Photochromic Coenzyme Q Derivatives: Switching Redox Potentials with Light

Nadja A. Simeth,^a Andrea C. Kneuttinger,^b Reinhard Sterner^{b,*} and Burkhard König^{a,*}

^a University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, Universitätsstraße 31, 93053 Regensburg, Germany.

^b University of Regensburg, Faculty of Biology and Preclinical Medicine, Institute of Biophysics and Physical Biochemistry, Universitätsstraße 31, 93053 Regensburg, Germany.

Supporting Information

Contents

1.	G	eneral preliminary remarks	3
2.	Sy	nthesis	5
2.	1. Co	mpound 1a: 2,3-Bis(2,5-dimethylthiophen-3-yl)cyclohexa-2,5-diene-1,4-dione	5
	2.2. 0	Compound 1bº: 2,3-Dimethoxy-5,6-bis(2-methyl-5-phenylthiophen-3-yl)cyclohexa-2,5-diene-1,4-dio	ne
			6
	2.3. (b:3,4	Compound 1b ^c : (10a,10b)-5,6-Dimethoxy-10a,10b-dimethyl-2,9-diphenyl-10a,10b-dihydronaphtho[2 b']dithiophene-4,7-dione	2,1- 7
	2.4- (Compound 5a: 3-Bromo-2,5-dimethylthiophene	7
	2.5. 0	Compound 5b: 3-Bromo-2-methyl-5-phenylthiophene	8
	2.6. 0	Compound 9b: 2,3-Dibromo-5,6-dimethoxycyclohexa-2,5-diene-1,4-dione	8
3.	U	V/Vis Spectroscopy: Further spectra	10
4.	Су	velic Voltammery and Spectroelectrochemical Studies (further material)	14
	4.1.	Compound 1b°	14
	4.2.	Compound 1b ^c	18
	4.3.	Compound 8b	23
	4.4.	Compound 9b	24
	4.5.	Compound 10 (CoQ ₁₀)	27
	4.6.	Compound 11	29
	4.7.	Compound 12	31
	4.8.	DCIP	32
	4.9.	PMS	33
5.	Pł	notoactivated Oxidation	34
6.	Ac	ctivation of 1b ^c on isolated Mitochond r ia	45
7.	Сс	omputational Studies	47
8.	N	MR spectra	48
	-	Compound 1a°	48
	-	Compound 1b°	49
	-	Compound 1b ^c	50
	-	Compound 9b	50
9.	X-	-Ray Structure of 9b	52
1().	Cartesian Coordinates	58
11	•	References	86

1. General preliminary remarks

a) General working methods

All reactions were performed using magnetic stirring under ambient atmosphere unless otherwise specified. Reactions requiring anhydrous conditions were carried out under dry nitrogen or argon atmosphere using standard Schlenk techniques. Oxygen sensitive reactions were degassed under vacuum and performed under nitrogen or argon atmosphere or deaerated through argon bubbling.

All reagents and solvents were obtained from commercial suppliers and used without further purification if not otherwise stated.

For TLC, silica coated aluminum plates (Merck $60F^{254}$ silica gel, 0.2 mm) were utilized. Visualization was done with UV light at 254 or 366 nm or through suitable staining.

b) Isolation of compounds

For MPLC a Biotage Isolera One Flash Purification System with manually packed columns using Merck Geduran SI 60 (70-230 grain diameter) or Macherey- Nagel GmbH & Co. KG 60M (0.04-0.063 mm, 230-400 grain diameter) was utilized.

c) Analysis

Nuclear magnetic resonance spectroscopy (NMR) was carried out using a Bruker Avance 300 MHz spectrometer (¹H: 300 MHz, ¹³C: 75 MHz, T = 300 K), a Bruker Avance 400 MHz spectrometer (¹H: 400 MHz, ¹³C: 101 MHz, T = 300K) or a Bruker Avance 600 MHz spectrometer (¹H: 600 MHz, ¹³C: 151 MHz, T = 300 K). Chemical shifts are reported in δ [ppm] relative to an internal standard (solvent residual peak). The used solvents are indicated for each spectrum. Coupling constants are reported in Hertz [Hz]. Characterization of the signals: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet, dd = doublet of doublet, dt = doublet of triplet. Integration is directly proportional to the number of the protons. Characterization of the ¹³C-NMR signals: (+) for CH3 or CH, (-) for CH2 and (q) for quaternary C-atoms. The assignment resulted from DEPT135, ATP, HMBC, HSQC and NOESY experiments.

CV measurements and spectroelectrochemical studies were carried out under argon atmosphere. All measurements were performed in MeCN containing 0.1 M tertra ⁿbutylammonium tertra fluoroborate using ferrocene/ferrocenium (Fc/Fc+) as an internal reference. A glassy carbon electrode (working electrode), platinum wire counter electrode, and Ag quasi-reference electrode were employed for CV measurements. The scan rate was 50 mV/s, a step potential of 5.0 mV was applied. Spectroelectrochemical studies were carried out in an optically transparent thin layer electrochemical cell (OTTLE). The scan rate was 2 mV/s, a step potential of 0.02 V was applied.

IR spectroscopy was done using an Agilent Cary 630 FTIR. Melting points were recorded on a Stanford Research Systems OptiMelt (MPA100).

Steady state absorption measurements were carried out on a Varian Cary Bio 50 UV/Vis spectrometer. The used solvent is stated for each experiment. UV-induced isomerizations were performed at ambient temperature using a Herolab hand-lamp (254 nm, 2x8W or 312 nm, 1x6W) or an OSRAM Oslon SSL 80 single-spot LED (590 nm, 0.7 W). Sample volume was 2.5 mL. Photo stationary distribution as well as monitoring of photoactivated oxidation experiments was analyzed through separation on an 1220 Infinity LC System from Agilent with a reverse phase Phenomenex Luna® 3 μ C18(2) column (150 × 2.0 mm, 100 Å) thermostatted at 40 °C. HPLC conditions were the following: solvent A = water (Millipore)/TFA (0.05% v/v), solvent B = MeCN (Fisher scientific, gradient grade); flow rate = 0.3 mL/min; injection volume 0.5 μ L, elution with a gradient of 30% to 98% MeCN in 25 min for purity (220 nm, VWD detector) and 40% to 98% MeCN in 20 min for photoactivated oxidation monitoring and PSS (isosbestic point @317 nm, VWD detector).

2. Synthesis

2.1. Compound **1a**: 2,3-Bis(2,5-dimethylthiophen-3-yl)cyclohexa-2,5-diene-1,4-dione Chemical Formula: C₁₈H₁₆O₂S₂ Molecular Weight: 328.44

A crimp top vial was equipped with **8a** (97 mg, 0.36 mmol), **6a** (591 mg, 1.47 mmol), CuI (30 mg, 0.16 mmol) and dry toluene (7 mL) under nitrogen. The vial was deaerated through argon bubbling for five minutes. Then Pd(PPh₃)₄ (173 mg, 0.15mmol) was added and the vial was sealed and heated to 85 °C for 16h. The reaction mixture was cooled to room temperature and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (5 mL), a saturated KF solution (aq, 5 mL) was added and the mixture was stirred for one hour. The reaction mixture was filtered to remove precipitated Bu₃SnF and the organic layer was isolated. The aqueous layer was extracted with EtOAc (2 x 10 mL). The combined organic layers were dried over MgSO₄ and the solvent was removed *in vacuo*. The crude product was purified through MPLC (PE : EtOAc = 0 to 20%). The pure product was isolated as brown solid.

Yield:	12 mg, 0.04 mmol, 10%.
¹ H-NMR:	$\delta_{\rm H}(400 \text{ MHz}, \text{CDCl3}): 6.76 \text{ (s, 2H, H8)}, 6.63 \text{ (d, } J = 1.3 \text{ Hz}, 2\text{H}, \text{H3}), 2.46 \text{ (s, 6H, H2')},$
	2.34 (s, 6H, H5').
¹³ C-NMR:	$\delta_{C}(101$ MHz, CDCl3): 146.4 (s, C7) , 137.6 (s, C2), 134.8 (s, C5), 132.3 (s, C4) , 126.9
	(s, C3), 123.4 (s, C6), 116.4 (s, C8), 15.2 (s, C2') , 13.8 (s, C5').
ESI-MS:	found: 331.08 (reduced form; MH ⁺ , 100%).
HR-MS:	found: 329.0665 (MH ⁺ , 100%).
R _f :	0.85 (30% PE in EA).

2.2. Compound 1bº: 2,3-Dimethoxy-5,6-bis(2-methyl-5-phenylthiophen-3-

yl)cyclohexa-2,5-diene-1,4-dione

Chemical Formula: C₃₀H₂₄O₄S₂ Molecular Weight: 512.11

Compounds **5b** (1.42 g, 3.97 mmol), **8a** (522 mg, 1.59 mmol) and CuI (30 mg, 0.16 mmol) were dissolved in dry toluene (25 mL) under Argon atmosphere. The solution was deaerated through Argon bubbling for 5 min and Pd(PPh)₃ (183 mg, 0.16 mmol) was added. The vial was sealed and the reaction mixture was refluxed for 16h. The reaction mixture was cooled to room temperature and the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (10 mL), a saturated KF solution (aq, 10 mL) was added and the mixture stirred for one hour. The reaction mixture was filtered to remove precipitated Bu₃SnF and the organic layer was isolated. The aqueous layer was extracted with EtOAc (2 x 20 mL). The organic layers were combined and dried over Na₂SO₄. The volatiles were removed *in vacuo* and the crude product was purified through MPLC (EA (0-55%) in PE) to give a red solid. For biological testing the sample was further purified through reversed phase MPLC (C18, 0.05% TFA in H₂O/MeCN, gradient 65 to 100%).

Yield: 560 mg, 1.04 mmol, 29%.

¹H-NMR: $\delta_{H}(600 \text{ MHz, CDCl3})$: 7.44 – 7.40 (m, 4H, phenyl), 7.34 – 7.28 (m, 4H), 7.24 (d, J = 7.3 Hz, 4H, phenyl), 6.83 (s, 2H, thiophene), 4.11 (s, 6H, methoxy), 2.07 (s, 6H, methyl).

¹³C-NMR: $\delta_{C}(151 \text{ MHz, CDCl3}): 183.2 (+), 144.6 (+), 140.3 (+), 139.6 (+), 138.00 (+), 134.0 (+), 130.1 (+), 128.8 (+), 127.3 (+), 125.7 (+), 125.3 , (+) 61.4 (+, methoxy), 14.9 (+, methyl).$

FTIR: $\tilde{\nu}(\text{cm}^{-1})$: 2937, 1655, 1592, 1256, 1070, 757, 693.

HR-MS: found: 513.1187 (100%).

Melting point: 137 °C.

 R_{f} : 0.65 (PE: EA = 1:1).

2.3. Compound **1b**^c: (10a,10b)-5,6-Dimethoxy-10a,10b-dimethyl-2,9-diphenyl-10a,10b-dihydronaphtho[2,1-b:3,4-b']dithiophene-4,7-dione Chemical Formula: C₃₀H₂₄O₄S₂

Molecular Weight: 512.11

Compound $9b^{\circ}$ (29 mg, 0.06 mmol) was dissolved in DMSO (5 mL) and effused into a Petri dish. The solution was irradiated for 4h with a 312 nm hand-lamp and then directly injected onto a reversed phase column. The compound could be isolated through elution with 0.05% TFA in H₂O/MeCN (reversed phase MPLC, C18, gradient 65 to 100%) to give a blue solid.

