Supplementary Information

Catalytic Asymmetric Synthesis of CF₃-Substituted Tertiary Propargylic Alcohols *via* Direct Aldol Reaction of α -N₃ Amide

Hidetoshi Noda, Fuyuki Amemiya, Karin Weidner, Naoya Kumagai,* Masakatsu Shibasaki*

Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan

nkumagai@bikaken.or.jp, mshibasa@bikaken.or.jp

Table of Contents

 General methods	
2. Preparation of substrates	
3. Direct catalytic asymmetric aldol reaction of α -N ₃ amide to CF ₃ ketones 3-1. Optimization study	S6 S6
3-2. Synthesis of BHA 10	
3-3. Control experiment	۵۵ ۶8
3-5. Gram scale synthesis of 5a and its SDE test on achiral silica gel chromatgraphy	\$16
4. Transformations of the aldol products	\$17
5. Mechanistic study	S19
5–1. NMR experiments	S19
5-2. Solid state structures of BHA 8 and 1:2 Cu/amide 2 complex (E)	S20
5-3. Time course study of the aldol reaction	S21
5-4. Computational analysis on the conformation of fluorinated ketones	\$24
6. References	\$25
7. Optimized coordinates	\$26
8. Spectra	\$28

1. General methods

1-1. Reactions and purifications

Unless otherwise noted, all reactions were carried out in an oven-dried glassware fitted with a 3-way glass stopcock under an argon atmosphere and were stirred with Teflon-coated magnetically stirred bars. All work-up and purification procedures were carried out with reagent-grade solvents under ambient atmosphere. Thin layer chromatography (TLC) was performed on Merck TLC plates (0.25 mm) pre-coated with silica gel 60 F254 and visualized by UV quenching and staining with ninhydrin, KMnO₄, anisaldehyde or ceric ammonium molybdate solution. Flash column chromatography was performed on a Teledyne CombiFlash Rf 200 or a Biotage Isolera Spektra One.

1-2. Chracterizations

Infrared (IR) spectra were recorded on a HORIBA FT210 Fourier transform infrared spectrophotometer. NMR spectra were recorded on a JEOL ECS-400, a Bruker AVANCE III HD400 or a Bruker AVANCE III 500. Chemical shifts (δ) are given in ppm relative to residual solvent peaks.¹ Data for ¹H NMR are reported as follows: chemical shift (multiplicity, coupling constants where applicable, number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), dd (doublet of doublet), dt (doublet of triplet), ddd (doublet of doublet of doublet), q (quartet), m (multiplet), br (broad). For ¹⁹F NMR, chemical shifts were reported in the scale relative to PhCF₃ (δ –62.7680 ppm in CDCl₃) as an external reference. Single-crystal X-ray data were collected on a Rigaku R-AXIS RAPID II imaging plate area detector with graphite-monochromated Cu-Ka radiation. Optical rotation was measured using a 1 mL cell with a 1.0 dm path length on a JASCO polarimeter P-1030. High-resolution mass spectra (ESI TOF (+)) were measured on a Thermo Fisher Scientific LTQ Orbitrap XL.

1-3. Solvents and reagents

Powdered MS13X was activated by a heat gun under reduced pressure, and stored in a glove box. CaSO₄ was purchased from Sigma–Aldrich (DrieriteTM) and was ground into a powder before use. Anhydrous 1,4-dioxane and DME were purchased from commercial suppliers. THF, Et2O, CPME, EtOAc, toluene, CH₂Cl₂, and CH₃CN were purified by passing through a solvent purification system (Glass Contour). All other starting materials were used as supplied by commercial vendors or prepared by the method described in the corresponding reference.

1-4. Computational investigations

All quantum chemical calculations were performed using the Gaussian 09 program.² Structural optimizations were conducted with very tight optimization parameters, and density functional theory (DFT) calculations employed an ultrafine integration grid (99 radial shells, 590 angular points). Frequency calculations confirmed the identity of geometry minima (no imaginary frequencies).

2. Preparation of substrates

All fluorinated ketones were prepared according to the known procedure³ with a slight modification. CF₃ ketones $4a_{,4}$ $4c_{,5}$ $4f_{,6}$ $4g_{,6}$ and $11b^{7}$ were previously reported.

General procedure A: To a flame dried 500 mL flask equipped with a magnetically stirred chip, was added alkyne (1.0 equiv) and dry THF (0.1 M). The flask was cooled to –78 °C, and stirred for 30 min. *n*BuLi (hexane solution, 1.0 equiv) was added slowly down the side of the flask over 5 min. The solution was stirred for 30 min following the completion of *n*BuLi addition. To this solution, were slowly added fluorinated ethyl ester (1.1–1.2 equiv) and BF₃•Et₂O (1.2 equiv) directly into the solution. The solution was stirred for 12 h, during which time gradually warmed to RT. After the addition of sat aq NH₄Cl, aqueous phase was extracted with EtOAc (3x). The combined organic layers were washed with brine (2x), dried over Na₂SO₄, filtered, and removed under reduced pressure. The obtained material was purified by silica gel column chromatography (hexane/EtOAc).

5-((*tert*-Butyldimethylsilyl)oxy)-1,1,1-trifluoropent-3-yn-2-one (4b): Prepared by the general procedure A from *tert*-butyldimethyl(2-propynyloxy)silane (3.0 mL, 14.8 mmol, 1.0 equiv), *n*BuLi (2.66 M in hexane, 5.56 mL, 14.8 mmol, 1.0 equiv), ethyl trifluoroacetate (1.94 mL, 16.3 mmol, 1.1 equiv), and BF₃•Et₂O (2.25 mL, 17.7 mmol, 1.2 equiv), purified by column chromatography (hexane/EtOAc) and isolated as a colorless oil (2.3 g, 58%). IR (thin film) 2957, 2933, 2860, 2208, 1716, 1218, 1132 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.57 (s, 2H), 0.92 (s, 9H), 0.14 (s, 6H); ¹³C NMR (400 MHz, CDCl₃) δ 167.0 (q, *J* = 42.5 Hz), 114.7 (q, *J* = 288.3 Hz), 100.5, 79.0, 51.8, 25.7, 18.3, -5.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -78.2; measurement of the exact mass has so far proven unsuccessful.

8-((*tert*-Butyldiphenylsilyl)oxy)-1,1,1-trifluorooct-3-yn-2-one (4d): Prepared by the general procedure A from *tert*-butyl(hex-5-yn-1-yloxy)diphenylsilane⁸ (7.24 g, 21.5 mmol, 1.0 equiv), *n*BuLi (2.66 M in hexane, 8.10 mL, 21.5 mmol, 1.0 equiv), ethyl trifluoroacetate (2.60 mL, 21.5 mmol, 1.0 equiv), and BF₃•Et₂O (3.20 mL, 25.8 mmol, 1.2 equiv), purified by column chromatography (hexane/EtOAc) and isolated as a colorless oil (5.4 g, 58%). IR (thin film) 2955, 2933, 2858, 2210, 1709, 1428, 1215, 1148, 1110 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.70 (m, 4H), 7.52–7.38 (m, 6H), 3.74 (t, *J* = 5.8 Hz, 2H), 2.53 (t, *J* = 6.9 Hz, 2H), 1.89–1.77 (m, 2H), 1.75–1.69 (m, 2H), 1.11 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3 (q, *J* = 41.9 Hz), 135.7, 133.9, 129.8, 127.8, 114.8 (q, *J* = 288.4 Hz), 105.2, 76.4, 63.1, 31.5, 27.0, 24.0, 19.3, 19.3; ¹⁹F NMR (376 MHz, CDCl₃) δ –78.2; the exact mass was measured after the treatment with BnONH₂•HCl in MeOH. HRMS (ESI): *m/z* calc'd for

C₃₁H₃₄O₂NF₃NaSi [M + Na]⁺: 560.2203, found: 560.2203.

8-Chloro-1,1,1-trifluorooct-3-yn-2-one (4e): Prepared by the general procedure A from 6-chloro-1-hexyne (3.00 mL, 24.7 mmol, 1.0 equiv), *n*BuLi (2.66 M in hexane, 9.30 mL, 24.7 mmol, 1.0 equiv), ethyl trifluoroacetate (3.53 mL, 29.6 mmol, 1.2 equiv), and BF₃•EtzO (3.89 mL, 29.6 mmol, 1.2 equiv), purified by column chromatography (hexane/EtOAc) and isolated as a colorless oil (3.7 g, 71%).
 IR (thin film) 2962, 2874, 2211, 1709, 1216, 1150 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.58 (t, *J* = 6.1 Hz, 2H), 2.57 (t, *J* = 6.8 Hz, 2H), 1.99–1.88 (m, 2H), 1.88–1.77 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2 (q, *J* = 42.1 Hz), 114.8 (q, *J* = 288.4 Hz),

103.9, 76.5, 44.1, 31.4, 24.6, 18.9; ¹⁹F NMR (376 MHz, CDCl₃) δ –78.3; measurement of the exact mass has so far proven unsuccessful.

4-(4-(1,3-Dioxolan-2-yl)phenyl)-1,1,1-trifluorobut-3-yn-2-one (4h): Prepared by the general procedure A from 2-(4-ethynylphenyl)-1,3-dioxolane⁹ (1.99 g, 11.4 mmol, 1.0 equiv), *n*BuLi (2.67 M in hexane, 4.27 mL, 11.4 mmol, 1.0 equiv), ethyl trifluoroacetate (1.63 mL, 13.7 mmol, 1.2 equiv), and BF3•Et2O (1.73 mL, 13.7 mmol, 1.2 equiv), purified by column chromatography (hexane/EtOAc) and isolated as a white solid (2.1 g, 70%). m.p. 37-38 °C; IR (thin film) 2950, 2854, 2201, 1703, 1199, 1086, 1045 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) & 7.71–7.68 (m, 2H), 7.58–7.56 (m, 2H), 5.85 (s, 1H),

4.16-4.02 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4 (q, J = 42.2 Hz), 142.9, 134.1, 127.2, 118.8, 115.0 (q, J = 286.6 Hz), 102.8, 100.1, 83.7, 65.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -77.8; measurement of the exact mass has so far proven unsuccessful.

1,1,1-Trifluoro-4-(4-(morpholine-4-carbonyl)phenyl)but-3-yn-2-one hydrate (4i • H₂O): Prepared by the general procedure A from (4-ethynylphenyl)(morpholino)methanone¹⁰ (703 mg, 3.26 mmol, 1.0 но он equiv), nBuLi (2.67 M in hexane, 1.22 mL, 3.26 mmol, 1.0 equiv), ethyl trifluoroacetate (467 μL, CF-3.91 mmol, 1.2 equiv), and BF3•Et2O (496 µL, 3.91 mmol, 1.2 equiv), purified by column chromatography (hexane/EtOAc) to give a pale yellow oil of the corresponding trifluoromethyl ketone. The oil solidified while standing at RT, which was washed with

CHCl₃ to afford the hydrate as a white solid (751 mg, 69%). m.p. 106–107 °C; IR (KBr) 3396, 2200, 1614, 1600, 1466, 1440, 1275, 1184, 1105, 994 cm⁻¹; ¹H NMR (400 MHz, d₆-DMSO) δ 8.17 (s, 2H), 7.59–7.53 (m, 2H), 7.49–7.43 (m, 2H), 3.60 (brs, 8H); ¹³C NMR (100 MHz, d₆-DMSO) δ 168.1, 136.5, 131.7, 127.6, 122.1 (q, J = 285.6 Hz), 121.6, 86.6 (q, J = 34.8 Hz), 86.2, 82.7, 66.0, 47.5, 42.1; ¹⁹F NMR (376 MHz, d₆-DMSO) δ -84.4; the exact mass was measured after the treatment with BnONH2•HCl in DMSO. HRMS (ESI): *m*/*z* calc'd for C22H20O3N2F3 [M + H]⁺: 417.1421, found: 417.1412.

