Supporting Information

Denitrogenative Suzuki and Carbonylative Suzuki Coupling Reactions of Benzotriazoles with Boronic Acids

Yuanhao Wang^a, Yunfei Wu,^b Yuanhe Li,^a and Yefeng Tang^{*a,b}

^aSchool of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China. ^bCollaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.

Table of Contents

1. General Information	2
2. Variable Temperature NMR Studies	3
3. Preparation of 1-Trifluoromethylsulfonyl benzotriazoles	6
4. General Procedures for Suzuki and Carbonylative Suzuki Coupling Reactions	8
5. Analysis Data of 1-trifluoromethylsulfonyl Benzotriazoles	8
6. Analysis Data of Suzuki and Carbonylative Suzuki Coupling Products	10
7. NMR Spectra of 1-trifluoromethylsulfonyl Benzotriazoles	26
8. NMR Spectra of Suzuki and Carbonylative Suzuki Coupling Products	38
9. Computational Studies	96

1. General Information

NMR spectra were recorded on Bruker AV400 and AV500 instrument. TMS was used as internal standard for ¹H NMR (CDCl₃, 0 ppm), and solvent signal was used as reference for ¹H NMR (toluene-d⁸, 2.08, 6.96, 7.00, 7.08 ppm) and ¹³C NMR (CDCl₃, 77.16 ppm). The following abbreviations were used to explain the multiplicities: s =singlet, d = doublet, t = triplet, q = quartet, td = triple doublet, qd = quarter doublet, m = multiplet. High-resolution mass spectra (HRMS) were recorded on a Waters Xevo G2 QTOF MS.

Reactions were monitored by Thin Layer Chromatography on plates (GF_{254}) supplied by Yantai Chemicals (China) using UV light as visualizing agent and an ethanolic solution of Potassium permanganate, and heat as developing agents. If not specially mentioned, flash column chromatography uses silica gel (200-300 mesh) supplied by Tsingtao Haiyang Chemicals (China).

Solvent purification was conducted according to Purification of Laboratory Chemicals (Peerrin, D. D.; Armarego, W. L. and Perrins, D. R., Pergamon Press: Oxford, 1980). Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials.

2. Variable Temperature NMR Studies

Figure S-1. Variable temperature ¹H NMR spectrum of **1c** (toluene-d⁸, 500 MHz)

Figure S-2. Variable temperature ¹H NMR spectrum of **1c**/AgBF₄ (toluene-d⁸, 500 MHz)

Figure S-3. Comparison of 1H NMR Spectrum of 1c and 1c/AgBF4 at 25 $^\circ\!C$

Figure S-4. Comparison of 1H NMR Spectrum of 1c and 1c/AgBF4 at -50 $^\circ C$

Figure S-6. Comparison of ^{19}F NMR Spectrum of 1c and 1c/AgBF4 at 25 $^\circ C$

Figure S-6. Comparison of ^{19}F NMR Spectrum of 1c and 1c/AgBF4 at -50 $^\circ C$

3. Preparation of 1-Trifluoromethylsulfonyl-benzotriazoles

1) **Procedure A** (for 1c-1i, 1m and 1n)¹

To a solution of benzene-1,2-diamine (5.0 mmol) in AcOH (10 mL) was added NaNO₂ aq solution (25 mL, 1M) and the mixture was stirred at 70-80 $^{\circ}$ C for 1h. The pH value of the solution was then adjusted to 4.4-4.6 by 40% NaOH aq solution and 1M HCl. The precipitated product was collected by filtration, washed with 5% ice-cold NaCl aq solution and recrystallized (CH₂Cl₂/MeOH) to afford the corresponding benzotriazoles as white powder.

To a solution of aforementioned benzotriazole (5.0 mmol) in CH_2Cl_2 (50 mL) was sequentially added Et_3N (6.0 mmol, 1.2 eq) and Tf_2O (6.5 mmol, 1.3 eq) at 0°C. The reaction was stirred at the same temperature for 0.5-1 h and then water (20 mL) was added. The organic layer was concentrated in vacuo and the residue was purified by flash chromatography to give the corresponding 1-trifluoromethanesulfonyl-benzotriazoles as a mixture of regioisomers.

2) Procedure B (for 1j, 1k, 1l)²

A mixture of the appropriate *ortho*-chloronitrobenzene (7.85 mmol) and hydrazine hydrate (0.77 mL, 15.70 mmol) in absolute EtOH (10 mL) was refluxed for 36 h. After removal of the solvent

¹ J. Fu, Y. Yang, X. Zhang, W. Mao, Z. Zhang, H. Zhu. *Bioorg. Med. Chem.* 2010, 18, 8457-8462.

² V. Gurram, H. K. Akula, R. Garlapati, N. Pottabathini, M. K. Lakshman. Adv. Synth. Catal. 2015, 357, 451-462.

under reduced pressure, the residue was dissolved in 10% aqueous Na_2CO_3 (20 mL). The solution was extracted with Et_2O and then acidified with concentrated HCl. The precipitated product was filtered, washed with water, and dried to obtain the corresponding 1-hydroxy-1*H*-benzotriazole as an off-white solid.

The prepared 1-hydroxy-1*H*-benzotriazole was dissolved in MeCN. The Et₃N (1.2 eq) was added and the reaction mixture was stirred at room temperature for 30 min. Then $B_2(OH)_4$ (1.2 eq) was added and the resulting reaction mixture was stirred for another 30 min at 50 °C. After completion of the reaction, the mixture was concentrated and crude material was purified by chromatography to give the corresponding benzotriazole. Subsequently, the trifluoromethanesulfonylation of above-mentioned benzotriazole was conducted according to the same procedure as described in Procedure A.

Note: Most of the benzotriazole derivatives were obtained as a mixture of regioisomers using above methods. Their structures were assigned based on the following methods:

- a) The benzotriazole itself is known compounds, such as the case of $1c^3$.
- b) The benzotriazoles themselves are new compounds, but their coupling products could be converted to the known compounds after deprotection, such as the case of 1g⁴, 1k⁵, 1j and 1m⁶.
- c) The benzotriazoles themselves are new compounds, but they could be converted to known natural products and drugs, such as the case of $1d^7$ and $1h^8$.
- d) The benzotriazoles themselves are new compounds, but their corresponding regioisomer could be unambiguously confirmed by above-mentioned methods. As a result, their structure could be deduced, such as the case of 1e, 1i and 1l.

³ V. I. Meshcheryakov, B. A. Shainyan, L. L. Tolstikova, A. I. Albanov, Russ. J. Org. Chem. 2003, 39, 1517.

⁴ I. T. Alt, B. Plietker, Angew. Chem. Int. Ed. 2016, 55, 1519.

⁵ T. Truong, O. Daugulis, Org. Lett. **2012**, 14, 5964.

⁶ J. Rong, L. Deng, P. Tan, C. Ni, Y. Gu, J. Hu, Angew. Chem. Int. Ed. 2016, 55, 2743.

⁷ S. W. Youn, J. H. Bihn, B. S. Kim, Org. Lett. **2011**, 13, 3738.

⁸ Y. Wu, L. Sun, Y. Chen, Q. Zhou, J. Huang, H. Miao, H. Luo, J. Org. Chem. 2016, 81, 1244.

4. General Procedures for Suzuki and Carbonylative Suzuki Coupling Reactions

1) Procedure A (for Suzuki products 3a-3af)

A bottom of flask was sequentially charged with N-Tf-benzotriazole (0.30 mmol, 1.0 eq), phenyl/vinylboronic acid (0.45 mmol, 1.5 eq), $Pd(OAc)_2$ (3.3 mg, 0.015 mmol, 0.05 eq), PPh_3 (24 mg, 0.09 mmol, 0.3 eq) and $AgBF_4$ (145 mg, 0.75 mmol, 2.5 eq) at N₂ atmosphere. The reaction was added freshly distilled toluene (3.0 mL) and then placed in an oil bath preheated to 80 °C. The resulting solution was heated at this temperature for 3-8 hours before being cooled to room temperature and concentrated in vacuo. The residue was directly purified by flash chromatography (SiO₂, hexanes/EtOAc) to give the corresponding Suzuki product.

2) Procedure B (for carbonylative Suzuki coupling products 4a-4s)

A bottom of flask was sequentially charged with *N*-Tf-benzotriazole (0.30 mmol, 1.0 eq), phenyl/vinylboronic acid (0.45 mmol, 1.5 eq), Pd(PPh₃)₂Cl₂ (10.4 mg, 0.015 mmol, 0.05 eq), PPh₃ (24 mg, 0.09 mmol, 0.3 eq) and AgBF₄ (145 mg, 0.75 mmol, 2.5 eq) at carbon monoxide (CO) atmosphere. The reaction was added freshly distilled toluene (3.0 mL) and then placed in an oil bath preheated to 80 °C. The resulting solution was heated at this temperature for 8-12 hours before being cooled to room temperature and concentrated in vacuo. The residue was directly purified by flash chromatography (SiO₂, hexanes/EtOAc) to give the corresponding Suzuki carbonylation product.

5. Analysis Data of 1-trifluoromethylsulfonyl Benzotriazoles

1-((trifluoromethyl)sulfonyl)-1*H*-benzo[d][1,2,3]triazole (1c): The product was obtained as a yellow solid. Yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dt, J = 7.6 Hz, J = 0.8 Hz, 1H), 7.80 (dt, J = 7.6 Hz, J = 0.8 Hz, 1H), 7.96 (d, J = 8.0 Hz,

1H), 8.24 (d, J = 8.0 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 111.9, 119.4 (q, J = 321.6 Hz), 121.7, 127.4, 132.1, 132.1, 145.6.

5-methyl-1-((trifluoromethyl)sulfonyl)-1*H***-benzo[d][1,2,3]triazole** (1d): The product was obtained as a light yellow solid. Yield: 39% (one isomer); ¹H NMR (400 MHz, CDCl₃) δ 2.58 (s, 3H), 7.59 (dd, J = 8.4 Hz, J = 1.2 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.99 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 21.5, 111.3, 119.4 (q, J = 321.6 Hz), 120.8, 130.4, 133.8, 138.0, 146.2.

6-methyl-1-((trifluoromethyl)sulfonyl)-1H-benzo[d][1,2,3]triazole (1e): The product was obtained as an orange solid. Yield: 44% (one isomer); ¹H NMR (400 MHz, CDCl₃) δ 2.62 (s, 3H), 7.44 (d, *J* = 8.4 Hz, 1H), 7.72 (s, 1H), 8.07 (d,

J = 8.4 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 22.3, 111.4, 119.4 (q, *J* = 320.2 Hz), 121.0, 129.2, 132.5, 143.8, 144.1.

4-methyl-1-((**trifluoromethyl**)**sulfonyl**)-1*H*-**benzo**[d][1,2,3]**triazole** (1**f**): The product was obtained as an orange solid. Yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ 2.87 (s, 3H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.74 (d, *J* = 8.4 Hz,

1H); ¹³C (100 MHz, CDCl₃) δ 16.7, 109.0, 119.4 (q, J = 321.5 Hz), 127.6, 131.9, 132.1, 133.2, 145.4.

6-methoxy-1-((trifluoromethyl)sulfonyl)-1*H*-benzo[d][1,2,3]triazole (1g): The product was obtained as a white solid. Yield: 49% (one isomer); ¹H NMR (400 MHz, CDCl₃) δ 3.93 (s, 3H), 7.37 (dd, *J* = 9.2 Hz, *J* = 2.0 Hz, 1H), 7.52 (d,

J = 2.0 Hz, 1H), 7.77 (d, J = 9.2 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 56.1, 101.0, 112.2, 119.2 (q, J = 321.5 Hz), 123.5, 126.8, 146.9, 159.3.