Yield: 9 mg, 0.01 mmol, 13%.

¹H-NMR: $\delta_{\rm H}(400 \text{ MHz, CDCl3})$: 8.24 (s, 2H, thiophene), 7.83 – 7.61 (m, 4H, phenyl), 7.45 (dd, *J* = 5.2, 1.9 Hz, 6H, phenyl), 4.08 (s, 6H, methoxy), 2.09 (s, 3H, methyl).

HR-MS: found: 513.1185 (100%).

2.4- Compound 5a: 3-Bromo-2,5-dimethylthiophene

Molecular formula: C₆H₇BrS Molecular weight: 191.09 g/mol

Compound **2** (2.0 mL, 17.54 mmol, 1.0 eq) was dissolved in glacial acetic acid (50 mL). NBS (3120 mg, 17.54 mmol, 1.0 eq) was added in portions. The reaction mixture was stirred for 2h at ambient temperature. The solution was poured onto ice water (50 mL) and extracted with DCM (3 x 8 mL). The combined organic phases were dried over MgSO₄. The solvent was evaporated *in vacuo*. The crude product was purified through MPLC (PE). The pure product was obtained as translucent oil.

Yield: 2213 mg (11.58 mmol), 66%.

¹H-NMR: δ_H (300 MHz, CDCl₃): 2.35 (s, 3H, CH3 thiophene), 2.42 (s, 3H, CH3 thiophene), 6.57 (s, 1H, CH thiophene).
 R_i: 0.92 (PE).

The analytical data were in agreement with published data.¹

Molecular Weight: 253.16

S S

A crimp top vial was equipped with 4 (3390 mg, 13.25 mmol), phenyl boronic acid (1651 mg, 13.52 mmol), Pd(PPh₃)₂Cl₂ (88 mg, 0.13 mmol), AsPh₃ (69 mg, 0.23 mmol), THF (39 mL) and a Na₂CO₃ solution (aq, 2M, 16 mL) and sealed. The vial was purged with argon for five minutes and the reaction mixture was heated to 80 °C for 16h. The mixture was cooled to room temperature and extracted with EtOAc (2 x 40 mL). The organic layers were combined and dried over MgSO₄. The solvent was removed *in vacuo* and the crude product was purified through MPLC (PE). The pure product was isolated as white crystalline powder.

Yield: 2700 mg, 10.67 mmol, 80%

The analytical data were in agreement with published data.²

2.6. Compound **9b**: 2,3-Dibromo-5,6-dimethoxycyclohexa-2,5-diene-1,4-dione Chemical Formula: C₈H₆Br₂O₄ Molecular Weight: 325.94

Compound **8b** (768 mg, 4.57 mmol) was dissolved in dry Et₂O (21 mL) under nitrogen atmosphere. Bromine (2773 mg, 17.35 mmol, 0.90 mL) was dissolved in a mixture of CHCl₃ (10 mL) and dry Et₂O (2.3 mL) and added dropwise to the reaction mixture at 0 °C. The reaction mixture was stirred for one hour at ambient temperature; then, concentrated sulfuric acid (23 mL) was added dropwise at 0 °C. The reaction mixture was stirred at ambient temperature for another hour and then poured onto ice. The mixture was extracted with Et₂O (3 x 50 mL). Ag₂O (5503 mg, 23.75 mmol) was added to the combined organic layers and stirred for 20 min. The solids were filtered off and the solvent was removed *in vacuo*. The crude product was purified through reversed phase MPLC (C18; H₂O/0.05% TFA : MeCN = 30 to 65 %). The pure product was obtained as red powder and crystallized for analytical purpose from CHCl₃/PE.

Yield:	826 mg, 2.54 mmol, 55%.
¹ H-NMR:	$\delta_{\rm H}(600 \text{ MHz}, \text{CDCl3}): 4.04 \text{ (s, 6H, H4)}.$
¹³ C-NMR:	$\delta_{C}(101~{\rm MHz},{\rm CDCl3}){:}174.7$ (s, C2), 145.0 (C3) , 137.2 (C1), 61.7 (s, C4).
FTIR:	$\tilde{\nu}$ (cm ⁻¹): 2948, 1625, 1662, 1562, 936, 731.

 APCI-MS:
 found: 324.87 (MH⁺, ⁷⁹Br, 50%), 326.87 (MH⁺, ⁷⁹Br/⁸¹Br, 100%), 328.87 (MH⁺, ⁸¹Br, 50%)

 HR-MS:
 323.8625 (M⁺, ⁷⁹Br).

 Melting point:
 102 °C.

 $R_{\rm f}$: 0.74 (PE : EA = 1:1).

3. UV/Vis Spectroscopy: Further spectra

Compound 1a°

- Compound **1a**^o in toluene

- Compound **1a**° in DCM

Compound 1b°

Table	1:	Overview	of	spectroscopic	properties	of	compound	$1b^{o}$	determined	by	UV/Vis
spectro	sco	py and anal	ytica	al HPLC.							

Solvent	λ _{max} 1b° [nm]	λ_{max} 1b ^c [nm]	PSS [%]
MeCN	247, 297	307, 415, 582	20
DMSO	302	304, 410, 594	52
Toluene	298	296, 413, 580	47
Dioxane	301	294, 399, 595	42

- Compound 1b^o in DMSO, fatigue resistance

- Compound **1b**^o in toluene

- Compound **1b**° in MeCN

- Compound **1b**^o in toluene

- Compound **1b**° in toluene, fatigue resistance

- Extinction coefficients

Compound	Solvent	Extinction coefficient [L/(mol*cm)]
1b°	DMSO	$\varepsilon_{300} = 582$
1b°	MeCN	$\epsilon_{296} = 2539$
1b ^c	MeCN	$\epsilon_{579} = 4928$

4. Cyclic Voltammery and Spectroelectrochemical Studies (further material)

Molecules included in the study:

4.1. <u>Compound 1b^o</u>

- Cyclic Voltammetry

- Spectroelectrochemical studies

- Difference Spectra

4.2. <u>Compound 1b^c</u>

- Cyclic Voltammetry

Compound 1b^c with Ferrocene (peaks 7 and 10) as internal standard.

Two consecutive measurements of compound **1b**^c: Red: First round, without internal standard; Blue: Second round, after addition of ferrocene (peaks 6 and 9) as internal standard.

- Spectroelectrochemical studies

Peak 1 (0- -0.5 V)

Peak 2 (-0.5 - -1.0V)

Peak 3 (invers, -1.5V - -1.0V)

Peak 1 (invers, -0.5 - 0V)

- Difference Spectra

4.3. <u>Compound 8b</u>

Peak 3

4.4. <u>Compound **9b**</u>

- Cyclic Voltammetry

- Spectroelectrochemical studies

Peak 1 (0- -0.5V)

Peak 2 (invers, -1.5V - -0.5V)

- Difference Spectra

4.5. <u>Compound 10 (CoQ₁₀)</u>

Peak 1

Peak 2

2nd peak (invers)

4.6. <u>Compound 11</u>

*Ferrocene as internal standard

- Spectroelectrochemical studies

<u>Peak 1 (0- -0.7 V)</u>

<u>Peak 2 (-0.7- - 1.4V)</u>

4.7. <u>Compound 12</u>

- Cyclic Voltrammetry

- Spectroelectrochemical studies

Peak 1 (0- -0.5V)

Potentials vs. SCN: -0.96 V, -1.23 V.

Potentials vs SCN: -0.11 V, -1.08 V.

5. Photoactivated Oxidation

5.1. Experimental Approach:

<u>A Reduction of 1b^o</u>: A solution of 1b^o (5 mM or 10 mM, DMSO, 600 μ L) was dissolved in DMSO (1200 μ L) and treated with a saturated solution of Hantzsch ester 13 (12 mM, DMSO, 600 μ L) and stirred at ambient temperature in the dark.

To monitor the reaction, samples (100 μ L) were taken and diluted with DMSO (100 μ L), filtered and injected into analytical HPLC.

<u>**B**</u> Reduction of 1b^c: A solution of 1b^c (5 mM, DMSO, 50 μ L) was dissolved in DMSO (100 μ L) and treated with a saturated solution of Hantzsch ester 13 (12 mM, DMSO, 50 μ L) and stirred at ambient temperature in the dark.

To monitor the reaction, samples (20 μ L) were taken and diluted with DMSO (40 μ L), filtered and injected into analytical HPLC.

<u>**C**</u> Reduction of **1b**^c and photoactivation: A solution of **1b**^c (10mM, DMSO, 50 μ L) was dissolved in DMSO (100 μ L) and treated with a saturated solution of Hantzsch ester **13** (12mM, DMSO, 50 μ L) and stirred at ambient temperature in the dark. After three hours the sample was irradiated with a 590 nm single-spot LED for 10 min, then stirring was continued in the dark.

To monitor the reaction, samples (20 μ L) were taken and diluted with DMSO (40 μ L), filtered and injected into analytical HPLC.

5.2. Formation of **1b**^{*o*,*red*} using **1b**^{*o*} (10 mM, DMSO)

<u>Peaks</u>: 7.2 min Hantzsch ester **13** (at the applied gradient oxidized and reduced form show the same retention time); 16.3 min: **1b**^{*o*,red}; 18.3 min: **1b**^{*o*}; 21.0 min: **1b**^{*c*}.

Area Percent Report

Sorted By	:	Signal	
Multiplier		1.0000	
Dilution		1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=317 nm

Peak ‡	RetTime Typ [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area 9	
1	16 266	MM	0 2389	1268 88477	95 50758	42 2920	
2	18.298	мм	0.2382	1860.14685	130.17055	57.6070	

A_11h

Sort	ed By		÷	Sign	nal	
Mult	iplier			1.00	000	
Dilu	tion			1.00	000	
Use	Multiplier	5	Dilution	Factor	with	ISTD:

Signal 1: VWD1 A, Wavelength=317 nm

Peak ‡	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.413	MM	0.2525	1488.51843	98.24986	71.7624
2	18.341	MM	0.2508	585.71344	38.92433	28.2376

A_32h

Sorted By		Signal	
Multiplier		1.0000	
Dilution		1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

# [n	in]	[min]	[mAU*s]	[mAU]	e e
1 16	.386 MM	0.2598	1704.33765	109.34824	83.5219

B_0h/C_0h

Area Percent Report

Sorted By		Signal	
Multiplier	=	1.0000	
Dilution	=	1.0000	
Use Multiplier &	Dilution	Factor with	ISTD5

Peak ‡	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.387	MM	0.2781	519.26062	31.12502	2.2096
2	18.297	MM	0.2289	2199.28003	160.10457	9.3587
3	20.952	MM	0.2459	2.07814e4	1408.44507	88.4317

Sorted By	=	Signal	
Multiplier		1.0000	
Dilution		1.0000	
Use Multiplier &	Dilution	Factor with	ISTD5

Peak ‡	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area 9
1	16.381	мм	0.2752	1015.33301	61.48637	5.8035
2	18.305	MM	0.2456	1172.76794	79.58045	6.7034
3	20.957	MM	0.2697	1.53071e4	945.79211	87.4931

 Sorted By
 :
 Signal

 Multiplier
 :
 1.0000

 Dilution
 :
 1.0000

Use Multiplier & Dilution Factor with ISTDs

Signal 1: VWD1 A, Wavelength=317 nm

Peak ‡	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area 8
1	16.356	мм	0.2586	1353.82556	87.26817	7.2935
2	18.291	MM	0.2799	1070.96094	63.77544	5.7696
3	20.934	MM	0.2822	1.61372e4	953.15631	86.9368

B_20h

Sorted By	:	Signal	
Multiplier		1.0000	
Dilution	-	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Peak ‡	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area 8
1	16.370	мм	0.2431	5397.41650	370.02362	23.0717
2	18.303	MM	0.2320	1.79967e4	1292.72192	76.9283

.....

