Supporting Information for:

Synthetic Control and Empirical Prediction of Redox Potentials for Co₄O₄ Cubanes over a 1.4 V Range: Implications for Catalyst Design and Evaluation of High-Valent Intermediates in Water Oxidation

Andy I. Nguyen, Jianing Wang, Daniel S. Levine, Micah S. Ziegler, T. Don Tilley*

General considerations. Cobalt(II) nitrate hexahydrate, pyridine, hydrogen peroxide (34-37% in water), 4-methoxypyridine, 4-cyanopyridine, 4-*N*,*N*-dimethylaminopyridine, 4-nitrobenzoic acid, chloroacetic acid, 2-hydroxypyridine, and 7-azaindole were purchased from Sigma-Aldrich and used without further purification. Sodium acetate trihydrate was purchased from EMD. Solvents were purchased from Fisher-Scientific and used without any further purification. The complexes $Co_4O_4(OAc)_4(py)_4^1$ and $Co_4O_4(OAc)_4(4$ -cyanopyridine)_4¹ were synthesized according to published procedures. The synthetic procedures described below were conducted in air.

Physical methods. Routine NMR spectra were recorded on Bruker AV-400 spectrometers at room temperature. CD_2Cl_2 and acetonitrile- d_3 were purchased from Cambridge Isotope Laboratories. ¹H NMR spectra were referenced to residual protiosolvent peaks (δ 5.32 for CD_2Cl_2 , δ 1.94 for acetonitrile- d_3). Elemental analyses were carried out by the College of Chemistry Microanalytical Laboratory at the University of California, Berkeley. After purification by column chromatography, the products sometimes possessed solvent that is difficult to remove under vacuum, as determined by NMR spectroscopy. Thus, some of the calculated compositions include solvent of crystallization.

Electrochemical measurements were collected with a three-electrode setup on a BASi Epsilon potentiostat (glassy carbon working electrode, Pt wire auxiliary electrode, and Ag wire floating reference). Ferrocene was added as an internal standard.

UV-Visible-NIR spectra were recorded on a Varian Cary 5000 using Cary WinUV software (v. 3.00(339)) and employing a spectroelectrochemical cell containing a Pt-mesh working electrode, a Pt-wire auxiliary electrode, and a non-aqueous, quasi-reference Ag/AgNO₃ electrode (0.1 M [^{*n*}Bu₄N][PF₆] with AgNO₃ (0.01 M) in acetonitrile).

 $Co_4O_4(OAc)_4(4$ -methoxypyridine). 4-Methoxypyridine (0.150 g, 1.42 mmol) was added to a 10 mL MeCN solution of $Co_4O_4(OAc)_4(py)_4$ (0.100 g, 0.118 mmol), and the resulting solution was heated to 90 °C for 16 hours, yielding a dark solution. Volatile compounds were removed *in vacuo*, and the resulting solid was washed with Et₂O (3 x 10 mL) to give the product (0.113 g, 100%). The ¹H NMR spectrum is consistent with that reported.²

 $Co_4O_4(OAc)_4(4-N,N-dimethylaminopyridine)_4$. N,N-Dimethylaminopyridine (0.860 g, 7.0 mmol) was added to a 30 mL MeCN solution of $Co_4O_4(OAc)_4(py)_4$ (0.500 g, 0.59

mmol), and the resulting solution was heated to 80°C for 16 hours, yielding a dark solution. The solution was dried *in vacuo*, and the solid was washed with Et₂O (3 x 100 mL). The resulting solid was recrystallized from hot MeCN (~10 mL) to yield 0.400 g (67%) of dark solid. The complex was further purified by recrystallization, by allowing layered hexane to diffuse into a dichloromethane solution of the complex. ¹H NMR (400 MHz, CD₂Cl₂): 8.19 (d, 8H, aryl-*H*), 7.01 (d, 8H, aryl-*H*), 3.57 (s, 24H, $-CH_3$), 2.59 (s, 12H, $-CH_3$). Anal. Calcd, for C₃₆H₅₂CO₄N₈O₁₂·0.45 CH₂Cl₂: C, 41.19, H, 5.02; N, 10.54. Found: C, 41.03; H, 5.20; N, 10.58.

 $Co_4O_4(O_2CH_2Cl)_4(py)_4$. Chloroacetic acid (0.049 g, 0.96 mmol) was added to a 5 mL solution of $Co_4O_4(OAc)_4(py)_4$ (0.100 g, 0.125 mmol) in MeCN, and the resulting solution was heated to 60°C for 16 hours, to give a dark solution. The solution was dried *in vacuo*, and the solid was recrystallized by layer diffusion of hexanes into a dichloromethane solution to yield 0.081 g (70%) of a dark solid. ¹H NMR (300 MHz, CDCl₃): 8.58 (d, 8H, aryl-*H*), 7.54 (t, 4H aryl-*H*), 7.09 (t, 8H aryl-*H*), 4.10 (s, 8H, $-CH_2$). Anal. Calcd. for $C_{24}H_{28}Cl_4Co_4N_4O_4 \cdot 0.83$ CH₂Cl₂: C, 33.71; H, 3.38; N, 6.33. Found: C, 34.20; H, 3.14; N, 5.84.

 $Co_4O_4(O_2CCF_3)_4(py)_4$. Trifluoroacetic acid (0.110 g, 0.96 mmol) was added to a 5 mL solution of $Co_4O_4(OAc)_4(py)_4$ (0.200 g, 0.23 mmol) in MeCN, and the resulting solution was heated to 70°C for 16 hours, to give a dark solution and a black crystalline solid. The solid product was collected by decantation, and was washed with Et₂O (3 x 10 mL) to give 0.192 g of the product (77%). Anal. Calcd. for $C_{28}H_{20}Co_4F_{12}N_4O_{12}$: C, 31.48; H, 1.89; N, 5.25. Found: C, 31.62; H, 1.97; N, 5.40.

$Co_4O_4(OAc)_3(O_2CCF_3)(py)_4, Co_4O_4(OAc)(O_2CCF_3)_3(py)_4.$

Co₄O₄(OAc)₂(O₂CCF₃)₂(py)₄,

Trifluoroacetic acid (0.0334 g, 0.59 mmol) was added to a 10 mL solution of $Co_4O_4(OAc)_4(py)_4$ (0.25 g, 0.29 mmol) in MeCN, and the resulting solution was heated to 80°C for 16 hours, to give a dark solution. Analysis by TLC with 2:1 hexanes/acetone gave 4 spots with R_f values of 0.8, 0.5, 0.2, and 0. Each species was isolated by silica gel column chromatography (eluted with acetone and hexanes gradient), and the fractions containing the pure compound were evaporated *in vacuo*.

For $Co_4O_4(OAc)_3(O_2CCF_3)(py)_4$: yield 0.050 g, 19% (with respect to $Co_4O_4(OAc)_4(py)_4$). Anal. Calcd. for $C_{28}H_{29}Co_4F_3N_4O_{12}$: C, 37.11; H, 3.23; N, 6.18. Found: C, 37.30; H, 3.52; N, 5.89. ¹H NMR (400 MHz, CD_2Cl_2): δ 8.46 (m, 8H, aryl-*H*), 7.56 (t, 4H, aryl-*H*), 7.08 (t, 8H, aryl-*H*), 2.16 (s, 6H, $-CH_3$), 2.09 (s, 3H, $-CH_3$).

For $Co_4O_4(OAc)_2(O_2CCF_3)_2(py)_4$: yield 0.042 g, 15.2% (with respect to $Co_4O_4(OAc)_4(py)_4$). Anal. Calcd. for $C_{28}H_{26}Co_4F_6N_4O_{12}\cdot C_3H_6O$: C, 36.56; H, 3.17; N, 5.50. Found: C, 36.20 H, 3.12; N, 5.49. ¹H NMR (400 MHz, CD_2Cl_2): δ 8.36 (m, 8H, aryl-*H*), 7.50 (t, 4H, aryl-*H*), 7.01 (t, 8H aryl-*H*), 2.07 (s, 6H, -*CH*₃).

For $Co_4O_4(OAc)(O_2CCF_3)_3(py)_4$: yield 0.033 g, 11.4% (with respect to $Co_4O_4(OAc)_4(py)_4$). Anal. Calcd. for $C_{28}H_{23}Co_4F_9N_4O_{12}\cdot C_3H_6O$: C, 34.72; H, 2.73; N, 5.22. Found: C, 34.46; H, 2.59; N, 5.02. ¹H NMR (400 MHz, CD₂Cl₂): δ 8.39 (m, 8H, aryl-*H*), 7.60 (t, 4H, aryl-*H*), 7.13 (t, 8H, aryl-*H*), 2.22 (s, 3H, -*CH*₃).

 $Co_4O_4(O_2CCF_3)_4(4$ -methoxypyridine)₄. Trifluoroacetic acid (0.028 g, 0.24 mmol) was added to a 5 mL solution of Co₄O₄(OAc)₄(4-methoxypyridine)₄(py)₄ (0.0575 g, 0.067 mmol) in MeCN, and the resulting solution was heated to 70°C for 16 hours, to give a dark solution. The solution was evaporated to dryness *in vacuo*, and the resulting solid was dissolved in a minimum amount of dichloromethane (ca. 1 mL) and purified by silica eluant. chromatography with 6:4 hexanes:acetone Anal. Calcd. for C₃₂H₂₈Co₄F₁₂N₄O₁₆·C₃H₆O: C, 33.73; H, 2.75; N, 4.50. Found: C, 33.24; H, 2.77; N, 4.60. ¹H NMR (400 MHz, CD₃CN): 8.08 (d, 8H, aryl-H), 6.83 (d, 8H, aryl-H), 3.89 (s, $12H, -CH_3).$

Co₄O₄(O₂CCF₃)₄(4-cyanopyridine)₄. Trifluoroacetic acid (0.245 g, 2.15 mmol) was added to a 10 mL solution of Co₄O₄(OAc)₄(py)₄ (0.500 g, 0.587 mmol) in MeCN, and the resulting solution was heated to 70°C for 16 hours, to give a dark solution. The solution was dry-loaded onto silica, and then purified by column chromatography using a 7:3 hexanes:acetone eluant. The solid was by precipitated from MeCN (ca. 2 mL) with excess Et₂O (0.164 g, 24%). Anal. Calcd. for C₃₂H₁₆Co₄F₁₂N₈O₁₂·2 H₂O: C, 31.92; H, 1.67; N, 9.30. Found: C, 31.6; H, 1.57; N, 9.12. ¹H NMR (400 MHz, CD₃CN): δ 8.56 (d, 8H, aryl-*H*), 7.64 (d, 4H, aryl-*H*), 2.16 (s, 4H, *H*₂O).