5-chloro-1-((trifluoromethyl)sulfonyl)-1H-benzo[d][1,2,3]triazole (1h): The product was obtained as a yellow solid. Yield: 30% (one isomer); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, J = 8.8 Hz, J = 1.6 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H),

8.22 (d, J = 1.6 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 112.7, 119.3 (q, J = 321.7 Hz), 121.2, 130.8, 132.8, 133.6, 146.4.

6-chloro-1-((trifluoromethyl)sulfonyl)-1*H***-benzo[d][1,2,3]triazole (1i):** The product was obtained as a yellow solid. Yield: 38% (one isomer); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (dd, *J* = 8.8 Hz, *J* = 1.6 Hz, 1H), 7.96 (d, *J* = 1.6 Hz, 1H),

8.16 (d, J = 8.8 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 112.1, 119.3 (q, J = 321.7 Hz), 122.4, 128.6, 132.8, 139.2, 144.1.

6-fluoro-1-((trifluoromethyl)sulfonyl)-1H-benzo[d][1,2,3]triazole (1j): The

product was obtained as a yellow solid. Yield: 47% (one isomer); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dt, J = 8.8 Hz, J = 0.8 Hz, 1H), 7.64 (dd, J = 7.2 Hz, J = 0.8 Hz, 1H), 8.22 (dd, J = 8.8 Hz, J= 4.8 Hz, 1H); 13 C (100 MHz, CDCl₃) δ 99.2 (d, J = 29.9 Hz), 117.0 (d, J = 26.2 Hz), 119.3 (q, J = 321.5 Hz), 123.3 (d, *J* = 10.9 Hz), 133.1 (d, *J* = 14.4 Hz), 142.1, 164.9 (d, *J* = 254.6 Hz).

6-phenyl-1-((trifluoromethyl)sulfonyl)-1H-benzo[d][1,2,3]triazole (1k): The product was obtained as a yellow solid. Yield: 42% (one isomer); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (t, J = 7.2 Hz, 1H), 7.55 (t, J = 7.2 Hz, 2H), 7.67 (d, J = 7.6 Hz, 2H), 8.00-8.05 (m, 2H), 8.40 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 112.0, 119.4, 119.4 (q,

J = 321.6 Hz), 127.7, 128.6, 129.4, 131.3, 131.9, 139.1, 141.5, 146.5.

5-phenyl-1-((trifluoromethyl)sulfonyl)-1H-benzo[d][1,2,3]triazole (11): The product was obtained as a yellow solid. Yield: 25% (one isomer); ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.58 (m, 3H), 7.69 (d, J = 7.6 Hz, 2H), 7.89 (d, J =

8.4 Hz, 1H), 8.11 (s, 1H), 8.30 (d, J = 8.8 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 109.8, 119.4 (q, J =321.7 Hz), 121.7, 127.4, 128.0, 129.1, 129.4, 132.8, 139.2, 144.8, 146.0.

Methyl 1-((trifluoromethyl)sulfonyl)-1H-benzo[d][1,2,3]triazole-5-carboxylate (1m): The MeO₂C product was obtained as a yellow solid. Yield: 35% (one isomer); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 4.04 \text{ (s, 3H)}, 8.30 \text{ (d, } J = 10.0 \text{ Hz}, 1\text{H}), 8.33 \text{ (d, } J = 10.0 \text{ Hz})$ 1m Hz, 1H), 8.62 (s, 1H); 13 C (100 MHz, CDCl₃) δ 53.2, 113.6, 119.3 (q, J = 321.7 Hz), 121.6, 128.4, 132.0, 133.7, 147.6, 165.3.

1-((trifluoromethyl)sulfonyl)-1H-naphtho[2,3-d][1,2,3]triazole (1n): The product was obtained as a white solid. Yield: 78%; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (t, *J* = 7.2 Hz, 1H), 7.71 (t, *J* = 7.2 Hz, 1H), 8.07 (d, *J* = 8.4 Hz,

1H), 8.14 (d, J = 8.4 Hz, 1H), 8.33 (s, 1H), 8.77 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 108.8, 119.5 (q, *J* = 319.7 Hz), 121.1, 127.0, 128.4, 128.6, 129.3, 129.8, 131.8, 134.9, 144.5.

6. Analysis Data of Suzuki and Carbonylative Suzuki Coupling Products

N-([1,1'-biphenyl]-2-yl)-1,1,1-trifluoromethanesulfonamide (3a): The product was obtained as a colorless oil. Yield: 94%; ¹H NMR (400 MHz, CDCl₃) δ 6.76 (s, 1H), 7.35-7.38 (m, 4H), 7.42-7.57 (m, 4H), 7.68 (d, J = 8.0 Hz, 1H); ¹³C (100)

MHz, CDCl₃) δ 119.6 (q, J = 320.6 Hz), 121.8, 126.8, 128.8, 129.1, 129.2, 129.5, 130.9, 131.7,

135.0, 136.9; IR v_{max} (film): 3332.66, 2947.78, 2835.97, 1646.12, 1448.98, 1412.62, 1203.93, 1112.81, 1014.93, 509.91 cm⁻¹; HRMS m/z calcd for C₁₃H₉F₃NO₂S [M-H]⁺: 300.0306; found: 300.0309.

1,1,1-trifluoro-N-(5-methyl-[1,1'-biphenyl]-2-yl)methanesulfonamide (3b): The product was obtained as a colorless oil. Yield: 74%; ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H), 7.12 (s, 1H), 7.20 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 7.2

Hz, 2H), 7.42-7.51 (m, 4H); ¹³C (100 MHz, CDCl₃) δ 21.0, 119.7 (q, J = 320.6 Hz), 122.2, 128.7, 129.0, 129.2, 129.4, 129.6, 131.5, 135.3, 136.9, 137.2; IR v_{max} (film): 3373.47, 2942.86, 2830.61, 1488.58, 1421.46, 1365.15, 1233.78, 1206.12, 1142.46, 1022.45 cm⁻¹; HRMS m/z calcd for C₁₄H₁₁F₃NO₂S [M-H]⁺: 314.0463; found: 314.0466.

1,1,1-trifluoro-*N***-(4-methyl-[1,1'-biphenyl]-2-yl)methanesulfonamide** (3c): The product was obtained as a colorless oil. Yield: 80%; ¹H NMR (400 MHz, CDCl₃) δ 2.45 (s, 3H), 6.68 (s, 1H), 7.15 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J*

= 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 2H), 7.45-7.54 (m, 4H); ¹³C (100 MHz, CDCl₃) δ 21.5, 119.7 (q, J = 320.8 Hz), 122.1, 127.5, 128.6, 129.3, 129.5, 130.6, 131.5, 132.1, 136.9, 139.3; IR v_{max} (film): 3324.49, 2987.54, 2899.75, 1648.98, 1451.02, 1228.63, 1116.33, 1065.91, 1016.33, 567.35 cm⁻¹; HRMS m/z calcd for C₁₄H₁₁F₃NO₂S [M-H]⁺: 314.0463; found: 314.0462.

1,1,1-trifluoro-*N*-(5-methoxy-[1,1'-biphenyl]-2-yl)methanesulfonamide (3d): The product was obtained as a white solid. Yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H), 6.55 (s, 1H), 6.87 (d, J = 2.8 Hz, 1H), 6.95 (dd,

J = 8.8 Hz, J = 2.8 Hz, 1H), 7.34 (d, J = 7.6 Hz, 2H), 7.45-7.54 (m, 4H); ¹³C (100 MHz, CDCl₃) δ 55.7, 114.2, 114.8, 119.6 (q, J = 320.7 Hz), 124.1, 125.6, 128.7, 129.1, 129.3, 137.3, 138.4, 158.5; IR v_{max} (film): 3674.11, 2987.47, 2900.08, 1607.88, 1508.96, 1486.27, 1409.58, 1393.55, 1367.75, 1201.30, 1141.13, 1065.87, 879.04, 762.28 cm⁻¹; HRMS m/z calcd for C₁₄H₁₁F₃NO₃S [M-H]⁺: 330.0412; found: 330.0418.

N-(4-chloro-[1,1'-biphenyl]-2-yl)-1,1,1-trifluoromethanesulfonamide (3e): The product was obtained as a colorless oil. Yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ 6.70 (s, 1H), 7.26 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 7.2 Hz, 3H),

7.50-7.57 (m, 3H), 7.70 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 119.6 (q, J = 320.7 Hz), 121.3, 126.8, 129.1, 129.2, 129.8, 131.8, 132.8, 132.8, 134.8, 135.7; IR v_{max} (film): 3674.23, 3359.18, 2987.28,

2900.10, 1480.65, 1405.23, 1393.59, 1379.22, 1231.71, 1139.85, 1065.81, 1056.75, 1016.33, 891.61, 606.12 cm⁻¹; HRMS m/z calcd for $C_{13}H_8ClF_3NO_2S$ [M-H]⁺: 333.9916; found: 333.9920.

1,1,1-trifluoro-*N***-(4-fluoro-**[**1,1'-biphenyl**]-**2-yl**)**methanesulfonamide** (3f): The product was obtained as a colorless oil. Yield: 71%; ¹H NMR (400 MHz, CDCl₃) δ 6.69 (s, 1H), 7.01 (dt, *J* = 8.4 Hz, *J* = 2.4 Hz, 1H), 7.24-7.30 (m, 3H),

7.43 (dd, J = 10.0 Hz, J = 2.4 Hz, 1H), 7.47-7.54 (m, 3H); ¹³C (100 MHz, CDCl₃) δ 108.3 (d, J = 27.1 Hz), 113.4 (d, J = 21.3 Hz), 119.6 (q, J = 320.7 Hz), 129.1, 129.3, 129.8, 129.9 (d, J = 3.5 Hz), 132.1 (d, J = 9.0 Hz), 133.0 (d, J = 10.9 Hz), 135.8, 162.5 (d, J = 246.4 Hz); IR v_{max} (film): 3674.32, 3334.69, 2987.32, 2900.09, 1655.10, 1405.60, 1393.45, 1380.15, 1230.96, 1065.81, 1056.77, 1014.29, 891.78, 612.24 cm⁻¹; HRMS m/z calcd for C₁₃H₈F₄NO₂S [M-H]⁺: 318.0212; found: 318.0209.

N-([1,1':3',1"-terphenyl]-4'-yl)-1,1,1-trifluoromethanesulfonamide (3g): The product was obtained as a colorless oil. Yield: 80%; ¹H NMR (400 MHz, CDCl₃) δ 6.68 (s, 1H), 7.35-7.39 (m, 3H), 7.45 (t, *J* = 7.2 Hz, 2H),

7.48-7.55 (m, 4H), 7.59 (d, J = 8.0 Hz, 2H), 7.62 (dd, J = 8.4 Hz, J = 0.8 Hz, 1H), 7.71 (d, J = 8.4 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 119.7 (q, J = 320.8 Hz), 122.0, 127.2, 127.6, 128.0, 129.0, 129.1, 129.2, 129.5, 129.7, 130.9, 135.2, 136.9, 139.7, 139.7; IR v_{max} (film): 3674.30, 3336.73, 2987.26, 2900.12, 1653.06, 1405.40, 1393.48, 1249.68, 1065.80, 1056.73, 1012.24, 891.84 cm⁻¹; HRMS m/z calcd for C₁₉H₁₃F₃NO₂S [M-H]⁺: 376.0619; found: 376.0623.

