms in component <i>i</i>
S _i	Selectivity to component <i>i</i> , relative to methane

Figure S1 Methane conversion at 1123 K and different total pressures using a $CH_4:O_2:N_2=4:1:15$ feed. (I) reactor as described in Figure 1 and $F_{total} = 50$ ml/min, (II) reactor with reduced volume upstream to catalyst bed and $F_{total} = 50$ ml/min, (III): reactor with reduced volume upstream to catalyst bed and F = 100 ml/min (at 5 bar) or 400 ml/min (at 10 bar). Oxygen conversion was always complete.

Figure S2 Product distribution of the OCM reaction at various pressures; (I): reactor as described in Figure 1, F = 50 ml/min, (II): reduced reactor volume, F = 50 ml/min, (III): reduced reactor volume, F = 100 ml/min (at 5 bar) or 400 ml/min (at 10 bar); 20 vol.% CH₄, CH₄:O₂ = 4:1, T = 1123 K, X (O₂) = 100 %; •: C₂H₄, •: C₂H₆, •: C₃₊, •:CO, •:CO₂

Figure S3 Selectivity to C₂₊ hydrocarbons in the OCM reaction at various pressures and reactant feeds; (I): reactor as described in Figure 1, F = 50 ml/min, (II): reduced reactor volume, F = 50 ml/min, (III): reduced reactor volume, F = 100 ml/min (at 5 bar) or 400 ml/min (at 10 bar); 20 vol.% CH₄, CH₄:O₂ = 4:1, T = 1123 K, X (O₂) = 100 %

Figure S4 Effect of water and $CH_4:O_2$ ratio on CH_4 conversion at 1123 K and 10 bar.(IV) OCM feeds without water, (V) OCM feeds with 10 vol.% water (N₂ was partially replaced by H₂O). Further conditions: $F_{total} = 100$ ml/min, 20 vol.% CH_4 , X (O₂) = 100 %. Reactor volume upstream to catalyst bed was reduced by installing a quartz glass rod.