4-Nitrobenzoic acid (0.029 g, 0.17 mmol) was added to a 10 mL solution of $Co_4O_4(OAc)_4(py)_4$ (0.073 g, 0.086 mmol) in MeCN, and the resulting solution was heated to 80°C for 16 hours to give a dark orange solution. Analysis by TLC with 2:1 hexanes/acetone gave 5 spots with R_f values of 0.9, 0.7, 0.5, 0.2 and 0. Silica gel column chromatography was performed to isolate the above species, and the fractions containing the pure compound were evaporated to dryness *in vacuo*. Each compound was recrystallized by layering hexanes onto a dichloromethane solution.

Yields (with respect to $Co_4O_4(OAc)_4(py)_4$):

For Co₄O₄(OAc)₃(4-nitrobenzoate)py₄: yield 0.012 g, 15%.¹H NMR (400 MHz, CD₂Cl₂): δ 8.51 (m, 8H, aryl-*H*), 8.11 (m, 4H, aryl-*H*), 7.56 (m, 4H, aryl-*H*), 7.10 (m, 8H, aryl-*H*), 2.14 (s, 3H, –C*H*₃), 2.09 (s, 6H, –C*H*₃).

For $Co_4O_4(OAc)_2(4$ -nitrobenzoate)_2(py)_4: yield: 0.007 g, 7.7%. Anal. Calcd. for $C_{43}H_{35}Co_4N_7O_{18}\cdot 0.3\cdot CH_2Cl_2$: C, 43.38; H, 2.99; N, 8.18. Found: C, 43.16; H, 3.23; N, 7.94. ¹H NMR (400 MHz, CD_2Cl_2): δ 8.47 (d, 8H, aryl-*H*), 8.13 (d, 4H, aryl-*H*), 7.99 (d, 4H, aryl-*H*), 7.63 (m, 4H, aryl-*H*), 7.13 (d, 8H, aryl-*H*), 2.11 (s, 6H, –*CH*₃).

For Co₄O₄(OAc)(4-nitrobenzoate)₃(py)₄: yield 0.017 g, 17%. ¹H NMR (400 MHz, CD₂Cl₂): δ 8.59 (d, 8H, aryl-*H*), 8.13 (m, 12H, aryl-*H*), 7.63 (t, 4H, aryl-*H*), 7.14 (t, 8H, aryl-*H*), 2.17 (s, 3H, -CH₃).

For $Co_4O_4(4$ -nitrobenzoate)₄(py)₄: yield 0.005 g, 4.6%. Anal. Calcd. for $C_{48}H_{36}Co_4N_8O_{20}$ ·1.2 CH₂Cl₂: C, 42.74; H, 2.80; N, 8.11. Found: C, 43.08; H, 2.86; N, 7.76. ¹H NMR (400 MHz, CD₂Cl₂): δ 8.64 (d, 8H, aryl-*H*), 8.17 (m, 16H, aryl-*H*), 7.67 (t, 4H, aryl-*H*), 7.17 (t, 8H, aryl-*H*).

Co₄O₄(2-pyridonate)₄(2-hydroxypyridine)₃(py). 2-Hydroxypyridine (0.268 g, 2.81 mmol) was added to a 10 mL solution of Co₄O₄(OAc)₄(py)₄ (0.2 g, 0.24 mmol) in MeCN, and the resulting solution was heated at 80°C for 16 hours, to give a dark solution with a black crystalline solid. The solid was collected by filtration, and analysis by TLC with 60/40 hexanes/acetone shows three spots with R_f value of around 0.8, 0.7, 0.6. Silica gel column chromatography was performed to isolate the product ($R_f = 0.8$). Yield: 0.047 g, 37%. HR-ESI-MS: m/z = 1040.99 ([Co₄O₄(C₅H₄NO)₄(C₅H₅NO)₃(C₅H₅N)H]⁺). Anal. Calcd. for C₄₀H₃₆Co₄N₈O₁₁: C, 46.17; H, 3.49; N, 10.77. Found: C, 46.09; H, 3.75; N, 10.78. ¹H NMR (400 MHz, CD₂Cl₂): δ 8.79 (d, 1H, aryl-*H*), 8.16 (m, 2H, aryl-*H*), 8.00 (dd, 1H, aryl-*H*), 7.94 (dd, 1H, aryl-*H*), 7.43 (td, 1H, aryl-*H*), 7.09-7.30 (m, 13H, aryl-*H*), 5.57 (dd, 1H, aryl-*H*).

Co₄O₄(2-pyridonate)₄(4-N,N-dimethylaminopyridine)₄. 4-N,N-Dimethylaminopyridine (1.287 g, 10.5 mmol) was added to a 10 mL suspension of Co₄O₄(2-pyridonate)₄(2hydroxypyridine)₃(py) (0.15 g, 0.13 mmol) in MeCN, and the resulting solution was heated to 90°C for 16 hours, to give a dark solution with a solid precipitate. The solution was decanted and solids were heated with acetonitrile (10 mL) at 80°C for 15 minutes, then washed with acetonitrile (3 x 10). Recrystallized by layer diffusion of hexanes into a dichloromethane solution vielded 0.081 g (49%). Anal. Calcd. for C₄₈H₅₆Co₄N₁₂O₈·3H₂O: C, 47.3; H, 5.13; N, 13.79. Found: C, 47.03; H, 5.35; N, 13.49. ¹H NMR (400 MHz, CD₂Cl₂): δ 8.20 (d, 4H, aryl-H), 7.56 (d, 4H, aryl-H), 7.21 (dd, 4H, aryl-H), 7.12 (td, 4H, aryl-H), 6.42 (dd, 4H, aryl-H), 6.35 (dd, 4H, aryl-H), 6.05 (td, 4H, aryl-H), 5.78 (dd, 4H, aryl-H), 2.88 (s, 24H, -CH₃).

Co₄O₄(2-pyridonate)₄(py)₄. Pyridine (1.157 g, 1.18 mL, 14.6 mmol) was added to a 10 mL suspension of Co₄O₄(2-pyridonate)₄(2-hydroxypyridine)₃(py) (0.386 g, 0.034 mmol) in MeCN, and the resulting solution was heated to 80°C for 16 hours, to give a dark solution with a black solid. The solid was collected and recrystallized by layer diffusion of hexanes into a dichloromethane solution. Yield: 0.018 g, 45%. Anal. Calcd. for C₄₀H₃₆Co₄N₈O₈·CH₂Cl₂: C, 45.71; H, 3.55; N, 10.40. Found: C, 46.09; H, 3.74; N, 10.78. ¹H NMR (400 MHz, CD₂Cl₂): δ 8.74 (d, 4H, aryl-*H*), 8.10 (d, 4H, aryl-*H*), 7.37 (m, 4H, aryl-*H*), 7.16 (m, 4H, aryl-*H*), 7.08 (m, 8H, aryl-*H*), 6.55 (t, 4H, aryl-*H*), 6.50 (d, 4H, aryl-*H*), 6.06 (t, 4H, aryl-*H*).

 $Co_4O_4(OAc)_2(7-azin)_2(7-azindole)_4$. 7-Azaindole (0.078 g, 0.66 mmol) was added to a 10 mL solution of $Co_4O_4(OAc)_4py_4$ (0.047 g, 0.055 mmol) in MeCN, and the resulting solution was heated at 80°C for 16 hours, to give a dark solution with a black crystalline precipitate (single-crystal XRD quality). The solid was collected by filtration. Yield: 0.030 g, 48%. Anal. Calcd for $C_{46}H_{40}Co_4N_{12}O_8 \cdot 0.55NCCH_3$: C, 49.31; H, 3.66; N, 15.32. Found: C, 49.37; H, 3.51; N, 15.47.

Figure S1. Differential pulse voltammetry of cubane complexes with irreversible E_1 and/or E_2

Computational details. All calculations were carried out using the Q-Chem 4.2.2 software package.³ Geometry optimizations and EDA calculations for LFER analysis were carried out using the B3PW91-D3 functional evaluated on a (99,590) grid.⁴ The 6-31G* basis set was used for light atoms (CHNOF), while the LanL2DZ ECP and basis set were used for Co. Geometry optimizations and spin-density calculations for the cobalt cubane dication were carried out both at the B3PW91-D3 level and at the more sophisticated ω B97M-V level.⁵ These calculations employed the 6-31+G** basis set for light atoms (CHNO) and either the 6-31+G** all-electron basis or the relativistic small-core ECP of the Stuttgart group for Co.⁶ All combinations of basis sets and functionals produce qualitatively similar results.

Table S1.	Summary	of EDA	results
-----------	---------	--------	---------

Cubane Fragments	Total Energy (Hatree)	Frozen (FRZ) term (kJ/mol)	Polarization (POL) term (kJ/mol)	Charge transfer (P-DEL) term (kJ/mol)
$[Co_4O_4(py)_4]^{4+}$ & $[4OAc]^{4-}$	-2788.04984	-250.3	-179.8	-232.2
$[Co_4O_4(py)_4]^{5+}$ & $[4OAc]^{4-}$	-2787.819219	-504.3	-223.2	-287.2
$[Co_4O_4(OAc)_4] \& [4py]$	-2788.04984	-0.9	-44.9	-137.1
$[Co_4O_4(OAc)_4]^+ \& [4py]$	-2787.819219	-16.6	-49.4	-125.3
$[Co_4O_4(OAc)_4]$ & $[4CNpy]$	-3156.839256	2.7	-44.9	-143.1
$[Co_4O_4(OAc)_4]^+ \& [4CNpy]$	-3156.581096	-5.4	-59.3	-138.8
$[Co_4O_4(py)_4]^{4+}$ & $[4TFA]^{4-}$	-3978.470358	-275.6	-160.3	-223.0
$[Co_4O_4(py)_4]^{5+} \& [4TFA]^{4-}$	-3978.202673	-514.7	-202.0	-270.9

Figure S2. Plot of FRZ energies differences as a function of ligand basicity.