Methyl 6-(trifluoromethylsulfonamido)-[1,1'-biphenyl]-3-carboxylate (3h): The product was obtained as a white solid. Yield: 83%; ¹H NMR (400 MHz, CDCl₃) δ 3.92 (s, 3H), 6.83 (s, 1H), 7.33 (d, J = 7.6 Hz, 2H),

7.48-7.56 (m, 3H), 7.75 (d, J = 8.8 Hz, 1H), 8.00 (s, 1H), 8.07 (dd, J = 8.8 Hz, J = 1.6 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 52.5, 119.6 (q, J = 320.9 Hz), 119.7, 127.9, 129.2, 129.4, 129.9, 130.5, 132.3, 133.5, 135.6, 135.9, 166.1; IR v_{max} (film): 3674.34, 3344.90, 2987.37, 2900.08, 1727.82, 1506.71, 1393.43, 1378.49, 1231.41, 1141.28, 1065.84, 891.83 cm⁻¹; HRMS m/z calcd for C₁₅H₁₁F₃NO₄S [M-H]⁺: 358.0361; found: 358.0372.

1,1,1-trifluoro-*N*-(6-methyl-[1,1'-biphenyl]-2-yl)methanesulfonamide (3i): The product was obtained as a colorless oil. Yield: 63%; ¹H NMR (400 MHz, CDCl₃) δ 2.04 (s, 3H), 6.00 (s, 1H), 7.16-7.19 (m, 3H), 7.29 (t, J = 7.6 Hz, 1H), 7.44-7.54 (m, 4H); ¹³C (100 MHz, CDCl₃) δ 20.8, 118.3, 119.7 (q, J = 321.1 Hz), 128.1, 128.6, 128.9, 129.4, 129.9, 132.4, 134.1, 135.5, 138.0; IR v_{max} (film): 3308.16, 2944.90, 2830.61, 1446.94, 1118.37, 1020.41, 624.49 cm⁻¹; HRMS m/z calcd for C₁₄H₁₁F₃NO₂S [M-H]⁺: 314.0463; found: 314.0460.

1,1,1-trifluoro-*N*-(**3-phenylnaphthalen-2-yl)methanesulfonamide (3j):** The product was obtained as a white solid. Yield: 73%; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 7.6 Hz, 2H), 7.53-7.60 (m, 5H), 7.81 (s, 1H), 7.85 (d, *J*

= 7.6 Hz, 1H), 7.92 (d, J = 7.6 Hz, 1H), 8.13 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 119.3, 119.8 (q, J = 321.0 Hz), 126.9, 127.3, 127.8, 128.0, 129.0, 129.5, 129.6, 129.7, 130.2, 131.5, 133.1, 133.5, 136.8; IR v_{max} (film): 3674.35, 3336.73, 2987.22, 2900.14, 1651.02, 1405.49, 1393.45, 1249.69, 1229.00, 1065.79, 1056.71, 1012.24 cm⁻¹; HRMS m/z calcd for C₁₇H₁₁F₃NO₂S [M-H]⁺: 350.0463; found: 350.0471.

N-(4'-(tert-butyl)-[1,1'-biphenyl]-2-yl)-1,1,1-trifluoromethanesulfonamide (3k): The product

was obtained as a colorless oil. Yield: 94%; ¹H NMR (400 MHz, CDCl₃) δ 1.38 (s, 9H), 7.24-7.30 (m, 4H), 7.36-7.40 (m, 1H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.64 (d, *J* = 8.4 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 31.4, 34.9, 119.7 (q, *J* =

320.8 Hz), 121.0, 126.5, 126.6, 128.9, 128.9, 131.0, 131.9, 133.7, 134.4, 151.9; IR v_{max} (film): 3706.04, 3679.87, 2980.51, 2921.79, 2864.42, 2843.33, 1454.04, 1345.73, 1054.47, 1032.57, 1010.05 cm⁻¹; HRMS m/z calcd for C₁₇H₁₇F₃NO₂S [M-H]⁺: 356.0932; found: 356.0931.

1,1,1-trifluoro-*N*-(4'-methoxy-[1,1'-biphenyl]-2-yl)methanesulfonamide (3l): The product was obtained as a colorless oil. Yield: 45%; ¹H NMR (400 MHz, CDCl₃) δ 3.90 (s, 3H), 7.05 (d, *J* = 8.8 Hz, 2H), 7.26-7.31 (m, 4H),

7.39-7.42 (m, 1H), 7.65 (d, J = 8.4 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 55.6, 115.0, 119.7 (q, J = 320.7 Hz), 121.1, 126.5, 128.8, 128.9, 130.4, 131.1, 132.0, 134.3, 160.0; IR v_{max} (film): 3674.23, 3340.82, 2987.33, 2900.08, 1405.47, 1393.48, 1140.87, 1065.81, 1056.74, 891.68, 602.04 cm⁻¹; HRMS m/z calcd for C₁₄H₁₁F₃NO₃S [M-H]⁺: 330.0412; found: 330.0419.

N-(2-(benzo[d][1,3]dioxol-5-yl)phenyl)-1,1,1-trifluoromethanesulfonamide (3m): The product was obtained as a colorless oil. Yield: 71%; ¹H NMR (400 MHz, CDCl₃) δ 6.06 (s, 2H), 6.75-6.77 (m, 3H), 6.93 (d, *J* = 8.0 Hz, 1H),

7.26-7.28 (m, 1H), 7.36-7.40 (m, 1H), 7.62 (d, J = 8.4 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 101.7,

109.2, 109.6, 119.7 (q, J = 320.9 Hz), 121.1, 122.7, 126.5, 129.0, 130.3, 131.0, 132.0, 134.2, 148.2, 148.7; IR v_{max} (film): 3417.50, 3186.02, 2980.56, 2972.22, 2921.85, 2864.25, 2843.33, 1660.69, 1478.25, 1345.70, 1207.71, 1054.40, 1032.71, 1008.55 cm⁻¹; HRMS m/z calcd for $C_{14}H_9F_3NO_4S [M-H]^+$: 344.0204; found: 344.0205.

N-(3',5'-dimethoxy-[1,1'-biphenyl]-2-yl)-1,1,1-trifluoromethanesulfonamide (3n): The product

was obtained as a colorless oil. Yield: 68%; ¹H NMR (400 MHz, CDCl₃) δ 3.82 (s, 6H), 6.43 (d, J = 2.0 Hz, 2H), 6.52 (t, J = 2.4 Hz, 1H), 6.84 (s, 1H), 7.28-7.31 (m, 2H), 7.37-7.42 (m, 1H), 7.63 (d, J = 8.0 Hz, 1H); ¹³C (100 MHz,

 $CDCl_3$) δ 55.6, 100.7, 107.1, 119.7 (q, J = 320.8 Hz), 121.0, 126.4, 129.1, 130.5, 131.7, 134.4, 138.6, 161.7; IR v_{max} (film): 3705.15, 3679.88, 2980.51, 2921.68, 2864.40, 2843.33, 1454.18, 1345.73, 1054.41, 1032.56, 1011.91 cm⁻¹; HRMS m/z calcd for $C_{15}H_{13}F_3NO_4S [M-H]^+$: 360.0517; found: 360.0523.

1,1,1-trifluoro-N-(4'-(methylthio)-[1,1'-biphenyl]-2-yl)methanesulfonamide (30): The product

was obtained as a colorless oil. Yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 2.54 (s, 3H), 7.24-7.42 (m, 7H), 7.62 (d, J = 8.4 Hz, 1H); ¹³C (100 MHz, $CDCl_3$) δ 15.6, 119.7 (q, J = 320.6 Hz), 121.6, 126.7, 127.0, 129.1, 129.6,

130.9, 131.8, 133.2, 134.2, 139.9; IR v_{max} (film): 3705.64, 3679.91, 2972.22, 2921.76, 2864.37, 2843.34, 1454.09, 1345.72, 1054.36, 1032.51, 1011.55 cm⁻¹; HRMS m/z calcd for $C_{14}H_{11}F_3NO_2S_2$ [M-H]⁺: 346.0183; found: 346.0182.

N-(2'-(trifluoromethylsulfonamido)-[1,1'-biphenyl]-3-yl)acetamide (3p):

The product was obtained as a colorless oil. Yield: 90%; ¹H NMR (400 MHz, CDCl₃) δ 2.10 (s, 3H), 7.07 (d, *J* = 7.2 Hz, 1H), 7.26-7.31 (m, 2H), 7.36-7.40 (m, 2H), 7.45 (d, J = 8.0 Hz, 1H), 7.52 (s, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.65 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 24.5, 119.6 (q, J = 320.6 Hz), 119.8, 120.9, 123.7, 125.2, 127.2, 129.1, 129.9, 130.8, 131.6, 136.0, 138.1, 138.4, 169.2; IR v_{max} (film): 3705.76, 3679.89, 2972.24, 2921.76, 2864.34, 2843.39, 1345.69, 1054.61, 1032.68, 1003.51 cm⁻¹; HRMS m/z calcd for C₁₅H₁₂F₃N₂O₃S [M-H]⁺: 357.0521; found: 357.0521.

N-(4'-chloro-[1,1'-biphenyl]-2-yl)-1,1,1-trifluoromethanesulfonamide (3q): The product was obtained as a white solid. Yield: 83%; ¹H NMR (400 MHz, $CDCl_3$) δ 6.55 (s, 1H), 7.26-7.28 (m, 3H), 7.33 (t, J = 7.2 Hz, 1H), 7.42 (dt, J = 7.2 Hz, J = 1.6 Hz, 1H), 7.49 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 119.6 (q, J = 320.5 Hz), 122.6, 127.1, 129.4, 129.7, 130.6, 130.9, 131.6, 134.3, 135.1, 135.4; IR v_{max} (film): 3418.03, 3187.38, 2980.62, 2864.18, 2843.46, 1648.93, 1477.95, 1372.21, 1205.21, 1145.74, 1054.95, 1006.55 cm⁻¹; HRMS m/z calcd for C₁₃H₈F₃NO₂SCl [M-H]⁺: 333.9916; found: 333.9924.

N-(3'-chloro-[1,1'-biphenyl]-2-yl)-1,1,1-trifluoromethanesulfonamide (3r): The product was obtained as a colorless oil. Yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ 6.64 (s, 1H), 7.25 (m, 1H), 7.31-7.39 (m, 3H), 7.44-7.48 (m, 3H),

7.66 (d, J = 8.4 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 119.6 (q, J = 320.5 Hz), 122.7, 127.1, 127.3, 128.9, 129.5, 129.6, 130.6, 130.8, 131.5, 134.2, 135.4, 138.8; IR v_{max} (film): 3674.29, 3336.73, 2987.21, 2900.15, 1655.10, 1405.72, 1393.47, 1380.99, 1249.67, 1065.79, 1056.68, 1012.24, 891.84, 604.08 cm⁻¹; HRMS m/z calcd for C₁₃H₈ClF₃NO₂S [M-H]⁺: 333.9916; found: 333.9919.

Methyl 2'-(trifluoromethylsulfonamido)-[1,1'-biphenyl]-3-carboxylate: (3s): The product was obtained as a white solid. Yield: 55%; ¹H NMR (400 MHz, CDCl₃) δ 3.96 (s, 3H), 6.72 (s, 1H), 7.33-7.40 (m, 2H), 7.46 (qt, J =

8.0 Hz, J = 1.2 Hz, 1H), 7.56-7.67 (m, 3H), 8.03 (s, 1H), 8.14 (d, J = 7.2 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 52.6, 119.6 (q, J = 320.5 Hz), 123.2, 127.3, 129.5, 129.5, 129.8, 130.4, 131.0, 131.2, 131.5, 133.7, 134.9, 137.5, 166.6; IR v_{max} (film): 3674.34, 3342.86, 2987.32, 2900.06, 1558.04, 1393.43, 1249.71, 1065.81, 1056.81, 891.72, 567.35 cm⁻¹; HRMS m/z calcd for C₁₅H₁₁F₃NO₄S [M-H]⁺: 358.0361; found: 358.0363.