1,1,1-Trifluoro-4-(thiophen-3-yl)but-3-yn-2-one (4j): Prepared by the general procedure A from 3-ethynylthiophene (2.00 g, 18.5 mmol, 1.0 equiv), nBuLi (2.66 M in hexane, 6.90 mL, 18.5 mmol, 1.0 equiv), ethyl trifluoroacetate (2.40 mL, 20.3 mmol, 1.1 equiv), and BF3•Et2O (2.80 mL, 22.2 mmol, 1.2 equiv), purified by column chromatography (hexane/EtOAc) and isolated as a colorless oil (2.4 g, 63%). IR (thin film) 3115, 2196, 1698, 1213, 1159, 1048 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (dd, J = 1.1, 2.9 Hz, 1H), 7.41 (dd, *J* = 2.9, 5.1 Hz, 1H), 7.31 (dd, *J* = 1.1, 5.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3 (q, *J* = 42.1 Hz), 137.4, 130.6, 127.1, 117.8, 115.0 (q, J = 286.6 Hz), 96.1, 84.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -77.7; measurement of the exact mass has so far proven unsuccessful.

4-Cyclohexyl-1,1,1-trifluorobut-3-yn-2-one (4k): Prepared by the general procedure A from cyclohexylacetylene (2.16 g, 19.9 mmol, 1.0 equiv), nBuLi (2.66 M in hexane, 7.52 mL, 19.9 mmol, 1.0 equiv), ethyl trifluoroacetate (2.86 mL, 23.9 mmol, 1.2 equiv), and BF3•Et2O (3.10 mL, 23.9 mmol, 1.2 equiv), CF. purified by column chromatography (hexane/EtOAc) and isolated as a colorless oil (2.4 g, 59%). IR (thin film) 2938, 2860, 2207, 1710, 1214, 1153, 920 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) & 2.69 (tt, J = 3.9, 8.5 Hz, 1H), 1.91–1.85 (m, 2H), 1.77–1.69 (m, 2H), 1.63–1.51 (m, 3H), 1.44–1.36 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5 (q, J = 41.8 Hz), 114.9 (q, J = 288.5 Hz), 108.8, 76.3, 31.1, 29.6, 25.6, 24.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -78.2; the exact mass was measured after the treatment with BnONH2•HCl in MeOH. HRMS (ESI): m/z calc'd for C17H19ONF3 [M + H]+: 310.1413, found: 310.1415.

4-(Cyclohex-1-en-1-yl)-1,1,1-trifluorobut-3-yn-2-one (41): Prepared by the general procedure А from 1-ethynylcyclohexene (3.00 g, 25.5 mmol, 1.0 equiv), nBuLi (2.66 M in hexane, 9.60 mL, 25.5 mmol, 1.0 equiv), ethyl trifluoroacetate (3.70 mL, 30.6 mmol, 1.2 equiv), and BF3•Et2O (3.98 mL, 30.6 mmol, 1.2 equiv), purified by column chromatography (hexane/EtOAc) and isolated as a colorless oil (3.8 g, 74%). IR (thin film) 2940, 2184, 1700, 1616, 1214, 1158, 1051, 1026 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ

6.73–6.71 (m, 1H), 2.25–2.21 (m, 4H), 1.76–1.57 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4 (q, J = 41.7 Hz), 148.1, 118.5, 115.0 (q, J = 286.7 Hz), 103.4, 82.2, 27.8, 26.7, 21.8, 21.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -77.9; measurement of the exact mass has so far proven unsuccessful.

1,1-Difluorodec-3-yn-2-one (11a): Prepared by the general procedure A from 1-octyne (3.5 mL, 23.7 mmol, 1.0 equiv),

CHF₂ mm

*n*BuLi (2.66 M in hexane, 8.9 mL, 23.7 mmol, 1.0 equiv), ethyl difluoroacetate (3.0 mL, 28.4 mmol, 1.2 equiv), and BF₃•Et₂O (3.6 mL, 28.4 mmol, 1.2 equiv), purified by column chromatography (hexane/EtOAc) and isolated as a colorless oil (3.1 g, 70%). **IR** (thin film) 2958,

2934, 2861, 2212, 1698, 1124, 1074 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.73 (t, *J* = 54.3 Hz, 1H), 2.47 (t, *J* = 7.1 Hz, 2H), 1.68–1.56 (m, 2H), 1.50–1.38 (m, 2H), 1.34–1.27 (m, 4H), 0.90 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6 (t, *J* = 29.5 Hz), 108.9 (t, *J* = 252.7 Hz), 104.0, 77.1, 31.3, 28.6, 27.4, 22.6, 19.5, 14.1.; ¹⁹F NMR (376 MHz, CDCl₃) δ –125.8 (d, *J* = 54.3 Hz); the exact mass was measured after the treatment with BnONH₂•HCl in MeOH. HRMS (ESI): *m*/*z* calc'd for C₁₇H₂₂ONF₂ [M + H]⁺: 294.1664, found: 294.1662.

1-Bromo-1,1-difluorodec-3-yn-2-one (11c): Prepared by the general procedure A from 1-octyne (3.5 mL, 23.7 mmol, 1.0 equiv), *n*BuLi (2.66 M in hexane, 8.9 mL, 23.7 mmol, 1.0 equiv), ethyl bromodifluoroacetate (3.7 mL, 28.4 mmol, 1.2 equiv), and BF₃•Et₂O (3.6 mL, 28.4 mmol, 1.2 equiv), purified by column chromatography (hexane/EtOAc) and isolated as a colorless oil (4.9 g, 77%). **IR** (thin

film) 2958, 2933, 2861, 2212, 1709, 1160, 1129 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.50 (t, *J* = 7.0 Hz, 2H), 1.71–1.60 (m, 2H), 1.47–1.41 (m, 2H), 1.39–1.21 (m, 4H), 0.90 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5 (t, *J* = 32.1 Hz), 113.0 (t, *J* = 316.9 Hz), 105.4, 75.0, 31.2, 28.6, 27.3, 22.6, 19.6, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ –63.3; measurement of the exact mass has so far proven unsuccessful.

3. Direct catalytic asymmetric aldol reaction of α -N₃ amide to CF₃ ketones

3-1. Optimization study

General procedure B (Table 1): To a flame dried test tube equipped with a magnetically stirred chip was added amide **2** (20.3 mg, 0.1 mmol, 1.0 equiv) and ligand (0.012 mmol, 12 mol%). In a glove box, metal source (0.01 mmol, 10 mol%) and additive (500 % w/w) were added to the test tube. After it was taken out from the glove box, THF (0.35 mL, 0.28 M) and CF₃ ketone **4a** (29.8 μ L, 0.105 mmol, 1.05 equiv) were added. The solution was stirred for 10 min at RT and 5 min at -40 °C before the addition of the solution of Barton's base (0.1 M in THF). The reaction was stirred for 6 h at the same temperature. After the addition of sat aq NH₄Cl at -40 °C, the solution was diluted with H₂O and EtOAc at RT and filtered through a pad of Celite. The aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried over Na₂SO₄, filtered, and removed under reduced pressure.

General procedure C (Table S1): To a flame dried test tube equipped with a magnetically stirred chip was added amide **2** (20.3 mg, 0.1 mmol, 1.0 equiv) and BHA **8** (8.6 mg, 0.012 mmol, 12 mol%). In a glove box, Cu(OTf)₂ (3.7 mg, 0.01 mmol, 10 mol%) and MS13X (101 mg, 500 % w/w) were added to the test tube. After it was taken out from the glove box, solvent (0.35 mL, 0.28 M) and CF₃ ketone **4a** (29.8 μ L, 0.105 mmol, 1.05 equiv) were added. The solution was stirred for 10 min at RT and 5 min at -40 °C before the addition of the solution of Barton's base (0.1 M, 100 μ L, 0.01 mmol, 10 mol%). The reaction was stirred for 6 h at the same temperature. After the addition of sat aq NH₄Cl at -40 °C, the solution was diluted with H₂O and EtOAc at RT and filtered through a pad of Celite. The aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried over Na₂SO₄, filtered, and removed under reduced pressure.

Table S1 Solvent Study

	$\begin{array}{c} O \\ CF_3 + H \\ N_3 \\ N \\ $	Cu(OI1) ₂ (10 mol%) (<i>R</i> , <i>R</i>)-BHA 8 (12 mol%) Barton's base (10 mol%) solvent, MS13X -40 °C, 6 h	TIPS N3 syn-5a	
entry	solvent	yield ^a (%)	anti/synª	ee ^b (%)
1	THF	78	22/78	93
2	Et ₂ O	3	42/58	71
3	1,4-dioxane	trace	nd	nd
4	CPME	trace	nd	nd
5	DME	40	24/76	95
6	toluene	trace	nd	nd
7	CH ₂ Cl ₂	44	59/41	64
8	CH ₃ CN	9	57/43	76
9	EtOAc	38	31/69	91

^{*a*}Yield and diastereomer ratio shown are from ¹H-NMR analysis on unpurified reaction mixture. ^{*b*}Enantiomeric excess was determined with normal phase HPLC on a chiral support. nd: not determined.

General procedure D (Table S2): To a flame dried test tube equipped with a magnetically stirred chip was added amide **2** (20.3 mg, 0.1 mmol, 1.0 equiv) and BHA **8** (8.6 mg, 0.012 mmol, 12 mol%). In a glove box, Cu(OTf)₂ (3.7 mg, 0.01 mmol, 10 mol%) and MS13X (101 mg, 500 % w/w) were added to the test tube. After it was taken out from the glove box, THF (0.35 mL, 0.28 M) and CF₃ ketone **4a** (29.8 μ L, 0.105 mmol, 1.05 equiv) were added. The solution was stirred for 10 min at RT and 5 min at -40 °C before the addition of the solution of Brønsted base (0.1 M in THF, 100 μ L, 0.01 mmol, 10 mol%). The reaction was stirred for 6 h at the same temperature. After the addition of sat aq NH₄Cl at - 40 °C, the solution was diluted with H₂O and EtOAc at RT and filtered through a pad of Celite. The aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried over Na₂SO₄, filtered, and removed under reduced pressure.

Table S2 Brønsted Base Effect

^{*a*}Yield and diastereomer ratio shown are from ¹H-NMR analysis on unpurified reaction mixture. ^{*b*}Enantiomeric excess was determined with normal phase HPLC on a chiral support.

3-2. Synthesis of BHA 10

N,N'-((1R,2R)-cyclohexane-1,2-diyl)bis(N-methoxy-3,3,3-triphenylpropanamide) (10): To a flame dried test tube equipped with a magnetically stirred chip was added BHA **8** (18 mg, 0.025 mmol, 1 equiv), NaH (60% in oil; 4 mg, 0.1 mmol, 4 equiv) and DMF (50 μ L). The suspension was cooled to 0 °C and MeI (6 μ L, 0.1 mmol, 4 equiv) was added. After 2 h, sat aq NH₄Cl and CHCl₃ were added. The aqueous phase was extracted with CHCl₃ (3x). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and removed under reduced pressure. The obtained residue was purified by silica gel column chromatography eluting with hexane/EtOAc to give **10** (21 mg, 82%) as a colorless oil. **IR** (thin film) 3019, 1519, 1424, 1215, 757 cm⁻¹; **1H NMR** (400 MHz, CDCl₃) δ 7.30–7.08 (m, 30H), 4.26 (brs, 2H), 4.01–3.97 (m,

2H), 3.73–3.68 (m, 2H), 3.29 (s, 6H), 1.57–1.45 (m, 6H), 1.17–0.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 147.3, 129.5, 127.8, 126.0, 64.7, 56.6, 55.5, 43.8, 28.5, 24.8; HRMS (ESI): m/z calc'd for C₅₀H₅₁O₄N₂ [M + H]⁺: 743.3843, found: 743.3841. [α] $_{D^{27}}$ –6.0 (*c* 0.54, CHCl₃).

