Supporting Information

Weaver's Historic Accessible Collection of Synthetic Dyes:¹ A Cheminformatics Analysis

Melaine A. Kuenemann,^b Malgorzata Szymczyk,^a Yufei Chen,^a Nadia Sultana,^a David Hinks,^a Harold S. Freeman,^a Antony J. Williams,^c Denis Fourches^{*b} and Nelson R. Vinueza^{*a}

^[a]Department of Textile Engineering, Chemistry and Science, College of Textiles, North Carolina State, Raleigh, NC, 27695

^[b]Department of Chemistry, Bioinformatics Research Center, College of Sciences, North Carolina State University, Raleigh, NC, 27695

^[c] National Center for Computational Toxicology, US EPA, Research Triangle Park, Durham, NC, 27711

Figure S1. (A) Distribution and (B) boxplot of the total polar surface area (TPSA) for the set of 2,196 dyes. Stars on each boxplot represent the level of significance resulting from a pairwise comparison of a particular DYE color subset versus all other color subsets from *moderately significant (0.01 < P-value < 0.05), **significant (0.001 < P-value < 0.01), to ***very significant (P-value < 0.001).

Figure S2. (A) Distribution and (B) boxplot of the intramolecular number of aromatic rings (NumAromaticRings) for the set of 2,196 dyes. Stars on each boxplot represent the level of significance resulting from a pairwise comparison of the DYE color dataset versus all others colors from *moderately significant (0.01 < P-value < 0.05), **significant (0.001 < P- value < 0.01), to ***very significant (P-value < 0.001).

Figure S3. (A) Distribution and (B) boxplot of the number of H-bond acceptors (NumLipinskiHBA) for the set of 2,196 dyes. Stars on each boxplot represent the level of significance resulting from a pairwise comparison of the DYE color dataset versus all others colors from *moderately significant (0.01 < P-value < 0.05), **significant (0.001 < P- value < 0.01), to ***very significant (P-value < 0.001).

Figure S4. (A) Distribution and (B) boxplot of the number of H-bond donors (NumLipinskiHBD) for the set of 2,196 dyes. Stars on each boxplot represent the level of significance resulting from a pairwise comparison of the DYE color dataset versus all others colors from *moderately significant (0.01 < P-value < 0.05), **significant (0.001 < P- value < 0.01), to ***very significant (P-value < 0.001).

Figure S5. (A) Distribution and (B) boxplot of the ratio of Csp3 atom in the molecule for the set of 2,196 dyes. Stars on each boxplot represent the level of significance resulting from a pairwise comparison of the DYE color dataset versus all others colors from *moderately significant (0.01 < P-value < 0.05), **significant (0.001 < P- value < 0.01), to ***very significant (P-value < 0.001).

	total	blue	green	purple	orange	red	yellow	brown	black	white
ExactMW	439.71	493.89 (*)	467.61 (*)	488.37 (*)	393.87 (*)	413.26 (*)	331.96 (*)	327.43 (*)	525.53 (*)	287.25
FractionCSP3	0.22	0.27 (*)	0.23	0.29 (*)	0.18 (*)	0.19 (*)	0.13 (*)	0.18	0.26	0.1 (*)
NumAromaticRings	2.82	2.91 (**)	2.77	2.84	2.81	2.84	2.52 (*)	2.48	2.7	2.20 (*)
NumLipinskiHBA	7.98	8.75 (*)	8.34	9.12 (*)	7.37 (*)	7.58 (*)	6.03 (*)	5.68 (*)	9.11 (**)	4.10 (*)
NumLipinskiHBD	1.97	2.06	1.61 (*)	1.54 (*)	2.19 (*)	2.09 (*)	1.85	1.64	1.75	1.2
TPSA	112.84	123.16 (*)	113.7	123.36 (*)	105.91 (**)	108.89 (*)	90.01 (*)	81.35 (*)	123.36	61.81 (*)
SlogP	5.03	5.34 (*)	5.29	5.74 (*)	4.76 (*)	4.77 (*)	4.03 (*)	4.36	5.83 (**)	3.17 (**)

Table S1. Mean value for each descriptors, and each DYE color families. Stars on each row represent the level of significance resulting from a pairwise comparison of the DYE color dataset versus all others colors from *moderately significant ($0.01 \le P$ - value ≤ 0.05), **significant ($0.001 \le P$ -value ≤ 0.01), to ***very significant (P-value ≤ 0.001).