N-(4'-cyano-[1,1'-biphenyl]-2-yl)-1,1,1-trifluoromethanesulfonamide (3t):

The product was obtained as a colorless oil. Yield: 88%; ¹H NMR (400 MHz, CDCl₃) δ 6.73 (s, 1H), 7.31 (dd, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.41 (dt, J = 7.6

Hz, J = 1.2 Hz, 1H), 7.46-7.51 (m, 3H), 7.60 (dd, J = 8.4 Hz, J = 0.8 Hz, 1H), 7.79 (d, J = 8.4 Hz, 2H); ¹³C (100 MHz, CDCl₃) δ 112.5, 118.4, 119.5 (q, J = 320.2 Hz), 124.6, 127.9, 130.1, 130.3, 130.8, 131.1, 133.0, 135.1, 142.2; IR v_{max} (film): 3679.90, 2980.57, 2864.26, 2843.45, 1649.25, 1371.93, 1208.74, 1143.98, 1054.59, 1032.74, 1003.89 cm⁻¹; HRMS m/z calcd for C₁₄H₈F₃N₂O₂S [M-H]⁺: 325.0259; found: 325.0256.

1,1,1-trifluoro-N-(4'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)methanesulfonamide (3u): The

product was obtained as a colorless oil. Yield: 87%; ¹H NMR (400 MHz, CDCl₃) δ 6.62 (s, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.47-7.51 (m, 3H), 7.66 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 2H); ¹³C (100 MHz, CDCl₃) δ 119.6 (q, *J* = 320.3 Hz), 123.4, 124.0 (q, *J* = 270.6 Hz), 126.3 (q, *J* = 3.7 Hz), 127.5, 129.8, 129.8, 130.9, 131.0 (q, *J* = 32.7 Hz), 131.3, 134.6, 140.8; IR ν_{max} (film): 3674.24, 3338.78, 2987.33, 2900.07, 1393.46, 1249.66, 1065.87, 1056.80, 1014.29, 891.79, 585.71 cm⁻¹; HRMS m/z calcd for C₁₄H₈F₆NO₂S [M-H]⁺: 368.0180; found: 368.0178.

N-(3',5'-difluoro-[1,1'-biphenyl]-2-yl)-1,1,1-trifluoromethanesulfonamide (3v): The product was obtained as a colorless oil. Yield: 96%; ¹H NMR (400 MHz, CDCl₃) δ 6.87-6.93 (m, 3H), 7.29 (dd, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.36 (dt, J = 7.6 Hz, J = 0.8 Hz, 1H), 7.45 (dt, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.62 (dd, J = 8.0 Hz, J = 0.8 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 104.3 (t, J = 24.9 Hz), 112.6 (dd, J = 18.3 Hz, J = 7.3 Hz), 119.6 (q, J = 320.5 Hz), 123.5, 127.4, 129.9, 130.7, 131.3, 133.8, 140.3 (t, J = 9.4 Hz), 163.4 (dd, J = 249.9 Hz, J = 12.9 Hz); IR v_{max} (film): 3705.66, 3679.86, 2980.52, 2921.77, 2864.40, 2843.33, 1345.68, 1054.43, 1032.58, 1010.19 cm⁻¹; HRMS m/z calcd for C₁₃H₇F₅NO₂S [M-H]⁺: 336.0118; found: 336.0125.

1,1,1-trifluoro-*N*-(**2-(naphthalen-2-yl)phenyl)methanesulfonamide** (3w): The product was obtained as a white solid. Yield: 88%; ¹H NMR (400 MHz, CDCl₃) δ 6.78 (s, 1H), 7.37-7.50 (m, 4H), 7.61-7.63 (m, 2H), 7.73 (d, *J* = 8.0

Hz, 1H), 7.86 (s, 1H), 7.91-7.98 (m, 2H), 8.03 (d, J = 8.4 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 119.7 (q, J = 320.7 Hz), 121.6, 126.6, 126.7, 127.1, 127.2, 128.0, 128.2, 128.5, 129.2, 129.5, 131.1, 131.9, 133.1, 133.5, 134.2, 134.8; IR v_{max} (film): 3674.28, 3342.86, 2987.34, 2900.07, 1653.06, 1405.94, 1393.46, 1229.24, 1065.81, 1056.79, 891.87, 602.04 cm⁻¹; HRMS m/z calcd for C₁₇H₁₁F₃NO₂S [M-H]⁺: 350.0463; found: 350.0465.

N-(2-(benzo[b]thiophen-6-yl)phenyl)-1,1,1-trifluoromethanesulfonamide (3x): The product was obtained as a colorless oil. Yield: 60%; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (dd, *J* = 8.4 Hz, *J* = 1.6 Hz, 1H), 7.32-7.45 (m, 4H), 7.58

(d, J = 5.2 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 1.2 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 119.7 (q, J = 320.6 Hz), 121.2, 123.7, 124.0, 124.2, 125.0, 126.5, 128.4, 129.1, 131.2, 132.1, 132.8, 134.5, 140.1, 140.4; IR v_{max} (film): 3706.00, 3679.89, 2980.51, 2972.23, 2921.83, 2864.43, 2843.34, 1454.05, 1345.73, 1054.47, 1032.58, 1010.32 cm⁻¹; HRMS m/z calcd for C₁₅H₉F₃NO₂S₂ [M-H]⁺: 356.0027; found: 356.0029.

1,1,1-trifluoro-N-(3'-methoxy-5-methyl-[1,1'-biphenyl]-2-yl)methanesulfonamide (3y): The

product was obtained as a colorless oil. Yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s, 3H), 3.83 (s, 3H), 6.48 (s, 1H), 6.83 (s, 1H), 6.86 (d, J = 7.2 Hz, 1H), 6.96 (dd, J = 8.4 Hz, J = 2.4 Hz, 1H), 7.12 (s, 1H), 7.18 (d, J = 8.4

Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 21.0, 55.5, 114.3, 114.7, 121.3, 122.1, 122.9 (q, J = 320.4 Hz), 129.0, 129.6, 130.5, 131.3, 135.1, 136.8, 138.5, 160.3; IR v_{max} (film): 3302.26, 2942.63, 2830.57, 1448.39, 1210.57, 1115.45, 1021.10, 611.83 cm⁻¹; HRMS m/z calcd for C₁₅H₁₃F₃NO₃S [M-H]⁺: 344.0568; found: 344.0563.

N-(4'-chloro-5-methyl-[1,1'-biphenyl]-2-yl)-1,1,1-trifluoromethanesulfonamide (3z): The

product was obtained as a colorless oil. Yield: 79%; ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H), 6.44 (s, 1H), 7.09 (s, 1H), 7.21 (d, *J* = 8.4 Hz, 1H), 7.25 (d, *J* = 8.4 Hz, 2H), 7.46-7.48 (m, 3H); ¹³C (100 MHz, CDCl₃) δ 21.0,

119.6 (q, J = 320.6 Hz), 123.2, 128.8, 129.6, 130.0, 130.6, 131.5, 134.7, 134.9, 135.7, 137.4; IR v_{max} (film): 3379.59, 2944.90, 2832.65, 1487.01, 1418.79, 1365.42, 1233.55, 1205.22, 1142.46, 1091.88, 1024.49, 907.51, 732.34, 621.72 cm⁻¹; HRMS m/z calcd for C₁₄H₁₀F₃NO₂SCl [M-H]⁺: 348.0073; found: 348.0071.

N-(4'-(tert-butyl)-4-chloro-[1,1'-biphenyl]-2-yl)-1,1,1-trifluoromethanesulfonamide (3aa):

The product was obtained as a colorless oil. Yield: 89%; ¹H NMR (400 MHz, CDCl₃) δ 1.38 (s, 9H), 7.21-7.23 (m, 3H), 7.27 (d, *J* = 6.4 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.67 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 31.4, 34.9,

119.6 (q, J = 320.6 Hz), 120.7, 126.6, 126.8, 128.8, 131.9, 132.4, 132.6, 132.9, 134.6, 152.4; IR v_{max} (film): 3377.55, 2963.27, 2830.61, 1602.04, 1486.86, 1431.91, 1408.80, 1365.65, 1233.17, 1204.08, 1141.56, 1024.49, 954.35, 906.54, 732.57, 607.91 cm⁻¹; HRMS m/z calcd for $C_{17}H_{16}F_3NO_2SCI [M-H]^+$: 390.0542; found: 390.0543.

N-(4-chloro-3',5'-difluoro-[1,1'-biphenyl]-2-yl)-1,1,1-trifluoromethanesulfonamide (3ab): The

product was obtained as a colorless oil. Yield: 87%; ¹H NMR (400 MHz, CDCl₃) δ 6.85 (dd, J = 12.8 Hz, J = 7.2 Hz, 2H), 6.94 (t, J = 12.8 Hz, 1H), 7.22 (d, J = 8.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.66 (s, 1H); ¹³C (100

MHz, CDCl₃) δ 104.8 (t, J = 24.8 Hz), 112.5 (dd, J = 18.3 Hz, J = 7.5 Hz), 119.6 (q, J = 320.5 Hz), 122.8, 127.4, 131.4, 131.6, 132.5, 135.8, 139.1 (t, J = 9.5 Hz), 163.6 (dd, J = 250.8 Hz, J = 12.9Hz); IR v_{max} (film): 3283.73, 3093.88, 2830.61, 1622.07, 1595.14, 1497.74, 1462.10, 1435.73, 1399.38, 1369.15, 1236.57, 1218.07, 1199.02, 1140.13, 1122.01, 1020.41, 990.54, 957.80, 866.03, 732.19, 601.96 cm⁻¹; HRMS m/z calcd for C₁₃H₆F₅NO₂SCl [M-H]⁺: 369.9728; found: 369.9728.

1,1,1-trifluoro-*N*-(2-vinylphenyl)methanesulfonamide (3ac): The product was obtained as a colorless oil. Yield: 40%; ¹H NMR (400 MHz, CDCl₃) δ 5.51 (d, *J* = 10.8 Hz, 1H), 5.76 (d, *J* = 17.6 Hz, 1H), 6.92 (dd, *J* = 17.6 Hz, *J* = 10.8 Hz, 1H), 7.32-7.35 (m, 2H), 7.42-7.44 (m, 1H), 7.53-7.56 (m, 1H); ¹³C (100 MHz, CDCl₃) δ 119.5, 119.9 (q, *J* = 320.3 Hz), 126.4, 127.2, 128.6, 129.1, 130.7, 131.1, 134.3; IR *v*_{max} (film): 3674.16, 3326.53, 2987.14, 2900.15, 1655.10, 1405.30, 1393.49, 1249.69, 1229.22, 1065.76, 1056.66, 1012.24, 891.72 cm⁻¹; HRMS m/z calcd for C₉H₇F₃NO₂S [M-H]⁺: 250.0150; found: 250.0151.

(E)-1,1,1-trifluoro-N-(2-(prop-1-en-1-yl)phenyl)methanesulfonamide (3ad):The product was obtained as a colorless oil. Yield: 57%; ¹H NMR (400 MHz, CDCl₃) δ 1.97 (d, J = 6.8 Hz, 3H), 6.24 (dq, J = 15.6 Hz, J = 6.8 Hz, 1H), 6.58 (d, J = 15.6 Hz, 1H), 6.60 (s, 1H), 7.29-7.33 (m, 1H), 7.43-7.48 (m, 2H); ¹³C (100 MHz, CDCl₃) δ 19.1, 119.9 (q, J = 320.4 Hz), 124.9, 125.8, 127.5, 128.2, 128.3, 130.3, 132.1, 134.1; IR v_{max} (film): 3674.24, 3336.73, 2987.20, 2900.15, 1653.06, 1405.45, 1393.48, 1381.32, 1249.69, 1229.00, 1065.31, 1012.24, 891.84 cm⁻¹; HRMS m/z calcd for C₁₀H₉F₃NO₂S [M-H]⁺: 264.0306; found: 264.0310.