3-3. Control experiment

3-4. Substrate scope and limitations

General procedure E (Table 2 and 3): To a flame dried test tube equipped with a magnetically stirred chip was added amide **2** (1.0 equiv) and BHA **8** (12 mol%). In a glove box, $Cu(OTf)_2$ (10 mol%) and MS13X (500 % w/w) were added to the test tube. After it was taken out from the glove box, THF (0.28 M) and CF₃ ketone (1.2 equiv) were added. The solution was stirred for 10 min at RT and 5 min at -40 °C before the addition of the solution of Barton's base (0.1 M in THF, 5 or 10 mol%). After the addition of sat aq NH₄Cl at -40 °C, the solution was diluted with H₂O and EtOAc at RT and filtered through a pad of Celite. The aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried over Na₂SO₄, filtered, and removed under reduced pressure.

(2R,3S)-2-Azido-1-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)-3-hydroxy-3-(trifluoromethyl)-5-(triisopropylsilyl)pe

nt-4-yn-1-one (5a): Prepared by the general procedure E from amide **2** (40.6 mg, 0.20 mmol, 1.0 equiv), ketone **4a** (68.0 μ L, 0.24 mmol, 1.2 equiv), Barton's base (0.1 M in THF, 100 μ L, 10 μ mol, 5 mol%), Cu(OTf)₂ (7.4 mg, 0.020 mmol, 10 mol%), and BHA **8** (17.2 mg, 0.024 mmol, 12 mol%), stirred for 6 h at –40 °C, purified by column chromatography (hexane/EtOAc), and isolated as a

colorless oil (90.5 mg, 94%). **IR** (thin film) 3019, 2400, 2224, 1560, 1214, 771 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.12–8.06 (m, 1H), 7.59 (dd, *J* = 1.4, 7.5 Hz, 1H), 7.07–6.98 (m, 2H), 5.80 (s, 1H), 4.30 (ddd, *J* = 5.7, 10.0, 12.3 Hz, 1H), 4.13 (ddd, *J* = 7.6, 10.0, 12.3 Hz, 1H), 3.24–3.06 (m, 2H), 1.14–1.11 (m, 21H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.5, 154.7, 145.7, 135.1, 127.1, 123.5 (q, *J* = 286.1 Hz), 119.9, 98.1, 93.0, 74.6 (q, *J* = 30.6 Hz), 57.8, 46.7, 24.5, 18.6, 11.2; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –79.0; **HRMS** (ESI): *m*/*z* calc'd for C₂₂H₃₁O₂N₅F₃Si [M + H]⁺: 482.2194, found: 482.2187. [α] $_{D^{26}}$ –49.6 (*c* 0.27, CHCl₃, 94% ee sample); HPLC analysis (CHIRALPAK AD-3 (ϕ = 0.46 cm x 25 cm), 2 propanol/*n*-hexane = 1/19, flow rate = 1.0 mL/min, detection at 254 nm, t_R = 6.4 min (minor), 8.0 min (major)):

Racemic sample

Reaction sample

(2R,3S)-2-Azido-6-((tert-butyldimethylsilyl)oxy)-1-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)-3-hydroxy-3-(trifluor

omethyl)hex-4-yn-1-one (5b): Prepared by the general procedure E from amide 2 (40.6 mg, 0.20 mmol, 1.0 equiv), ketone 4b (62.8 μ L, 0.24 mmol, 1.2 equiv), Barton's base (0.1 M in THF, 100 μ L, 10 μ mol, 5 mol%), Cu(OTf)₂ (7.4 mg, 0.020 mmol, 10 mol%), and BHA 8 (17.2 mg, 0.024 mmol, 12 mol%), stirred for 6 h at -40 °C, purified by column chromatography (hexane/EtOAc), and isolated as a colorless oil (80.7 mg, 86%). IR (thin film) 3019, 2399, 1429,

1215, 767 cm⁻¹; ¹**H** NMR (400 MHz, CDCl₃) δ 8.14–8.07 (m, 1H), 7.60 (dd, *J* = 1.5, 7.4 Hz, 1H), 7.04 (dd, *J* = 5.2, 7.4 Hz, 1H), 6.96 (s, 1H), 5.85 (s, 1H), 4.46 (s, 2H), 4.29 (ddd, *J* = 5.8, 9.9, 12.4 Hz, 1H), 4.12 (ddd, *J* = 7.7, 9.9, 12.4 Hz, 1H), 3.24–3.07 (m, 2H), 0.92 (s, 9H), 0.15 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 154.5, 145.8, 135.1, 127.0, 123.5 (q, *J* = 287.6 Hz), 120.0, 88.6, 76.4, 74.7 (q, *J* = 30.8 Hz), 57.8, 51.8, 46.6, 25.9, 24.5, 18.4, –5.2; ¹⁹F NMR (376 MHz, CDCl₃) δ –78.7; HRMS (ESI): *m*/*z* calc'd for C₂₀H₂₇O₃N₅F₃Si [M + H]⁺: 470.1830, found: 470.1830. [α] $_{D^{27}}$ –90.3 (*c* 0.60, CHCl₃, 94% ee sample); HPLC analysis (CHIRALPAK IA (ϕ = 0.46 cm x 25 cm), 2 propanol/*n*-hexane = 1/19, flow rate = 1.0 mL/min, detection at 254 nm, t_R = 8.2 min (minor), 9.6 min (major)):

Reaction sample

(2R,3S)-2-Azido-1-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)-3-hydroxy-3-(trifluoromethyl)undec-4-yn-1-one (5c):F₃C OH O F₃C OH O C OH O C

ⁿC₆H₁₃

Prepared by the general procedure E from amide **2** (40.6 mg, 0.20 mmol, 1.0 equiv), ketone **4c** (49.0 μ L, 0.24 mmol, 1.2 equiv), Barton's base (0.1 M in THF, 200 μ L, 20 μ mol, 10 mol%), Cu(OTf)₂ (7.4 mg, 0.020 mmol, 10 mol%), and BHA **8** (17.2 mg, 0.024 mmol, 12 mol%), stirred for 6 h at -40 °C, purified by column chromatography (hexane/EtOAc), and isolated as a colorless

oil (75.3 mg, 92%). **IR** (thin film) 3019, 2399, 1523, 1425, 1215, 757 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.13–8.04 (m, 1H), 7.63–7.56 (m, 1H), 7.08–6.96 (m, 2H), 5.67 (s, 1H), 4.32 (ddd, J = 5.3, 10.1, 12.3 Hz, 1H), 4.12 (ddd, J = 7.8, 10.1, 12.3 Hz, 1H), 3.24–3.05 (m, 2H), 2.33 (t, J = 7.2 Hz, 2H), 1.64–1.57 (m, 2H), 1.50–1.38 (m, 2H), 1.38–1.24 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.6, 154.7, 145.6, 135.1, 127.2, 123.7 (q, J = 284.9 Hz), 119.9, 91.8, 74.5 (q, J = 30.6 Hz), 71.9, 57.9, 46.8, 31.4, 28.6, 27.9, 24.6, 22.7, 19.0, 14.2; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –79.2; **HRMS** (ESI): *m/z* calc'd for C₁₉H₂₃O₂N₅F₃ [M + H]⁺: 410.1798, found: 410.1797. [α]D²⁷ –56.2 (*c* 0.57, CHCl₃, 96% ee sample); HPLC analysis (CHIRALPAK AD-3 ($\phi = 0.46$ cm x 25 cm), 2 propanol/*n*-hexane = 1/19, flow rate = 1.0 mL/min, detection at 254 nm, tr_R = 18.8 min (minor), 20.8 min (major)):

(2R,3S) - 2 - Azido - 9 - ((tert - butyldiphenylsilyl) oxy) - 1 - (2,3 - dihydro - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy - 3 - (trifluor - 1H - pyrrolo[2,3 - b] pyrrolo[3,3 - b] pyrrol

omethyl)non-4-yn-1-one (5d): Prepared by the general procedure E from amide 2 (40.6 mg, 0.20 mmol, 1.0 equiv), ketone 4d (96.2 μ L, 0.24 mmol, 1.2 equiv), Barton's base (0.1 M in THF, 200 μ L, 20 μ mol, 10 mol%), Cu(OTf)₂ (7.4 mg, 0.020 mmol, 10 mol%), and BHA 8 (17.2 mg, 0.024 mmol, 12 mol%), stirred for 6 h at –40 °C, purified by column

chromatography (hexane/EtOAc), and isolated as a colorless oil (120.8 mg, 95%). **IR** (thin film) 3019, 2399, 1421, 1215, 758 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.17–8.10 (m, 1H), 7.67–7.59 (m, 4H), 7.56 (dd, *J* = 1.5, 7.4 Hz, 1H), 7.45–7.30 (m, 6H), 6.99 (dd, *J* = 5.1, 7.4 Hz, 1H), 5.98 (s, 2H), 4.11 (dd, *J* = 7.8, 9.2 Hz, 2H), 3.67 (t, *J* = 6.0 Hz, 2H), 3.15 (ddt, *J* = 1.2, 7.8, 9.7 Hz, 2H), 3.06–2.94 (m, 2H), 1.81–1.67 (m, 2H), 1.66–1.57 (m, 2H), 1.00 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃) δ 163.5, 155.3, 147.7, 146.5, 138.0, 135.7, 134.3, 133.9, 129.8, 127.8, 125.9, 119.3, 116.4 (q, *J* = 289.6 Hz), 76.3 (q, *J* = 30.0 Hz), 63.3, 52.3, 45.8, 32.3, 27.0, 24.7, 24.4, 23.7, 19.3; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –74.1; **HRMS** (ESI): *m*/z calc'd for C₃₃H₃₇O₃N₅F₃Si [M + H]⁺: 636.2612, found: 636.2600. [α] $_{D^{25}}$ 3.0 (*c* 0.19, CHCl₃, 94% ee sample); HPLC analysis (CHIRALCEL OD-3 (ϕ = 0.46 cm x 25 cm), 2 propanol/*n*-hexane = 1/19, flow rate = 1.0 mL/min, detection at 254 nm, t_R = 12.9 min (major), 14.3 min (minor)):

(2R,3S)-2-Azido-9-chloro-1-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)-3-hydroxy-3-(trifluoromethyl)non-4-yn-1-on

e (5e): Prepared by the general procedure E from amide **2** (40.6 mg, 0.20 mmol, 1.0 equiv), ketone **4e** (42.2 μ L, 0.24 mmol, 1.2 equiv), Barton's base (0.1 M in THF, 200 μ L, 20 μ mol, 10 mol%), Cu(OTf)₂ (7.4 mg, 0.020 mmol, 10 mol%), and BHA **8** (17.2 mg, 0.024 mmol, 12 mol%), stirred for 6 h at –40 °C, purified by column chromatography (hexane/EtOAc), and

isolated as a pale yellow oil (73.1 mg, 88%). **IR** (thin film) 3019, 2399, 1521, 1427, 1215, 1046, 928, 756 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (dd, J = 1.8, 5.2 Hz, 1H), 7.60 (dd, J = 1.4, 7.4 Hz, 1H), 7.13 (s, 1H), 7.07–7.01 (m, 1H), 5.63 (s, 1H), 4.34 (ddd, J = 5.1, 10.1, 12.3 Hz, 1H), 4.13 (ddd, J = 7.9, 10.3, 12.3 Hz, 1H), 3.59 (t, J = 6.5 Hz, 2H), 3.28–3.05 (m, 2H), 2.40 (t, J = 6.9 Hz, 2H), 2.01–1.92 (m, 2H), 1.81–1.75 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.4, 154.7, 145.6, 135.2, 134.6, 127.2, 123.7 (q, J = 289.4 Hz), 120.0, 90.7, 74.4 (q, J = 30.4 Hz), 72.8, 57.8, 46.8, 44.7, 31.5, 25.0, 24.6, 18.3; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –79.2; **HRMS** (ESI): *m/z* calc'd for C₁₇H₁₈O₂N₅ClF₃ [M + H]⁺: 416.1096, found: 416.1097. [α]p²⁷ –111.6 (*c* 0.06, CHCl₃, 96% ee sample); HPLC analysis (CHIRALCEL OZ-H ($\phi = 0.46$ cm x 25 cm), 2 propanol/*n*-hexane = 1/9, flow rate = 1.0 mL/min, detection at 254 nm, t_R = 11.4 min (minor), 15.1 min (major)):