Figure S6. Circular dendrograms obtained from the hierarchical clustering of the set of 2,196 dyes represented in RDKIT descriptor space using Euclidian distance and single linkage. Compound nodes & names are colored according to their color

Figure S7. Circular dendrograms obtained from the hierarchical clustering of the set of 2,196 dyes represented in RDKIT descriptor space using Euclidian distance and complete linkage. Compound nodes & names are colored according to their color

Figure S8. Circular dendrograms obtained from the hierarchical clustering of the set of 2,196 dyes represented in RDKIT descriptor space using Manhattan distance and Ward linkage. Compound nodes & names are colored according to their color

Figure S9. Circular dendrograms obtained from the hierarchical clustering of the set of 2,196 dyes represented in RDKIT descriptor space using Euclidian distance and average linkage. Compound nodes & names are colored according to their color

Table S2. NCSU Max Weaver Dye Library dyes analyzed by ESI-QTOF MS. All m/z experimental and theoretical values are from protonated molecules $([M+H]^+)$, except when indicated.

Dye Library I.D.	Formula	Theoretical m/z of [M+H] ⁺	Experimental m/z of [M+H] ⁺	Mass Error (ppm)
[AQ]-[B]-X-10469-71	$C_{26}H_{24}N_2O_4S$	461.1530	461.1516	-3.04
[AQ]-[B]-X-9525-9	C ₂₆ H ₂₅ N ₃ O ₅ S	492.1588	492.1573	-3.05
[AZ]-[R]-X-5380-143F	C ₁₂ H ₉ N ₅ OS	272.0601	272.0603	-0.62
[AQ]-[R]-X-23843-125	C ₃₀ H ₃₆ Br ₂ N ₂ O ₂	615.1216	615.1229	-0.71
[AZ]-[O]-X-5432-55G	C ₁₂ H ₉ N ₇	252.0992	252.1006	-2.76
[AQ]-[B]-X-23843-160	C ₃₆ H ₃₄ N ₂ O ₆ S ₂	655.1931	655.1930	1.52
[AQ]-[B]-X-16145-251	C ₂₁ H ₁₄ BrN ₂ O ₅ SNa	[M+Na] ⁺ 530.9597	[M+Na] ⁺ 530.9609	-2.12
[AZ]-[B]-X-16926-56- A	C24H24N3O6S3K	[M+K] ⁺ 624.0096	[M+K] ⁺ 624.0121	-4.11
[AZ]-[B]-X-16543-107- 12	C20H24N4O4S	[M+Na] ⁺ 439.1410	[M+Na] ⁺ 439.1416	-1.84
[AZ]-[B]-X-16768-22- A	C ₂₆ H ₂₄ N ₈ O ₄	513.1993	513.2008	-4.38
[AZ]-[B]-X-17945-99	C ₂₇ H ₃₆ N ₄ O ₃ S	497.2581	497.2589	-2.29
[AZ]-[B]-X-18213-25	C27H34N4O6S2Na	598.1890	598.1900	-1.68
[AZ]-[B]-X-18329-116	C ₁₉ H ₂₁ N ₅ OS	368.1540	368.1548	-2.73
[ME]-[B]-X-21537-050	C ₃₂ H ₂₈ N ₂ O ₇	[M+Na] ⁺ 575.1789	[M+Na] ⁺ 575.1822	-1.69
[AQ]-[B]-X-5496-28	C25H23N3O3	[M+Na] ⁺ 436.1632	[M+Na] ⁺ 436.1637	-2.06
[AZ]-[X]-X-5432-63-K	C23H20N8O	425.1833	425.1829	0.81
[AQ]-[R]-X-27237-078	C ₁₈ H ₁₂ N ₄ O ₄ S	381.0652	381.0469	1.34
[AQ]-[B]-X-9525-15	C ₂₈ H ₂₂ ClN ₃ O ₄ S	532.1092	532.1078	-2.63
[AQ]-[B]-X-10469-110	C20H21N3O6S	432.1224	432.1209	-3.47

