Electronic Supplementary Information – *p*-Doping of graphene in hybrid materials with 3,10-diazapicenium dications

Alexandra Roth,^{1,‡} Tobias A. Schaub,^{2,‡} Ute Meinhardt,² Dominik Thiel,¹ Jan Storch,³ Vladimír Církva,³ Pavel Jakubík,³ Dirk M. Guldi,^{*,1} Milan Kivala^{*,2}

 ¹ Institute for Organic Chemistry I, Department of Chemistry und Pharmacy, University of Erlangen-Nürnberg, Henkestrasse 42, D-91054 Erlangen, Germany
² Institute for Physical Chemistry I, Department Chemistry und Pharmacy, University of Erlangen-Nürnberg, Egerlandstrasse 3, D-91058 Erlangen, Germany
³ Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135/1, CZ-165 02 Prague 6, Czech Republic
[‡] These authors contributed equally.

> milan.kivala@fau.de dirk.guldi@fau.de

Contents

EXPERIMENTAL SECTION	2
General procedures and methods	.2
Synthesis	.4
Hybrid preparation	.6
Cyclic voltammetry	.7
NMR Spectra	.8
Transient absorption spectroscopy1	1
Time-correlated single photon counting1	13
Steady state absorption spectoscopy1	4
Raman spectroscopy1	15
REFERENCES	6

Experimental Section

General procedures and methods

Reagents were purchased reagent grade from commercial suppliers and used without further purification. The graphite used for the preparation of graphene was purchased from Asbury (Nano99). MgSO₄ was used as the drying reagent after aqueous work-up. TLC analyses were carried out on TLC plates from Macherey-Nagel (ALUGRAM® SIL G/UV254) and visualized via UV-light (264/364 nm). Column chromatography was performed using Merck Silica Gel 60M. An Elmasonic p120 52 (330 W) ultrasonication bath from Elma was used to prepare the graphene dispersions. All microwave reactions were performed in septum-capped Biotage[®] microwave vials (10–20 mL) using Biotage[®] Initiator+ with stirring. Power required maintaining target temperature was controlled by Biotage® Initiator+ software. ¹H NMR, ¹³C NMR, and ³¹P NMR spectra were recorded on a Bruker Avance 300 spectrometer at 300.1 MHz for ¹H NMR, 75.5 MHz for ¹³C NMR, and 121.5 MHz for ³¹P NMR or a Bruker Avance 400 spectrometer at 400.1 MHz for ¹H NMR, 100.5 MHz for ¹³C NMR. NMR spectra were referenced to the residual solvent signal (¹H: CDCl₃ 7.24 ppm, CD₃CN 1.94 ppm, methanol- d_4 3.32 ppm, acetone- d_6 2.05 ppm; ¹³C: CDCl₃ 77.0 ppm, CD₃CN 1.4 ppm, methanol- d_4 49.0 ppm, acetone- d_6 29.8 ppm) or to external 85% H₃PO₄ (³¹P) and recorded at ambient probe temperature. CDCl₃ (Deutero GmbH, 99.8%), CD₃CN (Deutero GmbH, 99.0%), methanol- d_4 (Deutero GmbH, 99.8%), and acetone- d_6 (Deutero GmbH, 99.8%) were stored over molecular sieves (4 Å). Infrared (IR) spectra were recorded on a 660-IR (Varian, ATR mode) spectrometer. Characteristic IR absorptions are reported in cm⁻¹ and denoted as strong (s), medium (m), and weak (w). Raman spectroscopy was performed with an InVia Raman Microscope from Renishaw that was equipped with a confocal microscope and an automated XYZ-table, using a laser excitation of 532 nm. The samples were prepared by drop casting it on a Si substrate with a 300 nm oxide layer. UV/vis absorption spectra were measured under ambient conditions on a Cary 5000 UV/vis/NIR (Varian) spectrophotometer. All measurements were carried out in QS Quartz Suprasil cells (10 mm light path). The absorption maxima (λ_{max}) are reported in nanometers (nm) and the extinction coefficient (ε) in M⁻¹cm⁻¹. Steady state absorption spectra were recorded with a Perkin Elmer Lambda 35 double beam spectrometer. Fluorescence measurements were done with a fluoromax-3 or a fluoromax-4 spectrophotometer (HORIBA Yobin Yvon). Femtosecond transient absorption measurements were performed with the transient absorption pump probe system HELIOS from Ultrafast Systems. To generate laser pulses with a pulse width of 150 fs and a wavelength of 775 nm a CPA-2110 titanium:sapphire laser system from Clark-MXR Inc was utilized. Global analysis was performed with the open-source software package Glotaran, a free graphical user interface to the R package TIMP.¹ TEM images were recorded using an 80 kV EM 900 TEM from Carl Zeiss AG. Lacey carbon grids were used as sample holders.