Racemic sample

Reaction sample

(2R,3S)-2-Azido-1-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)-3-hydroxy-5-(p-tolyl)-3-(trifluoromethyl)pent-4-yn-1-o

ne (5f): Prepared by the general procedure E from amide 2 (406 mg, 0.20 mmol, 1.0 equiv), ketone 4f (342 μL, 0.24 mmol, 1.2 equiv), Barton's base (0.1 M in THF, 1.0 mL, 0.10 mmol, 5 mol%), Cu(OTf)2 (36.1 mg, 0.10 mmol, 5 mol%), and BHA 8 (89.4 mg, 0.12 mmol, 6 mol%), stirred for 6 h at -40 °C, purified by column chromatography (hexane/EtOAc), and isolated

as a pale brown oil (756 mg, 91%). IR (thin film) 3357, 2944, 2831, 2399, 1450, 1417, 1027 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) & 8.20 (dd, J = 1.7, 5.1 Hz, 1H), 7.54 (dd, J = 1.3, 7.5 Hz, 1H), 7.10–6.97 (m, 5H), 6.52 (s, 1H), 5.46 (s, 1H), 4.21–4.17 (m, 2H), 3.22–2.94 (m, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 154.5, 146.7, 139.9, 134.5, 131.8, 129.2, 126.4, 122.8 (q, J = 284.0 Hz), 119.9, 117.8, 88.9, 81.8, 74.0 (q, J = 26.8 Hz), 59.3, 45.9, 24.2, 21.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -77.6; HRMS (ESI): *m*/*z* calc'd for C₂₀H₁₆O₂N₅F₃Na [M + Na]⁺: 438.1148, found: 438.1139. [α]_{D²⁷} 3.2 (*c* 0.07, CHCl₃, 90% ee sample); HPLC analysis (CHIRALPAK AD-3 ($\phi = 0.46 \text{ cm x } 25 \text{ cm}$), 2 propanol/*n*-hexane = 1/9, flow rate = 1.0 mL/min, detection at 254 nm, t_{R} = 17.6 min (major), 21.8 min (minor)):

(2R,3S)-2-Azido-5-(4-chlorophenyl)-1-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)-3-hydroxy-3-(trifluoromethyl)pent -4-yn-1-one (5g): Prepared by the general procedure E from amide 2 (40.6 mg, 0.20 mmol, 1.0 equiv), ketone 4g (55.8 mg, 0.24 mmol, 1.2 equiv), Barton's base (0.1 M in THF, 200 μL, 20 µmol, 10 mol%), Cu(OTf)2 (7.4 mg, 0.020 mmol, 10 mol%), and BHA 8 (17.2 mg, 0.024 mmol, 12 mol%), stirred for 6 h at -40 °C, purified by column chromatography (hexane/EtOAc), and

isolated as a pale brown solid (83.6 mg, 96%). m.p. 154–155 °C; IR (thin film) 3019, 2399, 1214, 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (dd, J = 1.7, 5.2 Hz, 1H), 7.62 (dd, J = 1.4, 7.4 Hz, 1H), 7.56–7.50 (m, 2H), 7.38 (s, 1H), 7.35–7.29 (m, 2H), 7.06 (dd, J = 5.2, 7.4 Hz, 1H), 5.72 (s, 1H), 4.36 (ddd, J = 5.0, 10.2, 12.3 Hz, 1H), 4.15 (ddd, J = 8.0, 10.2, 12.3 Hz, 1H), 3.29–3.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 154.5, 145.4, 135.6, 135.2, 133.5, 128.7, 127.2, 123.5 (q, J = 288.9) Hz), 120.0, 119.6, 88.4, 81.3, 74.8 (q, J = 31.1 Hz), 57.7, 46.8, 24.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –78.8; HRMS (ESI): m/z calc'd for C19H14O2N5ClF3 [M + H]+: 436.0783, found: 436.0782. [α]D²⁶ -32.0 (c 0.23, CHCl3, 95% ee sample); HPLC analysis (CHIRALCEL OZ-H ($\phi = 0.46$ cm x 25 cm), 2 propanol/*n*-hexane = 1/19, flow rate = 1.0 mL/min, detection at 254 nm, t_R = 14.9 min (minor), 23.4 min (major)):

Single crystals of **5g** were obtained by slow diffusion of hexanes to the solution of **5g** in CHCl₃ at RT. A suitable crystal was selected and the sample was measured on a Rigaku R-AXIS RAPID diffractometer using graphite monochromated Cu-Ka radiation. The data were collected at 93 K. Refined structure and crystallographic parameters are summarized in Fig. S1 and Table S3. CCDC 1498996 contains the supplementary crystallographic data for **5g**.

Fig. S1 ORTEP diagram of 5g.

Table S3 Selected crystal data	of 5g .
Empirical Formula	C19H13ClF3N5O2
Formula Weight	435.79
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.200 x 0.200 x 0.100 mm
Crystal System	orthorhombic
Lattice Parameters	
a	10.7343(3) Å
b	12.0336(3) Å
с	28.9712(7) Å
V	3742.28(17) Å ³
Space Group	P212121 (#19)
Z value	8
D _{calc}	1.547 g/cm ³
Fooo	1776.00

(2R,3S)-5-(4-(1,3-Dioxolan-2-yl)phenyl)-2-azido-1-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)-3-hydroxy-3-(trifluoro

methyl)pent-4-yn-1-one (5h): Prepared by the general procedure E from amide **2** (40.6 mg, 0.20 mmol, 1.0 equiv), ketone **4h** (64.9 mg, 0.24 mmol, 1.2 equiv), Barton's base (0.1 M in THF, 200 μL, 20 μmol, 10 mol%), Cu(OTf)₂ (7.4 mg, 0.020 mmol, 10 mol%), and BHA **8** (17.2 mg, 0.024 mmol, 12 mol%), stirred for 6 h at -40 °C, purified by column chromatography (hexane/EtOAc), and isolated as a pale yellow oil (77.6 mg, 94%). **IR** (thin film) 3364, 2945,

2832, 1449, 1418, 1027 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (dd, *J* = 1.8, 5.2 Hz, 1H), 7.65–7.58 (m, 3H), 7.50–7.43 (m, 2H), 7.32 (s, 1H), 7.05 (dd, *J* = 5.2, 7.4 Hz, 1H), 5.83 (s, 1H), 5.77 (s, 1H), 4.35 (ddd, *J* = 5.2, 10.1, 12.3 Hz, 1H), 4.21–3.99 (m, 5H), 3.29–3.06 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.4, 154.6, 145.6, 139.4, 135.3, 132.5, 127.3, 123.6 (q, *J* = 289.2 Hz), 122.0, 120.0, 103.3, 89.4, 81.0, 75.1 (q, *J* = 30.9 Hz), 65.4, 58.0, 46.9, 24.6; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –78.7; **HRMS** (ESI): *m/z* calc'd for C₂₂H₁₉O₄N₅F₃ [M + H]⁺: 474.1384, found: 474.1383. [α]_{D²⁷} –103.9 (*c* 0.16, CHCl₃, 91% ee sample); HPLC analysis (CHIRALCEL OZ–H (ϕ = 0.46 cm x 25 cm), 2 propanol/*n*-hexane = 1/9, flow rate = 1.0 mL/min, detection at 254 nm, t_R = 25.9 min (minor), 39.7 min (major)):

(2R,3S)-2-Azido-1-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)-3-hydroxy-5-(4-(morpholine-4-carbonyl)phenyl)-3-(tri

fluoromethyl)pent-4-yn-1-one (5i): CF₃ ketone **4i** hydrate (79.0 mg, 0.24 mmol, 1.2 equiv) was treated with CaSO₄ (316 mg, 400% w/w) in dry toluene (4.0 mL) under reflux for 24 h. After cooled to RT, the suspension was filtered through celite, and the filtrate was removed under reduced pressure. The obtained ketone was subjected to the catalytic conditions described in General Procedure E, with amide **2** (40.6 mg, 0.20

mmol, 1.0 equiv), Barton's base (0.1 M in THF, 200 μL, 20 μmol, 10 mol%), Cu(OTf)² (7.4 mg, 0.020 mmol, 10 mol%), and BHA **8** (17.2 mg, 0.024 mmol, 12 mol%). The reaction was stirred for 6 h at –40 °C, and the crude material was purified by column chromatography (hexane/EtOAc) to give **5i** as a pale brown oil (95.6 mg, 93%). **IR** (thin film) 3347, 2944, 2831, 1449, 1029, 757 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃) δ 8.10 (dd, *J* = 1.8, 5.3 Hz, 1H), 7.67–7.61 (m, 3H), 7.50–7.33 (m, 3H), 7.05 (dd, *J* = 5.3, 7.5 Hz, 1H), 5.71 (s, 1H), 4.36 (ddd, *J* = 4.9, 10.2, 12.3 Hz, 1H), 4.22–4.07 (m, 1H), 3.99–3.56 (m, 6H), 3.42 (brs, 2H), 3.27–3.03 (m, 2H); ¹³C **NMR** (100 MHz, CDCl₃) δ 169.7, 166.2, 154.6, 145.5, 136.2, 135.4, 132.6, 127.3, 123.6 (q, *J* = 285.9 Hz), 122.9, 120.1, 88.7, 82.0, 75.0 (q, *J* = 31.1 Hz), 67.0, 57.9, 48.2, 46.9, 42.6, 24.6; ¹⁹F **NMR** (376 MHz, CDCl₃) δ –78.7; **HRMS** (ESI): *m*/z calc'd for C₂₄H₂₂O₄N₆F₃ [M + H]⁺: 515.1649, found: 515.1645. [α]_D²⁶ –46.4 (*c* 0.70, CHCl₃, 92% ee sample); HPLC analysis (CHIRALPAK IA (ϕ = 0.46 cm x 25 cm), 2 propanol/*n*-hexane = 1/4, flow rate = 1.0 mL/min, detection at 254 nm, t_R = 31.2 min (major), 46.1 min (minor)):

(2R,3S)-2-Azido-1-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)-3-hydroxy-5-(thiophen-3-yl)-3-(trifluoromethyl)pent-4

-yn-1-one (5j): Prepared by the general procedure E from amide **2** (40.6 mg, 0.20 mmol, 1.0 equiv), ketone **4j** (34.0 μL, 0.24 mmol, 1.2 equiv), Barton's base (0.1 M in THF, 100 μL, 10 μmol, 5 mol%), Cu(OTf)² (7.4 mg, 0.020 mmol, 10 mol%), and BHA **8** (17.2 mg, 0.024 mmol, 12 mol%), stirred for 6 h at –40 °C, purified by column chromatography (hexane/EtOAc), and isolated as a pale brown

oil (67.6 mg, 83%). **IR** (thin film) 3347, 2944, 2831, 2399, 1449, 1418, 1028, 757 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (dd, *J* = 1.5, 5.2 Hz, 1H), 7.66 (dd, *J* = 1.1, 3.0 Hz, 1H), 7.64–7.57 (m, 1H), 7.33–7.21 (m, 3H), 7.05 (dd, *J* = 5.2, 7.5 Hz, 1H), 5.76 (s, 1H), 4.35 (ddd, *J* = 5.1, 10.1, 12.3 Hz, 1H), 4.14 (ddd, *J* = 7.9, 10.1, 12.3 Hz, 1H), 3.29–3.05 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.4, 154.7, 145.6, 135.3, 131.3, 130.1, 127.3, 125.5, 123.6 (q, *J* = 285.8 Hz), 120.3, 120.1, 85.1, 80.3, 75.2 (q, *J* = 30.9 Hz), 57.9, 46.9, 24.6; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –78.8; **HRMS** (ESI): *m/z* calc'd for C₁₇H₁₂O₂N₅F₃NaS [M + Na]⁺:

430.0556, found: 430.0555. [α] $_{D^{28}}$ –46.2 (*c* 0.18, CHCl₃, 91% ee sample); HPLC analysis (CHIRALPAK IC (ϕ = 0.46 cm x 25 cm), 2 propanol/*n*-hexane = 1/9, flow rate = 1.0 mL/min, detection at 254 nm, t_R = 14.9 min (major), 16.9 min (minor)):

(2R,3S)-2-Azido-5-cyclohexyl-1-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)-3-hydroxy-3-(trifluoromethyl)pent-4-yn-

1-one (5k): Prepared by the general procedure E from amide **2** (40.6 mg, 0.20 mmol, 1.0 equiv), ketone **4k** (44.2 μ L, 0.24 mmol, 1.2 equiv), Barton's base (0.1 M in THF, 200 μ L, 20 μ mol, 10 mol%), Cu(OTf)₂ (7.4 mg, 0.020 mmol, 10 mol%), and BHA **8** (17.2 mg, 0.024 mmol, 12 mol%), stirred for 6 h at –40 °C, purified by column chromatography (hexane/EtOAc), and isolated as a pale yellow oil (66.8 mg, 82%). **IR** (thin film) 3348, 2944, 2832, 2520, 1655, 1449, 1417, 1028 cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.1 (dd, *J* = 1.5, 5.3 Hz, 1H), 7.59 (dd, *J* = 1.5, 7.4 Hz, 1H), 7.12 (s, 1H), 7.02 (dd, *J* = 5.2, 7.4 Hz, 1H), 5.63 (s, 1H), 4.32 (ddd, *J* = 5.3, 10.1, 12.3 Hz, 1H), 4.13 (ddd, *J* = 7.8, 10.1, 12.3 Hz, 1H), 3.28–3.03 (m, 2H), 2.53 (tt, *J* = 3.8, 9.2 Hz, 1H), 1.88–1.85 (m, 2H), 1.77–1.70 (m, 2H), 1.65–1.46 (m, 3H), 1.40–1.19 (m, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.5, 154.7, 145.6, 135.2, 127.2, 123.7 (q, *J* = 281.6 Hz), 119.9, 95.3, 74.5 (q, *J* = 30.6 Hz), 71.9, 57.8, 46.8, 31.9, 29.2, 25.9, 24.9, 24.6; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –79.3; **HRMS** (ESI): *m*/*z* calc'd for C₁₉H₂₀O₂N₅F₃Na [M + Na]⁺: 430.1461, found: 430.1456. [α] $_{D^{28}}$ –87.0 (*c* 0.16, CHCl₃, 83% ee sample); HPLC analysis (CHIRALPAK AD-3 (ϕ = 0.46 cm x 25 cm), 2 propanol/*n*-hexane = 1/19, flow rate = 1.0 mL/min, detection at 254 nm, t_R = 17.1 min (minor), 24.8 min (major)):

(2*R*,3*S*)-2-Azido-3-(difluoromethyl)-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxyundec-4-yn-1-one (12a): F₂HC_OHO Prepared by the general procedure E from amide 2 (20.3 mg, 0.10 mmol, 1.0 equiv), ketone **11a**

Prepared by the general procedure E from amide **2** (20.3 mg, 0.10 mmol, 1.0 equiv), ketone **11a** (44.8 μ L, 0.12 mmol, 1.2 equiv), Barton's base (0.1 M in THF, 100 μ L, 10 μ mol, 10 mol%), Cu(OTf)₂ (3.7 mg, 0.010 mmol, 10 mol%), and BHA **8** (8.6 mg, 0.012 mmol, 12 mol%), stirred for 6 h at -40 °C, purified by column chromatography (hexane/EtOAc), and isolated as a pale

brown oil (23.0 mg, 75%). **IR** (thin film) 3020, 2253, 2116, 1671, 1600, 1429, 1215, 908 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.13–8.06 (m, 1H), 7.58 (dd, *J* = 1.5, 7.4 Hz, 1H), 7.01 (dd, *J* = 5.2, 7.4 Hz, 1H), 6.36 (s, 1H), 5.96 (t, *J* = 56.0 Hz, 1H), 5.55 (s, 1H), 4.34 (ddd, *J* = 5.1, 10.2, 12.3 Hz, 1H), 4.12 (ddd, *J* = 7.9, 10.2, 12.3 Hz, 1H), 3.26–3.04 (m, 2H), 2.31 (t, *J* = 7.2 Hz, 2H), 1.67–1.48 (m, 2H), 1.46–1.38 (m, 2H), 1.36–1.21 (m, 4H), 0.89 (t, *J* = 6.8 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.8, 154.9, 145.6, 135.0, 127.1, 119.8, 114.7 (t, *J* = 250.0 Hz), 91.8, 74.3 (t, *J* = 23.3 Hz), 73.3, 58.3, 46.7, 31.4, 28.7, 28.1, 24.6, 22.7, 19.1, 14.2; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –129.3 (dd, *J* = 56.0, 273.4 Hz), –132.9 (dd, *J* = 56.0, 273.4 Hz); **HRMS** (ESI): *m*/*z* calc'd for C₁₉H₂₃O₂N₅F₂Na [M + Na]⁺: 414.1712, found: 414.1706. [α]_{D²⁶} –27.7 (*c* 0.19, CHCl₃, 90% ee sample); HPLC analysis (CHIRALPAK AD-3 (ϕ = 0.46 cm x 25 cm), 2 propanol/*n*-hexane = 1/19, flow rate = 1.0 mL/min, detection at 254 nm, t_R = 22.4 min (minor), 25.9 min (major)):

Racemic sample

(2R,3S)-2-Azido-3-(chlorodifluoromethyl)-1-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)-3-hydroxyundec-4-yn-1-one

ⁿC₆H₁₃ N ^NN₃ N

(12b): Prepared by the general procedure E from amide 2 (20.3 mg, 0.10 mmol, 1.0 equiv), ketone 11b (50.8 μ L, 0.12 mmol, 1.2 equiv), Barton's base (0.1 M in THF, 100 μ L, 10 μ mol, 10 mol%), Cu(OTf)₂ (3.7 mg, 0.010 mmol, 10 mol%), and BHA 8 (8.6 mg, 0.012 mmol, 12 mol%), stirred for 6 h at -40 °C, purified by column chromatography (hexane/EtOAc), and isolated as a

colorless oil (27.3 mg, 80%). **IR** (thin film) 3019, 2399, 1524, 1426, 1215, 759 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.12–8.07 (m, 1H), 7.59 (dd, *J* = 1.5, 7.5 Hz, 1H), 7.28 (s, 1H), 7.02 (dd, *J* = 5.2, 7.5 Hz, 1H), 5.77 (s, 1H), 4.32 (ddd, *J* = 5.2, 10.1, 12.3 Hz, 1H), 4.12 (ddd, *J* = 7.8, 10.1, 12.3 Hz, 1H), 3.25–3.05 (m, 2H), 2.33 (t, *J* = 7.1 Hz, 2H), 1.67–1.57 (m, 2H), 1.49–1.38 (m, 2H), 1.37–1.24 (m, 4H), 0.89 (t, *J* = 6.8 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.8, 154.7, 145.6, 135.1, 129.7 (t, *J* = 302.5 Hz), 127.2, 119.9, 92.1, 78.4 (t, *J* = 27.2 Hz), 72.7, 58.2, 46.8, 31.4, 28.6, 27.9, 24.6, 22.7, 19.1, 14.2; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –62.3 (d, *J* = 161.3 Hz), -64.4 (d, *J* = 161.3 Hz); **HRMS** (ESI): *m*/*z* calc'd for C19H22O2N5ClF2Na [M + Na]⁺: 448.1322, found: 448.1317. [α] ρ ²⁷ –24.5 (*c* 0.16, CHCl₃, 93% ee sample); HPLC analysis (CHIRALCEL OD–3 (ϕ = 0.46 cm x 25 cm), 2 propanol/*n*-hexane = 1/19, flow rate = 1.0 mL/min, detection at 254 nm, t_R = 13.1 min (major), 14.9 min (minor)):

(2R,3S) - 2 - Azido - 3 - (bromodifluoromethyl) - 1 - (2,3 - dihydro - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy undec - 4 - yn - 1 - one (2,3 - b) - 2 - Azido - 3 - (bromodifluoromethyl) - 1 - (2,3 - dihydro - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy undec - 4 - yn - 1 - one (2,3 - b) - 2 - Azido - 3 - (bromodifluoromethyl) - 1 - (2,3 - dihydro - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy undec - 4 - yn - 1 - one (2,3 - b) - 2 - Azido - 3 - (bromodifluoromethyl) - 1 - (2,3 - dihydro - 1H - pyrrolo[2,3 - b] pyridin - 1 - yl) - 3 - hydroxy undec - 4 - yn - 1 - one (2,3 - b) - 2 - Azido - 3 - (bromodifluoromethyl) - 3 - hydroxy undec - 4 - yn - 1 - one (2,3 - b) - 2 - Azido - 3 - (bromodifluoromethyl) - 3 - hydroxy undec - 4 - yn - 1 - one (2,3 - b) - 2 - Azido - 3 - (bromodifluoromethyl) - 3 - hydroxy undec - 4 - yn - 1 - one (2,3 - b) - 2 - Azido - 3 - (bromodifluoromethyl) - 3 - hydroxy undec - 4 - yn - 1 - one (2,3 - b) - 2 - (bromodifluoromethyl) - 3 - hydroxy undec - 4 - yn - 1 - one (2,3 - b) - 2 - (bromodifluoromethyl) - 3 - hydroxy undec - 4 - yn - 1 - one (2,3 - b) - 2 - (bromodifluoromethyl) - 3 - hydroxy undec - 4 - yn - 1 - one (2,3 - b) - 2 - (bromodifluoromethyl) - 3 - hydroxy undec - 4 - yn - 1 - one (2,3 - b) - 2 - (bromodifluoromethyl) - 3 - (b

ⁿC₆H₁₃ N N N

(12c): Prepared by the general procedure E from amide 2 (20.3 mg, 0.10 mmol, 1.0 equiv), ketone 11c (51.4 μ L, 0.12 mmol, 1.2 equiv), Barton's base (0.1 M in THF, 200 μ L, 200 μ mol, 20 mol%), Cu(OTf)₂ (7.4 mg, 0.020 mmol, 20 mol%), and BHA 8 (17.2 mg, 0.024 mmol, 24 mol%), stirred for 6 h at -40 °C, purified by column chromatography (hexane/EtOAc), and isolated as a pale

yellow oil (30.0 mg, 78%). **IR** (thin film) 3019, 2399, 1680, 1525, 1429, 1215, 759 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (dd, *J* = 1.8, 5.1 Hz, 1H), 7.59 (dd, *J* = 1.4, 7.5 Hz, 1H), 7.35 (s, 1H), 7.03 (dd, *J* = 5.1, 7.5 Hz, 1H), 5.77 (s, 1H), 4.32 (ddd, *J* = 1.4, 7.5 Hz, 1H), 7.35 (s, 1H), 7.03 (dd, *J* = 5.1, 7.5 Hz, 1H), 5.77 (s, 1H), 4.32 (ddd, *J* = 5.1, 7.5 Hz, 1H), 5.77 (s, 1H), 4.32 (ddd, *J* = 1.4, 7.5 Hz, 1H), 7.35 (s, 1H), 7.03 (dd, *J* = 5.1, 7.5 Hz, 1H), 5.77 (s, 1H), 4.32 (ddd, *J* = 5.1, 7.5 Hz, 1H), 5.77 (s, 1H), 4.32 (ddd, *J* = 5.1, 7.5 Hz, 1H), 7.59 (dd, *J* = 5.1, 7.5 Hz, 1H), 5.77 (s, 1H), 4.32 (ddd, *J* = 5.1, 7.5 Hz, 1H), 5.77 (s, 1H), 4.32 (ddd, *J* = 5.1, 7.5 Hz, 1H), 5.77 (s, 1H), 4.32 (ddd, *J* = 5.1, 7.5 Hz, 1H), 5.77 (s, 1H), 4.32 (ddd, *J* = 5.1, 7.5 Hz, 1H), 5.77 (s, 1H),