 $(E)-ethyl 3-(2-(trifluoromethylsulfonamido)phenyl)acrylate (3ae): The product was obtained as a colorless oil. Yield: 85%; ¹H NMR (400 MHz, CDCl₃) <math>\delta$ 1.34 (t, J = 7.2 Hz, 3H), 4.28 (q, J = 7.2 Hz, 2H), 6.49 (d, J = 16.0 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 7.6 Hz, 1H), 8.12 (d, J = 16.0 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 14.3, 61.4, 119.9 (q, J = 320.5 Hz), 121.8, 127.5, 128.0, 128.8, 131.1, 131.4, 132.8, 139.0, 167.3; IR v_{max} (film): 3674.15, 3320.41, 2987.13, 2900.16, 1655.10, 1405.32, 1393.49, 1381.16, 1065.76, 1056.65, 1010.20, 891.70 cm⁻¹; HRMS m/z calcd for C₁₂H₁₁F₃NO₄S [M-H]⁺: 322.0361; found: 322.0368.

(*E*)-1,1,1-trifluoro-*N*-(2-styrylphenyl)methanesulfonamide (3af): The product was obtained as a white solid. Yield: 56%; ¹H NMR (400 MHz, CDCl₃)

δ 6.69 (s, 1H), 7.12 (d, J = 16.0 Hz, 1H), 7.29 (d, J = 6.8 Hz, 1H), 7.34-7.44 (m, 5H), 7.48 (d, J = 7.6 Hz, 1H), 7.55 (d, J = 7.6 Hz, 2H), 7.71 (d, J = 7.6 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 119.9 (q, J = 320.3 Hz), 121.9, 127.0, 127.0, 127.2, 128.7, 128.8, 128.9, 129.0, 130.8, 133.8, 134.3, 136.6; IR v_{max} (film): 3674.26, 2987.09, 2900.17, 1651.02, 1405.56, 1393.47, 1381.39, 1249.70, 1228.65, 1065.76, 1056.63, 1008.16, 891.69 cm⁻¹; HRMS m/z calcd for C₁₅H₁₁F₃NO₂S [M-H]⁺: 326.0463; found: 326.0469.

N-(2-benzoylphenyl)-1,1,1-trifluoromethanesulfonamide (4a): The product was obtained as a white solid. Yield: 84%; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, J = 7.6 Hz, 1H), 7.55 (t, J = 7.6 Hz, 2H), 7.64-7.69 (m, 3H), 7.75 (d, J = 7.6 Hz,

2H), 7.85 (d, J = 8.4 Hz, 1H), 11.0 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 119.9 (q, J = 321.2 Hz), 121.8, 124.8, 125.5, 128.7, 130.1, 133.3, 134.0, 134.6, 137.5, 137.5, 199.4; IR v_{max} (film): 3674.37, 3330.61, 2987.20, 2900.14, 1653.06, 1405.40, 1393.48, 1249.72, 1229.49, 1065.78, 1056.69, 1014.29, 893.88 cm⁻¹; HRMS m/z calcd for C₁₄H₉F₃NO₃S [M-H]⁺: 328.0255; found: 328.0257.

N-(2-benzoyl-4-methylphenyl)-1,1,1-trifluoromethanesulfonamide (4b): The product was obtained as a white solid. Yield: 84%; ¹H NMR (400 MHz, CDCl₃) δ 2.48 (s, 3H), 7.09 (d, *J* = 8.0 Hz, 1H), 7.51-7.57 (m, 3H), 7.64-7.66

(m, 2H), 7.71 (d, J = 7.6 Hz, 2H), 11.2 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 22.2, 119.9 (q, J = 321.2 Hz), 122.0, 122.6, 125.5, 128.6, 130.0, 133.0, 134.2, 137.9, 137.9, 146.4, 199.3; IR v_{max} (film): 3674.29, 3324.49, 2987.18, 2900.16, 1655.10, 1405.63, 1393.47, 1381.38, 1249.74, 1229.27, 1065.78, 1056.68, 1008.16, 893.88 cm⁻¹; HRMS m/z calcd for C₁₅H₁₁F₃NO₃S [M-H]⁺: 342.0412; found: 342.0415.

N-(2-benzoyl-4-methoxyphenyl)-1,1,1-trifluoromethanesulfonamide (4c): The product was obtained as a white solid. Yield: 68%; ¹H NMR (400 MHz, CDCl₃) δ 3.81 (s, 3H), 7.11 (d, *J* = 2.8 Hz, 1H), 7.17 (dd, *J* = 8.8 Hz, *J* = 2.8

Hz, 1H), 7.55 (t, J = 7.6 Hz, 2H), 7.68 (t, J = 7.6 Hz, 1H), 7.73 (d, J = 9.2 Hz, 1H), 7.79 (d, J = 7.6 Hz, 2H), 10.01 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 55.9, 118.8, 119.0, 119.9 (q, J = 321.7 Hz), 125.3, 128.7, 128.7, 129.1, 130.2, 133.5, 137.2, 156.8, 198.3; IR v_{max} (film): 3674.28, 3338.78, 2987.15, 2900.17, 1405.90, 1393.47, 1381.38, 1065.77, 1056.66, 1010.20, 891.69 cm⁻¹; HRMS m/z calcd for C₁₅H₁₁F₃NO₄S [M-H]⁺: 358.0361; found: 358.0359.

N-(2-benzoyl-4-chlorophenyl)-1,1,1-trifluoromethanesulfonamide (4d): The product was obtained as a white solid. Yield: 64%; ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.60 (m, 4H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.72-7.78 (m, 3H),

10.58 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 119.8 (q, J = 321.2 Hz), 123.8, 127.2, 128.9, 130.2, 130.8, 133.1, 133.8, 134.3, 135.7, 136.7, 197.9; IR v_{max} (film): 3334.69, 2942.86, 2830.61, 1642.19, 1596.21, 1482.92, 1421.46, 1293.17, 1230.07, 1205.44, 1140.96, 1022.45, 924.54, 702.81, 609.52 cm⁻¹; HRMS m/z calcd for C₁₄H₈F₃NO₃SCl [M-H]⁺: 361.9866; found: 361.9867.

Methyl 3-benzoyl-4-(trifluoromethylsulfonamido)benzoate (4e): The product was obtained as a white solid. Yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ 3.99 (s, 3H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.66-7.75 (m, 4H), 7.94 (d,

J = 8.0 Hz, 1H), 8.43 (s, 1H), 10.51 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 53.1, 119.8 (q, J = 321.0 Hz), 123.3, 125.9, 128.9, 129.2, 130.3, 133.5, 133.9, 135.3, 136.9, 137.2, 165.2, 198.2; IR v_{max} (film): 3674.29, 3330.61, 2987.12, 2900.18, 1653.06, 1405.57, 1393.46, 1381.49, 1249.72, 1229.53, 1065.76, 1056.65, 1008.16, 891.69 cm⁻¹; HRMS m/z calcd for C₁₆H₁₁F₃NO₅S [M-H]⁺: 386.0310; found: 386.0311.

N-(4-benzoyl-[1,1'-biphenyl]-3-yl)-1,1,1-trifluoromethanesulfonamide (4f): The product was obtained as a white solid. Yield: 87%; ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.55 (m, 6H), 7.64-7.67 (m, 3H), 7.72 (d, *J* = 8.4 Hz,

1H), 7.75 (d, J = 7.6 Hz, 2H), 8.06 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 120.0, 120.0 (q, J = 321.2 Hz), 123.1, 123.7, 127.5, 128.7, 129.2, 129.3, 130.0, 133.2, 134.6, 137.8, 138.4, 138.7, 147.7, 199.2; IR v_{max} (film): 3674.28, 3338.78, 2987.14, 2900.17, 1657.14, 1405.97, 1393.49, 1381.46, 1249.81, 1229.78, 1065.77, 1056.65, 1014.29, 891.70, 697.96, 597.96 cm⁻¹; HRMS m/z calcd for C₂₀H₁₃F₃NO₃S [M-H]⁺: 404.0568; found: 404.0568.

N-(2-benzoyl-5-chlorophenyl)-1,1,1-trifluoromethanesulfonamide (4g): The product was obtained as a white solid. Yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 8.8 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 2H), 7.62 (d, *J* = 8.4

Hz, 1H), 7.67-7.72 (m, 3H), 7.87 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 119.8 (q, J = 320.9 Hz), 121.6, 123.3, 125.0, 128.8, 130.0, 133.5, 135.0, 137.3, 139.0, 141.2, 198.7; IR v_{max} (film): 3674.28, 3326.53, 2987.12, 2900.18, 1653.06, 1405.60, 1393.47, 1381.45, 1249.77, 1229.60, 1065.76, 1056.64, 1006.12, 891.68 cm⁻¹; HRMS m/z calcd for C₁₄H₈ClF₃NO₃S [M-H]⁺: 361.9866; found:

361.9876.

N-(2-benzoyl-5-fluorophenyl)-1,1,1-trifluoromethanesulfonamide (4h): The product was obtained as a white solid. Yield: 87%; ¹H NMR (400 MHz, CDCl₃) δ 6.97 (t, *J* = 8.0 Hz, 1H), 7.56 (t, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 10.0

Hz, 1H), 7.66-7.75 (m, 4H), 11.54 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 108.7 (d, J = 27.7 Hz), 111.8 (d, J = 21.8 Hz), 119.8 (q, J = 320.8 Hz), 120.8 (d, J = 3.0 Hz), 128.8, 129.9, 133.3, 136.8 (d, J = 10.5 Hz), 137.6, 140.7 (d, J = 12.1 Hz), 165.9 (d, J = 256.5 Hz), 198.7; IR v_{max} (film): 3674.30, 3338.78, 2987.10, 2900.18, 1657.14, 1405.66, 1393.47, 1381.44, 1249.74, 1230.29, 1065.76, 1056.65, 1008.16, 891.69 cm⁻¹; HRMS m/z calcd for C₁₄H₈F₄NO₃S [M-H]⁺: 346.0161; found: 346.0162.

N-(**3-benzoylnaphthalen-2-yl)-1,1,1-trifluoromethanesulfonamide** (**4i**): The product was obtained as a white solid. Yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.58 (m, 3H), 7.69 (m, 2H), 7.80-7.83 (m, 3H), 7.90 (d, *J* =

8.4 Hz, 1H), 8.17 (d, J = 8.0 Hz, 2H), 10.49 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 120.0 (q, J = 321.6 Hz), 121.0, 125.7, 127.4, 128.0, 128.8, 129.3, 129.6, 130.3, 130.4, 132.3, 133.5, 135.5, 136.3, 137.7, 199.1; IR ν_{max} (film): 3674.25, 3326.53, 2987.10, 2900.18, 1653.06, 1405.52, 1393.47, 1381.52, 1249.72, 1229.31, 1065.75, 1056.63, 1006.12, 891.69 cm⁻¹; HRMS m/z calcd for C₁₈H₁₁F₃NO₃S [M-H]⁺: 378.0412; found: 378.0414.

N-(2-(4-(tert-butyl)benzoyl)phenyl)-1,1,1-trifluoromethanesulfonamide (4j): The product was obtained as a colorless oil. Yield: 73%; ¹H NMR (400 MHz, CDCl₃) δ 1.38 (s, 9H), 7.28 (t, *J* = 7.2 Hz, 1H), 7.53 (d, *J* = 8.4 Hz,

2H), 7.62 (dt, J = 8.0 Hz, J = 1.6 Hz, 1H), 7.68 (d, J = 8.4 Hz, 3H), 7.82 (d, J = 8.4 Hz, 1H), 10.90 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 31.2, 35.4, 119.9 (q, J = 321.3 Hz), 121.9, 124.8, 125.7, 125.9, 130.3, 133.9, 134.4, 134.7, 137.4, 157.3, 198.9; IR v_{max} (film):3705.66, 3679.89, 2980.51, 2972.21, 2921.76, 2864.35, 2843.33, 1670.85, 1454.10, 1345.73, 1054.42, 1032.59, 1010.18 cm⁻¹; HRMS m/z calcd for C₁₈H₁₇F₃NO₃S [M-H]⁺: 384.0881; found: 384.0881.