Coordinates and energy for [4OAc-4py]⁺

000141			
1 2			
2 2			
С	-1.21951	-1.64414	2.81484
С	-1.67858	-2.32622	4.07952
Н	-1.39513	-1.70161	4.93415
Н	-1.17429	-3.28946	4.19117
Н	-2.76264	-2.45199	4.07710
С	1.22812	1.71290	-2.72588
С	1.82312	2.42781	-3.91430
Н	2.83059	2.03840	-4.09492
Н	1.86580	3.50378	-3.73998
Н	1.22834	2.21375	-4.80754
С	2.13465	-2.63597	-0.71021
С	3.11789	-3.74801	-0.97978
Н	4.09463	-3.29774	-1.19353
Н	2.81168	-4.31565	-1.86119
Н	3.21596	-4.40059	-0.11022
С	1.94884	0.51226	3.36131

Н	0.88826	0.71116	3.46389
C	2 90188	1 00577	4 24213
о ц	2 58865	1 60618	5 089/9
II C	2.30003 A 24474	0 71600	4 01061
C II	4.244/4 E 01004	1 00251	4.01001
H	5.01224	1.08351	4.685/4
C	4.58/63	-0.05060	2.89939
Н	5.62047	-0.29933	2.67889
С	3.57765	-0.50359	2.06050
Н	3.77111	-1.10580	1.18223
С	1.22273	3.44576	1.95760
Н	0.15409	3.49473	2.12506
С	2.13287	4.17182	2.71475
н	1.77657	4.81740	3.51094
C	3 49015	4 05219	2 42673
с ц	1 22689	1.60854	2 99919
II C	2 00771	2 20020	2.99919
C	3.00//4	3.20039	1.39109
H	4.93408	3.081/8	1.13505
С	2.91573	2.52137	0.67640
Н	3.15088	1.83854	-0.13203
С	-3.64859	-2.07038	-0.13359
Н	-3.19515	-2.54427	0.72776
С	-4.72449	-2.62434	-0.81483
Н	-5.14022	-3.57119	-0.48600
С	-5.24528	-1.94394	-1.91286
н	-6 08545	-2 35289	-2 46714
C	-4 67292	-0 73086	-2 28972
U U	-5 04466	-0 17074	-3 1/120
II C	-3.04400	0.22665	-J.14120
C	-3.60300	-0.23665	-1.55564
H	-3.09055	0.68659	-1./9932
C	-1.33561	-2.74089	-2.46419
Н	-0.98127	-3.16332	-1.53094
С	-2.19947	-3.41429	-3.31806
Н	-2.53523	-4.41394	-3.06348
С	-2.61256	-2.78546	-4.49047
Н	-3.28040	-3.29143	-5.18203
С	-2.15472	-1.49848	-4.76220
Н	-2.45103	-0.97062	-5.66279
С	-1.29937	-0.88563	-3.85581
н	-0 90420	0 11079	-4 00418
N	2 29069	-0 22658	2 29908
N	1 61252	2 64216	0 06030
IN NT	2 10070	2.04310	0.90030
IN N	-3.10072	-0.90441	-0.50565
N	-0.90097	-1.50502	-2./3/86
0	-0.44682	-1.50154	0.00207
0	-0.19966	0.61442	1.39328
0	1.48470	0.16476	-0.28029
0	-0.92018	0.65736	-1.06260
0	0.04023	-1.71069	2.59627
0	-2.09711	-1.06910	2.11382
0	0.97290	2.41773	-1.70571
0	1.05379	0.45934	-2.87650
0	1.58376	-2.10268	-1,70972
0	1 98610	-2 32427	0 52367
C o	1.20010 0 85335	-0 85818	1 07/02
C0	_1 62120	-0 12240	T.01493
Co	-1.03137 0 21174	-U.LJJ4/ 1 60725	0.40090
	U.JII/4	1.62/35	-0.08680
Co	0.30387	-0.64861	-1.50127

---1 1

- T T			
0	-2.67843	1.43373	0.80575
0	-1.05473	2.93492	0.24133
С	-2.22446	2.60304	0.61092
С	-3.19110	3.73112	0.87601
H	-3.38141	3.78617	1.95362
H	-4.14657	3.51865	0.38840
H	-2.78728	4.68213	0.52555

Final Energy: -2787.8089877182

Coordinates and energy for 4OAc-4py 0 1

1 1			
Со	0.19544	-0.07776	9.29757
Со	0.13012	0.07006	6.50200
Со	1.97072	1.38309	7.93676
0	1.97231	0.04700	6.63751
0	2.02803	-0.07796	9.07421
N	3.92204	1.58224	7.93032
0	1.81554	2.73884	6.53311
0	0.13486	1.21354	7.95789
0	0.29591	1.58487	5.27453
Ν	-1.74589	-0.04956	9.53768
N	-1.82134	0.06190	6.33769
С	-2.49881	1.13739	5.92401
Н	-1.89030	2.00584	5.70070
С	1.07027	2.55896	5.52658
С	6.67306	1.88230	7.85753
H	7.75313	2.00131	7.82769
С	-2.40886	1.07483	9.24402
Н	-1.78591	1.88117	8.87047
С	5.96731	2.11041	9.03644
Н	6.47159	2.41089	9.94974
С	4.59094	1.35493	6.79561
H	3.97254	1.03075	5.96458
С	4.58715	1.94577	9.03221
H	3.96872	2.11029	9.90622
С	1.13471	3.63570	4.46034
H	1.27268	4.61829	4.91855
Н	0.23737	3.61963	3.83723
H	2.00212	3.43608	3.81993
С	5.97184	1.49291	6.71872
H	6.48048	1.28977	5.78186
С	-3.88205	1.12195	5.78399
H	-4.40023	2.01325	5.44374
С	-3.79092	1.15907	9.36415
H	-4.29879	2.08091	9.09994
С	-4.57438	-0.04774	6.08843
Н	-5.65627	-0.09111	5.99117
С	-4.49711	0.04402	9.80985
Н	-5.57905	0.07861	9.90971
С	-2.41332	-1.12421	9.96773
Н	-1.79861	-1.98935	10.18731

С	-3.79505	-1.11788	10.11978
Н	-4.30377	-2.01151	10.46855
С	-2.47624	-1.06702	6.63258
Н	-1.84515	-1.87493	6.98942
С	-3.85850	-1.16073	6.52295
Н	-4.35713	-2.08953	6.78155
Со	1.94368	-1.41368	7.77728
Ν	3.88347	-1.61519	7.69225
0	1.84062	-2.76629	9.18450
0	1.70259	-2.64509	6.27497
0	0.11075	-1.22192	7.84261
0	0.21777	-1.33303	5.13986
0	0.39691	-1.59857	10.51693
С	1.14223	-2.58365	10.22359
С	0.93067	-2.36393	5.30683
С	6.64003	-1.81668	7.61033
Н	7.72406	-1.89025	7.57801
С	5.99063	-1.45715	8.78906
Н	6.54484	-1.23406	9.69484
С	4.49634	-1.95608	6.55428
Н	3.83680	-2.13680	5.71408
С	4.60367	-1.36927	8.79097
Н	4.02037	-1.06323	9.65324
С	0.89074	-3.39474	4.19455
H	0.89853	-4.40332	4.61699
H	0.01499	-3.24892	3.55870
H	1.79235	-3.28330	3.58019
С	1.23429	-3.67775	11.26998
Н	2.15651	-3.53124	11.84457
Н	0.38674	-3.63378	11.95775
H	1.29286	-4.65709	10.78766
С	5.87868	-2.07158	6.47230
Н	6.34174	-2.34987	5.53052
-1 1			
0	1.80963	2.61877	9.44937
0	0.36158	1.32442	10.65095
С	1.06936	2.35178	10.44603
С	1.05422	3.40805	11.53403
H	2.03830	3.43897	12.01559
H	0.29294	3.18614	12.28439
Н	0.87696	4.39107	11.08728

Final Energy: -2788.0498404643

EDA for $[Co_4O_4(py)_4]^{+4}$ and $(OAc)_4$ bonds

* * R.Z.Khaliullin, * J.	Energy decom E.A.Cobar, R. Phys. Chem. A,	position ana C.Lochan, A. 2007, 111, 8	Lysis C.Bell, M.Hea 3753-8765.	* ad-Gordon * *
Fragment	E (TOTAL)	E(RS CP-CO	DRR) E(SC	CF CP-CORR)
1 -2559 2 -228	.3899920496 .4081907253		N/A N/A	N/A N/A
initial -2787 SCF MI -2787 RS -2788 SCF -2788	.8935152403 .9620129475 .0504685445 .0498404643			
		Energy	term	DE, kJ/mol
	Froze Pol RS Delocal SCF Delocal	n Density (H arization (H ization (P-H ization (V-H	FRZ) POL) DEL) DEL)	-250.29836 -179.84286 -232.24293 -230.59388
RS Tota SCF Tota Higher order re	l (P-TOT = FR l (V-TOT = FR laxation (HO	Z + POL + P-I Z + POL + V-I = V-TOT - P-7	DEL) DEL) FOT)	-662.38415 -660.73510 1.64904
* Energy deco *	mposition of t	he delocaliza	ation term, 1	kJ/mol *
DEL	from fragment	(row) to frag	gment(col)	
1 1 -0.00003 2 -215.97740	2 -16.26554 -0.00002			
* R.Z. * J	Charge tra Khaliullin, A. . Chem. Phys.,	nsfer analys: T. Bell, M.He 2008, 128, 1	is ead-Gordon 184112	*
^	Fragment p	opulation, a	.u.	^
Method Fragme	nt Occ	Vir	Occ+Vir	Isolated
SCF MI	1 360.000000	0.000000	360.000000	360.000000
	2 52.000000	0.000000	52.000000	32.000000
RS	1 359.992424 2 31.752399	0.262715	360.255140 31.744860	32.000000 360.000000 32.000000

			2	31.795001	0.002279	31.797280	32.000000
				Total e	lectron trans	sfer	DQ, me-
		Highe	er or	R SC der relaxat	S Delocaliza F Delocaliza ion (SCF - 1	tion tion RS)	255.176627 220.678569 -34.498058
* *		Decomposit	ion o	f the total	RS charge-t:	ransfer term	n, me- *
		Delocal	izati	on from fra	gment(row) to	o fragment(c	col)
	1 2	1 1.34553 261.36988	6 -13	2 .22998 .76876			