5.4, 10.1, 12.3 Hz, 1H), 4.12 (ddd, J = 7.8, 10.1, 12.3 Hz, 1H), 3.25–3.05 (m, 2H), 2.33 (t, J = 7.1 Hz, 2H), 1.64–1.57 (m, 2H), 1.51–1.40 (m, 2H), 1.37–1.22 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H); ¹³**C** NMR (125 MHz, CDCl₃) δ 166.7, 154.7, 145.6, 135.1, 127.2, 125.3 (t, J = 315.5 Hz), 119.9, 92.3, 79.2 (t, J = 24.8 Hz), 72.9, 58.2, 46.8, 31.4, 28.6, 27.9, 24.6, 22.7, 19.1, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ –55.4 (d, J = 160.1 Hz), –58.3 (d, J = 160.1 Hz); HRMS (ESI): m/z calc'd for C₁₉H₂₂O₂N₅BrF₂Na [M + Na]⁺: 492.0817, found: 492.0811. [α] $_{D^{26}}$ 1.7 (*c* 0.14, CHCl₃, 94% ee sample); HPLC analysis (CHIRALCEL OD-3 ($\phi = 0.46$ cm x 25 cm), 2 propanol/*n*-hexane = 1/19, flow rate = 0.5 mL/min, detection at 254 nm, t_R = 17.2 min (minor), 18.1 min (major)):

3-5. Gram scale synthesis of **5a** and its SDE test on achiral silica gel chromatgraphy

To a flame dried 100 mL flask equipped with a magnetically stirred chip was added amide **2** (1.02 g, 5.0 mmol, 1.0 equiv) and BHA **8** (429 mg, 0.60 mmol, 12 mol%). In a glove box, $Cu(OTf)_2$ (181 mg, 10 mol%) and MS13X (5.10 g, 500 % w/w) were added to the flask. After it was taken out from the glove box, THF (15 mL) and CF₃ ketone (1.70 mL, 6.0 mmol, 1.2 equiv) were added. The solution was stirred for 10 min at RT and 5 min at -40 °C before the addition of the solution of Barton's base (5.0 mL, 0.1 M in THF, 0.50 mmol, 5 mol%). After the addition of sat aq NH₄Cl at -40 °C, the solution was diluted with H₂O and EtOAc at RT and filtered through a pad of Celite. The aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried over Na₂SO₄, filtered, and removed under reduced pressure. The crude material was purified by silica gel chromatography (hexane/EtOAc), and nine fractions were collected. For each fraction, the ee of **5a** was determined by chiral HPLC. The obtained data was summarized below, confirming that no SDE was involved. All fractions were combined and evaporated to give **5a** (2.37 g, 98%) as a colorless oil.

4. Transformations of the aldol products

Methyl (2R,3S)-2-azido-3-hydroxy-3-(trifluoromethyl)-5-(triisopropylsilyl)pent-4-ynoate (13): To a solution of 5a F₃C OH O (31.4 mg, 65 µmol, 1.0 equiv) in CH₃CN (0.1 mL) was added conc. HCl (0.3 mL), and the solution OMe was stirred at 80 °C for 15 h. After cooling to RT, sat aq NaHCO₃ was added and the resulting . Ν̈́3 TIPS solution was evaporated. The obtained residue was suspended in 10:1 toluene/MeOH (0.5 mL) and cooled to 0 °C. To this, trimethylsilyldiazomethane (2.0 M in hexane, 65 µL, 0.13 mmol, 2.0 equiv) was added dropwise. The suspension was stirred for 5 min at the same temperature and for 30 min at RT before the addition of AcOH (a few drops), H₂O and EtOAc successively. The aqueous phase was extracted with EtOAc (3x). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and removed under reduced pressure. The crude material was purified by flash column chromatography (hexane/EtOAc), affording the title compound as a colorless oil (18.7 mg, 73%). IR (thin film) 3019, 2946, 2399, 2121, 1438, 1215, 758 cm⁻¹; ¹H NMR (500 MHz, C₆D₆) δ 4.33 (s, 1H), 3.18 (s, 3H), 1.09–0.98 (m, 21H); ¹³C NMR (125 MHz, C₆D₆) & 168.4, 123.3 (q, J = 284.3 Hz), 98.8, 93.4, 72.8 (q, J = 31.3 Hz), 62.6 Na]⁺: 416.1588, found: 416.1590. [α]_{D²⁵} –3.9 (*c* 0.72, CHCl₃, 94% ee sample)

Methyl (2*R*,3*S*)-2-azido-3-hydroxy-3-(trifluoromethyl)pent-4-ynoate (14): To a solution of 13 (5.1 mg, 13 μmol, 1.0 equiv) in THF (0.3 mL) was added AcOH (1.5 μL, 26 μmol, 2.0 equiv). The solution was cooled to 0 °C and TBAF (1.0 M in THF, 13 μL, 13 μmol, 1.0 equiv) was added. After 60 min, sat aq NH₄Cl was added and the aqueous phase was extracted with EtOAc (3x). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and removed under reduced pressure. The obtained residue was purified by flash column chromatography, eluting with hexane/EtOAc to give 14 as a colorless oil (2.6 mg, 84%). **IR** (thin film) 3303, 3019, 2121, 1748, 1438, 1215, 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.44 (s, 1H), 3.93 (s, 3H), 2.75 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 122.4 (q, *J* = 284.4 Hz), 78.3, 75.3, 72.5 (q, *J* = 31.8 Hz), 62.1 (q, *J* = 38.4 Hz), 53.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -78.5; measurement of the exact mass has so far proven unsuccessful. [α]p²⁶ 27.8 (c 1.0, CHCl₃, 94% ee sample).

(9H-Fluoren-9-yl)methyl

((2R,3S)-1-(2,3-dihydro-1H-pyrrolo[2,3-b]pyridin-1-yl)-3-hydroxy-1-oxo-5-(p-tolyl)-3-(trifluoromethyl)pentan-2-yl)car

bamate (S1): To a solution of **5f** (30.2 mg, 73 µmol, 1.0 equiv) in MeOH (1.00 mL) was added Pd/C (3.2 mg, 10% w/w). The mixture was stirred for 3 h at RT under an hydrogen atmosphere. After refilling Ar into the flask, the suspension was filtered through a pad of Celite, and the filtrate was evaporated. The obtained residue was dissolved in CH₂Cl₂ (1.00 mL), and Et₃N

(30.4 μmol, 219 μmol, 3.0 equiv) and Fmoc-Cl (20.7 mmol, 80 μmol, 1.1 equiv) were added. The solution was stirred for 12 h at RT. After the addition of sat aq NH₄Cl, the aqueous phase was extracted with EtOAc (3x). The combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and removed under reduced pressure. The crude material was purified by flash column chromatography (hexane/EtOAc) to give **S1** as a colorless oil (39 mg, 87%). **IR** (thin film) 3019, 2399, 2253, 1510, 1428, 1215, 909, 758 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.20–8.11 (m, 1H), 7.75 (d, *J* = 7.6 Hz, 2H), 7.60–7.52 (m, 3H), 7.38 (dd, *J* = 7.5, 7.5 Hz, 2H), 7.31–7.24 (m, 2H), 7.15–7.09 (m, 4H), 7.07–6.96 (m, 1H), 6.50 (d, *J* = 10.1 Hz, 1H), 5.77 (d, *J* = 10.1 Hz, 1H), 4.49–4.31 (m, 2H), 4.31–4.14 (m, 2H), 4.13–4.04 (m, 1H), 3.24–3.15 (m, 1H), 3.14–2.97 (m, 1H), 2.82 (dt, *J* = 5.2, 12.0, 2H), 2.32 (s, 3H), 2.31–2.24 (m, 1H), 2.23–2.09 (m, 1H); ¹³C **NMR** (125 MHz, CDCl₃) δ 168.7, 155.6, 155.0, 145.4, 143.9, 143.8, 141.4, 139.0, 135.6, 135.3, 129.3, 128.6, 127.5, 127.2, 126.3 (q, *J* = 285.9 Hz),

125.3, 120.1, 120.0, 76.5 (q, *J* = 26.3 Hz), 67.7, 53.6, 47.2, 47.1, 32.7, 28.4, 24.7, 21.2.; ¹⁹F NMR (376 MHz, CDCl₃) δ –76.3; HRMS (ESI): *m*/*z* calc'd for C₃₅H₃₃O₄N₃F₃ [M + H]⁺: 616.2418, found: 616.2410. [α]_D²⁶ 3.9 (*c* 0.14, CHCl₃, 90% ee sample)

Methyl (2R,3S)-2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-hydroxy-5-(p-tolyl)-3-(trifluoromethyl)pentanoate

F₃C OH O OMe NHFmoc (15): S1 (6.0 mg, 9.7 μ mol) was taken in a vial for a microwave reactor. To this, HCl in MeOH (2 M, 0.5 mL) was added. The vial was tightly closed and placed on the reactor. The solution was stirred for 24 h at 100 °C. The volatile was removed to give the crude residue, which was purified by flash column chromatography (hexane/EtOAc), affording **15** as a pale brown oil (3.9

mg, 76%). **IR** (thin film) 3019, 2399, 1514, 1215, 909, 760 cm⁻¹; ¹**H NMR** (500 MHz, CDCl₃, 273K) δ 7.83–7.70 (m, 2H), 7.64–7.52 (m, 2H), 7.46–7.38 (m, 2H), 7.34–7.30 (m, 2H), 7.14–7.06 (m, 4H), 5.62 (d, *J* = 9.8 Hz, 1H), 4.86 (d, *J* = 9.8 Hz, 1H), 4.53–4.41 (m, 2H), 4.23 (t, *J* = 6.9 Hz, 1H), 3.83 (s, 3H), 3.79 (s, 1H), 2.80 (t, *J* = 8.6 Hz, 2H), 2.31 (s, 3H), 2.10 (t, *J* = 8.6 Hz, 2H); ¹³**C NMR** (125 MHz, CD₃Cl, 273K) δ 170.1, 156.8, 143.4, 141.4, 137.8, 135.9, 129.4, 128.4, 128.0, 127.3, 125.2 (q, *J* = 286.3 Hz), 125.1, 120.2, 76.6 (q, *J* = 27.2 Hz), 68.0, 54.9, 53.6, 47.0, 34.5, 28.4, 21.2; ¹⁹**F NMR** (376 MHz, CDCl₃) δ –76.7; **HRMS** (ESI): *m*/*z* calc'd for C₂₉H₂₈O₅NF₃Na [M + Na]⁺: 550.1812, found: 550.1802. [α]D²⁶ 3.9 (*c* 0.14, CHCl₃, 90% ee sample)

5. Mechanistic study

5-1. NMR experiments

5-1-1. Spectra from BHA 8, Cu(OTf)₂, and Bartons' base

Fig. S2 NMR experiments in THF-*d*⁸ of BHA **8**, Cu(OTf)₂, and Barton's base. a) Stacked ¹H NMR spectra. b) Stacked ¹⁹F NMR spectra. c) Appearances of NMR samples.

mixture of BHA 8 and Barton's base.