[AZ]-[X]-X-6012-147D	C25H27Cl2N5O4	532.1513	532.1511	0.75
[AQ]-[B]-X-9525-13	C ₂₈ H ₂₃ N ₃ O ₄ S	498.1482	498.1464	-3.61
[AQ]-[B]-X-9525-60	C ₃₂ H ₃₃ N ₃ O ₈ S	620.2061	620.2071	1.61
[AQ]-[B]-X-9525-102	C ₂₂ H ₁₇ BrN ₂ O ₃	437.0495	437.0478	-3.89
[AQ]-[B]-X-10161-21	$C_{26}H_{18}N_2O_2S$	423.1162	423.1173	2.60
[AQ]-[B]-X-10161-70	C ₂₆ H ₁₇ N ₃ O ₄ S	468.1013	468.0997	-3.42
[AQ]-[B]-X-10161-91	$C_{26}H_{24}N_2O_4S_2$	493.1250	493.1237	-2.64
[AQ]-[B]-X-9525-10	C ₂₇ H ₂₇ N ₃ O ₅ S	506.1744	506.1734	-1.98
[AQ]-[B]-X-10469-103	C ₂₂ H ₂₅ N ₃ O ₅ S	444.1588	444.1572	-3.60
[AQ]-[B]-X-9525-51	C31H31N3O9S	622.1854	622.1823	-4.98
[ME]-[O]-X-26647-194	C24H22Cl2N2O6	[M+Na] ⁺ 527.0747	[M+Na] ⁺ 527.0739	1.94
[ME]-[R]-X-21537-005	C ₃₀ H ₂₈ SN ₆ O ₆	[M+Na] ⁺ 623.1683	[M+Na] ⁺ 623.1705	-4.15
[AZ]-[R]-X-13046-68	C ₁₉ H ₂₁ N ₅ O ₃ S	400.1438	400.1448	-2.14
[X]-[B]-X-5417-88	C ₂₅ H ₂₁ CIN ₂	[M-Cl] ⁺ 349.1699	[M-Cl]⁺ 349.1691	2.3
[AQ]-[B]-X-9525-71	C ₂₈ H ₂₉ N ₃ O ₅ S	520.1901	520.1885	-3.08
[AQ]-[B]-X-9525-14	C ₂₈ H ₃₁ N ₃ O ₅ S	534.2057	534.2038	-3.56
[AZ]-[B]-X-5380-100D	C ₂₆ H ₂₇ N ₄ OSI	[M-I] ⁺ 443.1900	[M-I] ⁺ 443.1918	-3.06
[AQ]-[B]-X-9525-11	C27H27N3O5S	506.1744	506.1725	-3.75
[X]-[Y]-X-732-85	C29H20O	385.1587	385.1580	2.18
[X]-[Y]-X-732-91C	$C_{21}H_{17}BrN_2S_2$	[M-Br]+ 361.0828	[M-Br]+ 361.0828	1.59
[AZ]-[B]-X-16181-205- 7	$C_{20}H_{20}N_4O_4S_2$	445.0999	445.0984	3.33
[AQ]-[B]-X-9525-16	C ₂₉ H ₂₅ N ₃ O ₄ S	512.1639	512.1624	-2.93
[Ir]-[W]-X-25380-49	C ₂₀ H ₁₄ N ₂ O ₅	363.0975	363.0974	0.52