Cyclic voltammetry measurements were carried out in a conventional three-electrode cell using Pt button working electrodes, a platinum wire counter electrode, and a Ag/AgCl reference electrode on a computer-controlled BAS CV-50W instruments at rt. The reported half-wave potentials are referenced to the ferrocene/ferrocenium (Fc/Fc⁺) redox couple by adding ferrocene to the sample solution. Spectroelectrochemical measurements were done in a home-made three neck glass cell with a three-electrode setup comprised of a platinum mesh as working electrode, a Ag-wire as pseudo reference electrode, and a platinum wire as counter electrode. To control the applied potentials a Metrohm PGStat 101 was used. Mass spectra were obtained from a Bruker 9.4T Apex-Qe FTICR (MALDI) and Bruker micro TOF II (ESI) instruments. Melting points were measured with a Büchi Melting Point M-560 in open capillaries. "Decomp." refers to decomposition.

Synthesis

N,*N*[•]-Didodecyl-3,10-diazapicenediium dibromide (2).² 3,10-Diazapicene 1 (30.8 mg, 0.11 mmol) was dissolved in DMF (20 mL) and 1-bromododecane (0.53 g, 0.51 mL, 2.12 mmol) was added. The reaction was carried out under microwave assisted heating at 130 °C for 12 h. Et₂O (100 mL) was added and the formed precipitate was filtered off and washed with additional Et₂O providing product **2** as a yellow solid (76.2 mg, 89%). Mp 273 °C (decomp.). *R*_f 0.29 (SiO₂, CHCl₃/CH₃OH/acetone/H₂O 15:5:5:1). UV/vis (EtOH) λ_{max} (ε) 426, 402, 379, 291 nm. IR (ATR) \tilde{v} 3023 (w), 2919 (s), 2849 (s), 2760, 1639 (s), 1579 (m), 1447 (m), 1412 (m), 1373 (m), 1280 (m), 1173 (m), 819 (s), 757 (m), 721 (m), 654 (m) cm⁻¹. ¹H NMR (300.1 MHz, methanol-*d*₄) δ 10.12 (s, 2H), 9.63 (d, *J* = 7.2 Hz, 2H), 9.57 (d, *J* = 9.4 Hz, 2H), 9.53 (s, 2H), 9.11 (d, *J* = 8.1 Hz, 2H), 8.65 (d, *J* = 9.4 Hz, 2H), 4.90 (t, *J* = 7.8 Hz, 4H), 2.27–2.19 (m, 4H), 1.54–1.25 (m, 36H), 0.86 (t, *J* = 6.6 Hz, 6H) ppm. ¹³C NMR (100.5 MHz, CDCl₃) δ 137.9, 136.7, 131.1, 127.3, 127.1, 127.0, 126.6, 124.3, 123.1, 62.5, 34.8, 31.8, 31.6, 29.5, 29.43, 29.36, 29.2, 29.1, 26.4, 22.6, 14.0 (one signal coincident or not observed) ppm. HR ESI-MS (CH₃OH/CH₃CN) calcd for C₄₄H₆₂N₂ ([M]²⁺) 309.2451, found 309.2463.

N,*N*'-Didodecyl-3,10-diazapicenediium dihexafluorophosphate (3).² Dibromide 2 (20.2 mg, 26.0 µmol) was dissolved in EtOH/H₂O (2:2, 4.0 mL) at reflux. Ammonium hexafluorophosphate (62.8 mg, 0.39 mmol) was dissolved in hot H₂O (1.0 mL) and added to the solution of 2. The resulting mixture was heated under reflux for 5 minutes and, after cooling to RT, the formed precipitate was collected by filtration. Product 2 was obtained as a pale yellow solid (22.2 mg, 94%). Mp 222 °C (decomp.). $R_{\rm f}$ 0.89 (SiO₂, CHCl₃/CH₃OH/acetone/H₂O 15:5:5:1). UV/vis (C₂H₅OH) λ_{max} (ε) 425, 402, 379, 291 nm. IR (ATR) $\tilde{\nu}$ 3120(w), 2922 (m), 2852 (m), 1642 (m), 1583 (w), 1450 (w), 1413 (w), 1375 (w), 1281 (w), 1172 (w), 824 (s), 555 (s) cm⁻¹. ¹H NMR (300.1 MHz, acetone- d_6) δ 10.20 (s, 2H), 9.68 (d, J = 6.9 Hz, 2H), 9.48 (d, J = 9.6 Hz, 2H), 9.44 (s, 2H), 9.24 (d, J = 6.9 Hz, 2H), 8.66 (d, J = 9.3 Hz, 2H), 5.09 (t, J = 7.5 Hz, 4H), 2.37–2.27 (m, 4H), 1.57–1.37 (m, 8H), 1.36–1.19 (m, 28H), 0.86–0.82 (m, 6H) ppm. ¹³C NMR (75.5 MHz, acetone- d_6) δ 149.1, 138.6, 138.3, 133.7, 129.6, 129.1, 128.5, 127.9, 125.9, 124.0, 63.0, 32.6, 32.2, 30.2, 26.9, 23.3, 14.3 (five signals coincident or not observed) ppm. ³¹P NMR (121.5 MHz, acetone- d_6) δ –143.0 (hept, J = 707.8 Hz) ppm. HR ESI-MS (CH₃CN) calcd for $C_{44}H_{62}N_2$ ([M]²⁺) 309.2451, found 309.2450.