EDA for $[Co_4O_4(py)_4]^{+5}$ and $(OAc)_4$ bonds

 * *	R.Z.Khali	iullin, J. H	Energy dec E.A.Cobar, Phys. Chem.	composition a R.C.Lochan, A, 2007, 111	analysis A.T.Bell, , 8753-87	M.Head-Gordon	* * *
	Fragment		E (TOTAL)	E(RS CI	P-CORR)	E(SCF CP-CORR)	
	1 2	-2559. -228.	.0180870657 .4076309901		N/A N/A	N/A N/A	4 4 4
	initial SCF MI RS SCF	-2787. -2787. -2787. -2787.	.6178004145 .7028161378 .8122199085 .8089877182				
_				Enei	rgy term	DE, kJ/mc)1
			Fro F RS Deloc SCF Deloc	ozen Density Polarization calization (calization ((FRZ) (POL) P-DEL) V-DEL)	-504.3182 -223.2114 -287.2430 -278.7567	22 13 01 79
+	ו SC Higher סו	RS Total CF Total rder rel	l (P-TOT = l (V-TOT = laxation (H	FRZ + POL + FRZ + POL + HO = V-TOT -	P-DEL) V-DEL) P-TOT)	-1014.7726 -1006.2864 8.4862	56 14 22
*	Energ	gy decon	mposition of	the delocal	ization t	erm, kJ/mol	*
		DEL	from fragme	ent(row) to f	fragment(c	ol)	
_	1 -0.0 2 -268.8	1 00059 32835	2 -18.41226 -0.00030				

 * * *	Charge transfer analysis R.Z.Khaliullin, A.T. Bell, M.Head-Gordon J. Chem. Phys., 2008, 128, 184112				* * *	
~ -			Fragment pop	pulation, a.	u.	*
	Method	Fragment	Occ	 Vir	Occ+Vir	Isolated
	SCF MI	1 2	359.000000 32.000000	0.000000 0.000000	359.000000 32.000000	359.000000 32.000000
	RS	1 2	358.983996 31.586346	0.438306 -0.008648	359.422302 31.577698	359.000000 32.000000
	SCF	1 2	358.869092 31.704973	0.422241 0.003693	359.291333 31.708667	359.000000 32.000000
			Total e	lectron tran	sfer	DQ, me-
+		Higher o	R. SC: rder relaxat	S Delocaliza F Delocaliza ion (SCF -	tion tion RS)	429.657839 425.934465 -3.723374
*	Decc	mposition	of the total	RS charge-t	ransfer term	n, me- *
^ -	Delocalization from fragment(row) to fragment(col)				:01)	
_	1 9. 2 428.	1 73190 57393 -1	2 6.27207 4.92006			

EDA for [Co₄O₄(OAc)₄]⁰ and (py)₄ bonds

* * *	R.Z.Khali	Energy dec ullin, E.A.Cobar, J. Phys. Chem.	composition analysis R.C.Lochan, A.T.Bell, A, 2007, 111, 8753-87	* M.Head-Gordon * 65. *
	Fragment	E (TOTAL)	E (RS CP-CORR)	E(SCF CP-CORR)
	1 2	-2539.7923503050 -248.1878155028	N/A N/A	N/A N/A
	initial SCF MI RS SCF	-2787.9805055210 -2787.9976109372 -2788.0453851816 -2788.0498404640		
			Energy term	DE, kJ/mol

Frozen Density (FRZ) -0.89193 -44.91080 Polarization (POL) RS Delocalization (P-DEL) -125.43277 SCF Delocalization (V-DEL) -137.13025 _____ RS Total (P-TOT = FRZ + POL + P-DEL) -171.23550 SCF Total (V-TOT = FRZ + POL + V-DEL) -182.93298 Higher order relaxation (HO = V-TOT - P-TOT) -11.69748 -----* Energy decomposition of the delocalization term, kJ/mol * *_____* DEL from fragment(row) to fragment(col) _____ 1 2 -0.00002 -27.99909 -97.43360 -0.00000 1 2 ------Charge transfer analysis R.Z.Khaliullin, A.T. Bell, M.Head-Gordon J. Chem. Phys., 2008, 128, 184112 * *_____* Fragment population, a.u. _____ Method Fragment Occ Vir Occ+Vir Isolated _____
 SCF MI
 1
 350.000000
 0.000000
 350.000000
 350.000000

 2
 42.000000
 0.000000
 42.000000
 42.000000
 _____ 1 349.980729 0.087656 350.068385 350.000000 RS 2 41.916319 0.015296 41.931615 42.000000 _____ SCF 1 349.969545 0.103513 350.073059 350.000000 2 41.900820 0.026122 41.926941 42.000000 _____ Total electron transfer DQ, me-_____ RS Delocalization 102.951355 SCF Delocalization Higher order relaxation (SCF - RS) 129.634897 26.683541 *_____* * Decomposition of the total RS charge-transfer term, me- * *_____* Delocalization from fragment(row) to fragment(col) _____ 1 2 -0.26356 19.53415 87.91915 -4.23838 1 2 _____

EDA for $[Co_4O_4(OAc)_4]^+$ and $(py)_4$ bonds

* R.Z.Khal *	E. iullin, E. J. Phy	Inergy de A.Cobar, 7s. Chem.	composition ar R.C.Lochan, A A, 2007, 111,	nalysis A.T.Bell, M.H , 8753-8765.	* ead-Gordon * *
Fragment		E (TOTAL)	E(RS CP-	-CORR) E (SCF CP-CORR)
1 2	-2539.54 -248.18	59129884 77321153		N/A N/A	N/A N/A
initial SCF MI RS SCF	-2787.73 -2787.75 -2787.80 -2787.81	99711849 88007517 65139521 .05692569			
			Energ	gy term	DE, kJ/mol
		Fro RS Deloo SCF Deloo	ozen Density Polarization calization (M calization (N	(FRZ) (POL) ?-DEL) /-DEL)	-16.60932 -49.43761 -125.27249 -135.91982
Higher c	RS Total (SCF Total (order relax	P-TOT = V-TOT = ation ()	FRZ + POL + F FRZ + POL + V HO = V-TOT - F	P-DEL) V-DEL) P-TOT)	-191.31943 -201.96676 -10.64733
* * Ener *	gy decompo	sition o	f the delocali	ization term,	kJ/mol *
	DEL fr	om fragme	ent(row) to fi	ragment(col)	
1 -0. 2 -101.	1 00717 -2 91759	2 23.35990 0.00015			
 *		Charge	transfer analy	ysis	*
*	R.Z.Kha J. C	liullin, Chem. Phys	A.T. Bell, M. s., 2008, 128,	Head-Gordon, 184112	*
~		Fragmen	t population,	a.u.	^
		2			
Method	Fragment		Dec Vi	ir Occ+Vi	r Isolated
Method SCF MI	Fragment 1 2	349.000	Dec Vi 0.00000 0.00000	ir Occ+Vi 00 349.00000 00 42.00000	r Isolated 0 349.000000 0 42.000000
Method SCF MI RS	Fragment 1 2 1 2	349.000 42.000 348.986 41.901	Dec Vi 000 0.00000 000 0.00000 672 0.10343 711 0.00818	ir Occ+Vi 00 349.00000 00 42.00000 37 349.09010 31 41.90989	r Isolated 0 349.000000 0 42.000000 8 349.000000 2 42.000000

			2	41.887951	0.015713	41.903664	42.000000
				Total el	ectron trans	sfer	DQ, me-
		Highe	r or	RS SCE der relaxati	5 Delocaliza 5 Delocaliza 10n (SCF - 1	tion tion RS)	111.617805 133.782042 22.164237
* - * * -		Decompositio	on o:	f the total	RS charge-t:	ransfer term	n, me- *
_		Delocali	zati	on from frac	gment(row) to	o fragment(c	col)
_	1 2	1 -0.16639 103.60315	13 -5	2 .49470 .31365			

Coordinates and energy for 4OAc-4CNpy

0 1			
0 1			
Со	0.21468	-0.07646	9.34227
Со	0.13961	0.06233	6.54328
Со	2.00000	1.35273	7.96996
0	1.97995	0.01239	6.67284
0	2.04496	-0.10667	9.11109
N	3.95152	1.53414	7.96992
0	1.86477	2.70151	6.56365
0	0.16431	1.21005	7.99620
0	0.31765	1.57132	5.31816
N	-1.72164	-0.02458	9.57365
N	-1.81024	0.07460	6.37464
С	-2.47758	1.15166	5.94758
H	-1.86458	2.01832	5.73075
С	1.11082	2.53431	5.56072
С	6.69768	1.86151	7.89717
С	-2.37566	1.10204	9.26820
H	-1.74388	1.91621	8.92896
С	5.99426	2.03317	9.09585
H	6.50861	2.30218	10.01180
С	4.61587	1.35835	6.82365
H	3.99753	1.06999	5.98000
С	4.61795	1.85576	9.08532
H	4.00425	1.97904	9.96895
С	1.18018	3.59899	4.48555
Н	1.59635	4.52724	4.88155
Н	0.18920	3.77141	4.05702
Н	1.82770	3.23416	3.67947
С	5.99288	1.50892	6.74018
H	6.50784	1.35538	5.79861
С	-3.85573	1.14313	5.77987
Н	-4.37446	2.02777	5.42744
С	-3.76020	1.18068	9.32119

Н	-4.27168	2.09586	9.04572
С	-4.55657	-0.03388	6.07088
С	-4.47965	0.04589	9.71641
С	-2.39718	-1.10640	9.97164
H	-1.78723	-1.96932	10.21084
С	-3.78158	-1.11754	10.06010
H	-4.30788	-2.01211	10.37463
C	-2.4/025	-1.05506	6.65618
H	-1.84/23	-1.86608	7.01966
U	-3.84/52	-1.15361	6.32241
П	1 92800	-2.07829	7 91991
0	1 92000	-2 78336	0 23230
0	1 66090	-2.70330	6 32618
0	0 10139	-1 22473	7 89081
0	0 19540	-1 34555	5 19104
0	0 39329	-1 59325	10 56138
C	1.12910	-2.58916	10.27437
C	0.88810	-2.39117	5.35922
C	0.82195	-3.42395	4.25275
Н	0.89494	-4.43140	4.66999
Н	-0.09475	-3.31071	3.67038
Н	1.67669	-3.27340	3.58224
С	1.20999	-3.66685	11.33559
Н	1.95274	-3.36203	12.08224
Н	0.25020	-3.77233	11.84798
Н	1.52179	-4.61769	10.89868
0	1.85961	2.59328	9.47045
0	0.39484	1.32623	10.67974
С	1.10633	2.35060	10.46413
С	1.02358	3.44415	11.50792
Н	1.94605	4.02897	11.53005
H	0.80526	3.02152	12.49111
H	0.20306	4.11//4	11.23306
C	-5.91083	0.06232	9.74884
C	-3.97762	-0.09847	7 95242
N	0.11033 _7 07318	2.04210	7.03242
IN N	-7.07318	-0 158/9	5 76907
N	9 26771	2 19675	7 81505
	J.20111	2.19070	.01000
0 1			
Ν	3.85806	-1.65644	7.69689
С	6.60981	-1.74775	7.49587
С	5.99742	-1.46959	8.72394
Н	6.58942	-1.26720	9.60901
С	4.43281	-1.93204	6.52144
Н	3.74761	-2.09773	5.69976
С	4.61095	-1.43694	8.77876
С	5.80978	-1.99256	6.37363
H	4.05503	-1.18915	9.67651
H	6.25237	-2.21038	5.40794
C	8.03530	-1./5438	7.37512
N	9.19226	-1./5091	1.26263