Area Percent Report

Sorted By		Signal	
Multiplier		1.0000	
Dilution		1.0000	
Use Multiplier &	Dilution	Factor with	ISTD5

Signal 1: VWD1 A, Wavelength=317 nm

Peak ‡	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.371	MM	0.2390	6983.05029	486.93979	33.6323
2	18.302	MM	0.2388	1.37799e4	961.71655	66.3677

.....

Sorted By		=	Sigr	nal	
Multiplier			1.00	000	
Dilution			1.00	000	
Use Multiplier	8	Dilution	Factor	with	ISTD.

Peak ‡	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.370	MM	0.2555	9722.95117	634.16931	86.1478
2	18.301	MM	0.2608	1563.40955	99.90733	13.8522

6. Activation of **1b**^c on isolated Mitochondria

- Stability of **1b**^c at elevated temperatures

- Purity of compounds 1b° and 1b^c

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.022	MM	0.1302	673.57086	86.23805	1.8702
2	20.141	MM	0.1661	3.50308e4	3515.66992	97.2666
3	22.199	MM	0.1065	128.07347	20.05158	0.3556
4	22.723	MM	0.1231	182.80190	24.75809	0.5076

 $1b^c$

- Isolation of mitochondria from yeast cells

A crude mitochondria extract was isolated from the wildtype yeast strain BY4742 (MAT α his3 Δ 1 leu2 Δ 0 lys2 Δ 0 ura3 Δ 0), thankfully provided by the group of Herbert Tschochner, according to Gregg et al.³ The protein concentration of the extract was determined with the Bradford assay⁴ and the mitochondria were stored in 30 mM KP (pH 7.4), 2.2 mM EDTA and 0.1% (w/v) Thesit at -80 °C

- Mitochondrial reduction of 2,6-dichlorophenol indophenol

Reduction of 2,6-dichlorophenol indophenol (DCIP) was measured using the succinate dehydrogenase activity (SDH) of mitochondria as described previously.⁵ Prior to the assays, SDH was activated with 8 mM succinate for 15 min at 37 °C. Triplet measurements were carried out in a 96-well plate of assays containing 40 μ M **1b**^e and **1b**^o dissolved in ethanol, respectively, 10 mM succinate, 100 μ M DCIP and 0.2 g/L mitochondria in 50 mM KP (pH 7.6), 0.006% (w/v) Thesit, 0.2 mM EDTA at 37 °C. Reduction of DCIP was followed at 520 nm ($\epsilon_{DCIP,520} = 6.8 \text{ mM}^{-1} \text{ cm}^{-1}$) continuously for 30 min or with 10 min interruption in which the samples were irradiated with 590 nm in the same plate reader used for activity measurements with an integrated 10 W xenon flash lamp (Tecan Trading AG). The resulting data were plotted and fitted with a linear function in the time frame of 0-10 min as well as 20-30 min to visualize the difference in reactivity.

7. Computational Studies

All DFT-calculations (B3LAP/6–31G(d) level) were performed with the Gaussian 09, Revision D01 software package.⁶ Optimized structures ($1b^{o}_{min}$, $1b^{c}_{min}$, 13_{min} , { $1b^{o}_{min}$ – 13_{min} }_{ADJ}, { $1b^{c}_{min}$ – 13_{min} }_{ADJ}) were confirmed to be minima through frequency calculations. Single-point energies were calculated for $1b^{o}_{ADJ}$, $1b^{c}_{ADJ}$, 13_{ADJ} , { $1b^{o}_{min}$ – 13_{min} }_{nonADJ} and { $1b^{c}_{min}$ – 13_{min} }_{nonADJ}. All cartesian coordinates are given in paragraph 10. later in the Supporting Information.

Adapting a published strategy, an energy cycle to gain insight into the presence of a non-covalent π stacking between both photoisomers and **13** was calculated according to the following scheme.⁷

Then, the energies of the optimized structures (indicated with "min") of both photoisomers, the Hantzsch ester and the respective adduct complexes were compared with single point calculations of mixed structures, revealing the adjustment process (indicated with "ADJ") of the structures upon π stacking. The energy differences are given as follows:

	1b ^{<i>o</i>}	1b ^{<i>c</i>}	$\Delta\Delta E^{0}(\mathbf{1b}^{c}-\mathbf{1b}^{o})$
$\Delta E^{0}_{aq}(1)^{*}$	-0,38	1,38	
$\Delta E^{0}_{aq}(2)^{*}$	-16,5	-22,9	
$\Delta\Delta EG^{0}_{ADJ(1b+13)}*$	1,07	1,75	
ΔΔΕ ⁰ ({1b+13}ADJ)*	-15,06	-22,53	-7,47

*Energy differences are expressed in Kcal/mol.

8. <u>NMR spectra</u>

- Compound **1a**°

- Compound **1b**^o ¹H (CDCl₃, 600 MHz)

¹³C (CDCl₃, 151 MHz)

- Compound **1b**^c ¹H NMR(CDCl₃, 400MHz)

- Compound **9b** ¹H (CDCl₃, 300 MHz)

9. X-Ray Structure of 9b

Experimental. Single light red block-shaped crystals of (**O076**) were obtained by recrystallisation from A suitable crystal $(0.25 \times 0.18 \times 0.10)$ mm³ was selected and mounted on ... on a GV1000, TitanS2 diffractometer. The crystal was kept at T = 123.01(10) K during data collection. Using **Olex2**, the structure was solved with the **SheIXT** structure solution program, using the Direct Methods solution method. The model was refined with version 2016/6 of **SheIXL** using Least Squares minimisation.⁸

Crystal Data. $C_8H_6Br_2O_4$, $M_r = 325.95$, monoclinic, $P2_1/c$ (No. 14), a = 8.56023(6) Å, b = 16.31960(16) Å, c = 6.91885(5) Å, $= 94.8033(7)^\circ$, $= 90^\circ$, V = 963.165(14) Å³, T = 123.01(10) K, Z = 4, Z' = 1, (CuK) = 10.606, 13822 reflections measured, 1927 unique ($R_{int} = 0.0288$) which were used in all calculations. The final wR_2 was 0.0687 (all data) and R_1 was 0.0271 (I > 2(I)).

Compound

Formula $D_{calc.}$ / g cm⁻³ /mm⁻¹ Formula Weight Colour Shape Size/mm³ T/KCrystal System Space Group a/Å b/Å c∕Å /° /° /° V/Å³ Ζ 4 Z'1 Wavelength/Å Radiation type min/° max/° Measured Refl. Independent Refl. Reflections Used R_{int} Parameters Restraints 0 Largest Peak Deepest Hole GooF 1.195 wR_2 (all data) 0.0687 wR_2 0.0685 R₁ (all data) 0.0276 R_1 0.0271

 $C_8H_6Br_2O_4$ 2.248 10.606 325.95 light red block 0.25×0.18×0.10 123.01(10) monoclinic $P2_1/c$ 8.56023(6) 16.31960(16) 6.91885(5) 90 94.8033(7) 90 963.165(14) 1.54184 CuK 5.185 73.474 13822 1927 1907 0.0288129 0.519 -0.959

O076

Structure Quality Indicators

Reflections:	d min (Cu)	0.80	l/σ	55.4	Rint	2.88%	complete at 2⊕=134°	99%
Refinement:	Shift .	-0.001	Max Peak	0.5	Min Peak	-1.0	GooF	1.195

A light red block-shaped crystal with dimensions $0.25 \times 0.18 \times 0.10$ mm³ was mounted onX-ray diffraction data were collected using a GV1000, TitanS2 diffractometer equipped with a n/a low-temperature device, operating at T = 123.01(10) K.

Data were measured using scans scans of 1.0 $^{\circ}$ per frame for 1.0 s using CuK radiation (gradient vaccum rotatinganode X-ray tube, n/a kV, n/a mA). The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Agilent). The maximum resolution achieved was = 73.474. & nbsp°

Cell parameters were retrieved using the CrysAlisPro (Agilent) software and refined using CrysAlisPro (Agilent) on 11290 reflections, 82 % of the observed reflections. Data reduction was performed using the CrysAlisPro (Agilent) software which corrects for Lorentz polarisation. The final completeness is 99.90 out to 73.474 in \therefore The absorption coefficient of this material is 10.606 at this wavelength (= 1.54184) and the minimum and maximum transmissions are 0.634 and 0.800.

The structure was solved in the space group $P2_1/c$ (# 14) by Direct Methods using the **ShelXT** (Sheldrick, 2015) structure solution program and refined by Least Squares using version 2016/6 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

_refine_special_details: ?

_exptl_absorpt_special_details: ?

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z' is 1.

Data Plots: Diffraction Data

Data Plots: Refinement and Data

Reflection Statistics

Total reflections (after filtering)	14182	Unique reflections	1927
Completeness	0.993	Mean I/	55.39
hkl _{max} collected	(10, 19, 8)	hklmin collected	(-10, -19, -8)
hkl _{max} used	(10, 19, 8)	hkl _{min} used	(-10, 0, 0)
Lim d _{max} collected	100.0	Lim d _{min} collected	0.77
d _{max} used	8.53	d _{min} used	0.8
Friedel pairs	2829	Friedel pairs merged	1
Inconsistent equivalents	15	R _{int}	0.0288
R _{sigma}	0.0129	Intensity transformed	0
Omitted reflections	0	Omitted by user (OMIT hkl)	1
Multiplicity	(2411, 2142, 1154, 559, 246, 79, 11, 1)	Maximum multiplicity	20
Removed systematic absences	359	Filtered off (Shel/OMIT)	0

Images of the Crystal on the Diffractometer

Table 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **O076**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	х	у	z	U_{eq}
Br(01)	3602.1(3)	4478.8(2)	2540.8(4)	17.37(11)
Br(02)	6514.2(4)	3063.3(2)	2723.1(5)	24.33(11)
O(003)	5017(2)	6143.7(12)	2295(3)	20.8(4)
O(004)	7963(2)	6723.3(11)	2289(3)	16.2(4)
O(005)	10440(2)	5474.0(13)	2525(3)	25.2(5)
O(006)	9619(2)	3953.5(13)	2671(3)	25.2(4)
C(007)	5731(3)	4743.6(16)	2539(4)	14.6(5)

Atom	X	у	Z	U_{eq}
C(008)	7777(3)	7205.3(16)	4007(4)	18.4(5)
C(009)	6066(3)	5643.1(16)	2439(4)	13.9(5)
C(00A)	8896(3)	5350.6(17)	2538(4)	16.3(5)
C(00B)	7721(3)	5902.3(16)	2490(4)	14.2(5)
C(00C)	11073(3)	6289.2(18)	2343(5)	23.6(6)
C(00D)	8556(3)	4448.2(17)	2611(4)	17.0(6)
C(00E)	6881(3)	4187.5(16)	2614(4)	15.7(5)