[Ir]-[Y]-X-25380-174	C ₁₆ H ₉ N ₃ S ₂	[M+Na] ⁺ 330.0130	[M+Na] ⁺ 330.0111	4.73
[ME]-[Y]-X-25380-113	C ₂₂ H ₁₄ N ₂ OS ₂	387.0620	387.0618	0.51
[AQ]-[B]-X-9525-12	C ₂₈ H ₂₉ N ₃ O ₅ S	520.1901	520.1881	-3.84
[AZ]-[O]-X-13046-78- D	C ₃₁ H ₂₈ N ₆ O	501.2397	501.2409	-2.77
[AZ]-[Y]-X-13046-124- B	C17H9Cl3N4S	406.9686	406.9701	-3.35
[AZ]-[O]-13046-108-A	$C_{20}H_{12}Cl_3N_3$	400.0170	400.0180	-2.44
[AQ]-[B]-X-9525-103	C ₂₃ H ₁₉ BrN ₂ O ₄	467.0601	467.0582	-4.01
[ME-[B]-X-5417-88	C ₂₅ H ₂₁ N ₂ Cl	[M-Cl] ⁺ 349.1699	[M-Cl] ⁺ 349.1698	0.59
[AZ]-[R]-X-6012-129	C ₁₆ H ₁₈ N ₄ O	283.1553	283.1552	0.67
[AZ]-[R]-X-5432-134- A	$C_{11}H_{11}N_5$	214.1087	214.1083	1.77
[AQ]-[B]-X-9525-56	C ₂₇ H ₂₇ N ₃ O ₇ S	538.1642	538.1653	2.04
[AZ]-[O]-X-5432-26-C	C ₂₃ H ₁₉ N ₃ O ₄	402.1448	402.1441	1.36
[AZ]-[O]-X-5432-55-G	C ₁₂ H ₉ N ₇	252.0992	252.0987	2.04
[AQ]-[B]-X-5380-134- B	C ₂₈ H ₂₃ N ₃ O ₁₀ S	[M- CH ₃ OSO ₄] ⁺ 482.1347	[M-CH ₃ SO ₄] ⁺ 482.1362	-4.01
[AZ]-[R]-X-5380-112- A	$C_{16}H_{14}N_5S_2I$	[M-I] ⁺ 340.0685	[M-I] ⁺ 340.0688	0.02
[AZ]-[Y]-X-13480-62- A	C ₁₄ H ₉ ClN ₄ O ₃	317.0436	317.0429	1.38
[Ir]-[Y]-X-732-100-A	C22H15N3	322.1339	322.1331	2.42
[Ir]-[Y]-X-732-100-E	$C_{22}H_{14}N_2O_2$	339.1128	339.1122	1.68
[Ir]-[Y]-X-732-100-F	$C_{22}H_{12}N_2S_2$	369.0515	369.0509	1.39
[Ir]-[Y]-X-732-100-G	$C_{20}H_{16}N_2O_2S$	349.1005	349.0995	3.55
[ME]-[Y]-X-732-85	C29H20O	385.1587	385.1576	2.91
[Ir]-[Y]-X-732-90-A	C ₁₉ H ₁₆ N ₂ O ₃	321.1234	321.1231	1.00

[Ir]-[Y]-X-732-90-B	C5H7N5O	154.0723	154.0719	2.9
[Ir]-[Y]-X-732-91-C	C ₂₁ H ₁₇ N ₂ S ₂ Br	[M-Br] ⁺ 361.0828	[M-Br] ⁺ 361.0843	-2.5
[AZ]-[Y]-X-732-92-A	$C_{17}H_{14}N_2O$	263.1179	263.1173	2.77
[ME]-[Y]-X-732-92-B	C ₂₀ H ₂₁ N ₃ O	320.1757	320.1752	2.18
[AZ]-[G]-X-15557-269	C35H39N7O5	638.3065	638.3069	0.96

Dye purity

Individual stock solutions of 1000 μ g/mL for the reference compounds were prepared in acetonitrile. Working solutions of 30 μ g/mL were prepared by dilution with acetonitrile.

Liquid Chromatography was performed on a ZORBAX C₁₈ column (150×2.1 mm), fitted with a guard column with identical packing material (4 × 2.0 mm) (Agilent). The column oven was maintained at 45 °C, and 2 μ L of each sample was injected. Gradient elution with (A) 0.1% formic acid in water, and (B) acetonitrile, at a flow rate of 0.5 mL/min, was applied. The initial gradient conditions were 40% B, increasing to 45% B in 0.5 min, with a final composition of 90% B in 5 min. The column was flushed for 5 min at 90% B. Initial gradient conditions were reestablished in 5 min, and the column was equilibrated for an additional 2 min.

Dye Name	Purity, %
A1	96.32
A2	96.00
B1	91.98
B2	97.89
C1	100.00
C2	100.00
[AQ]-[B]-X-10161-21	96.74
[AQ]-[B]-X-10161-70	76.50
[AQ]-[B]-X-9525-14	63.48
[AQ]-[B]-X-9525-9	83.85

Table S3. HPLC analysis of purity of selected dyes

Figure S10. A pie chart showing the distribution of frequency of InChI skeleton distribution (e.g. 2% of the set has 3 equivalent molecular skeletons based on a search of the first part of the InChI Key search, thereby differing in either stereochemistry, charge, tautomer or isotope labeling)