Hybrid preparation

Liquid phase exfoliated graphene in EtOH was prepared via ultrasonication of graphite in an ultrasonic bath. An established protocol is as follows: 2 mg of graphite are weighed and dispersed in 3ml EtOH and ultrasonicated for 1.5-2 h. The 37 kHz-ultrasonication bath is usually operated in a temperature range of 15-20°C. Slight changes in temperature or position of the vial in the ultrasonication bath can led to different exfoliation degrees which is seen already by eye. Adjustments regarding, for example, ultrasonication times were required. In general, after the exfoliation process, a centrifugation step to separate non-exfoliated graphite flakes, is conducted. Thereby the dispersion is centrifuged for 15 min at 1500 rpm. The freshly prepared dispersion is then added dropwise to a solution of the 3,10-diazapicenium dications in EtOH ($3x10^{-6}$ M). The procedure was monitored by steady state spectroscopic measurements.

Cyclic voltammetry

Cyclic voltammetry (scan rate $v = 200 \text{ mV s}^{-1}$) of compounds **2** and **3** measured in CH₂Cl₂ at room temperature (with 0.1 M *n*Bu₄NPF₆, *vs.* Fc⁺/Fc as internal standard):

Figure S1. Cyclic voltammogram of 2 in CH₂Cl₂.

Figure S2. Cyclic voltammogram of 3 in CH₂Cl₂.

NMR Spectra

Figure S4. ¹³C NMR (100.5 MHz, CDCl₃) of 2 at RT.

Figure S5. ¹H NMR (300.1 MHz, acetone- d_6) of 3 at RT.

Figure S6. ¹³C NMR (75.5 MHz, acetone- d_6) of 3 at RT.

Figure S7. ³¹P NMR (121.5 MHz, acetone- d_6) of 3 at RT.

Transient absorption spectroscopy

Figure S8. Differential absorption spectra obtained upon femtosecond pump probe experiments of **2** in EtOH ($\lambda_{exc.}$ 387 nm) with time delays between 2 and 5250 ps.

Figure S9. Differential absorption spectra obtained upon femtosecond pump probe experiments of **2** in EtOH ($\lambda_{exc.}$ 387 nm) with time delays between 0 µs and 400 µs.

Figure S10. Differential absorption spectra obtained upon femtosecond pump probe experiments of EG/2 in EtOH ($\lambda_{exc.}$ 387 nm) with time delays between 2 and 5000 ps.

Figure S11. Deconvoluted transient absorption spectra of the charge separated state within EG/2 in EtOH obtained by global analysis.

Time-correlated single photon counting

Figure S12. Fluorescence time profiles of 2 (black) and 3 (red) in EtOH.

Steady state absorption spectroscopy

In our procedure, the 3,10-diazapicenium salts were added after ultrasonication and, thus, did not have an effect on the exfoliation process. No precipitation was observed for the prepared EG/2 and EG/3 within days pointing at a comparable stabilizing effect. The electrochemical and photophysical characteristics of both 3,10-diazapicene derivatives 2 and 3 were similar, due to the formation of solvent separated ion pairs in solution. Hence, we expected also comparable results for the electronic interactions between the 3,10-diazapicenium dications and graphene regardless of the counterion used. To test this hypothesis, in analogy to the hybrids prepared with compound 2 steady state absorption measurements were also performed for compound 3 showing similar results (Figure S13).

Figure S13. Top: Absorption (for clarity EG/**3** spectra shifted in y-direction to offset light scattering caused by the graphene/graphite flakes); Bottom: Fluorescence spectra of **3** (black) and EG/**3** (blue) upon stepwise addition of EG in EtOH.

Raman spectroscopy

Figure S14. Exemplary Raman spectra of exfoliated graphene **EG** (black) and **EG/2** nanohybrid (red) ($\lambda_{exc.}$ 532 m) which were recorded after drop casting onto a Si/SiO₂ wafer. Zoom-in into the G- and 2D-modes.

References

- a) J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen and I. H. M. van Stokkum, J. *Stat. Soft.*, **2012**, 49; b) K. M. Mullen I. H. M. van Stokkum, *J. Stat. Soft.*, **2007**, 18, 1.
- 2 W. W. Porter III, T. P. Vaid and A. L. Rheingold, J. Am. Chem. Soc., 2005, 127, 16559.