N-(2-(3,5-dimethoxybenzoyl)phenyl)-1,1,1-trifluoromethanesulfonamide (4k): The product was obtained as a colorless oil. Yield: 42%; ¹H NMR (400 MHz, CDCl₃) δ 3.84 (s, 6H), 6.71 (t, *J* = 2.4 Hz, 1H), 6.81 (d, *J* = 2.4 Hz,

2H), 7.27 (dt, J = 7.6 Hz, J = 0.8 Hz, 1H), 7.63 (dt, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.69 (dd, J = 7.6

Hz, J = 1.6 Hz, 1H), 7.81 (dd, J = 8.4 Hz, J = 0.8 Hz, 1H), 10.83 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 55.8, 105.3, 108.0, 119.9 (q, J = 321.1 Hz), 121.8, 124.8, 125.5, 133.9, 134.7, 137.5, 139.3, 160.8, 199.0; IR v_{max} (film): 3705.99, 3679.90, 3411.17, 2980.54, 2972.23, 2921.81, 2864.38, 2843.33, 1661.76, 1453.98, 1345.73, 1054.51, 1032.62, 1009.45 cm⁻¹; HRMS m/z calcd for C₁₆H₁₃F₃NO₅S [M-H]⁺: 388.0467; found: 388.0469.

N-(2-(benzo[d][1,3]dioxole-5-carbonyl)phenyl)-1,1,1-trifluoromethanesulfonamide (41): The

product was obtained as a colorless oil. Yield: 54%; ¹H NMR (400 MHz, CDCl₃) δ 6.11 (s, 2H), 6.90 (d, J = 8.0 Hz, 1H), 7.26-7.32 (m, 3H), 7.58-7.64 (m, 2H), 7.79 (d, J = 8.0 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 102.3, 108.1,

110.0, 119.9 (q, J = 321.2 Hz), 122.5, 124.9, 126.8, 127.4, 131.6, 133.0, 134.0, 136.9, 148.3, 152.5, 196.8; IR v_{max} (film): 3706.03, 3679.88, 2980.52, 2972.23, 2921.79, 2864.30, 2843.34, 1661.59, 1454.01, 1345.72, 1054.44, 1032.60, 1009.76 cm⁻¹; HRMS m/z calcd for C₁₅H₉F₃NO₅S [M-H]⁺: 372.0154; found: 372.0157.

N-(2-(3-chlorobenzoyl)phenyl)-1,1,1-trifluoromethanesulfonamide (4m): The product was obtained as a white solid. Yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.59-7.70 (m, 4H),

7.73 (s, 1H), 7.86 (d, J = 8.0 Hz, 1H), 10.82 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 119.9 (q, J = 321.2 Hz), 122.0, 125.0, 125.0, 128.2, 129.9, 130.0, 133.2, 133.8, 135.1, 135.1, 137.7, 139.2, 197.9; IR v_{max} (film): 3674.24, 3332.65, 2987.09, 2900.18, 1653.06, 1405.52, 1393.47, 1381.50, 1249.74, 1229.53, 1065.76, 1056.62, 1006.12, 891.71 cm⁻¹; HRMS m/z calcd for C₁₄H₈ClF₃NO₃S [M-H]⁺: 361.9866; found: 361.9869.

N-(2-(3,5-difluorobenzoyl)phenyl)-1,1,1-trifluoromethanesulfonamide (4n): The product was obtained as a colorless oil. Yield: 84%; ¹H NMR (400 MHz, CDCl₃) δ 7.10 (tt, *J* = 8.4 Hz, *J* = 2.4 Hz, 1H), 7.23-7.25 (m, 2H), 7.32 (dt, *J* =

8.0 Hz, J = 0.8 Hz, 1H), 7.63 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H), 7.68 (dt, J = 8.0 Hz, J = 1.6 Hz, 1H), 7.84 (d, J = 8.4 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 108.6 (t, J = 25.0 Hz), 113.1 (dd, J = 19.0 Hz, J = 7.7 Hz), 119.9 (q, J = 320.9 Hz), 122.2, 124.6, 125.1, 133.6, 135.4, 137.7, 140.3 (t, J = 8.0 Hz), 162.8 (dd, J = 250.8 Hz, J = 11.7 Hz), 196.5; IR v_{max} (film): 3418.45, 2980.53, 2972.23, 2921.80, 2864.33, 2843.32, 1666.76, 1453.94, 1345.73, 1054.48, 1032.59, 1010.40 cm⁻¹; HRMS m/z calcd for C₁₄H₇F₅NO₃S [M-H]⁺: 364.0067; found: 364.0069.

1,1,1-trifluoro-*N*-(2-(4-(trifluoromethyl)benzoyl)phenyl)methanesulfonamide (40): The

product was obtained as a white solid. Yield: 79%; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, *J* = 7.6 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.81-7.89 (m, 5H), 10.90 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 119.9 (q, *J* =

321.1 Hz), 121.9, 123.6 (q, J = 271.2 Hz), 124.7, 125.0, 125.8 (q, J = 3.7 Hz), 130.2, 133.9, 134.6 (q, J = 32.7 Hz), 135.4, 137.9, 140.7, 198.4; IR v_{max} (film): 3674.31, 3338.78, 2987.11, 2900.19, 1655.10, 1405.66, 1393.47, 1381.47, 1249.72, 1229.87, 1065.78, 1056.64, 1008.16, 891.68 cm⁻¹; HRMS m/z calcd for C₁₅H₈F₆NO₃S [M-H]⁺: 396.0129; found: 396.0132.

N-(2-(4-cyanobenzoyl)phenyl)-1,1,1-trifluoromethanesulfonamide (4p): The product was obtained as a colorless oil. Yield: 71%; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dt, *J* = 7.6 Hz, *J* = 0.8 Hz, 1H), 7.57 (dd, *J* = 8.4 Hz, *J* = 1.6

Hz, 1H), 7.69 (dt, J = 8.4 Hz, J = 1.6 Hz, 1H), 7.80-7.87 (m, 5H); ¹³C (100 MHz, CDCl₃) δ 116.5, 117.8, 119.8 (q, J = 321.0 Hz), 122.0, 124.4, 125.0, 130.3, 132.5, 133.7, 135.6, 137.9, 141.1, 197.8; IR v_{max} (film): 3406.32, 3186.44, 2980.57, 2972.24, 2921.75, 2864.27, 2843.33, 1666.66, 1454.03, 1345.74, 1054.56, 1032.66, 1009.44 cm⁻¹; HRMS m/z calcd for C₁₅H₈F₃N₂O₃S [M-H]⁺: 353.0208; found: 353.0213.

Methyl 3-(2-(trifluoromethylsulfonamido)benzoyl)benzoate (4q): The product was obtained as a white solid. Yield: 76%; ¹H NMR (400 MHz, CDCl₃) δ 3.98 (s, 3H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.63-7.70 (m, 3H), 7.87 (d,

J = 8.0 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 8.33 (d, J = 7.6 Hz, 1H), 8.38 (s, 1H), 10.91 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 52.7, 119.9 (q, J = 321.1 Hz), 121.9, 124.9, 125.0, 129.0, 130.8, 131.0, 133.9, 134.0, 134.0, 135.1, 137.7, 137.9, 166.1, 198.5; IR v_{max} (film): 3674.15, 3326.53, 2987.07, 2900.17, 1653.06, 1405.44, 1393.49, 1381.61, 1249.72, 1229.33, 1065.74, 1056.60, 1010.20, 891.69 cm⁻¹; HRMS m/z calcd for C₁₆H₁₁F₃NO₅S [M-H]⁺: 386.0310; found: 386.0321.

N-(2-(2-naphthoyl)phenyl)-1,1,1-trifluoromethanesulfonamide (4r): The product was obtained as a white solid. Yield: 77%; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (t, *J* = 7.6 Hz, 1H), 7.61-7.71 (m, 3H), 7.75 (d, *J* = 8.0 Hz,

1H), 7.88 (t, J = 8.8 Hz, 2H), 7.96-8.02 (m, 3H), 8.23 (s, 1H), 10.91 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 119.9 (q, J = 294.2 Hz), 122.1, 124.9, 125.5, 125.9, 127.4, 128.0, 128.8, 129.1, 129.6, 132.2, 132.2, 133.9, 134.5, 134.7, 135.6, 137.5, 199.1; IR v_{max} (film): 3674.30, 3338.78, 2987.14,

2900.17, 1655.10, 1405.77, 1393.47, 1381.47, 1249.69, 1229.00, 1065.77, 1056.65, 1010.20, 891.68 cm⁻¹; HRMS m/z calcd for $C_{18}H_{11}F_{3}NO_{3}S[M-H]^{+}$: 378.0412; found: 378.0421.

3'-methoxy-5-methyl-[1,1'-biphenyl]-2-amine (5): The product was obtained as a white solid. Yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 2.27 (s, 3H), 3.66 (s, 2H), 3.83 (s, 3H), 6.68 (d, J = 8.4 Hz, 1H), 6.88 (dd, J = 8.4 Hz, J = 1.6 Hz, 1H), 6.96-6.98 (m, 3H), 7.03 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H); ¹³C (100 MHz, CDCl₃)

δ 20.5, 55.4, 113.0, 114.6, 115.9, 121.5, 127.7, 127.9, 129.2, 129.9, 130.9, 141.1, 141.2, 160.0.

4'-chloro-[1,1'-biphenyl]-2-amine (6): The product was obtained as a white solid. Yield: 74%; ¹H NMR (400 MHz, CDCl₃) δ 3.65 (s, 2H), 6.69 (d, J = 7.6 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz,

1H), 7.33-7.38 (m, 4H); ¹³C (100 MHz, CDCl₃) δ 115.8, 118.8, 126.3, 128.9, 129.0, 130.4, 130.5, 133.1, 138.0, 143.5.

benzo[d][1,3]dioxol-5-yl(2-(methylamino)phenyl)methanone (7): The product was obtained as a light yellow solid. Yield: 56% (for three steps); ¹H NMR (400 MHz, CDCl₃) δ 2.94 (d, J = 4.0 Hz, 3H), 6.03 (s, 2H), 6.55 (t, J =

7.6 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 6.84 (d, J = 8.0 Hz, 1H), 7.16-7.26 (m, 2H), 7.39 (t, J = 8.0Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 8.18 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 29.6, 101.7, 107.7, 109.8, 111.2, 113.7, 117.7, 125.1, 134.6, 134.8, 135.0, 147.6, 150.2, 152.5, 197.7.

(5-chloro-2-(methylamino)phenyl)(phenyl)methanone (8): The product was obtained as a light yellow solid. Yield: 50% (for three steps); ¹H NMR (400 MHz, CDCl₃) δ 2.95 (d, J = 3.6 Hz, 3H), 6.71 (d, J = 9.2 Hz, 1H), 7.34 (dd, J

= 9.2 Hz, J = 2.4 Hz, 1H), 7.43-7.49 (m, 3H), 7.52-7.60 (m, 3H), 8.47 (s, 1H); ¹³C (100 MHz, CDCl₃) & 29.7, 112.9, 118.0, 118.4, 128.4, 129.1, 131.3, 134.2, 135.0, 139.9, 151.3, 198.5.