Final Energy: -3156.8392564770

Coordinates and energy for [4OAc-4CNpy]⁺

1 2			
С	-1.21280	-1.62528	2.83119
С	-1.66390	-2.31731	4.09150
Н	-1.33759	-1.72322	4.95250
Н	-1.18842	-3.29859	4.17002
Н	-2.75095	-2.40861	4.11293
С	1.19784	1.72258	-2.73487
С	1.79007	2.43519	-3.92422
Н	2.80825	2.06562	-4.08681
Н	1.80884	3.51366	-3.76233
Н	1.21295	2.19732	-4.82275
С	2.11326	-2.62350	-0.71388
С	3.08221	-3.74632	-0.98172
Н	4.07789	-3.31192	-1.13236
Н	2.80419	-4.27584	-1.89513
Н	3.12843	-4.42986	-0.13162
С	1.96527	0.54230	3.35517
H	0.90583	0.74379	3.46403
С	2.91780	1.04785	4.22646
H	2.62029	1.65888	5.07106
С	4.26606	0.75482	3.98733
С	4.60372	-0.03607	2.88273
H	5.63682	-0.28639	2.66891
С	3.58527	-0.49537	2.06071
H	3.77499	-1.11321	1.19251
С	-3.65110	-2.05295	-0.11342
Н	-3.21865	-2.51340	0.76572
С	-4.68540	-2.63992	-0.82617
H	-5.09445	-3.59542	-0.51718
С	-5.17565	-1.97820	-1.95834
С	-4.62931	-0.73798	-2.31225
Н	-4.99229	-0.19666	-3.17860
C	-3.60152	-0.22067	-1.53963
H	-3.10523	0.71443	-1.77035
С	-1.37050	-2.72850	-2.44502
H	-1.02099	-3.14414	-1.50701
С	-2.23708	-3.40960	-3.28611
H	-2.58517	-4.40365	-3.02904
С	-2.64698	-2.78856	-4.47264
С	-2.17274	-1.50396	-4.76412
Н	-2.46616	-0.99425	-5.67516
С	-1.31478	-0.89256	-3.86212
H	-0.90817	0.09648	-4.02769
N	2.30029	-0.20739	2.29788
N	-3.11989	-0.88105	-0.47908
N	-0.92757	-1.49823	-2.73266
0	-0.45955	-1.48490	0.01095
0	-0.19805	0.63189	1.39935
0	1.46489	0.17715	-0.28861
0	-0.94037	0.67306	-1.05171
0	0.04789	-1.68228	2.60755
0	-2.09292	-1.05036	2.13250

0	0.95010	2.42752	-1.71165
0	1.01872	0.46844	-2.88097
0	1.55324	-2.09173	-1.70883
0	1.98220	-2.29756	0.52057
Со	0.84912	-0.84622	1.08003
Со	-1.63778	-0.11220	0.48022
Со	0.29652	1.64546	-0.09164
Со	0.28173	-0.63370	-1.49784
0	-2.68476	1.44853	0.82399
0	-1.06690	2.95074	0.24804
С	-2.23743	2.61934	0.61942
С	-3.21129	3.74286	0.86876
Н	-3.44753	3.77642	1.93789
Н	-4.14612	3.53972	0.33837
Н	-2.79561	4.69983	0.55058
С	5.28215	1.26895	4.85199
С	-3.54210	-3.45510	-5.36834
С	-6.20126	-2.57319	-2.75976
N	6.10772	1.69333	5.55095
N	-4.27091	-3.99547	-6.09457
Ν	-7.01708	-3.06671	-3.42431
0 1			
С	1.22972	3.46976	1.94038
H	0.16097	3.55616	2.09062
С	2.14525	4.15302	2.72606
H	1.80774	4.80040	3.52785
С	3.50903	3.97975	2.46343
С	3.89806	3.14317	1.40992
H	4.94554	2.99127	1.17589
С	2.91234	2.50546	0.67268
Н	3.13957	1.82736	-0.14172
Ν	5.28528	5.14026	3.95212
С	4.49064	4.62837	3.27614
Ν	1.61073	2.66040	0.94469

Final Energy: -3156.5708294335

EDA for [Co₄O₄(OAc)₄]⁰ and (CNpy)₄ bonds

- * * *	R.Z.Khali	Energy dec ullin, E.A.Cobar, J. Phys. Chem.	composition anal R.C.Lochan, A.T A, 2007, 111, 8	 lysis I.Bell, M.Heac 3753-8765.	* d-Gordon * *
-	Fragment	E (TOTAL)	E(RS CP-CC	DRR) E (SCE	CP-CORR)
_	1 2	-2816.3823847534 -340.3863226046		N/A N/A	N/A N/A
_	initial SCF MI RS SCF	-3156.7676608236 -3156.7847534908 -3156.8344063997 -3156.8392564770			
_			Energy	term	DE, kJ/mol

_____ 2.73 -44.87733 -130.36526 Frozen Density (FRZ) Polarization (POL) RS Delocalization (P-DEL) SCF Delocalization (V-DEL) -143.09929 _____ RS Total (P-TOT = FRZ + POL + P-DEL) -172.49488 SCF Total (V-TOT = FRZ + POL + V-DEL) -185.22891 Higher order relaxation (HO = V-TOT - P-TOT) -12.73403*_____* Energy decomposition of the delocalization term, kJ/mol *_____* DEL from fragment(row) to fragment(col) 1 2 1 -0.00002 -31.20637 2 -99.15883 -0.00000 _____ _____ Charge transfer analysis R.Z.Khaliullin, A.T. Bell, M.Head-Gordon J. Chem. Phys., 2008, 128, 184112 *_____* Fragment population, a.u. _____ Method Fragment Occ Vir Occ+Vir Isolated _____ 1386.0000000.000000386.000000386.000000254.0000000.00000054.00000054.000000 SCF MI _____ 1 385.976407 0.085674 386.062081 386.000000 RS 2 53.917937 0.019982 53.937919 54.000000 _____ SCF 1385.9619590.102934386.064893386.000000253.9009670.03414053.93510754.000000 _____ Total electron transfer DQ, me-_____ 105.656232 RS Delocalization SCF Delocalization Higher order relaxation (SCF - RS) 137.073858 31.417627 *_____* Decomposition of the total RS charge-transfer term, me-* *_____* Delocalization from fragment(row) to fragment(col) _____ 1 2 1 -0.32733 23.92066 2 86.00158 -3.93868 _____

EDA for [Co ₄ O ₄ (OAc) ₄] ⁺ and (CNpy) ₄ bonds

* R.Z.Khal	E iullin, E. J. Phy	nergy deco A.Cobar, I s. Chem. Z	omposition ana R.C.Lochan, A. A, 2007, 111,	lysis T.Bell, M.He 8753-8765.	ad-Gordon
Fragment		E (TOTAL)	E(RS CP-C	ORR) E(S	CF CP-CORR)
1 2	-2816.10 -340.38	18911484 66107261		N/A N/A	N/A N/A
initial SCF MI RS SCF	-3156.49 -3156.51 -3156.56 -3156.57	05522801 31364760 60134943 08294335			
			Energy	term	DE, kJ/mol
		Fro: Po RS Deloca SCF Deloca	zen Density (olarization (alization (P- alization (V-	FRZ) POL) DEL) DEL)	-5.38340 -59.29551 -138.83026 -151.47466
So Higher of	RS Total (CF Total (rder relax	P-TOT = 1 V-TOT = 1 ation (Ho	FRZ + POL + P- FRZ + POL + V- D = V-TOT - P-	DEL) DEL) TOT)	-203.50917 -216.15357 -12.64440
* Enero	gy decompo DEL fr	sition of	the delocaliz	ation term,	kJ/mol
1 -0. 2 -113.	1 00003 -2 72476	2 5.10605 0.00004			
* * * *	R.Z.Kha J. C	Charge t: liullin, A hem. Phys	ransfer analys A.T. Bell, M.H ., 2008, 128,	is ead-Gordon 184112	
		Fragment	population, a	.u. 	
Method	Fragment	00	cc Vir	Occ+Vir	Isolated
SCF MI	1 2	385.0000 54.0000	0.000000 0.000000	385.000000 54.000000	385.000000 54.000000
RS	1 2	384.9848 53.8901	48 0.114783 71 0.010198	385.099631 53.900369	385.000000 54.000000
SCF	1 2	384.96788 53.87309	32 0.139234 93 0.019791	385.107116 53.892884	385.000000 54.000000

		Total elec	tron transfer	DQ, me-
	Highe	RS D SCF D r order relaxation	elocalization elocalization (SCF - RS)	124.981186 159.024812 34.043626
*	Decompositi	on of the total RS	charge-transfer t	erm, me-
*	Delocali	zation from fragme	nt(row) to fragmen	ut(col)
1 2	1 -0.14270 114.92561	2 15.29500 -5.09673		
Coordi	nates and energ	gy for 4TFA-4py		
) 1 				
11				
20	0.20123	-0.05729	9.28515	
0	0.14015	0.03847	6.49682	
0	1.99300	1.37825	7.90421	
) \	2 04002	0.02178	0.03330 9.06576	
ſ	3.93958	1.59138	7.89669	
1	1.80616	2.73819	6.49483	
)	0.15199	1.20579	7.92652	
)	0.30261	1.53601	5.25136	
1	-1.73289	-0.02880	9.53310	
1	-1.80583	0.03473	6.33128	
т. Т	-2.47746	1.10510	5.88980	
1	-1.8/328	1.96/03	5.63333 5.54371	
*	6 68845	2.52000	7 80754	
Í	7.76723	2.03146	7.77127	
	-2.39754	1.09238	9.22719	
I	-1.78315	1.89462	8.83278	
	5.98083	2.19157	8.97246	
[6.48094	2.54670	9.86780	
	4.61109	1.31234	6.77368	
L •	3.99903	0.94523	2.9558U 8.97891	
, ,	3 99153	2.02090	9 84617	
1	0.83787	3.68975	4.54167	
:	5.99024	1.45559	6.68955	
I	6.49842	1.21254	5.76238	
	-3.86082	1.09265	5.75565	
L .	-4.37266	1.97757	5.39132	
, I	-3.11659 -1 28117	1.18309 2 10255	9.36648 9 09533	
L 1	-4.2044/ -4 55952	-0 06430	9.09000 6.09178	
, I	-5.64144	-0.10365	5.99710	
-	-4.47822	0.07907	9.84567	
I	-5.55779	0.11958	9.96365	
2	-2.39571	-1.09344	9.99877	