5-2. Solid state structures of BHA 8 and 1:2 Cu/amide 2 complex (E)

5-2-1. Solid state structure of BHA 8

Single crystals of ligand **8** were obtained by slow evaporation of the solution of **8** in THF at RT. A suitable crystal was selected and the sample was measured on a Rigaku R-AXIS RAPID diffractometer using graphite monochromated Cu-Ka radiation. The data were collected at 93 K. Refined structure and crystallographic parameters are summarized in Fig. S4 and Table S4. CCDC 1498994 contains the supplementary crystallographic data for **8**.

Table S4 Selected crystal data of ligand 8.

 $C_{50}H_{50}N_2O_{4.5}$

colorless, needle

orthorhombic

10.8070(2) Å

27.0000(5) Å

28.2406(7) Å 8240.3(3) Å³

P212121 (#19)

1.211 g/cm³

3200.00

8

0.200 x 0.050 x 0.050 mm

750.96

Empirical Formula

Crystal Color, Habit Crystal Dimensions

Formula Weight

Crystal System

Lattice Parameters

а

b c

V

Space Group

Z value

Dcalc

F000

Fig. S4 ORTEP diagram of ligand **8**. Solvent molecules (THF) have been omitted for clarity.

5-2-2. Solid state structure of E

Single crystals of E (1:2 Cu/amide 2 complex) were obtained from the solution of Cu(OTf)₂, ligand 8, and amide 2 in THF-*ds* at RT. A suitable crystal was selected and the sample was measured on a Rigaku R-AXIS RAPID diffractometer using graphite monochromated Cu-Ka radiation. The data were collected at 93 K. Refined structure and crystallographic parameters are summarized in Fig. S5 and Table S5. CCDC 1498995 contains the supplementary crystallographic data for E.

Table S5 Selected crystal data	of E.
Empirical Formula	$C_{20}H_{18}CuF_6N_{10}O_8S_2$
Formula Weight	768.08
Crystal Color, Habit	green, platelet
Crystal Dimensions	0.050 x 0.050 x 0.002 mm
Crystal System	triclinic
Lattice Parameters	
a	7.3568(6) Å
b	10.0126(8) Å
c	10.8607(9) Å
α	110.106(8) °
β	95.309(7) °
γ	106.922(8) °
V	702.02(11) ų
Space Group	P-1 (#2)
Z value	1
D_{calc}	1.817 g/cm ³
Fooo	387.00

Fig. S5 ORTEP diagram of **E**. Triflate anions have been omitted for clarity.

5-3. Time course study of the aldol reaction

5-3-1. Preparation of amide $2-d_2$

Procedure: To a solution of amide **2** (406 mg, 2.0 mmol, 1.0 equiv) in THF (24 mL) was added D₂O (1.2 mL), and the solution was cooled to 0 °C. Barton's base (0.1 M in THF, 6.0 mL, 0.60 mmol, 30 mol%) was added slowly, and the mixture was stirred for 24 h at the same temperature. After the addition of sat aq NH₄Cl at 0 °C, the solution was diluted with H₂O and EtOAc at RT. The aqueous phase was extracted with EtOAc (3x). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and removed under reduced pressure. The obtained solid was purified by silica gel column chromatography to give amide **2**-*d*₂ (372 mg, 91%, >97% D incorporation).

5-3-2. Time course study

5-3-2-a. Reaction progress under the standard conditions (Supplementary result)

Table 30 Reaction	m progress w	ini annue z at -40	C
o L	H I H N	Cu(OTf) ₂ (10 mol%) (<i>R</i> , <i>R</i>)-BHA 8 (12 mol%) Barton's base (5 mol%)	F ₃ C OH O
TIPS CF3 T	N ₃ N	THF, MS13X 0.2 M, -40 °C, time	TIPS N
4a 1.2 equiv	2 0.1 mmol		5a
time (min)	yield	anti/syn	ee (syn)
30	81	17/83	99
60	95	17/83	99
120	98	18/82	99
180	97	17/83	94

Table S6 Reaction progress with amide **2** at –40 °C

5-3-2-b. Reaction progress under diluted conditions (Fig. 2a, blue and red squares)

General procedure F (Fig. 2): To a flame dried test tube equipped with a magnetically stirred chip was added amide **2** (20.3 mg, 0.1 mmol, 1.0 equiv) and BHA **8** (8.6 mg, 0.012 mmol, 12 mol%). In a glove box, Cu(OTf)₂ (3.6 mg, 0.010 mmol, 10 mol%) and MS13X (101 mg, 500 % w/w) were added to the test tube. After it was taken out from the glove box, THF (70 mM) and CF₃ ketone (34.0 μ L, 0.12 mmol, 1.2 equiv) were added. The solution was stirred for 10 min at RT and 5 min at -40 °C before the addition of the solution of Barton's base (0.1 M in THF, 100 μ L, 10 μ mol, 5 mol%). The reaction was stirred for the indicated time. After the addition of sat aq NH₄Cl at -40 °C, the solution was diluted with H₂O and EtOAc at RT and filtered through a pad of Celite. The aqueous phase was extracted with EtOAc (3x). The combined organic phases were dried over Na₂SO₄, filtered, and removed under reduced pressure.

on progress w $H \xrightarrow{O}_{N_3} N$	vith amide 2 at -60 ° Cu(OTf) ₂ (10 mol%) (<i>R</i> , <i>R</i>)-BHA 8 (12 mol%) Barton's base (5 mol%) THF, MS13X 70 mM, -60 °C, time	C F ₃ C OH O TIPS N ₃ N
2 0.1 mmol		5a
yield	anti/syn	ee (syn)
16	11/89	97
25	12/88	94
31	12/88	98
65	11/89	93
76	10/90	95
96	11/89	96
	on progress w H N_3 N 2 0.1 mmol yield 16 25 31 65 76 96	$\begin{array}{c} \begin{array}{c} & \text{ on progress with amide 2 at -60 }^{\circ} \\ & \text{ Cu(OTf)}_2 (10 \text{ mol}\%) \\ & \text{ (R,R)-BHA 8 (12 \text{ mol}\%) \\ & \text{ Barton's base (5 \text{ mol}\%) } \end{array} \\ \hline & \text{ THF, MS13X} \\ & \text{ 70 mM, -60 }^{\circ} \text{ C, time} \end{array} \\ \hline \\ \hline \\ \textbf{yield} & anti/syn \\ 16 & 11/89 \\ 25 & 12/88 \\ 31 & 12/88 \\ 65 & 11/89 \\ 76 & 10/90 \\ 96 & 11/89 \end{array}$

Table S8 Reaction progress with amide 2-d2 at -60 °C

CF ₃ +		Cu(OTf) ₂ (10 mol%) (<i>R</i> , <i>R</i>)-BHA 8 (12 mol%) Barton's base (5 mol%) THF, MS13X 70 mM, -60 °C, time	TIPS N 5a
1.2 equiv	0.1 mmol		<u>u</u>
time (min)	yield	anti/syn	ee (syn)
15	13	18/82	99
30	16	16/84	99
60	17	17/83	99
180	25	14/86	99
360	42	12/88	99
720	61	11/89	99

5-3-2-c. Time course study under BHA **8** free conditions (Fig. 2a, black squares) **Table S9** Reaction progress with amide **2** without added BHA **8** at –60 °C

5-3-2-d. Time course study with amide 2 using 5 mol% catalyst

Table S10 Reaction progress with amide 2 using 5 mol% catalyst at -60 °C

o ↓		Cu(OTf) ₂ (5 mol%) (<i>R</i> , <i>R</i>)-BHA 8 (6 mol%) Barton's base (5 mol%)	F ₃ C OH O
TIPS CF3	× N ₃ N	THF, MS13X 70 mM, –60 °C, time	TIPS N ₃
4a 1.2 equiv	2 0.2 mmol		5a
time (min)	yield	anti/syn	ee (syn)
15	5	13/87	97
30	11	11/89	96
60	14	12/88	97
180	33	14/86	94
360	41	11/89	93
720	50	11/89	96

5-3-3. Analysis by normalized time scale method

i) x = 1.0

,				
time (h)	[amide 2]	$t[cat]^x$	[amide 2]	$t[cat]^x$
	(10 mol%)	(10 mol%)	(5 mol%)	(5 mol%)
0.25	0.0587999970	0.0017499999	0.0665000007	0.0008750000
0.50	0.0524999984	0.0034999999	0.0622999966	0.0017499999
1.0	0.0482999980	0.0070000002	0.0601999983	0.0034999999
3.0	0.02449999994	0.0210000016	0.0469000004	0.01049999999
6.0	0.0167999994	0.0420000032	0.0412999988	0.0210000016
12.0	0.0027999999	0.0840000063	0.0350000001	0.0420000032
ii) x = 1.5				
time (h)	[amide 2]	t[cat]^x	[amide 2]	t[cat]^x
	(10 mol%)	(10 mol%)	(5 mol%)	(5 mol%)
0.25	0.0587999970	0.0001460000	0.0665000007	0.0000520000
0.50	0.0524999984	0.0002930000	0.0622999966	0.0001040000
1.0	0.0482999980	0.0005860000	0.0601999983	0.0002070000
3.0	0.02449999994	0.0017570000	0.0469000004	0.0006210000
6.0	0.0167999994	0.0035140000	0.0412999988	0.0012420000
12.0	0.0027999999	0.0070280000	0.0350000001	0.0024850001
iii) x = 2.0				
time (h)	[amide 2]	t[cat]^x	[amide 2]	t[cat]^x
	(10 mol%)	(10 mol%)	(5 mol%)	(5 mol%)
0.25	0.0587999970	0.0000120000	0.0665000007	0.0000030000

0.50	0.0524999984	0.0000240000	0.0622999966	0.0000060000
1.0	0.0482999980	0.0000490000	0.0601999983	0.0000120000
3.0	0.02449999994	0.0001470000	0.0469000004	0.0000370000
6.0	0.0167999994	0.0002940000	0.0412999988	0.0000730000
12.0	0.0027999999	0.0005880000	0.0350000001	0.0001470000
iv) x = 2.5				
time (h)	[amide 2]	t[cat]^x	[amide 2]	t[cat]^x
	(10 mol%)	(10 mol%)	(5 mol%)	(5 mol%)
0.25	0.0587999970	0.0000010000	0.0665000007	0.0000000000
0.50	0.0524999984	0.0000020000	0.0622999966	0.0000000000
1.0	0.0482999980	0.0000040000	0.0601999983	0.0000010000
3.0	0.02449999994	0.0000120000	0.0469000004	0.0000020000
6.0	0.0167999994	0.0000250000	0.0412999988	0.0000040000
12.0	0.0027999999	0.0000490000	0.0350000001	0.0000090000

5-4. Computational analysis on the conformation of fluorinated ketones

The ground state energies of model fluorinated ketones **S2–S5** were calculated by DFT method. All optimizations were conducted at the B3LYP/6-31+G(d) level of theory. Energies shown in Table S11 are after the zero-point corrections. Solvation by THF was taken into account by using the integral equation formalism polarizable continuum model (IEFPCM).

Ketones S3–S5 have two stable conformers, while S2 only has one (Table S11). Except S3, the stable conformers of S2, S4 and S5 take almost syn conformation between the carbonyl group and the fluorine atom, having larger dipole moment.

Table S11 Summary of calculated structures and energies of S2–S5.

6. References

1. Fulmer, G. R. *et al.* NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* **29**, 2176–2179 (2010).

 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuj, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; J. A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2013. 3. Linderman, R. J.; Lonikar, M. S. J. Org. Chem. **1988**, *53*, 6013–6022.