Table 2: Anisotropic Displacement Parameters (×104)**O076.** The anisotropic displacement factor exponent takes theform: -2 $^{2}[b^{2}a^{*2} \times U_{11} + ... + 2bka^{*} \times b^{*} \times U_{12}]$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Br(01)	14.53(16)	17.29(18)	20.33(16)	-0.73(10)	1.67(10)	-4.12(10)
Br(02)	27.31(18)	10.36(17)	34.83(19)	-0.58(11)	-0.37(13)	-0.24(11)
O(003)	15.3(9)	14.4(10)	32.8(11)	-0.2(8)	1.7(8)	2.5(8)
O(004)	19.0(9)	9.2(9)	20.7(9)	0.9(7)	2.9(7)	-1.3(7)
O(005)	10.9(9)	16.7(11)	47.9(13)	-0.4(9)	2.3(9)	0.8(7)
O(006)	21.3(10)	17(1)	37.0(11)	-1.0(9)	1.7(9)	7.9(9)
C(007)	16.4(12)	13.4(13)	14.1(11)	-0.5(9)	0.9(9)	-2.3(10)
C(008)	21.7(13)	9.6(13)	24.1(13)	-3.1(10)	1.9(10)	0.6(10)
C(009)	14.4(12)	11.5(13)	15.6(11)	-1.2(9)	0.0(9)	-0.9(10)
C(00Å)	13.6(12)	14.2(14)	20.9(13)	-1.1(10)	0.3(10)	-0.7(10)
C(00B)	15.2(12)	10.8(13)	16.5(11)	-0.7(9)	0.6(9)	-0.8(10)
C(00C)	12.7(12)	18.5(16)	39.7(17)	0.0(12)	2.2(12)	-2.2(10)
C(00D)	15.5(14)	13.5(14)	22.0(13)	-1.5(10)	0.4(10)	3.1(10)
C(00E)	19.7(13)	8.8(13)	18.4(12)	-1.0(9)	-0.2(10)	-0.9(10)

Table 3: Bond Lengths in Å for **O076**.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br(01)	C(007)	1.873(3)	O(006)	C(00D)	1.214(3)
Br(02)	C(00É)	1.864(3)	C(007)	C(009)	1.498(4)
O(003)	C(009)	1.212(3)	C(007)	C(00E)	1.336(4)
O(004)	C(008)	1.445(3)	C(009)	C(00B)	1.476(4)
O(004)	C(00B)	1.365(3)	C(00A)	C(00B)	1.348(4)
O(005)	C(00Å)	1.338(3)	C(00A)	C(00D)	1.503(4)
O(005)	C(00C)	1.446(3)	C(00D)	C(00E)	1.496(4)

Table 4: Bond Angles in $^\circ$ for O076.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(00B)	O(004)	C(008)	115.00(19)	C(00B)	C(00A)	C(00D)	120.6(2)
C(00Å)	O(005)	C(00Ć)	121.1(2)	O(004)	C(00B)	C(009)	115.6(2)
C(009)	C(007)	Br(01)	114.59(19)	C(00A)	C(00B)	O(004)	122.6(2)
C(00É)	C(007)	Br(01)	123.8(2)	C(00A)	C(00B)	C(009)	121.4(3)
C(00E)	C(007)	C(009)	121.6(2)	O(006)	C(00D)	C(00A)	120.4(2)
O(003)	C(009)	C(007)	121.4(2)	O(006)	C(00D)	C(00E)	121.7(3)
O(003)	C(009)	C(00B)	120.8(2)	C(00E)	C(00D)	C(00A)	117.8(2)
C(00B)	C(009)	C(007)	117.8(2)	C(007)	C(00E)	Br(02)	123.0(2)
O(005)	C(00Å)	C(00B)	129.4(3)	C(007)	C(00E)	C(00D)	120.6(2)
O(005)	C(00A)	C(00D)	110.0(2)	C(00D)	C(00E)	Br(02)	116.39(19)

Table 5: Torsion Angles in ° for O076.

Atom	Atom	Atom	Atom	Angle/°
Br(01)	C(007)	C(009)	O(003)	-2.7(3)
Br(01)	C(007)	C(009)	C(00B)	178.23(17)
Br(01)	C(007)	C(00É)	Br(02)	0.2(3)
Br(01)	C(007)	C(00E)	C(00D)	-179.90(18)
O(003)	C(009)	$\dot{C}(00B)$	O(004)	-2.5(4)
O(003)	C(009)	C(00B)	C(00Å)	-176.2(3)
O(005)	C(00Å)	C(00B)	O(004)	4.4(4)
O(005)	C(00A)	C(00B)	C(009)	177.6(3)
O(005)	C(00A)	C(00D)	O(006)	0.9(4)
O(005)	C(00A)	C(00D)	C(00E)	-179.4(2)
O(006)	C(00D)	C(00E)	Br(02)	0.2(3)
O(006)	C(00D)	C(00E)	C(007)	-179.7(3)
C(007)	C(009)	C(00B)	O(004)	176.6(2)
C(007)	C(009)	C(00B)	C(00Å)	2.9(4)
C(008)	O(004)	C(00B)	C(009)	77.4(3)
C(008)	O(004)	C(00B)	C(00A)	-109.0(3)
C(009)	C(007)	C(00E)	Br(02)	-179.57(19)
C(009)	C(007)	C(00E)	C(00D)	0.3(4)
C(00A)	C(00D)	C(00E)	Br(02)	-179.59(19)
C(00A)	C(00D)	C(00E)	C(007)	0.5(4)
C(00B)	C(00A)	C(00D)	O(006)	-179.3(3)
C(00B)	C(00A)	C(00D)	C(00E)	0.4(4)
C(00C)	O(005)	C(00A)	C(00B)	-3.5(5)
C(00C)	O(005)	C(00A)	C(00D)	176.3(2)
C(00D)	C(00A)	C(00B)	O(004)	-175.4(2)
C(00D)	C(00A)	C(00B)	C(009)	-2.2(4)
C(00E)	C(007)	C(009)	O(003)	177.1(3)
C(00E)	C(007)	C(009)	C(00B)	-2.0(4)

(
Atom	х	У	Z	U_{eq}
H(00A)	8012.63	7768.54	3756.18	28

Table 6: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **O076**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

H(00A)	8012.63	7768.54	3756.18	28
H(00B)	8477.96	7006.09	5057.56	28
H(00C)	6715.55	7161.56	4347.64	28
H(00D)	10594.01	6543.84	1190.43	35
H(00E)	12185.38	6255.54	2261.98	35
H(00F)	10860.34	6609.39	3454.57	35

10. <u>Cartesian Coordinates</u>

 $1b^{o}_{\min}$

Atom	х	у	Z
С	-15.038.100.939	29.044.368.258	-189.601.034
С	-27.435.818.052	33.607.833.909	- 22.455.777.594
С	-39.483.644.619	25.473.892.067	19.515.662.397
С	-38.125.147.164	13.217.392.807	10.870.653.103
С	-2.576.252.481	0.8477607128	-0.7641834582
С	-13.509.790.066	15.744.334.641	-1.256.123.951
0	-0.2383080914	10.701.232.635	11.349.367.055
0	-50.459.938.542	28.802.618.984	23.898.102.771
0	-0.4325081838	36.197.832.826	22.979.630.224
С	0.7948298695	36.068.501.912	15.553.350.439
0	-2.818.761.995	44.928.455.524	29.748.998.423
С	-39.449.364.116	53.770.868.513	28.651.658.533
С	-50.842.932.396	0.7028804489	-0.6524457487
С	-23.479.058.148	-0.4412971071	-0.0741639194
С	-14.918.574.954	-0.6393755093	0.9922912281
S	-14.901.899.315	- 23.122.883.649 -	14.790.583.114
С	-26.387.026.896	27.639.229.878	0.2294284537
С	-29.935.817.273	- 16.545.008.209	-0.4902655318
с	-61.044.376.093	0.2791332862	15.684.984.657
С	-72.049.223.768	-0.277954771	-0.9709561582
S	-7.005.242.547	-0.2534301354	0.7742924737
С	-54.365.875.455	0.4948582063	0.6671830293
С	-30.987.181.919	- 41.484.777.864	0.0647001844
С	-0.6441714635	0.3443262569	17.451.250.838
с	-46.821.095.016	0.8236038157	19.198.924.874
С	-84.101.279.334	-0.8308376157	- 16.019.459.192
С	-22.860.412.204	52.412.126.554	0.4149864988

		_	
С	-27.364.384.881	65.489.214.316	0.2457982109
С	-40.040.023.534	- 67.944.416.967	-0.2849181614
с	-48.212.553.485	- 57.179.097.126	-0.6375918169
с	-43.789.617.457	۔ 44.094.763.898	-0.4585127408
С	-83.591.030.278	۔ 13.176.178.816	۔ 29.216.306.093
С	-9.497.525.022	- 18.294.484.571	- 35.387.835.005
с	- 107.110.847.683	-1.882.857.121	۔ 28.493.570.635
	-	-	-
С	107.739.515.051	14.136.011.685	15.362.696.475
С	-96.390.531.138	-0.8895972542	-0.9207379426
			-
Н	13.074.429.393	45.262.454.292	18.479.294.282
Н	0.6092753166	36.220.328.858	-0.4761841457
Н	14.008.099.011	27.357.157.635	18.052.892.644
Н	-35.747.774.314	63.438.235.029	32.145.844.027
н	-47.760.520.319	50.396.779.586	34.847.652.858
Н	-42.810.350.822	54.681.818.263	18.273.184.849
н	-36.745.408.446	16.948.162.683	13.320.383.054
н	-60.198.696.384	0.4167866968	26.389.952.116
н	-10.561.703.299	13.545.542.054	16.613.424.732
н	-0.5935361254	0.0933615491	2.810.197.747
н	0.3773905385	0.3715086119	13.503.716.398
н	-395.448.197	16.176.406.824	17.278.834.578
Н	-53.554.136.741	11.650.417.704	27.133.608.564
Н	-41.290.904.004	-0.0453958374	2.297.640.016
н	-1.286.808.125	۔ 50.636.277.705	0.803819406
Н	-2.090.187.574	- 73.781.833.972	0.5211265312
н	-4.353.597.776	- 78.144.288.417	-0.4189620466
н	-58.144.081.268	- 58.965.178.191	-1.041.203.447
н	-50.354.668.474	- 35.794.197.657	-0.7027585332
н	-74.148.691.772	-130.864.812	- 34.579.220.506

		-	-
Н	-9.433.260.732	21.989.061.367	45.588.770.773
	-	-	-
Н	115.972.021.356	22.882.190.083	33.298.671.541
	-	-	
Н	117.126.422.404	14.461.927.739	-0.9895893764
Н	-97.106.405.417	-0.5039002113	0.0927701535