Н	-1.78861	-1.95859	10.23729
С	-3.77465	-1.07779	10.16992
Н	-4.27846	-1.96134	10.54892
С	-2.46747	-1.08330	6.65464
Н	-1.84581	-1.89098	7.02663
С	-3.84979	-1.17131	6.55079
Н	-4.35189	-2.09197	6.82965
Со	1.97302	-1.41342	7.79741
N	3.90911	-1.62047	7.72055
0	1.84096	-2.76521	9.21666
0	1.73735	-2.66698	6.31413
0	0.13352	-1.22600	7.85580
0	0.25501	-1.37654	5.13837
0	0.40183	-1.55664	10.52759
С	1.09513	-2.55469	10.20033
С	1.00698	-2.35776	5.33739
С	6.66508	-1.83432	7.66063
Н	7.74858	-1.91391	7.63657
С	6.01230	-1.42042	8.81946
Н	6.56179	-1.16233	9.71841
С	4.52532	-2.02039	6.60157
Н	3.87838	-2.25108	5.76395
С	4.62648	-1.32807	8.81113
Н	4.04540	-0.98487	9.66037
С	1.11957	-3.36784	4.17401
С	0.93755	-3.73160	11.18804
С	5.90763	-2.14098	6.53303
Н	6.37189	-2.46837	5.60826
F	-0.44103	4.12097	4.60691
F	1.63855	4.72505	4.79834
F	1.07048	3.27572	3.28766
F	0.25537	-3.11922	3.18864
F	0.91948	-4.62092	4.60521
F	2.36942	-3.29719	3.66457
F	1.74729	-4.75360	10.90698
F	1.17559	-3.33706	12.44675
F	-0.33729	-4.17616	11.12492
-1 1			
0	1.82348	2.63415	9.39429
0	0.38489	1.35384	10.63411
С	1.12635	2.33474	10.39798
С	1.26342	3.36619	11.53823
F	2.54205	3.36317	11.97343
F	0.47054	3.09578	12.57632
F	0.97806	4.60026	11.09856

Final Energy: -3978.4703578200

Coordinates and energy for [4TFA-4py]⁺

22			
С	-1.20568	-1.63511	2.77711
С	-1.77828	-2.50872	3.91812
С	1.15975	1.68316	-2.74146
С	1.54977	2.39398	-4.05722
С	2.16224	-2.57519	-0.68708
С	3.26036	-3.63905	-0.91899
C	1,96161	0.57349	3.33887
H	0.90886	0.82123	3.40922
С	2.91111	1.05570	4.22813
H	2 59969	1 69491	5 04711
C	4 24587	0 70027	4 04472
н	5 00996	1 05699	4 72924
C C	1 58/90	-0 12282	2 973//
U U	5 60996	-0 12963	2.57544
C C	2 50210	-0.56594	2.79443
U	J.JOZIU 2 70140	1 21000	2.12133
п	J./0140 1.07100	-1.21990	1.20237
C II	1.2/180	3.53298	1.00010
H	0.20396	3.64/00	2.006/3
C	2.19766	4.25581	2.606/3
Н	1.85096	4.95526	3.36029
С	3.55446	4.06845	2.35475
H	4.30128	4.62282	2.915/1
С	3.93852	3.16408	1.36665
Н	4.98308	2.98851	1.13305
С	2.95477	2.48140	0.66492
Н	3.18351	1.75575	-0.10731
С	-3.67878	-2.02220	-0.05624
Н	-3.25269	-2.47779	0.82873
С	-4.77083	-2.56656	-0.71871
Н	-5.21730	-3.48432	-0.35062
С	-5.27146	-1.91264	-1.84192
Н	-6.12615	-2.31483	-2.37838
С	-4.66387	-0.73199	-2.26430
Н	-5.02231	-0.18925	-3.13240
С	-3.57852	-0.24383	-1.55057
Н	-3.04463	0.65683	-1.82974
С	-1.37926	-2.73738	-2.39705
Н	-1.05669	-3.13396	-1.44123
С	-2.24977	-3.41932	-3.23593
Н	-2.62006	-4.39611	-2.94390
С	-2.62158	-2.83018	-4.44257
Н	-3.29382	-3.34464	-5.12332
С	-2.11278	-1.57466	-4.76496
Н	-2.36933	-1.08039	-5.69611
С	-1.25141	-0.94815	-3.87395
Н	-0.81442	0.02085	-4.07724
N	2.30189	-0.21759	2.31161
N	1.65167	2.66371	0.91918
N	-3 10230	-0 88835	-0 47670
N	-0 89930	-1 52816	-2 71769
0	-0 43308	-1 48404	0 02899
0	-0 17523	0 64858	1 38710
0	0.1/020	0.01000	T.00/IU

0	1.49959	0.16946	-0.28442
0	-0.90130	0.65544	-1.06067
0	0.04417	-1.70257	2.61265
0	-2.08500	-1.01863	2.13030
0	0.96980	2.41877	-1.74525
0	1.04841	0.43328	-2.88066
0	1.61127	-2.10137	-1.70221
0	1.99725	-2.30895	0.54053
Со	0.87379	-0.82152	1.08525
Со	-1.61888	-0.11371	0.46472
Со	0.34356	1.63967	-0.09840
Со	0.30523	-0.66259	-1.49560
F	0.52372	2.24993	-4.91943
F	1.77897	3.68994	-3.87733
F	2.63498	1.82642	-4.58897
F	4.43152	-3.12122	-0.49958
F	3.37068	-3.96749	-2.20046
F	2.99836	-4.73619	-0.20479
F	-2.44943	-3.52572	3.34348
F	-0.82479	-3.00865	4.69671
F	-2.62911	-1.80219	4.66349
-1 1			
0	-2.66035	1.46203	0.81046
0	-1.02647	2.94987	0.21766
С	-2.16757	2.60143	0.62221
С	-3.07331	3.79781	0.99063
F	-3.10835	4.68008	-0.01041
F	-2.54236	4.39586	2.07434
F	-4.31367	3.41490	1.27678

Final Energy: -3978.1925394789

EDA for $[Co_4O_4(py_4]^{+4}$ and $(TFA)_4$ bonds

_					
* *	R.Z.Khali	Energy dec ullin, E.A.Cobar, J. Phys. Chem.	composition analysis R.C.Lochan, A.T.Bell A, 2007, 111, 8753-8	, M.Head-Gordon 765.	* *
	Fragment	E(TOTAL)	E(RS CP-CORR)	E(SCF CP-CORR)	
	1 2 initial SCF MI RS SCF	-3452.1817388443 -526.0371671990 -3978.3238717465 -3978.3849096703 -3978.4698500123 -3978.4703578200	N/A N/A	N/A N/A	
_			Energy term	DE, kJ/mol	1
		Fro Fro RS Deloc	ozen Density (FRZ) Polarization (POL) calization (P-DEL)	-275.59072 -160.2569 -223.01352	 2 7 1

-224.34678 SCF Delocalization (V-DEL) _____ _____ _____ RS Total (P-TOT = FRZ + POL + P-DEL) -658.86121 SCF Total (V-TOT = FRZ + POL + V-DEL) -660.19447 Higher order relaxation (HO = V-TOT - P-TOT) -1.33327 *_____* Energy decomposition of the delocalization term, kJ/mol *_____* DEL from fragment(row) to fragment(col) _____ 1 2 1 -0.00003 -17.24215 2 -205.77136 -0.00001 _____ _____ Charge transfer analysis R.Z.Khaliullin, A.T. Bell, M.Head-Gordon +J. Chem. Phys., 2008, 128, 184112 * *-----* Fragment population, a.u. _____ Method Fragment Occ Vir Occ+Vir Isolated _____ 1 432.000000 0.000000 432.000000 432.000000 SCF MI 2 56.000000 0.000000 56.000000 56.000000 _____ 1431.9922050.228808432.221013432.000000255.784747-0.00575955.77898756.000000 RS _____ 1 431.984148 0.199630 432.183778 432.000000 SCF 2 55.813016 0.003206 55.816222 56.000000 _____ Total electron transfer DQ, me-_____ RS Delocalization 223.048441 SCF Delocalization 202.836490 Higher order relaxation (SCF - RS) -20.211951 *_____* * Decomposition of the total RS charge-transfer term, me- * *_____* Delocalization from fragment(row) to fragment(col) _____ 1 2 0.95321 6.84216 1 2 227.85468 -12.60161 _____

* *	R.Z.Khal	E. iullin, E. J. Phy	nergy dec A.Cobar, s. Chem.	compositio R.C.Locha A, 2007,	n analy n, A.T. 111, 87	vsis Bell, M.1 253-8765.	Head-Gor	* don * *
	Fragment		E(TOTAL)	E (RS	CP-COR	RR) E	(SCF CP-	CORR)
	1 2	-3451.78 -526.03	21055383 54388444		N N	I/A I/A		N/A N/A
	initial SCF MI RS SCF	-3978.01 -3978.09 -3978.19 -3978.19	35812992 05242287 36848060 25394789					
				E	nergy t 	erm	DE,	kJ/mol
			Fro E RS Deloc SCF Deloc	ozen Densi Polarizati calization calization	ty (FR on (PC (P-DE (V-DE	RZ) DL) LL) LL)	-514 -202 -270 -267	.70103 .01606 .85131 .84422
	S Higher o	RS Total (CF Total (rder relax	P-TOT = V-TOT = ation (H	FRZ + POL FRZ + POL HO = V-TOT	+ P-DE + V-DE - P-TC	L) L) T) T)	-987 -984 3	.56840 .56131 .00709
*- *	Ener	gy decompo	 sition of	the delo	 calizat	ion term	, kJ/mol	**
*-		DEL fr	om fragme	ent(row) t	o fragm	nent(col)		*
	1 -0. 2 -251.	1 00128 -1 51953 -	2 9.33429 0.00023					
 * * *		R.Z.Kha J. C	Charge t liullin, hem. Phys	aransfer a A.T. Bell	nalysis , M.Hea 128, 18	d-Gordon 4112		 * *
			Fragment	populati	on, a.u	l.		
_	Method	Fragment	с С)cc	Vir	Occ+V	ir Is	olated
	SCF MI	1 2	431.0000	0.0 0.0	00000	431.0000	00 431. 00 56.	000000
	RS	1 2	430.9860	002 0.3	65974 07179	431.3519	75 431. 25 56.	000000
	SCF	1 2	430.9013	333 0.3 399 0.0	61413 03356	431.2627	46 431. 54 56.	000000