2,3-methylenedioxy-10-methyl-9-acridanone: The product was obtained as a white solid. Yield: 76%; ¹H NMR (400 MHz, CDCl₃) δ 3.84 (s, 3H), 6.08 (s, 2H), 6.94 (s, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.48 (d, J = 8.8 Hz, 1H),

102.2, 104.8, 114.7, 117.9, 121.4, 122.2, 127.8, 133.1, 140.6, 142.1, 143.8, 153.7, 176.5.

Boscalid: The product was obtained as a white solid. Yield: 77%; ¹H NMR

(400 MHz, CDCl₃) δ 7.27 (d, *J* = 4.8 Hz, 2H), 7.33-7.37 (m, 3H), 7.43-7.48 (m, 3H), 8.15 (d, *J* = 6.0 Hz, 2H), 8.42 (d, *J* = 8.0 Hz, 1H), 8.44 (dd, *J* = 4.8 Hz, *J* = 1.6 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 122.2, 123.1, 125.5, 129.0, 129.5, 130.4, 130.9, 131.2, 132.4, 134.5, 134.6, 136.4, 140.3, 146.8, 151.5, 162.6.

Diazepam: The product was obtained as a white solid. Yield: 48%; ¹H NMR (400 MHz, CDCl₃) δ 3.40 (s, 3H), 3.78 (d, *J* = 10.8 Hz, 1H), 4.84 (d, *J* = 10.8 Hz, 1H), 7.29 (s, 1H), 7.30 (d, *J* = 5.6 Hz, 1H), 7.40-7.44 (m, 2H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.52 (dd, *J* = 8.8 Hz, *J* = 2.4 Hz, 1H), 7.59-7.61 (m, 2H); ¹³C (100

MHz, CDCl₃) δ 35.0, 57.1, 122.7, 128.6, 129.4, 129.6, 130.1, 130.2, 130.9, 131.6, 138.3, 142.7, 169.1, 170.1.

Glycozoline: The product was obtained as a white solid. Yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ 2.52 (s, 3H), 3.92 (s, 3H), 7.04 (dd, J = 8.4 Hz, J = 2.4 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.52 (d, J

= 1.6 Hz, 1H), 7.80 (s, 1H), 7.83 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 21.6, 56.2, 103.3, 110.6, 111.4, 115.0, 120.3, 120.3, 123.7, 123.8, 127.3, 128.5, 134.9, 153.9.

¹³C NMR Spectrum for **1c** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **1d** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **1e** (CDCl₃, 100 MHz)

 13 C NMR Spectrum for **1f** (CDCl₃, 100 MHz)

 ^{13}C NMR Spectrum for **1g** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **1h** (CDCl₃, 100 MHz)

 ^{13}C NMR Spectrum for 1i (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **1j** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **1k** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **1m** (CDCl₃, 100 MHz)

8. NMR Spectra of Suzuki and Carbonylative Suzuki Coupling Products

¹³C NMR Spectrum for **3a** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3b** (CDCl₃, 100 MHz)

 ^{13}C NMR Spectrum for **3c** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3e** (CDCl₃, 100 MHz)

 ^{13}C NMR Spectrum for **3f** (CDCl₃, 100 MHz)

 ^{13}C NMR Spectrum for **3g** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3h** (CDCl₃, 100 MHz)

 ^{13}C NMR Spectrum for **3i** (CDCl₃, 100 MHz)

 ^{13}C NMR Spectrum for **3l** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3m** (CDCl₃, 100 MHz)

 ^{13}C NMR Spectrum for **30** (CDCl₃, 100 MHz)

 ^{13}C NMR Spectrum for 3v (CDCl₃, 100 MHz)

 ^{13}C NMR Spectrum for 3x (CDCl₃, 100 MHz)

 ^{13}C NMR Spectrum for **3ad** (CDCl₃, 100 MHz)

 ^{13}C NMR Spectrum for **4m** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **4n** (CDCl₃, 100 MHz)

7,865 7,871 7,887 7,881 7,881 7,881 7,881 7,881 7,881 7,881 7,781 7,781 7,781 7,781 7,781 7,781 7,781 7,781 7,781 7,781 7,791 7,700 7,7700 7,7700 7,7700 7,7700 7,7700 7,7700 7,7700 7,7700 7,7700 7,7

 ^{13}C NMR Spectrum for 4q (CDCl_3, 100 MHz)

¹³C NMR Spectrum for **4r** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **2,3-methylenedioxy-10-methyl-9-acridanone** (CDCl₃, 100 MHz)

9. Computational Studies

1) Computational methods.

Calculation for organic compounds were performed with the Gaussian 09 program package⁹ and ORCA 3.0.3 program¹⁰. The geometry optimizations of all structures were performed using M06-2X functional¹¹ corrected by DFT-D3 with Becke-Johnson damping¹². For the basis set, the ma-TZVP basis set¹³ was used for all nitrogen atoms in the substrate and fluorine atoms in BF₄⁻ anion if present; TZVP basis set¹⁴ without diffusion functions was used for other non-metal atoms; LanL2TZ(f) basis and corresponding pseudopotential¹⁵ was applied to silver atom. Higher level of single point electronic energy was calculated at PWPB95-D3/def2-QZVPP¹⁶ level with minimal augmentation functions also added to the nitrogen atoms in the substrate and fluorine at M05-2X/6-31G(d) level¹⁸ with the exception of LanL2TZ(f) basis and pseudopotential for Ag atom. The vibrational harmonic frequencies and thermal corrections were computed using the same level as the optimization; the former confirmed the optimized geometrical structures are the minima of PES, and transition states, the first order saddle points. All energies discussed in the paper are Gibbs free energies in toluene ($\Delta G_{sol}, \Delta G_{sol}^{\neq}$).

2) Energy and Geometries.

⁹ Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.

¹⁰ Frank Neese, WIREs Comput. Mol. Sci. **2012**, *2*, 73-78.

¹¹ Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, **2008**, 120, 215-241.

¹² S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem. 2011, 32, 1456-1465.

¹³ J. Zheng, X. Xu, D. Truhlar, *Theor Chem Acc* **2011**, 128, 295-305.

¹⁴ A. Schaefer, C. Huber, and R. Ahlrichs, J. Chem. Phys., **1994**, 100, 5829-5835.

 ¹⁵ (a) L. Roy, J. Hay and R. Martin, *Chem. Theory Comput.*, 2008, 4 (7), 1029–1031; (b) A.W. Ehlers, M. B öhme,
S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K.F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, *Chem. Phys. Lett.* 1993, 208, 111-114.

¹⁶ L. Goerigk, S. Grimme, J. Chem. Theory Comput., 2011, 7 (2), 291–309.

¹⁷ A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B, **2009**, 113, 6378-6396.

¹⁸ Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory and Comput., 2006, 2, 364-382.

Encoire		$\mathbf{R} = \mathbf{B}\mathbf{z}$			$\mathbf{R} = \mathbf{Ts}$	
Species	TS	Sub	IM	TS	Sub	IM
E of ontimization level (1-1/mol)	-1943264.6	-1943388.8	-1943284.0	-3085924.5	-3086033.3	-3085949.0
E _{elec} at optimization level (kJ/mol)	4	1	1	0	5	0
E of single point level(1,1/mel)	-1943286.6	-1943403.5	-1943296.6	-3086216.3	-3086314.2	-3086230.1
E _{elec} at single point level(kJ/mol)	9	6	4	2	0	2
Imaginaries	1	0	0	1	0	0
H correction (kJ/mol)	559.25	567.13	563.12	564.71	572.05	568.67
G correction (kJ/mol)	520.96	508.38	547.21	558.37	554.39	578.74
S correction (J/mol K)	375.27	387.59	369.87	367.52	376.27	364.29
Solvent	Toluene	Toluene	Toluene	Toluene	Toluene	Toluene
Solvation Gibbs Free Energy	20.55	41.20	12.26	46.70	45 10	51 75
(kJ/mol)	-39.55	-41.39	-42.20	-40.70	-45.19	-51.75
Solvated Gibbs Free Energy	-1942950.9	-1943057.3	-1942969.0	-3085895.4	-3085983.1	-3085917.5
(kJ/mol)	7	6	2	9	3	7

<u> </u>	$\mathbf{R} = \mathbf{T}\mathbf{f}$			R = Tf with AgBF ₄			
Species	TS	Sub	IM	TS	Sub	IM	
	-3364297.0	-3364372.8	-3364323.8	-4861417.4	-4861471.3	-4861481.1	
E _{elec} at optimization level (kJ/mol)	7	2	1	7	7	0	
	-3364678.9	-3364746.1	-3364694.9	-4865092.5	-4865136.7	-4865142.7	
E _{elec} at single point level(kJ/mol)	5	9	2	3	9	7	
Imaginaries	1	0	0	1	0	0	
H correction (kJ/mol)	359.95	366.27	363.95	431.01	437.68	435.47	
G correction (kJ/mol)	523.70	523.12	545.61	748.52	726.68	751.84	
S correction (J/mol K)	175.00	181.53	171.27	166.67	181.06	169.95	
Solvent	Toluene	Toluene	Toluene	Toluene	Toluene	Toluene	
Solvation Gibbs Free Energy	24.06	20.00	22.59	55.00	(1.00	55.04	
(kJ/mol)	-24.96	-20.89	-32.38	-55.25	-01.80	-55.04	
Solvated Gibbs Free Energy	-3364528.9	-3364585.5	-3364556.2	-4864981.0	-4865017.5	-4865027.8	
(kJ/mol)	1	6	4	9	4	6	

		TS		С	3.542073	0.316239	0.313358
С	3.778745	-1.021409	0.152735	Ν	1.812321	2.053331	0.300600
С	2.697486	-1.879373	-0.146527	Ν	-0.079279	0.572576	-0.263356
С	1.404803	-1.442115	-0.284387	Ν	0.859196	2.638494	0.235232
С	1.077920	-0.060189	-0.137681	Н	4.778654	-1.418743	0.254105
С	2.224963	0.756956	0.168045	Н	2.895580	-2.937284	-0.271828

Н	0.602348	-2.129282	-0.499782	Н	-0.853536	1.864336	-1.264181
Н	4.325218	1.025752	0.544064	С	-4.392042	0.681940	-0.244280
С	-1.283490	-0.073947	-0.383650	Н	-3.422082	-1.106527	0.452951
0	-1.452075	-1.276800	-0.247409	С	-4.213989	1.917115	-0.856824
С	-2.450960	0.822467	-0.682508	Н	-2.806909	3.291732	-1.717754
С	-2.294174	2.152443	-1.066661	Н	-5.382802	0.353890	0.042651
С	-3.732573	0.282758	-0.586291	Н	-5.069159	2.553075	-1.049138
С	-3.407699	2.932554	-1.348102			IM	
Н	-1.300386	2.568824	-1.150636	С	4.136109	-1.626596	0.549452
С	-4.844258	1.064731	-0.860347	С	3.025006	-2.497310	0.388931
Н	-3.838394	-0.754050	-0.294130	С	1.741904	-2.058669	0.226014
С	-4.683258	2.391984	-1.242263	С	1.433351	-0.654523	0.204719
Н	-3.279645	3.964434	-1.650770	С	2.602087	0.174361	0.369833
Н	-5.837103	0.640273	-0.778057	С	3.929380	-0.283124	0.540334
Н	-5.550776	3.003157	-1.459335	Ν	2.361446	1.498249	0.353840
		Sub		Ν	0.282719	-0.024680	0.046262
С	4.214704	-1.472465	0.545995	Ν	2.104254	2.569988	0.332343
С	3.289492	-2.432050	0.089228	Н	5.130899	-2.029296	0.676830
С	1.949259	-2.146369	-0.080194	Н	3.204943	-3.565906	0.396365
С	1.560679	-0.841137	0.225978	Н	0.928208	-2.755437	0.113984
С	2.469840	0.113341	0.679784	Н	4.732851	0.432573	0.656138
С	3.821563	-0.186797	0.848365	С	-0.903621	-0.702119	-0.072838
Ν	1.786156	1.298389	0.901556	0	-1.069853	-1.911206	0.024905
Ν	0.368823	-0.150667	0.179813	С	-2.085716	0.191310	-0.340478
Ν	0.567001	1.135170	0.612610	С	-1.960451	1.574177	-0.461045
Н	5.252340	-1.757536	0.660397	С	-3.342798	-0.395805	-0.474886
Н	3.641955	-3.431321	-0.133148	С	-3.078603	2.357728	-0.712982
Н	1.240694	-2.885656	-0.420569	Н	-0.982916	2.024318	-0.354767
Н	4.515957	0.564179	1.200931	С	-4.459505	0.387103	-0.726250
С	-0.910872	-0.666163	-0.129208	Н	-3.424988	-1.470803	-0.378815
0	-1.041295	-1.861264	-0.200988	С	-4.329066	1.766353	-0.846047
С	-2.018886	0.296419	-0.356268	Н	-2.974796	3.431852	-0.805513
С	-1.840340	1.533885	-0.972847	Н	-5.432771	-0.076648	-0.829306
С	-3.298475	-0.134204	-0.006658	Н	-5.200645	2.378766	-1.042675
С	-2.942750	2.335545	-1.229114				