$1b^{c}_{min}$

Atom	х	у	Z
С	-99.299.507.049	0.8515276913	0.3104560882
С	-9.799.601.403	-0.3774949452	0.9124215544
С	-85.209.763.459	11.240.964.334	0.9064322419
С	-74.118.857.808	-0.5779458306	0.0957963348
С	-76.070.160.456	0.6628158584	-0.6655290947
С	-88.175.122.792	14.819.437.539	-0.4335020165
0	-89.522.350.412	26.308.484.045	-0.8741646675
0	-84.208.107.706	21.557.114.744	15.841.985.308
0	110.936.788.922	150.449.798	0.5131187105
С	116.498.259.109	23.821.995.491	-0.4760374544
0	108.563.504.765	-0.8149636678	16.286.791.853
С	111.488.222.257	22.129.752.161	1.763.784.573
С	-61.783.902.309	12.046.479.283	0.0804706422
С	-66.629.593.781	10.560.956.137	15.956.823.207
С	-55.232.731.308	0.0887480415	19.359.982.381
S	-42.585.142.048	11.118.300.076	28.540.863.606
С	-54.129.965.725	24.453.040.538	30.443.010.807
С	-65.787.803.241	22.644.501.367	23.489.638.241
С	-57.906.575.148	24.575.556.717	0.6408409758
С	-45.539.989.842	29.120.006.676	0.2658296033
S	-36.948.611.066	18.146.262.329	-0.8292329373
С	-50.051.265.181	-0.5011870533	-0.6109055868

			-
С	-50.633.409.562	36.042.890.671	38.702.366.783
С	-60.527.400.936	-0.9753659416	29.306.112.916
C	-44.261.803.413	0.5585422611	0.3614765013
C	1120110001110		0.001 // 00010
С	-39.348.118.641	41.774.116.552	0.6700137811
			-
С	-37.285.484.284	38.699.153.094	42.291.944.909
			-
С	-34.046.678.488	4.980.131.529	50.052.137.651
_			-
С	-44.063.903.743	58.480.317.862	54.425.828.793
c			-
C	-57.373.742.475	55.947.414.109	50.989.277.141
C	-60.643.301.434	44.865.669.309	-4.324.762.396
c	20 710 000 0E2	-	0.0657504095
C	-20.740.090.035	47.393.830.213	-0.0037304085
C	-23 023 168 947	59 496 611 372	0 31826395
C C	-27 727 373 786	-6 622 539 203	111 710 653
C C	20 201 167 171	-0.022.333.203 6 072 475 200	21 017 602 275
L	-30.204.407.474	-0.073.473.399	21.917.005.575
C	-43 946 850 654	48 651 238 686	1 811 176 367
C	-	10100112001000	1.01111/0.007
н	127.163.469.673	24.242.945.433	-0.2398004384
	-		
Н	112.059.646.404	33.761.983.243	-0.4214991621
	-		-
Н	115.155.880.529	19.829.136.198	14.861.451.645
	-	-	
Н	122.161.054.717	22.508.135.592	1.997.579.188
	-		0 0010000004
п	109.003.048.518	27.534.757.107	0.8310202284
н	105 649 357 469	26 660 430 441	25 647 769 676
ц	-72 588 158 /8/	2 000 088 522	-2 202 621 221
11	-75.500.150.404	5.009.088.552	-2.295.021.551
н	-64.712.608.811	30.250.282.302	1.257.319.064
н	-64 606 368 872	-0 4738728787	-3 811 894 655
	0 1100010001072	-	
Н	-52.528.952.309	16.476.443.136	32.485.045.908
		-	-
Н	-6.847.086.337	15.686.491.901	24.689.963.013
Н	-35.442.681.451	10.413.373.784	-0.0650127334
Н	-51.748.138.542	1.324.813.868	0.5811907574
н	-41.422.081.556	0.072605523	12.983.075.582
			-
н	-29.361.711.056	32.120.130.099	38.834.124.641

			-
н	-23.668.667.817	51.683.555.181	52.657.902.009
н	-41.538.675.912	67.131.852.382	60.493.101.268
н	-65.249.446.414	62.601.097.232	54.417.028.366
н	-71.037.113.941	42.901.508.559	40.828.642.511
н	-25.090.918.657	- 42.347.535.409	-0.9555257965
н	-14.888.083.156	- 63.684.425.302	-0.267557469
н	-23.244.309.932	-7.565.426.226	17.477.322.014
		-	
Н	-41.865.885.379	65.853.613.407	30.773.895.157
	54 000 000 700	-	
н	-51.923.066.729	44.3/6.896.015	24.099.693.386

$13_{\rm min}$

Atom	х	У	Z
С	-85.237.231.944	1.845.144.961	4.174.231.402
С	-77.780.346.415	21.896.299.724	30.908.716.649
Ν	-81.506.540.571	32.977.214.779	23.413.124.614
С	-92.539.323.754	41.020.512.402	25.944.422.176
	-		
С	100.454.531.568	38.176.506.418	36.625.142.974
С	-9.747.192.847	26.479.033.066	45.879.731.578
С	-9.415.863.433	52.244.436.921	15.961.905.634
С	-65.410.991.917	1.501.336.992	25.620.059.942
С	-8.253.060.874	0.7006881917	50.554.962.711
0	-89.462.185.064	0.4373808372	60.250.694.453
0	-71.639.854.711	-0.0488835437	47.130.180.859
		-	
С	-6.876.094.058	11.777.251.462	55.675.284.158
		-	
С	-76.910.744.956	24.020.238.852	51.756.083.409
-	-		
C	112.434.406.052	45.749.946.065	405.108.193
0	-	12 060 224 046	EO 276 024 427
0	119.105.090.212	42.000.254.045	50.270.924.427
0	115 502 309 254	56 304 935 087	32 101 975 122
0		50.504.555.007	52.401.575.122
С	127.236.746.206	63.906.951.862	36.039.063.711
-	-		
С	139.950.325.138	57.583.863.983	30.559.912.087
н	-7.581.787.103	35.280.268.013	15.418.089.482

Н	-96.261.083.171	30.085.798.553	56.184.256.901
н	106.227.808.678	19.880.074.937	46.474.682.686
Н	-93.976.144.385	61.983.642.242	20.902.560.898
Н	-86.127.758.779	51.992.431.914	0.8509081237
Н	- 103.731.392.482	5.154.501.943	10.747.795.022
н	-67.516.544.558	0.4651798938	22.875.529.625
н	-61.560.348.187	2.022.458.262	16.780.265.618
Н	-57.517.854.132	14.720.828.541	33.163.175.257
		-	
Н	-58.050.166.589	13.528.033.513	54.324.532.253
Н	-70.691.217.244	-0.894450874	66.049.045.887
н	-73.940.140.343	32.602.539.391	57.898.445.528
н	-87.569.772.832	- 22.181.141.287	53.341.221.523
н	-75.271.645.494	- 26.598.050.961	41.236.787.681
н	- 125.512.293.378	73.790.101.728	31.684.226.409
н	- 127.663.967.788	64.766.248.819	469.220.384
н	- 148.569.275.142	63.971.248.661	32.823.519.076
н	- 141.626.825.298	47.796.413.135	35.133.195.294
Н	- 139.338.937.304	56.372.314.043	19.690.364.998

1b°_{ADJ}

Atom	x	У	z
С	0.80407314	349.775.721	-15.058.936
С	- 207.115.394	392.368.047	- 179.993.078
С	- 322.183.471	299.959.576	- 164.907.763
С	- 297.730.862	160.333.084	- 113.558.157
С	-17.214.937	118.960.893	- 0.82168213
С	- 0.56292178	214.493.641	- 0.95931445
0	0.5663618	180.110.869	- 0.61935797

0	- 436.514.137	335.173.676	- 192.783.693
0	0.20629407	438.781.774	- 158.489.269
С	147.873.499	397.970.545	- 212.489.828
0	- 223.091.921	521.771.558	- 213.226.349
С	- 328.437.918	566.789.326	-30.035.809
С	- 418.515.763	0.75676409	- 0.98184586
С	- 140.187.753	- 0.20360185	- 0.42931895
С	- 0.70252086	- 0.58842619	0.69755785
S	- 0.52539417	- 232.353.261	0.74765049
С	- 137.936.463	- 253.891.817	- 0.77136128
С	- 177.984.733	- 131.898.097	- 124.905.733
С	- 502.004.666	0.36654462	-20.800.463
С	- 607.039.379	- 0.44389611	- 172.961.582
S	- 606.654.767	- 0.69825946	0.0080325
С	463.006.119	0.26218373	0.22656528
C	-	-	-
C C	0 1277274	0 22015070	191 492 025
C	-0.1377374	0.23913978	101.402.925
С	406.647.122	0.45741426	160.179.287
С	- 709.883.527	- 104.369.635	- 258.867.137
С	- 0.70309215	- 492.966.732	-11.307.708
С	- 0.91739511	- 618.006.397	- 170.760.516
С	- 201.974.625	- 639.542.017	- 253.634.967
С	- 291.298.897	- 534.768.885	-27.740.735
С	-27.087.162	- 409.958.779	- 218.898.606
С	- 738.860.876	- 0.48460937	- 384.860.303
С	- 835.602.061	- 105.280.301	- 467.499.182 64

С	906.622.802	218.367.539	426.392.498
С	879.234.545	274.425.729	301.557.798
С	781.825.994	218.515.259	219.041.541
н	189.667.285	488.326.595	257.674.943
н	213.515.316	361.711.466	133.176.829
н	135.335.041	320.456.288	288.416.443
н	294.462.863	664.603.825	335.324.252
н	341.559.768	499.315.309	385.144.501
н	422.533.101	577.046.671	245.971.095
н	229.914.087	119.545.317	219.202.403
н	481.479.699	0.65910474	310.343.234
н	0.65281113	12.013.264	188.001.197
Н	- 0.24486959	- 0.26788919	278.022.455
Н	0.92429182	0.45131419	165.284.401
н	342.276.962	134.128.186	162.559.577
н	486.032.038	0.59726936	23.436.296
н	346.136.973	0.40244361	191.524.765 -
н	0.1722729	477.009.915	0.50667087
н	0.21505712	698.653.238	151.387.702
н	218.573.254	737.047.608	298.603.605
н	378.573.943	550.778.751	340.211.729
н	343.233.254	330.457.678	234.440.606
н	685.948.501	0.40494442	417.549.138
н	856.675.645	0.59878704	-56.401.158
н	- 982.593.525	261.927.032	490.707.675
Н	933.387.407	- 362.568.899	- 268.231.005 65

-

-

-

1b^c_{ADJ}

Atom	х	у	Z
С	-907.836.258	112.179.091 -	0.17998013
С	-924.726.447	0.12554757	0.73611198
С	-815.290.185	113.762.943	0.69431059
С	-694.523.697	0.80714238	0.08928182
С	-681.491.236	0.51212176	0.72062855
С	-779.981.716	156.271.355	0.39190023
0	-760.456.436	277.328.926	- 0.59725088
0	-828.416.733	220.368.065	130.995.158
0	1.007.239.579	203.590.213	0.34045185
С	- 1.058.567.529	263.598.508	- 0.85540958
0	- 1.041.569.911	- 0.33691453	13.524.679
С	- 1.081.948.342	- 157.197.172	196.805.019
С	-590.794.071	- 172.138.538	- 0.19599324
C	-579 357 693	0.75600729	-
C	-493.130.236	-0.4216981	-20.809.625
S	-344.228.685	0.34925571	۔ 290.484.382
С	-423.119.303	193.936.034	- 293.689.147
С	-540.923.105	197.989.552	- 224.007.228
С	-584.738.595	- 308.113.521	0.22444285
С	-475.985.164	- 378.697.737	- 0.22381751
S	-365.035.195	- 283.206.065	- 121.713.654
с	-459.226.653	۔ 126.455.115	-0.8373204