EDA for $[Co_4O_4(py_4]^{+5}$ and $(TFA)_4$ bonds

	Total electron transfer	DQ, me-
	RS Delocalization SCF Delocalization Higher order relaxation (SCF - RS)	358.794648 364.768571 5.973923
* * *	Decomposition of the total RS charge-transfer term,	* me*
	Delocalization from fragment(row) to fragment(co	1)
1 2	1 2 7.27130 6.72718 358.70225 -13.90608	

Coordinates and energy for triplet [4OAc-4py]²⁺

С	-1.39278	-1.54850	2.80858
С	-1.92755	-2.22901	4.03936
Н	-1.64393	-1.63755	4.91686
Н	-1.47538	-3.21740	4.14608
Н	-3.01437	-2.29564	3.99337
С	1.31673	1.54794	-2.80791
С	1.92830	2.25179	-3.98884
Н	3.01841	2.16692	-3.91087
Н	1.65883	3.30829	-3.98987
Н	1.62194	1.76353	-4.91525
С	-2.13239	2.72392	0.56346
С	-2.99552	3.92652	0.83267
Н	-2.89953	4.18541	1.89333
Н	-4.04227	3.68525	0.64102
Н	-2.66878	4.77763	0.23471
С	2.09480	-2.69632	-0.54145
С	3.06501	-3.83029	-0.73138
Н	4.08142	-3.42315	-0.68279
Н	2.92199	-4.29080	-1.70919
Н	2.95705	-4.56092	0.07199
С	1.96535	0.03422	3.67227
Н	0.92916	-0.03232	3.97550
С	2.97361	0.40054	4.55620
Н	2.72455	0.63481	5.58514
С	4.29103	0.44664	4.09657
Н	5.09919	0.71929	4.76797
С	4.55282	0.13334	2.76105
Н	5.56025	0.15732	2.36087
С	3.49504	-0.22660	1.93531
Н	3.63462	-0.47693	0.89204
С	1.29722	3.20358	2.04256
Н	0.31111	2.93400	2.39773
С	2.14854	4.02646	2.76871
Н	1.82202	4.42691	3.72196
С	3.40651	4.32844	2.24263

Н	4.08604	4.98136	2.78125
С	3.77481	3.78095	1.01206
Н	4.74107	3.98879	0.56638
С	2.87245	2.96236	0.34285
Н	3.09784	2.52043	-0.61801
С	-3.47302	-2.10576	-0.31597
Н	-2.82075	-2.66587	0.34120
С	-4.57335	-2.68408	-0.93716
Н	-4.80130	-3.72915	-0.75950
С	-5.36677	-1.89810	-1.77455
Н	-6.23817	-2.32116	-2.26441
С	-5.02325	-0.55906	-1.96954
Н	-5.61006	0.08724	-2.61263
С	-3.90839	-0.04869	-1.31533
Н	-3.59651	0.98122	-1.42567
С	-1.05955	-2.92319	-2.65640
Н	-0.57304	-3.43147	-1.83413
С	-1.83924	-3.59920	-3.58728
Н	-1.96948	-4.67207	-3.49946
С	-2.43099	-2.87665	-4.62478
Н	-3.03386	-3.38051	-5.37371
С	-2.23185	-1.49607	-4.68529
Н	-2.67511	-0.89482	-5.47114
С	-1.43896	-0.88758	-3.71925
Н	-1.24755	0.17745	-3.71707
N	2.22813	-0.27754	2.38921
N	1.65528	2.69210	0.84955
Ν	-3.15697	-0.81174	-0.49987
Ν	-0.85716	-1.59523	-2.73315
0	-0.49507	-1.44854	0.03430
0	-0.19062	0.69712	1.36975
0	1.48135	0.13740	-0.25340
0	-0.87163	0.65994	-1.08758
0	-0.12404	-1.67105	2.61423
0	-2.20758	-0.90603	2.08052
0	-2.63410	1.57954	0.78708
0	-0.93829	2.96722	0.14878
0	1.04487	2.28994	-1.79076
0	1.14080	0.29448	-2.89541
0	1.58586	-2.17231	-1.57902
0	1.88491	-2.33999	0.67849
Со	0.78606	-0.86113	1.15407
Со	-1.68088	-0.04503	0.45573
Со	0.34880	1.59752	-0.16079
Со	0.33178	-0.73193	-1.49500

Energy: -2790.04538213174

Spin Densities for triplet [4OAc-4py]²⁺ Ground-State Mulliken Net Atomic Charges

Atom	Charge (a.u.)	Spin (a.u.)
1 C	0.877958	-0.005661
2 C	-0.789339	-0.003004
3 Н	0.194166	0.000268
4 H	0.200756	0.000095
5 H	0.195470	-0.000683
6 C	0.875002	-0.004521
7 C	-0.803692	-0.002806
8 H	0.199320	0.000304
9 H	0.198159	0.000122
10 H	0.195592	-0.000599
11 C	0.791898	-0.006634
12 C	-0.850654	-0.002482
13 H	0.200166	0.000334
14 H	0.194756	-0.000606
15 H	0.198135	0.000139
16 C	0.798391	-0.007888
17 C	-0.857918	-0.002934
18 H	0.197206	0.000340
19 H	0.194937	-0.000668
20 H	0.200031	0.000116
21 C	0.289138	0.002485
22 H	0.166024	-0.000573
23 C	-0.151099	-0.004015
24 H 25 C	0.170525	-0.000065
	-0.277957	0.008432
20 A 27 C	-0.247504	-0.000404
27 C 20 U	0.166140	-0.000037
20 II 29 C	0 288559	0 009885
20 H	0 164342	-0 000451
31 C	0 305994	0 009427
32 H	0.164421	-0.000465
33 C	-0.234985	0.002047
34 H	0.166559	-0.00027
35 C	-0.275803	0.009021
36 H	0.178713	-0.000497
37 C	-0.160755	-0.003285
38 H	0.170501	-0.000057
39 C	0.313691	0.001662
40 H	0.165401	-0.000603
41 C	0.267317	-0.004147
42 H	0.160609	-0.000152
43 C	-0.246960	-0.006918
44 H	0.163485	0.000054
45 C	-0.238701	-0.000660
46 H	0.174211	0.00032
47 C	-0.208883	-0.006996
48 H	0.166494	0.000063
49 C	0.278017	-0.002456
50 H	0.160323	-0.000102
51 C	0.289865	-0.002942

52 Н	0.160901	-0.000126
53 C	-0.244359	-0.007707
54 н	0.165206	0.000060
55 C	-0.240649	-0.000584
56 н	0.174654	0.000032
57 C	-0.223458	-0.006769
58 н	0.165477	0.000054
59 C	0.268004	-0.003303
60 н	0.159440	-0.000114
61 N	0.172350	-0.024005
62 N	0.164206	-0.024574
63 N	0.136468	0.005670
64 N	0.139571	0.005756
65 O	-0.610812	0.017783
66 O	-0.578588	-0.086371
67 O	-0.578918	-0.085732
68 O	-0.589035	0.027912
69 O	-0.141498	-0.013571
70 O	-0.194830	0.009677
71 O	-0.163573	0.010978
72 0	-0.142803	-0.014927
73 0	-0.148001	-0.015603
74 O	-0.184465	0.009087
75 0	-0.166701	0.012030
76 O	-0.142006	-0.013413
77 Co	-0.121941	1.045018
78 Co	-0.018094	0.074055
79 Co	-0.102976	1.033476
80 Co	-0.030121	0.071904
Sum of atomic charges =	2.000000	
Sum of spin charges =	2.000000	

Coordinates and energy for singlet [4OAc-4py]²⁺. Energy shown below is for ECPs with wB97M-V.

С	-1.26441	-1.63420	2.80333
С	-1.73646	-2.26334	4.08296
Н	-1.72819	-1.49770	4.86591
Н	-1.04008	-3.04607	4.37179
Н	-2.75291	-2.65365	4.01202
С	1.28674	1.59064	-2.76903
С	1.78688	2.24404	-4.02501
Н	2.43750	1.54797	-4.55038
Н	2.29534	3.19062	-3.83666
Н	0.92325	2.43930	-4.66915
С	-2.14951	2.64217	0.57667
С	-3.06313	3.80721	0.84721
Н	-2.89235	4.15575	1.87073
Н	-4.10767	3.50896	0.76591
Н	-2.83803	4.63218	0.17157
С	2.11811	-2.71155	-0.58998
С	3.07043	-3.84309	-0.84812
Н	4.08328	-3.42609	-0.91541
Н	2.84052	-4.32981	-1.79784
Н	3.04710	-4.55313	-0.01846