4. Maraval, V.; Leroyer, L.; Harano, A.; Barthes, C.; Saquet, A.; Duhayon, C.; Shinmyozu, T.; Chauvin, R. *Chem. Eur. J.* **2011**, *17*, 5086–5100.

5. Hanzawa, Y.; Kawagoe, K.; Ito, M.; Kobayashi, Y. Chem. Pharm. Bull. 1987, 35, 1633–1636.

6. Sasaki, S.; Ikekame, Y.; Tanayama, M.; Yamauchi, T.; Higashiyama, K. Synlett 2012, 2699–2703.

7. Kuroboshi, M.; Ishihara, T. Bull. Chem. Soc. Jpn. 1990, 63, 428-437.

8. Armbrust, K. W.; Beaver, M. G.; Jamison, T. F. J. Am. Chem. Soc. 2015, 137, 6941–6946.

9. Komeyama, K.; Sasayama, D.; Kawabata, T.; Takehira, K.; Takaki, K. Chem. Commun. 2005, 634-636.

10. Schlapbach, A.; Feifel, R.; Hawtin, S.; Heng, R.; Koch, G.; Moebitz, H.; Revesz, L.; Scheufler, C.; Velcicky, J.;

Waelchli, R.; Huppertz, C. Bioorg. Med. Chem. Lett. 2008, 18, 6142-6146.

7. Optimized coordinates

S2a	B3LYP/6-31+G(d)/IEFPC	M(THF)	
С	-0.47079657	0.69899523	0.00000032
0	-0.34455548	1.90621404	0.00000012
C	0.79261747	-0.21350064	0.00000010
C	-1.72580930	0.00221720	0.00000017
C	-2 78350663	-0.58744533	-0.00000000
F	0 79791739	-1 00898421	-1 09252098
F	0 79791349	-1 00899097	1.09251621
F	1 91560391	0.51271396	0.00000429
н	-3 72149912	-1 10396009	-0.00000425
	0.7 21 17712	1.10070007	0.00000020
S3a	B3LYP/6-31+G(d)/IEFPC	M(THF)	
С	-0.31808137	0.71599795	0.00012772
0	-0.45622151	1.92769822	0.00033246
C	1.10244265	0.11689048	-0.00007209
C	-1.41282729	-0.21863655	0.00006131
C	-2.32831054	-1.01170399	0.00000282
F	1.25901738	-0.67891804	-1.10596029
F	1.25920559	-0.67919054	1.10559475
Н	-3.14253979	-1.70676029	-0.00004741
Н	1.86896450	0.89286443	-0.00004098
S3b	B3LYP/6-31+G(d)/IEFPC	M(THF)	
С	0.27526662	0.60715868	0.01842656
0	0.05233129	1.77676486	-0.23236899
С	-0.87744616	-0.36102425	0.37541989
С	1.59498765	0.02939344	0.04419198
С	2.70395022	-0.45687012	0.07761710
F	-0.75156975	-1.50410904	-0.37884850
F	-2.07156924	0.21497872	0.07104569
Н	3.68668667	-0.88069806	0.10309355
Н	-0.87763606	-0.64319448	1.43215041
S4a	B3LYP/6-31+G(d)/IEFPC	M(THF)	
С	-0.68676741	0.71358469	0.00000842
0	-0.42107515	1.89639907	0.00001879
С	0.43495890	-0.37975227	-0.00000281
С	-2.02030343	0.17923738	0.00000597
С	-3.14651496	-0.26578646	0.00000367
F	0.27191851	-1.17101917	-1.09201224
F	0.27193047	-1.17102761	1.09200246
Η	-4.14414983	-0.65456182	0.00000171
Cl	2.06646303	0.29871119	-0.00000914
S4b	B3LYP/6-31+G(d)/IEFPC	CM(THF)	
С	-0.74896045	0.68441822	-0.24668774
0	-0.79901037	1.74932959	-0.82652334
С	0.61469908	0.17763638	0.31400350
С	-1.87248852	-0.18347107	-0.02991601
С	-2.82988024	-0.90245015	0.15062123
F	0.45434915	-0.29423697	1.57438226
F	1.49786235	1.18876519	0.36137052
Η	-3.67707268	-1.53779281	0.30890624
Cl	1.26582547	-1.12731754	-0.72038944

S5a	B3LYP/6-31+G(d)/IEFPC	CM(THF)	
С	-1.13513832	0.69027587	-0.00001327
0	-0.79784603	1.85538482	-0.00004592
С	-0.08663437	-0.46592187	0.00001053
С	-2.50273986	0.25133885	0.00000636
С	-3.66654475	-0.08309958	0.00002381
F	-0.29765470	-1.24705471	-1.09248102
F	-0.29764718	-1.24700320	1.09254062
Н	-4.69484130	-0.38139646	0.00003906
Br	1.73661915	0.16083656	-0.00001065
S5b	B3LYP/6-31+G(d)/IEFPC	CM(THF)	
С	-1.22456700	0.48276478	-0.43687999
0	-1.44743304	1.25043464	-1.35085270
С	0.07266434	0.64463994	0.39713404
С	-2.08326423	-0.60509151	-0.05605956
С	-2.88832479	-1.44732793	0.27410162
F	-0.16437579	0.44060812	1.71398158
F	0.57453824	1.88269520	0.25024364

-3.58417799

1.37751801

-2.20785820

-0.66157887 -0.24298151

0.56337069

Η

Br

-62 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 -82 -83 -84 -85 -86 -87 -88 -89 -90 -91 -92 -93 -94 -95 -96 -97 -98 -99 f1 (ppm)

8-((*Tert*-Butyldiphenylsilyl)oxy)-1,1,1-trifluorooct-3-yn-2-one (4d): ¹H NMR (400MHz, CDCl₃)

0.0

8-Chloro-1,1,1-trifluorooct-3-yn-2-one (4e): ¹H NMR (400MHz, CDCl₃) -7.260 CDCI3 ____3.594 ___3.579 __3.563 CI CF3 2.00-I 2.02 J 2.034 5.0 4.5 f1 (ppm) 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 ¹³C NMR (100MHz, CDCl₃) CDCI3 CDCI3 CDCI3 167.859 167.440 167.022 166.604 ~119.073 ~116.206 ~113.340 ~110.474 77.478 (77.160 (76.843 (76.544 --31.374 --44.049 CF3

10 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 90 80 70 60 50 40 30 20 Ċ

22 -63 -64 -65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -90 -81 -82 -83 -84 -85 -86 -87 -88 -89 -90 -91 -92 -93 -94 -95 -96 -97 -98 -9 11 (ppm)

4-(4-(1,3-Dioxolan-2-yl)phenyl)-1,1,1-trifluorobut-3-yn-2-one (4h): ¹H NMR (400MHz, CDCl₃)

-3	5 -40) -4	5	-50	-55	-60	-65	-70	-75	-80 f1 (ppr	-85 m)	-90	-95	-100	-105	-110	-115	-120	-125	-130

1,1,1-Trifluoro-4-(4-(morpholine-4-carbonyl)phenyl)but-3-yn-2-one hydrate (4i•H₂O): ¹H NMR (400MHz, DMSO-*d*₆)

-83.90 -83.95 -84.00 -84.05 -84.10 -84.15 -84.20 -84.25 -84.30 -84.45 -84.40 -84.45 -84.50 -84.55 -84.60 -84.65 -84.70 -84.75 -84.80 -84.85 -84.90 -84.95 -85.00 -85.05 -85.10 -85.15 -85.20 -85.25 -85.30 -85.35 -11 (ppm)

1,1,1-Trifluoro-4-(thiophen-3-yl)but-3-yn-2-one (4j): ¹H NMR (400MHz, CDCl₃)

f1 (ppm)

4-Cyclohexyl-1,1,1-trifluorobut-3-yn-2-one (4k):

100 f1 (ppm)

4-(Cyclohex-1-en-1-yl)-1,1,1-trifluorobut-3-yn-2-one (41):

110 100 f1 (ppm) Ċ ~-125.697 <-125.841</pre>

-117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -130 -131 -132 -133 -134 -135 -136 -137 -138 -139 -140 -141 -142 -143 -14 f1 (ppm)

(

N,N'-((1R,2R)-cyclohexane-1,2-diyl)bis(N-methoxy-3,3,3-triphenylpropanamide) (10):

(2*R*,3*S*)-2-Azido-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxy-3-(trifluoromethyl)-5-(triisopropylsilyl)pe nt-4-yn-1-one (5a):

(2*R*,3*S*)-2-Azido-6-((*tert*-butyldimethylsilyl)oxy)-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxy-3-(trifluor omethyl)hex-4-yn-1-one (5b):

(2*R*,3*S*)-2-Azido-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxy-3-(trifluoromethyl)undec-4-yn-1-one (5c): ¹H NMR (400MHz, CDCl₃)

(2*R*,3*S*)-2-Azido-9-((*tert*-butyldiphenylsilyl)oxy)-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxy-3-(trifluor omethyl)non-4-yn-1-one (5d):

---74.072

(2*R*,3*S*)-2-Azido-9-chloro-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxy-3-(trifluoromethyl)non-4-yn-1-on e (5e):

¹H NMR (400MHz, CDCl₃)

B 8008 B 8008

---79.209

(2*R*,3*S*)-2-Azido-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxy-5-(*p*-tolyl)-3-(trifluoromethyl)pent-4-yn-1-o ne (5f):

(2*R*,3*S*)-2-Azido-5-(4-chlorophenyl)-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxy-3-(trifluoromethyl)pent -4-yn-1-one (5g):

(2*R*,3*S*)-5-(4-(1,3-Dioxolan-2-yl)phenyl)-2-azido-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxy-3-(trifluoro methyl)pent-4-yn-1-one (5h):

¹H NMR (400MHz, CDCl₃)

(2*R*,3*S*)-2-aAido-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxy-5-(4-(morpholine-4-carbonyl)phenyl)-3-(tri fluoromethyl)pent-4-yn-1-one (5i):

¹H NMR (400MHz, CDCl₃)

(2*R*,3*S*)-2-Azido-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxy-5-(thiophen-3-yl)-3-(trifluoromethyl)pent-4 -yn-1-one (5j):

30

 $F_{aC} OH O$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

Page S68 of S84

(2*R*,3*S*)-2-Azido-3-(difluoromethyl)-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxyundec-4-yn-1-one (12a): ¹H NMR (400MHz, CDCl₃)

(2*R*,3*S*)-2-Azido-3-(chlorodifluoromethyl)-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxyundec-4-yn-1-one (12b):

(

f1 (ppm)

(2*R*,3*S*)-2-Azido-3-(bromodifluoromethyl)-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxyundec-4-yn-1-one (12c):

---78.406

-65 -66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 -82 -83 -84 -85 -86 -87 -88 -89 -90 -91 -92 -93 -94 -95 -96 -97 I1 (ppm)

Methyl (2*R,3S*)-2-azido-3-hydroxy-3-(trifluoromethyl)pent-4-ynoate (14): ¹H NMR (400MHz, CDCl₃)

-68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 f1 (ppm) -90 -92 -96 -98 -100 -102 -104 -106 -94

(9H-fluoren-9-yl)methyl

((2*R*,3*S*)-1-(2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-1-yl)-3-hydroxy-1-oxo-5-(*p*-tolyl)-3-(trifluoromethyl)pentan-2-yl)car bamate (S1):

¹H NMR (400MHz, CDCl₃)

----76.303

-66 -67 -68 -69 -70 -71 -72 -73 -74 -75 -76 -77 -78 -79 -80 -81 -82 -83 -84 -85 -86 -87 -88 -89 -90 -91 -92 -11 (ppm)

Methyl (2*R*,3*S*)-2-((((9*H*-fluoren-9-yl)methoxy)carbonyl)amino)-3-hydroxy-5-(*p*-tolyl)-3-(trifluoromethyl)pentanoate (15):

---76.726