Н

			_
С	-360.215.613	305.280.399	365.222.264
С	-570.017.456	120.381.636	317.548.716
С	-377.246.005	0.49734521	0.23249255
C	-447.822.781	-52.011.553	0.03734703
С	-223.998.303	301.838.564	- 400.493.006
С	-164.946.124	408.484.218	467.827.892
С	-240.654.289	520.751.804	501.701.297
С	-376.183.993	525.442.011	467.827.806
С	-435.486.172	419.087.662	400.629.632
С	-36.131.599	593.889.001	0.79250987 -
С	-336.095.349	728.509.037	0.54132164
С	-396.325.993	-79.214.929	0.54553596
с	-481.979.987	- 720.023.733	138.193.985
С	-507.446.994	585.533.758	113.410.649 -
Н	1.136.975.463	332.072.638	0.52664653
Н	-980.766.858 -	318.808.191	138.854.447
Н	1.102.407.398	18.720.126	151.003.744
Н	1.186.766.634	140.505.111	222.473.308
Н	1.072.259.874	242.219.114	129.185.023
Н	1.022.808.837	174.851.473	286.923.586
Н	-598.144.904	288.418.513	209.069.091
Н	-664.793.646	352.937.683 -	0.79279585
Н	-596.104.963	0.52242689	-39.891.812 -
Н	-509.090.056	-20.149.577 -	358.014.319 -
Н	-662.284.986	162.758.443 -	276.815.284 -
н	-279.703.169	0.20208691	0.16000492

Н	-430.955.962	0.40000828	0.55251205
н	-362.234.795	114.084.185	110.288.635
н	-163.453.439	215.743.499	- 373.562.874
н	-0.59520121	403.886.562	- 493.651.851
н	-194.638.749	603.843.238	- 554.438.435
н	-436.093.433	612.042.707	- 494.586.719
н	-541.306.769	423.028.094	- 376.914.255
н	-31.507.692	- 545.957.671	-16.508.906
н	-269.511.505	- 783.846.986	- 119.756.157
н	-376.409.642	- 897.116.423	0.74266624
н	-528.469.006	- 768.558.584	223.549.721
н	-572.164.005	- 529.867.693	180.416.326

13_{ADJ} (1b°_{ADJ})

Atom	х	У	Z
С	- 332.523.653	112.640.897	- 595.218.231
С	- 373.679.825	- 0.05903205	- 647.753.197
Ν	- 281.185.753	- 109.658.568	- 655.723.204
С	- 163.430.425	- 114.346.965	- 581.132.136
С	- 117.258.628	0.01880182	- 527.598.399
С	- 185.112.604	132.838.022	- 564.276.888
С	-10.575.818	-25.313.566	- 569.928.861
С	- 509.435.731	- 0.43450916	701.053.062
С	416.649.765	231.097.563	- 572.761.441
0	369.721.778	341.967.111	552.139.705
0	551.085.145	207.932.769	572.213.859

С	- 635.699.566	322.903.665	- 546.312.813
С	- 657.820.609	406.611.306	671.398.715
С	- 0.01163158	0.15642699	438.089.312
0	0.40416624	12.458.593	401.017.209
0	0.54063086	- 101.253.475	- 397.261.373
С	164.752.222	- 0.91976797	-30.400.643
С	29.672.539	- 0.68045628	- 375.832.946
н	-31.534.672	- 197.763.282	- 691.418.331
н	-17.346.154	204.255.236	- 482.634.193
н	- 134.154.586	179.646.156	- 650.158.122
н	- 133.390.529	- 312.336.261	- 658.073.629
н	0.02650442	- 250.818.585	- 561.705.431
н	-14.418.571	- 304.882.361	-4.811.661
н	-56.832.203	- 0.96469009	- 625.179.527
н	- 566.121.351	0.44195252	- 731.506.027
н	498.097.224	- 110.063.647	-78.751.919
н	- 729.266.496	279.159.863	-51.058.124
н	- 590.865.325	381.569.159	465.878.746
н	727.893.207	488.016.367	649.451.136
н	- 563.755.246	450.516.034	705.620.158
н	700.271.806	345.970.049	- 752.163.472
н	16.386.812	- 188.577.485	-25.295.147
н	143.568.847	- 0.13009585	- 231.640.933
н	378.975.454	0.69125868	- 303.358.868
н	296.323.201	0.29197779	- 425.811.232

-

-

 13_{ADJ} ($1b^{c}_{ADJ}$)

Atom	х	У	Z
С	-858.894.485	177.736.855	414.837.596
С	-781.522.972	215.470.864	309.330.355
Ν	-823.806.398	319.812.407	228.353.399
С	-93.690.116	397.307.762	250.985.741
С	- 1.016.354.515	368.846.977	35.762.785
С	-993.018.507	244.137.926	441.715.315
С	-951.506.933	507.879.554	149.463.994
С	-647.450.968	159.199.649	268.090.001
С	-827.513.523	0.68962655	508.256.571
0	-901.981.727	0.35654175	599.322.778
0	-70.948.059	0.04373206	483.870.319
С	-680.436.919	- 109.732.804	567.294.204
С	-753.608.305	233.409.362	517.005.536
С	- 1.133.692.055	446.333.645	400.078.054
0	- 1.211.088.197	407.149.093	486.119.307
0	- 1.148.566.381	568.040.598	339.311.403
С	- 1.263.070.463	645.674.499	38.033.826
С	-138.897.768	604.920.765	304.968.868
Н	-778.842.975	330.174.612	138.307.863
н	1.001.029.288	269.037.575	548.164.277
н	1.074.693.359	172.189.025	425.109.012
Н	-897.268.742	597.763.854	181.646.125
н	-909.516.158	475.374.795	0.53494787
н	-105.559.387	535.855.672	135.538.856
н	-651.160.781	0.50857605	255.757.661
н	-614.059.746	204.670.668	174.160.888
Н	-571.780.764	179.506.668	34.454.252
н	-571.968.373	- 121.904.003	55.992.159
Н	-707.021.525	-0.8699352	670.874.972
н	-71.935.725	- 322.436.714	571.111.588

Н

		_	
н	-86.129.623	223.066.138	533.041.365
н	-735.052.991	248.177.418	410.031.823
	-		
Н	1.235.048.877	749.065.827	35.801.003
Н	-127.681.889	634.311.073	488.186.614
	-		
Н	1.472.403.035	670.316.463	333.093.045
	-		
Н	1.416.331.016	501.899.827	329.486.782
	-		
Н	1.374.128.279	612.931.826	196.651.967

 $(1b^{\circ}_{min}-13_{min})_{ADJ}$

Atom	Х	У	Z
С	-0.8040730809	34.977.569.396	15.058.934.855
С	20.711.537.808	39.236.801.652	- 17.999.306.454
С	- 32.218.344.697	29.995.955.349	- 16.490.775.014
С	- 29.773.083.957	16.033.307.134	- 11.355.814.853
С	- 17.214.935.722	11.896.088.458	-0.8216820681
С	-0.5629217323	21.449.362.409	-0.9593143737
0	0.5663617609	18.011.085.546	-0.6193579244
0	43.651.410.342	33.517.365.036	- 19.278.367.776
0	0.2062940576	43.878.173.992	- 15.848.925.724
С	1.478.734.882	39.797.051.467	- 21.248.981.172
0	-223.091.904	52.177.151.798	21.322.633.273
С	32.843.789.287	56.678.928.214	30.035.806.748
С	41.851.573.121	0.7567640295	-0.9818457857
С	14.018.774.251	-0.2036018311	-0.4293189171
С	-0.7025208105	-0.5884261487	0.6975577944
S	-0.5253941271	23.235.324.344	0.7476504392
С	13.793.645.274	25.389.179.782	-0.7713612234

	_	-	_
С	17.798.471.965	13.189.808.687	12.490.572.345
С	50.200.462.738	0.3665445912	20.800.461.481
с	- 60.703.933.248	-0.4438960709	- 17.296.156.837
S	- 60.665.472.163	-0.6982593997	0.0080324951
С	- 46.300.608.387	0.2621837112	0.2265652618
C	-	-	- 13 625 025 886
C	-0 1377373857	0 2391597656	18 148 291 076
C	-4.066.470.907	0.4574142266	16.017.927.455
0	-	-	-
С	70.988.347.151	10.436.962.684	25.886.711.704
С	-0.70309209	49.296.669.463	11.307.707.087
С	-0.9173950396	- 61.800.634.899	- 17.076.050.223
С	- 20.197.460.925	- 63.954.196.599	- 25.363.494.772
С	- 29.129.887.545	- 53.476.884.364	- 27.740.732.856
С	- 27.087.159.951	- 40.995.874.779	۔ 21.889.858.924
с	-7.388.608.182	-0.4846093346	- 38.486.027.359
	-	-	-
С	83.560.199.847	10.528.029.292	46.749.914.647
С	90.662.273.342	21.836.752.202	42.639.246.544
С	87.923.447.993	27.442.570.806	30.155.777.422
С	- 78.182.593.671	21.851.524.226	21.904.152.376
н	18.966.727.034	48.832.655.765	- 25.767.492.377
н	21.351.529.916	36.171.143.877	- 13.317.681.896
н	13.533.503.084	32.045.626.319	- 28.841.642.061
н	- 29.446.284.073	66.460.377.151	۔ 33.532.422.633
н	۔ 34.155.974.254	49.931.527.092	-3.851.444.711
н	۔ 42.253.306.873	57.704.662.793	۔ 24.597.107.658
н	۔ 22.991.406.982	۔ 11.954.530.753	۔ 21.920.238.583
	-		-
---	----------------	--------------------------	--------------------------
Н	48.147.966.225	0.6591046902	31.034.320.972
н	-0.6528110757	12.013.263.058	1.880.011.825
н	-0.2448695742	-0.2678891665	27.802.243.357
Н	0.9242917507	0.4513141603	16.528.438.905
н	34.227.693.644	13.412.817.565	16.255.956.418
Н	48.603.200.133	0.5972693176	23.436.294.175
н	34.613.694.635	-0.4024435798	19.152.475.027
н	0.1722728827	-4.770.098.783	-0.5066708346
н	-0.2150571082	- 69.865.318.642 -	- 15.138.768.998 -
н	21.857.323.743	73.704.755.151	29.860.358.181
Н	37.857.391.414	-550.778.711	34.021.170.262
н	34.323.322.744	-3.304.576.528	23.444.058.834
н	68.594.844.648	0.4049443936	41.754.910.626
н	85.667.557.943	-0.5987869915	56.401.153.734
н	98.259.344.754	26.192.701.153	49.070.763.801
Н	93.338.733.456	36.256.887.201	26.823.098.438
Н	76.025.865.778	26.483.125.433	12.312.039.622
С	33.252.362.744	11.264.088.874	59.521.818.802
С	37.367.979.609	-0.0590320503	64.775.314.575 -
Ν	28.118.573.178	10.965.855.975	65.572.315.158 -
С	16.343.041.307	11.434.695.599	58.113.209.227
С	11.725.861.921	0.0188018177	52.759.835.895 -
С	18.511.258.988	13.283.801.206	56.427.684.228
С	10.575.817.171	25.313.564.093	56.992.881.811 -
С	50.943.569.166	-0.4345091282	70.105.300.727
С	41.664.973.301	2.310.975.455	57.276.139.459
0	36.972.175.025	34.196.708.509	55.213.966.194