С	1.86029	0.43262	3.41412
Н	0.79523	0.60295	3.52426
С	2.80639	0.92156	4.29797
H	2.48221	1.48923	5.15925
C	4 15341	0 66630	4 05358
U U	1 01500	1 01514	1 7/208
п	4.91309	1.01314	4.74290
	4.51388	-0.04921	2.91458
Н	5.54819	-0.26312	2.67990
С	3.51941	-0.50001	2.06350
Н	3.72504	-1.05261	1.15484
С	1.24451	3.45180	1.95488
Н	0.17935	3.46209	2.15152
С	2.12705	4.23344	2.68569
Н	1.75077	4.86282	3,48391
C	3 48239	4 19392	2 37036
U U	1 10506	1 79265	2 9 9 9 9 9
II C	3 00520	2 27612	1 22500
C	3.90530	3.3/613	1.32388
H	4.948/4	3.32549	1.03996
С	2.96487	2.62416	0.63680
H	3.23899	1.98094	-0.19271
С	-3.52748	-2.14541	-0.32772
Н	-2.90065	-2.72416	0.34123
С	-4.65529	-2.68657	-0.92766
Н	-4.92185	-3.71897	-0.73764
С	-5.43387	-1.87906	-1.75246
ч	-6 32431	-2 27434	-2 23158
C C	-5 05495	_0 55217	_1 04743
	-5.05465	-0.55517	-1.94/43
H	-5.63/62	0.11464	-2.5/1/9
C	-3.914//	-0.08125	-1.31390
Н	-3.59196	0.94851	-1.41661
С	-0.91765	-2.89643	-2.76185
H	-0.36527	-3.43227	-1.99826
С	-1.68939	-3.52694	-3.72354
Н	-1.74221	-4.60756	-3.73605
С	-2.36306	-2.75018	-4.66315
Н	-2.94880	-3.22473	-5,44299
C	-2 26784	-1 36245	-4 59426
с ц	-2 78764	-0 72128	-5 29262
C C	_1 /7/65	-0 70445	-2 61205
	-1.4/40J	-0.79445	-3.01303
H	-1.35323	0.27523	-3.48/51
Ν	2.22516	-0.26885	2.33144
Ν	1.65935	2.65885	0.95028
Ν	-3.16566	-0.86618	-0.51904
N	-0.80722	-1.55945	-2.73736
0	-0.44877	-1.51584	-0.02504
0	-0.18081	0.59089	1.38061
0	1.51129	0.09361	-0.26269
0	-0.84554	0.60590	-1.10815
0	0.00919	-1 71314	2 59422
Õ	-2 10907	-1 058/1	2 06255
0	_2 62/16	1 17500	2.002JJ
0	-2.02410	1.4/000	0.1/200
0	-0.96495	2.92230	U.19U3/
U	1.0/565	2.30819	-1./5245
0	1.07551	0.31866	-2.86560
0	1.56032	-2.17894	-1.60667
0	1.96192	-2.35862	0.62800
Со	0.84335	-0.88087	1.13053

Со	-1.63940	-0.12965	0.43652
Со	0.39227	1.60776	-0.09316
Со	0.34596	-0.69879	-1.45647

Final energy: -2790.0401144486

Spin densities for singlet [4OAc-4py]²⁺

Ground-State Mulliken Net Atomic Charges

Atom	Charge (a.u.)	Spin (a.u.)
1 C	0.105934	-0.003195
2 C	-0.404185	0.004585
3 Н	0.212779	-0.000348
4 H	0.207363	-0.000027
5 H	0.205060	0.000500
6 C	0.058935	0.002907
7 C	-0.420296	-0.004455
8 H	0.208531	0.000050
9 H	0.205170	-0.000563
10 H	0.209174	0.000273
11 C	0.253104	-0.000941
12 C	-0.385827	0.000153
13 H	0.205480	0.000060
14 H	0.198061	-0.000051
15 H	0.207294	-0.00007
16 C	0.224793	0.000295
17 C	-0.336905	-0.000641
18 H	0.213054	-0.000298
19 H	0.203425	0.000285
20 H	0.213277	0.000169
21 C	0.010165	-0.002092
22 H	0.209631	0.000935
23 C	0.084337	0.003720
24 H	0.189516	0.000141
25 C	-0.226773	-0.004376
26 H	0.199912	0.000223
27 C	-0.072328	0.003008
28 H	0.195339	0.000218
29 C	0.004449	-0.004125
30 H	0.188692	0.000971
31 C	0.021064	-0.000103
32 H	0.184910	0.000066
33 C	-0.128739	-0.002132
34 H	0.192947	0.000028
35 C	-0.242873	-0.000292
36 H	0.197003	0.000015
37 C	0.093188	-0.000243
38 H	0.187252	0.000018
39 C	-0.061147	-0.000963
40 H	0.190483	0.00002
41 C	-0.014107	0.000687
42 H	0.184435	-0.000036
43 C	0.013153	0.001233
44 H	0.190445	-0.000018

45 0	2	-0.225300	0.000195
46 H	H	0.197645	-0.000013
47 (2	-0.030221	0.001731
48 H	H	0.189966	-0.000022
49 (2	-0.003250	-0.000463
50 H	H	0.184876	-0.000025
51 (2	0.077281	0.003957
52 B	H	0.191122	-0.001014
53 (2	-0.051475	-0.003207
54 H	H	0.194866	-0.000208
55 0	2	-0.206593	0.005003
56 H	H	0.201394	-0.000235
57 (2	0.050378	-0.004023
58 H	H	0.190915	-0.000159
59 (C	0.010497	0.003021
60 H	H	0.201887	-0.001010
61 ľ	N	-0.414276	0.033160
62 I	N	-0.353969	0.004165
63 1	N	-0.340864	-0.002964
64 1	N	-0.416222	-0.034099
65 (C	0.900596	-0.007328
66 (C	0.939764	0.088594
67 (C	0.942651	0.006889
68 (C	0.949977	-0.079644
69 (C	-0.456347	0.005474
70 (C	-0.391414	-0.006369
71 (C	-0.436252	0.001436
72 (C	-0.406602	-0.001373
73 (C	-0.425019	0.005198
74 (C	-0.436182	-0.008945
75 (C	-0.451608	0.001039
76 (C	-0.450016	-0.000509
77 (Co	-0.453311	-1.211079
78 (Co	-0.217196	0.007697
79 (Co	-0.161786	-0.004632
80 0	Co	-0.471088	1.204126

Single crystal x-ray diffraction.

X-ray diffraction data were collected using Bruker AXS diffractometers. Crystals of complexes were mounted on a Kappa geometry goniostat coupled to an APEX-II CCD detector with Mo K α ($\lambda = 0.71073$ Å) generated by a microfocus sealed tube and monochromated by QUAZAR multilayer mirrors. Crystals were kept at 100(2) K throughout collection. Collection strategy determination, integration, scaling, and space group determination were performed with Bruker APEX (v.2, v.3) software, and solutions were obtained with SIR-92 and SHELXT-2014.^{7,8} All structures were refined with SHELXL-2014.⁹ Molecular structure figures were visualized with ORTEP 3.2. Additional details can be found in the crystallographic information files.

References.

- (1) Chakrabarty, R.; Bora, S. J.; Das, B. K. Inorg. Chem. 2007, 46 (22), 9450–9462.
- (2) Berardi, S.; La Ganga, G.; Natali, M.; Bazzan, I.; Puntoriero, F.; Sartorel, A.; Scandola, F.; Campagna, S.; Bonchio, M. *J. Am. Chem. Soc.* **2012**, *134* (27), 11104– 11107.
- (3) Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T. B.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X.; Ghosh, D.; Goldev, M.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Khaliullin, R. Z.; Kuś, T.; Landau, A.; Liu, J.; Proynov, E. I.; Rhee, Y. M.; Richard, R. M.; Rohrdanz, M. A.; Steele, R. P.; Sundstrom, E. J.; III, H. L. W.; Zimmerman, P. M.; Zuev, D.; Albrecht, B.; Alguire, E.; Austin, B.; Beran, G. J. O.; Bernard, Y. A.; Berquist, E.; Brandhorst, K.; Bravaya, K. B.; Brown, S. T.; Casanova, D.; Chang, C.-M.; Chen, Y.; Chien, S. H.; Closser, K. D.; Crittenden, D. L.; Diedenhofen, M.; Jr, R. A. D.; Do, H.; Dutoi, A. D.; Edgar, R. G.; Fatehi, S.; Fusti-Molnar, L.; Ghysels, A.; Golubeva-Zadorozhnava, A.; Gomes, J.; Hanson-Heine, M. W. D.; Harbach, P. H. P.; Hauser, A. W.; Hohenstein, E. G.; Holden, Z. C.; Jagau, T.-C.; Ji, H.; Kaduk, B.; Khistyaev, K.; Kim, J.; Kim, J.; King, R. A.; Klunzinger, P.; Kosenkov, D.; Kowalczyk, T.; Krauter, C. M.; Lao, K. U.; Laurent, A. D.; Lawler, K. V.; Levchenko, S. V.; Lin, C. Y.; Liu, F.; Livshits, E.; Lochan, R. C.; Luenser, A.; Manohar, P.; Manzer, S. F.; Mao, S.-P.; Mardirossian, N.; Marenich, A. V.; Maurer, S. A.; Mavhall, N. J.; Neuscamman, E.; Oana, C. M.; Olivares-Amaya, R.; O'Neill, D. P.; Parkhill, J. A.; Perrine, T. M.; Peverati, R.; Prociuk, A.; Rehn, D. R.; Rosta, E.; Russ, N. J.; Sharada, S. M.; Sharma, S.; Small, D. W.; Sodt, A.; Stein, T.; Stück, D.; Su, Y.-C.; Thom, A. J. W.; Tsuchimochi, T.; Vanovschi, V.; Vogt, L.; Vydrov, O.; Wang, T.; Watson, M. A.; Wenzel, J.; White, A.; Williams, C. F.; Yang, J.; Yeganeh, S.; Yost, S. R.; You, Z.-Q.; Zhang, I. Y.; Zhang, X.; Zhao, Y.; Brooks, B. R.; Chan, G. K. L.; Chipman, D. M.; Cramer, C. J.; III, W. A. G.; Gordon, M. S.; Hehre, W. J.; Klamt, A.; III, H. F. S.; Schmidt, M. W.; Sherrill, C. D.; Truhlar, D. G.; Warshel, A.; Xu, X.; Aspuru-Guzik, A.; Baer, R.; Bell, A. T.; Besley, N. A.; Chai, J.-D.; Dreuw, A.; Dunietz, B. D.; Furlani, T. R.; Gwaltney, S. R.; Hsu, C.-P.; Jung, Y.; Kong, J.; Lambrecht, D. S.; Liang, W.; Ochsenfeld, C.; Rassolov, V. A.; Slipchenko, L. V.; Subotnik, J. E.; Voorhis, T. V.; Herbert, J. M.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M. Mol. Phys. 2015, 113 (2), 184-215.
- (4) Khaliullin, R. Z.; Bell, A. T.; Head-Gordon, M. J. Chem. Phys. 2008, 128 (18), 184112.
- (5) Mardirossian, N.; Head-Gordon, M. J. Chem. Phys. 2016, 144 (21), 214110.
- (6) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 77 (2), 123–141.
- (7) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27 (3), 435–435.
- (8) Sheldrick, G. M. Acta Crystallogr. Sect. A 2015, 71 (1), 3–8.
- (9) Sheldrick, G. M. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71 (1), 3-8.