		TS			С	1.265840	-1.329582	-0.337939
С	3.612325	-1.190001	0.347943		С	1.113174	0.082134	-0.244409
С	2.470610	-1.918838	-0.048853		С	2.307895	0.768777	0.161131

С	3.534852	0.173071	0.452094	С	-1.896438	-0.256882	0.501855
N	2.029818	2.111169	0.217464	С	-1.976709	-1.618218	0.755938
N	0.064289	0.865195	-0.457126	С	-2.375022	0.704455	1.381722
Ν	1.116184	2.741497	0.030908	С	-2.566089	-2.028103	1.943485
S	-1.431398	0.315194	-0.871207	Н	-1.596183	-2.334186	0.038985
0	-1.342255	-0.757765	-1.872103	С	-2.959736	0.274193	2.562854
0	-2.224436	1.506636	-1.167911	Н	-2.290898	1.757281	1.144533
Н	4.538355	-1.704473	0.561461	С	-3.052805	-1.085285	2.840699
Н	2.547371	-2.995943	-0.135331	Н	-2.646734	-3.084285	2.164466
Н	0.424664	-1.922336	-0.666803	Н	-3.342462	1.001844	3.266236
Н	4.375989	0.785548	0.747322	Н	-3.511026	-1.412564	3.765390
С	-2.054063	-0.415199	0.644037			IM	
С	-2.255312	-1.784014	0.712166	С	3.812795	-1.070321	0.111816
С	-2.309778	0.420219	1.724064	С	2.640625	-1.799786	-0.224998
С	-2.728671	-2.331542	1.899520	С	1.450417	-1.206247	-0.527521
Н	-2.062191	-2.402071	-0.155138	С	1.306715	0.222638	-0.513108
С	-2.779102	-0.138126	2.902592	С	2.527132	0.906772	-0.172428
Н	-2.151308	1.488050	1.634477	С	3.760875	0.286977	0.136517
С	-2.985249	-1.512010	2.989720	Ν	2.440579	2.249953	-0.154593
Н	-2.897914	-3.398484	1.968038	Ν	0.250984	0.979557	-0.745094
Н	-2.987602	0.498054	3.753197	Ν	2.312389	3.344359	-0.154771
Н	-3.354116	-1.942751	3.912148	S	-1.205179	0.321857	-1.148349
		Sub		0	-1.072693	-0.767810	-2.131213
С	4.193049	-1.049866	-0.231824	0	-2.076032	1.453076	-1.472674
С	3.267497	-1.764816	-1.020419	Н	4.732022	-1.590548	0.339735
С	1.971141	-1.335417	-1.212112	Н	2.695282	-2.881610	-0.248195
С	1.620907	-0.147817	-0.565139	Н	0.598560	-1.808824	-0.803569
С	2.529377	0.567462	0.218794	Н	4.619033	0.899478	0.380089
С	3.841938	0.123871	0.395368	С	-1.803281	-0.410684	0.379902
N	1.893866	1.687442	0.723522	С	-2.024111	-1.776476	0.446780
N	0.486544	0.629196	-0.499600	С	-2.044926	0.423793	1.464164
N	0.696302	1.705029	0.310653	С	-2.495915	-2.322349	1.635527
S	-1.126242	0.284633	-1.002347	Н	-1.843029	-2.394003	-0.423879
0	-0.966833	-0.838748	-1.914020	С	-2.510640	-0.132172	2.645483
0	-1.691881	1.552890	-1.417337	Н	-1.875221	1.489980	1.376611
Н	5.198253	-1.435992	-0.125229	С	-2.734545	-1.503361	2.730382
Н	3.589265	-2.681226	-1.498722	Н	-2.679351	-3.387198	1.701436
Η	1.269178	-1.877087	-1.828195	Н	-2.705354	0.504198	3.499323
Н	4.538666	0.689614	0.999523	Н	-3.102112	-1.932102	3.654298

		TS		0	-1.255800	-0.968148	-1.617847
С	3.783711	-1.128158	0.174224	0	-1.987270	1.459067	-1.259278
С	2.687468	-1.902444	-0.244460	С	-2.051291	-0.224795	0.832815
С	1.427859	-1.380036	-0.436489	F	-1.960870	0.796032	1.657104
С	1.193659	-0.005208	-0.215259	F	-3.312802	-0.558795	0.657218
С	2.338665	0.733166	0.207542	F	-1.375075	-1.251178	1.313354
С	3.613467	0.214624	0.404636	Н	4.905764	-1.479969	0.349897
Ν	1.965466	2.054547	0.381350	Н	3.201290	-2.965083	-0.604516
Ν	0.079230	0.739381	-0.320556	Н	0.897441	-2.177978	-1.053502
Ν	0.980391	2.587045	0.251817	Н	4.360674	0.889242	0.915367
S	-1.366248	0.238795	-0.829147			IM	
0	-1.300220	-0.914698	-1.724333	С	3.796478	-1.120146	0.161081
0	-2.169998	1.401921	-1.165914	С	2.683409	-1.892065	-0.247553
С	-2.112121	-0.434357	0.750669	С	1.435880	-1.364021	-0.448108
F	-2.195768	0.516627	1.667051	С	1.190319	0.025433	-0.250746
F	-3.320812	-0.912890	0.507899	С	2.348207	0.755363	0.161278
F	-1.343674	-1.413493	1.219237	С	3.634883	0.216228	0.368039
Н	4.752661	-1.586860	0.310780	Ν	2.149767	2.082706	0.357077
Н	2.834726	-2.960286	-0.424130	Ν	0.068883	0.745042	-0.374925
Н	0.612724	-2.006054	-0.769047	Ν	1.946027	3.152189	0.503772
Н	4.418669	0.860810	0.726480	S	-1.330495	0.126812	-0.874877
		Sub		0	-1.220280	-1.046189	-1.747129
С	3.910804	-1.091599	0.177354	0	-2.217630	1.220458	-1.246081
С	2.932143	-1.942947	-0.371003	С	-2.055143	-0.552168	0.714532
С	1.641446	-1.522610	-0.625031	F	-2.208435	0.409838	1.612585
С	1.364076	-0.196652	-0.300036	F	-3.231756	-1.109999	0.475665
С	2.323021	0.654475	0.247762	F	-1.237768	-1.475655	1.220264
С	3.624445	0.218291	0.493663	Н	4.760937	-1.585463	0.305387
Ν	1.745960	1.897272	0.468075	Н	2.821083	-2.954292	-0.408784
Ν	0.249739	0.620628	-0.388622	Н	0.622852	-1.996082	-0.771189
Ν	0.541354	1.880838	0.110207	Н	4.444537	0.862230	0.680214
S	-1.331285	0.247610	-0.836112				

		TS			С	1.171964	2.504603	-1.285281
С	0.051068	4.400778	-0.226334	(С	0.651703	1.659728	-0.302922
С	0.867519	3.853590	-1.223504		С	-0.154534	2.247445	0.698074

С	-0.479734	3.591508	0.756800	Ag	-1.323396	-1.749281	1.545090
Ν	-0.556133	1.254608	1.590783	Н	0.077382	5.695167	0.033164
Ν	0.733099	0.306236	-0.136696	Н	1.272980	4.650061	-1.835054
Ν	-0.254711	0.149141	1.496179	Н	1.627903	2.203068	-1.947414
S	1.876451	-0.700377	-0.657744	Н	-0.826525	4.314955	1.905285
0	2.523449	-0.274467	-1.887490	В	-2.747152	-0.134710	-0.594878
0	1.295742	-2.049454	-0.533745	F	-3.733615	-0.290896	-1.534189
С	3.192548	-0.633501	0.673280	F	-2.258770	1.161070	-0.543590
F	2.660897	-0.960277	1.836752	F	-3.231896	-0.501606	0.698407
F	4.164586	-1.470666	0.374412	F	-1.660516	-1.022228	-0.854227
F	3.666543	0.599672	0.736901			IM	
Ag	-1.109761	-1.896648	-0.345465	С	0.038128	4.382131	-0.277229
Н	-0.169756	5.458972	-0.231504	С	0.950658	3.827807	-1.189062
Н	1.270105	4.506868	-1.987306	С	1.289454	2.491173	-1.192746
Н	1.785568	2.101915	-2.078351	С	0.721852	1.609674	-0.253622
Н	-1.124841	3.963312	1.540788	С	-0.158197	2.225401	0.670353
В	-3.349860	0.116927	0.082753	С	-0.534506	3.574780	0.668734
F	-4.505636	0.152521	-0.655677	Ν	-0.667680	1.406124	1.643216
F	-3.332882	1.055676	1.095345	Ν	0.861610	0.254602	-0.138452
F	-3.166542	-1.191100	0.640564	Ν	-1.030586	0.730878	2.424729
F	-2.215420	0.311357	-0.759532	S	2.057626	-0.593292	-0.788292
		Sub		0	2.764413	-0.009993	-1.924707
С	0.218455	4.622664	0.039666	0	1.554097	-1.977804	-0.875380
С	0.905670	4.020974	-1.034520	С	3.325778	-0.646780	0.585252
С	1.118280	2.660012	-1.111173	F	2.799652	-1.190791	1.672008
С	0.607217	1.914872	-0.052487	F	4.375858	-1.352218	0.207883
С	-0.072026	2.497037	1.019374	F	3.708688	0.592784	0.867638
С	-0.284509	3.875038	1.079377	Ag	-0.875523	-1.507331	-0.323254
Ν	-0.469906	1.501863	1.890241	Н	-0.217298	5.430923	-0.325551
Ν	0.572753	0.569440	0.254592	Н	1.400074	4.471736	-1.934809
Ν	-0.084595	0.384556	1.455145	Н	1.972053	2.103586	-1.933476
S	1.357839	-0.730376	-0.475021	Н	-1.251146	3.934120	1.394828
0	1.411376	-0.487562	-1.894369	В	-3.328755	0.292735	0.127999
0	0.861799	-1.939490	0.157771	F	-4.521002	0.110300	-0.520994
С	3.096135	-0.489054	0.196516	F	-3.377731	1.336004	1.045623
F	3.049527	-0.489350	1.512708	F	-2.944098	-0.907378	0.806593
F	3.846616	-1.479525	-0.232911	F	-2.280027	0.544684	-0.796638
F	3.568421	0.661924	-0.237131				