0	- 55.108.510.385	20.793.275.293	- 57.221.381.462
С	- 63.569.951.875	32.290.363.991	- 54.631.277.064
С	- 65.782.055.933	40.661.127.557	- 67.139.866.566
С	-0.0116315752	0.156426976	- 43.808.927.846
0	0.4041662104	12.458.592.013	- 40.101.717.818
0	0.5406308188	- 10.125.346.773	- 39.726.134.272
С	16.475.220.919	-0.9197679003	- 30.400.640.635
С	29.672.536.738	-0.6804562234	- 37.583.291.731
н	- 31.534.669.658	- 19.776.326.721	- 69.141.827.849
н	- 17.346.152.667	2.042.552.206	- 48.263.415.644
н	- 13.415.457.544	17.964.614.246	-6.501.580.742
н	- 13.339.051.843	- 31.233.623.744	- 65.807.357.874
н	0.0265044204	- 25.081.856.597	- 56.170.538.846
Н	- 14.418.569.918	30.488.233.777	-4.811.660.635
Н	- 56.832.198.695	-0.9646900149	- 62.517.947.962
Н	56.612.130.977	0.4419524839	- 73.150.596.965
Н	49.809.718.578	11.006.363.899	- 78.751.913.102
Н	-7.292.664.396	27.915.984.229	- 51.058.120.114
н	59.086.528.017	38.156.913.048	-4.658.787.101
н	72.789.315.292	48.801.632.997	- 64.945.108.701
н	56.375.520.202	45.051.599.964	70.562.010.413
н	70.027.175.365	34.597.002.253	- 75.216.341.675
н	16.386.810.753	18.857.747.115	- 25.295.145.088
н	14.356.883.655	-0.1300958435	- 23.164.091.522
н	37.897.542.462	-0.6912586317	- 30.335.884.474

			-
Н	29.632.317.837	0.2919777636	42.581.119.928
		-	-
Н	31.570.135.069	14.613.679.192	45.029.474.075

 $(1b^{c}_{min}-13_{min})_{ADJ}$

Atom	х	у	Z
С	-97.004.469.697	11.576.897.879	0.3124094828
С	-96.367.747.974	-0.0725992805	0.9032082039
С	-8.369.992.332	-0.853820236	0.9330678212
С	-72.665.719.045	-0.3882003749	0.0780252081
С	-7.409.501.795	0.8596594826	-0.6882739918
С	-8.564.090.081	17.411.407.164	-0.4306143476
0	-86.524.835.066	29.073.832.319	-0.8495768174
0	-82.940.963.455	18.371.150.135	16.861.499.779
0	108.219.976.372	19.147.453.412	0.4726162908
С	115.891.298.624	21.544.497.797	-0.7216801132
0	107.147.534.103	-0.4916692931	15.997.650.728
С	110.869.669.311	18.845.739.351	15.957.561.444
С	-60.748.234.533	10.960.795.727	0.01895636
С	-64.789.340.304	11.826.314.148	16.601.043.835
С	-5.421.130.263	0.1402566161	20.359.669.844
S	-41.297.769.162	10.738.866.989	30.110.471.758
С	-52.037.908.655	24.744.741.388	31.745.977.417
С	-63.511.412.018	23.741.181.215	24.309.623.681
С	-57.507.387.119	23.689.069.234	0.5670555965
С	-45.620.392.621	29.091.894.153	0.1421003401
S	-36.796.372.163	-1.874.271.102	-0.9886767604
С	-48.895.326.143	-0.476415182	-0.7274773279
С	-48.165.168.158	35.974.742.122	-4.032.173.842
С	-60.592.222.038	-0.8917054556	30.008.531.479
С	-41.989.833.546	0.5473818614	0.2109441763

		-	
С	-40.129.699.057	42.115.712.698	0.5265194477
С	-34.763.226.776	37.924.129.352	-4.418.592.111
С	-31.164.928.337	48.694.841.887	- 52.256.577.912
_			-
С	-4.087.272.242	57.715.777.437	56.670.343.625
С	-54.232.315.032	55.873.157.682	52.966.083.396
С	-5.786.549.858	45.129.565.057	44.903.012.248
С	-30.136.234.073	48.381.848.144	-0.2433855735
С	-25.050.565.471	60.814.738.589	0.1252635883
С	-29.803.084.036	67.227.899.626	12.716.118.372
С	-39.679.088.423	61.100.180.832	20.494.878.015
С	-44.789.399.459	48.684.143.827	16.843.956.226
Н	124.307.618.151	27.780.642.093	-0.4158762314
Н	109.932.916.666	26.775.153.939	14.727.876.097
Н	119.636.878.949	1.208.001.244	-1.128.463.601
Н	121.623.736.903	18.907.047.669	17.860.717.567
Н	108.873.510.952	23.413.740.794	0.6223539253
Н	105.591.290.922	24.338.067.834	23.742.915.974
Н	-70.815.994.911	31.664.738.293	23.635.040.018
н	-64.367.757.693	28.939.216.187	12.136.070.044
Н	-64.733.590.783	-0.3700796361	-3.867.261.622
н	-53.173.682.679	- 16.139.317.323	- 33.483.440.438
н	-68.695.688.315	- 14.326.682.549	- 25.039.706.133
H	-33.031.676.691	0.9629042898	-0.2551566537
Н	-488.168.138	13.673.305.686	0.4502036474
Н	-39.127.706.277	0.0518516357	11.420.295.489
н	-2.706.781.957	31.091.153.679	- 40.704.632.918
н	-2.076.336.724	50.051.372.562	- 55.071.376.252

			-
н	-38.067.526.401	66.099.497.428	62.980.338.718
н	-61.856.075.886	627.871.462	- 56.436.601.848
н	-68.300.295.821	43.687.346.478	- 42.302.489.529
н	-2.644.520.752	۔ 43.599.827.098	۔ 11.463.270.595
н	-17.390.068.173	۔ 65.503.997.801	-0.4852364572
н	-25.819.808.907	۔ 76.912.723.172	15.598.373.443
н	-4.335.436.419	- 65.978.014.902	29.475.783.977
		-	
Н	-52.275.727.006	43.938.796.309	23.100.092.374
С	-85.025.823.675	0.9349295655	45.679.407.988
С	-720.514.493	0.9566062251	4.148.707.563
Ν	-67.477.167.587	20.567.597.688	3.443.278.669
С	-75.195.791.971	31.362.451.098	30.456.849.665
С	-88.270.631.765	31.869.035.338	34.282.083.811
С	-94.401.494.038	21.016.344.697	4.299.212.831
С	-67.667.221.216	41.270.199.193	21.916.569.567
С	-61.561.946.349	-0.1117538286	43.352.947.644
С	-91.329.402.013	-0.1626215751	5.306.346.888
0	102.986.234.548	-0.1145608577	56.894.242.183
0	-83.382.256.494	12.379.752.313	55.439.371.736
С	-89.177.397.186	23.329.784.286	6.292.522.427
C	-96 646 973 597	32 979 682 576	5 384 494 069
C C	-97 718 661 345	42 475 333 545	30 663 028 629
C	-	12.17 5.555.515	50.005.020.025
0	109.264.794.642	42.712.344.255	34.830.126.347
0	-92.819.446.205	52.049.143.658	22.384.149.345
с	- 101.877.742.957	62.628.430.607	18.448.628.039
С	-11.037.548.424	58.502.094.106	0.6524218138
н	-57.832.499.964	20.441.226.771	31.453.698.935
Н	-97.865.377.763	25.331.047.675	52.507.439.849
н	- 103.567.064.772	17.288.582.038	38.242.552.097
Н	-56.987.949.616	38.882.822.947	21.752.394.156
Н	-71.410.269.223	4.107.993.249	11.636.339.144
Н	-68.900.947.925	51.452.379.185	25.624.565.058
н	-64.169.942.371	- 10.059.449.429	37.613.235.534

Н	-51.789.861.098	0.2446786852	39.955.487.063
Н	-60.741.757.548	-0.4102206473	5.381.111.147
н	-80.608.510.431	28.181.845.165	67.660.348.125
Н	-95.730.497.734	19.265.791.347	70.659.693.532
н	100.212.992.493	41.547.700.352	59.673.798.658
н	- 105.294.357.154	28.084.179.423	49.273.557.462
н	-9.009.190.832	36.712.830.961	45.907.037.049
Н	-95.305.394.883	70.986.113.547	15.932.510.072
н	108.073.035.747	65.383.028.373	27.012.559.398
н	116.309.603.177	67.036.002.943	0.3053831617
н	117.205.633.769	50.414.174.382	0.9266289814
н	- 104.036.021.902	55.086.211.599	-0.1720667971

(1b^omin-13min)nonADJ

Atom	x	У	Z
С	-150.381.032	290.443.727	189.601.063
C	-274.358.222	336.078.391	-22.455./81
С	-394.836.507	254.738.959	195.156.654
С	-38.125.153	132.173.948	108.706.548
С	-257.625.287	0.84776084	0.76418358
С	-135.097.921	15.744.337	- 125.612.414
0	-0.23830813	107.012.343	- 113.493.688
0	-504.599.462	288.026.234	- 238.981.064
0	-0.43250825	361.978.384	- 229.796.337
С	0.79482999	360.685.073	155.533.528
0	-281.876.242	449.284.623	-29.749.003
С	-394.493.701	537.708.766	- 286.516.629

			-
С	-508.429.402	0.70288055	0.65244585 -
С	-234.790.618	-0.44129717	0.07416394
C	-149.185.772	-0.63937561	0.99229139
S	-149.019.016	-231.228.872	147.905.853
C	-263 870 309	-276 392 341	0 22942849
C	20010701000	2,010021011	-
С	-299.358.219	-165.450.108	0.49026561
С	-610.443.856	0.27913333	156.849.871
С	-720.492.346	-0.27795481	-0.9709563
S	-700.524.361	-0.25343017	0.77429259
С	-543.658.841	0.49485828	0.66718313
C	-309.871.867	-414.847.842	0.0647002
C	-0 64417156	0 34432631	174 512 535
C C	-//68 211 022	0.94452051	101 080 278
C	-408.211.022	0.82300395	
C	-841 012 919	-0 83083775	160 194 616
C C	-228 604 157	-524 121 345	0 41498656
C C	-273 6/3 801	-65/ 892 2/8	0.24579825
C C	-400 400 206	-670 111 272	-0.28/0182
C	-400.400.290	-079.444.275	-0.2049102
С	-482.125.609	-571.791.057	- 0.63759192 -
С	-437.896.242	-440.947.707	0.45851282
С	-835.910.428	-131.761.808	292.163.105
С	-949.752.647	-182.944.874	353.878.404
С	1.071.108.643	-188.285.742	-28.493.575
С	1.077.395.317	-141.360.139	153.626.988 -
С	-963.905.461	-0.88959739	0.92073808
Н	130.744.314	452.624.612	184.792.971 -
Н	0.60927541	362.203.344	0.47618422
Н	140.081.012	273.571.618	180.528.954
Н	-357.477.797	634.382.449	-32.145.849
		-	-
н	-477.605.276	503.967.872	348.476.582
Н	-428.103.574	546.818.267	182.731.876
н	-36.745.414	-169.481.653	133.203.851

			-
Н	-601.987.059	0.41678676	263.899.562
н	-105.617.049	135.455.441	166.134.273
н	-0.59353621	0.09336157	281.019.817
н	0.3773906	0.37150867	135.037.185
н	-395.448.257	161.764.093	172.788.372
н	-535.541.452	116.504.195	271.336.127
н	-412.909.103	-0.04539584	229.764.036
н	-128.680.832	-506.362.855	0.80381953
Н	-209.018.789	-737.818.455	0.52112661
ц	-125 250 811	-781 442 002	- 0 /1806211
	-455.559.644 E 914 400	-701.445.002 E00 6E1 060	10 412 026
п	-5.814.409	-389.031.808	-10.412.050 -
Н	-503.546.762	-357.942.031	0.70275864
н	-741.487.035	-130.864.832	345.792.257
н	-943.326.218	-219.890.647	455.887.778
Н	-115.972.039	-228.821.935	332.986.766
Н	1.171.264.402	-1.446.193	- 0.98958952
Н	-971.064.202	-0.50390029	0.09277017
		-	-
С	-561.317.887	1.086.924.755	405.491.909
С	-649.644.335	1.156.754.287	-32.929.363
N	-785.721.933	- 1.136.871.922	- 348.609.297
с	-841.606.419	- 1.048.735.118	- 440.213.197
-			-
С	-759.285.583	-975.567.009	519.908.751
С	-607.954.816	-988.537.863	511.651.385
С	-992.649.793	1.047.366.237	437.219.737
С	-618.963.258	1.257.796.692	-22.120.263
С	-415.035.688	- 1.097.333.695	- 396.012.963
0	-339.657.846	- 1.033.274.349	- 467.520.235
0	-369.206.577	- 1.184.415.448	- 301.309.165
С	-225.656.075	-119.658.286	۔ 290.412.321
С	-166.576.065	- 1.087.907.934	۔ 201.719.937

			-
С	-803.846.223	-878.473.348	620.826.853
0	-725.926.414	-81.590.553	-69.091.901
0	-939.222.437	-863.326.869	630.886.068
С	-985.351.482	-768.452.879	- 729.590.945
С	-985.838.341	-626.366.544	- 675.047.317
н	-848.904.072	- 1.189.708.616	- 290.515.712
н	-56.755.878	- 1.017.407.975	- 609.633.506
Н	-56.311.754	-889.992.679	- 493.347.424
н	- 1.034.344.335	- 1.074.173.966	- 534.546.323
н	- 1.030.586.417	- 1.118.127.695	- 362.627.927
н	- 1.030.794.418	-94.791.679	- 413.008.545
н	-560.360.417	- 1.212.988.643	- 140.637.472
н	-711.499.747	- 1.298.079.125	- 178.459.871
н	-560.005.026	- 1.340.960.733	-26.039.769
н	-210.136.873	- 1.295.903.513	- 247.335.526
н	-182.170.495	۔ 1.193.317.242	- 390.586.557
н	-0.58922283	- 1.104.441.396	- 189.141.773
н	-181.199.148	-989.492.733	- 247.014.512
н	-213.229.199	- 1.088.741.304	- 102.616.311
н	۔ 1.086.515.322	-801.999.259	- 754.127.073
н	-922.097.301	-776.136.992	- 818.337.049
Н	- 1.028.436.872	-557.995.153	- 749.422.116
Н	-883.941.002	-593.689.516	-6.526.615
н	۔ 1.046.149.766	-619.746.716	۔ 583.846.524

(1b^c_{min}-13_{min})_{nonADJ}

Atom	х	у	Z
С	-957.100.204	-174.607.876	-0.17104519
С	-944.065.278	-297.510.169	0.4309204
С	-81.620.274	-372.170.334	0.42493109
С	-705.293.655	-317.555.261	-0.385705
С	-724.806.685	-193.479.065	- 114.703.061
С	-845.856.336	-111.566.256	-0.91500347
0	-859.328.612	0.03324235	- 135.566.623
0	-806.186.182	-475.331.862	110.269.755
0	-107.347.305	-109.310.834	0.03161747
С	- 1.129.087.763	-0.21540657	-0.95753891
0	1.049.740.201	-341.257.051	114.717.821
С	1.078.987.389	-481.058.238	128.228.363
С	-581.944.068	-380.225.486	-0.40103069
С	-630.400.998	-15.415.108	207.718.404
С	-516.432.348	-250.885.859	241.750.003
S	-389.956.426	-148.577.639	333.558.838
С	-505.404.691	-0.15230204	352.580.314
С	-62.198.309	-0.33315601	283.046.571
С	-543.170.791	-505.516.288	0.15933976
С	-41.950.491	-550.960.799	-0.2156717
S	-333.591.104	-441.223.331	- 131.073.448
С	-464.617.673	-309.879.382	109.240.709
С	-470.439.119	100.668.324	435.173.892
С	-569.379.051	-357.297.281	341.211.332
С	-406.723.043	-203.906.426	-0.12002477
С	-357.586.186	-677.501.928	0.18851257
С	-336.959.836	127.230.955	- 471.069.682 -
С	-30.457.177	238.252.602	548.671.626
С	-404.744.046	325.042.648	592.408.549

			-
С	-537.842.463	299.713.607	558.043.021
С	-57.053.806	188.896.131	- 480.626.475
с	-251.585.954	-733.719.078	-0.54725178
C	-19.433.665	-854.726.913	-0.16323733
C C	-241 378 708	-922 014 737	0 96560551
C C	-3/6 1/9 669	-867 108 3/13	171 025 0/18
C C	-340.149.009	-807.108.343	122 067 542
C	-403.573.515	-740.275.105	132.907.342
н	1.235.739.898	-0.17331155	-0.72130185
н	-108.470.163	0.77859244	-0.90300062
	-		-
Н	1.115.663.976	-0.61469258	196.764.686
	-		
Н	1.185.715.735	-484.842.073	15.160.783
	-		
Н	1.060.141.641	-535.108.299	0.34951907
	-		20 022 762
н	1.020.598.728	-52.636.503	20.832.762
н	-699,986,658	0.41148257	277.512.321
Н	-611,231,145	-562,263,559	0.775818
	01112011110	30212001303	-
Н	-610.168.748	-307.147.964	429.339.689
			-
Н	-489.394.551	-424.525.135	373.000.668
			-
Н	-6.488.137	-416.625.621	295.049.822
Н	-318.531.804	-155.626.904	-0.5465141
н	-481.586.412	-127.279.249	0.09968954
н	-378.325.818	-252.500.112	0.81680649
н	-257.722.085	0.61440709	-43.649.147
			-
Н	-200.791.639	257.075.004	574.729.276
			-
Н	-379.491.762	411.558.014	653.081.281
			-
Н	-616.599.521	366.250.448	592.320.546
		460.054.540	-
Н	-6/4.4/6.214	169.254.519	456.436.654
	215 014 152	C02 22C 110	-
п	-215.014.153	-083.230.119	143./02./3/
н	-112.985.774	-896.605.069	-0.74905889
н	-19.654.806	-101.630.346	126.623.124
H	-382.763.857	-918.296.949	259.588.887
Н	-483.335.694	-703.529.728	192.846.854
C	000 001 010	600 006 046	-
L	-989.601.213	-600.006.919	281.024.455

			_
С	-871.306.731	-58.577.846	346.506.305
N	-850 724 682	-177 855 285	121 677 102
	-630.734.062	-472.833.383	424.077.196
C	-942.933.701	-3/0.80/.2//	-44.385.983
С	- 1.063.443.876	-378.291.396	- 381.386.135
С	- 1.099.199.386	-495.029.743	290.660.542
С	-893.005.078	-261.755.667	535.728.306
С	-753.403.595	-6.802.947	346.195.893
С	1.025.445.177	-71.389.156	195.337.933
0	1.132.697.484	-72.170.108	-13.759.137
0	-929.667.807	-810.656.722	184.588.513
С	-96.255.297	-923.470.487	100.534.027
С	1.042.893.703	1.028.368.744	-17.609.031
С	1.170.641.863	-278.375.539	-39.246.359 -
0	1.276.912.913	-288.994.582	333.363.325
0	1.142.726.747	-172.178.986	473.706.218
С	1.246.653.064	-0.72580841	486.000.422
С	1.349.025.509	-110.954.048	591.883.159 -
Н	-762.270.555 -	-465.070.944	472.343.384
Н	1.124.360.004	-458.008.498	190.350.061 -
Н	-119.248.225	-541.645.216	325.038.955 -
Н	-892.536.074	-164.824.516	485.392.551 -
Н	-791.184.106	-2.834.904	569.939.463 -
Н	-957.389.057	-251.348.493	623.351.263 -
Н	-781.345.058	-778.534.605	384.938.585 -
Н	-671.856.172	-640.678.688	407.784.937 -
Н	-71.563.257	-696.065.635	244.937.745 84

Н	-865.530.532	-96.281.713	-0.68918552
н	1.017.380.493	-88.764.042	-0.13088681
н	1.059.487.238	1.115.863.557	-1.121.355
Н	1.140.261.443	-988.167.576	205.319.993
Н	-989.525.479	-106.117.433	265.947.784
Н	1.193.340.358	0.1886951	513.497.589
Н	1.294.253.152	-0.58894763	388.620.073
н	1.422.041.581	-0.30100494	604.222.143
н	1.402.635.618	-201.476.413	562.157.087
н	1.300.556.404	-128.453.987	-68.854.429

11. <u>References</u>

1. Fröhlich, J.; Hametner, C.; Kalt, W., Synthesis of trisubstituted thiophenesvia a halogen dance reaction at 2-bromo-5-methylthiophene. *Monatshefte für Chemie / Chemical Monthly* **1996**, *127* (3), 325-330.

2. Wang, R.; Pu, S.; Liu, G.; Cui, S.; Liu, W., Synthesis and photochromism of isomeric unsymmetrical diarylethenes bearing both naphthalene and thiophene moieties. *Journal of Photochemistry and Photobiology A: Chemistry* **2012**, *243*, 47-55.

3. Gregg, C.; Kyryakov, P.; Titorenko, V. I., Purification of Mitochondria from Yeast Cells. **2009**, (30), e1417.

4. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* **1976**, *72* (1), 248-254.

5. Reddy, C. A.; Beveridge, T. J.; Breznak, J. A.; Marzluf, G. A.; Schmidt, T. M.; Snyder, L. R., *Methods for General and Molecular Microbiology, Third Edition*. American Society of Microbiology: 2007.

6. (a) Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. *The Journal of Chemical Physics* **1993**, *98* (7), 5648-5652; (b) Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Physical Review B* **1988**, *37* (2), 785-789; (c) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. *The Journal of Physical Chemistry* **1994**, *98* (45), 11623-11627.

7. Kuhn, B.; Kollman, P. A., A Ligand That Is Predicted to Bind Better to Avidin than Biotin: Insights from Computational Fluorine Scanning. *Journal of the American Chemical Society* **2000**, *122* (16), 3909-3916.

8. (a) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. *Journal of Applied Crystallography* **2009**, *42* (2), 339-341; (b) Sheldrick, G. M., Crystal structure refinement with SHELXL. *Acta Crystallographica. Section C, Structural Chemistry* **2015**, *71* (Pt 1), 3-8; (c) Linden, A., Chemistry and structure in Acta Crystallographica Section C. *Acta Crystallographica Section C* **2015**, *71* (1), 1-2.