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1. Model description and justification of assumptions 

The potential distribution around a spherical particle with a radius r, separated by a distance s from a 

center of 1 m radius disk electrode was investigated in an electrolyte solution containing 10 mM KCl, 

with the two models as described in the main text. In the aqueous electrolyte solution the particle and the 

electrode were surrounded by an uncharged Stern layer with a radius of 3.3 Å, where the space charge 

density is nil. The model was solved in 2D axial symmetry (r = 0 as the axis of symmetry). Additionally, 

the electric double layer of a planar electrode was investigated with different models, as shown in Figure 

S1. The obtained results in 1D agreed well with the analytical solutions, and capacitance calculated for an 

electrode in a 2D axis symmetry agreed well with the results from the 1D calculations. 

 

Figure S1. Double layer capacitance of the planar electrode calculated on 1D geometry, A) considering 

Gouy-Chapman (GC), Gouy-Chapman with Booth (GC Booth) model for relative permittivity of water, 

modified Poisson-Boltzman model (MPB), also with Booth modification (MPB Booth), and B) Stern 

modification ( = 0.33 nm) of all these models. 1:1 electrolyte, 10 mmol L
–1

. 

We have used a modified Poisson-Boltzmann equation that takes into account the finite ion size. This 

modified Poisson-Boltzmann equation flattens out the electric potential oscillations due to the finite size 

effects, but the surface charge densities are not expected to be significantly influenced. Moreover, the 

reliability of continuum models has been studied, e.g., in the context of ion transport through biological 

ion channels. The comparison of the predictions from the Poisson-Boltzmann equation and from 

Brownian dynamics has shown that the former are reliable for ion channel radii larger than 1.0 nm.
JA1

 

Therefore, it is reasonable to accept the validity of the Poisson-Boltzmann equation for the description of 

the electrical double layer around nanoparticles of radii larger than 1.0 nm. 

In this work, the concept of Fermi level equilibration has been applied to the charge transfer between 

two conductors, the metal NP and the electrode, both immersed in an electrolyte solution. The electrode 

potential, and hence its Fermi level, is externally fixed by a power supply. The Fermi level is a concept 

equivalent to the electrochemical potential of the electrons. The electrochemical potential, as the chemical 

potential, of a species is a thermodynamic quantity that describes the tendency of a system to exchange 

particles of this species with its surroundings. The energy levels of the particle in the system may also be 

discrete. Yet, the chemical potential is not discrete, as it is not necessarily equal to any of the energy 
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levels; this is well known in semiconductor electrochemistry. The chemical potential, as the temperature, 

must be understood as a parameter that determines the probability of occupation of the energy levels of a 

given species in a system. When the system cannot exchange particles with its surroundings the 

probability of occupation of the discrete energy levels is only determined by temperature, a continuous 

variable even though the energy spectrum is discrete. When the system can exchange particles with its 

surroundings, the probability of occupation of the energy levels is determined by temperature and the 

chemical potential of the species, both of which are continuous variables. Thus, the equilibration of the 

chemical potentials of the species in the system and its surroundings is a meaningful concept. 

The Fermi level is the electrochemical potential of the electrons in the electrode, 
E

E Ee
e 

    

where is 
E   is the electrode potential with respect to vacuum. The Fermi level of the metal nanoparticle 

in electrolyte solution is 
NP

NP NPe
e 

    where 
NP   is the nanoparticle potential with respect to 

vacuum. Although the free energy of the system has not been evaluated, it is implicitly assumed that: (i) it 

can be considered a function of the nanoparticle charge, 
NP( )G Q , (ii) this function can be differentiated 

with respect to the nanoparticle charge, as if it were a continuous variable, and (iii) the derivative is 
NP E

NP e e
( / )e G Q        . The condition of Fermi level equilibration is then 

NP E

e e
   , or 

NP pzc EE   , eqn 20, where 
E  is the electrode potential with respect to its potential of zero charge 

(pzc) and 
pzcE  is the pzc of the metal nanoparticle with respect to the electrode pzc. This approach 

considers the NP as a metallic phase with an outer potential that can vary continuously.  

Actually, the NP charge is a discrete variable as it is not possible to exchange a fraction of an electron. 

This implies that it might not be able to take the value that minimizes 
NP( )G Q . In the case we were 

interested in the electron transfer kinetics, the transfer should be described as a stochastic process 

according to the orthodox theory.
JA2-JA4

 In this theory, the probabilities of electron transfer from the 

nanoparticle to the electrode, and vice versa, are determined by the free energy changes associated with 

the transfers, temperature and the tunneling resistance. For a given nanoparticle-electrode separation this 

theory allows us to evaluate the time average value of the discrete variable 
NPQ . This time average value 

is not necessarily one of the discrete values of 
NPQ .

JA2
 At very low temperatures, 

2

B NP/ 2k T e C , the 

time average value of 
NPQ  shows the Coulomb staircase. On the contrary, at high temperatures, 

2

B NP/ 2k T e C , the charge transfer rate is high and the time average value of 
NPQ  is close to the one 

that makes 
NP( )G Q  minimum, 

NP NP,eq
NP( / ) 0

Q Q
G Q


   . The effects of the discreteness of charge are 

not seen in this temperature range. The consideration of 
NP  and 

NPQ  as continuous variables is justified 

by the fact that we do not observe a single NP at a given instant but an average over time. 

Alternatively, the consideration of continuous variables can be justified by the fact that we do not 

observe a single NP but the average behavior of a collection of NPs in solution interacting with the 

electrode. The NPs are then considered as “molecules” with multiple redox states whose formal redox 

potentials are equally spaced. The condition of electrochemical equilibrium or Fermi level equilibration 

for the reaction 
1NP (aq) e (E) NP (aq)z z   , where E stands for metal electrode, is 

1

E aq aq

e NP NP
: z z        or 1red( 1) NP NP

( / ) ln( / )z zz zE E kT e a a    , for any z. The body of work from 
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R. W. Murray and others
JA5

 demonstrating that electron transfer to small nanoparticles is quantized is 

related to two facts: (1) red( 1) pzc NP(2 1) / 2z zE E z e C      is a function of z, and (2) for very small 

nanoparticles (often, in low relative permittivity solvents) the effective capacitance 
NPC  is so small that 

the values of the standard redox potentials can be observed individually in a DPV. Since quantized 

charging seems to be incompatible with the assumption of continuous NP charge, we describe next the 

conditions under which this assumption is valid. 

The NP and the electrode are considered as two systems that reach equilibrium with respect to the 

exchange of electrons. The negative charge number of the NP is a counter for the number of electrons in 

the NP. When the charge number is considered a discrete variable, the average value of z is given by 

exp{ [ ( ) ] / }
( , )

exp{ [ ( ) ] / }

z

z

z z z kT
z T

z z kT

 


 

 


 




.  (JA1) 

The ratio of probabilities of observing the charge numbers z and z – 1 is equal to the ratio of 

concentrations (or activities) of NPs with these charge numbers  

1

exp{[ ( 1) ( ) ] / }z

z

c
z z kT

c
  



    .  (JA2) 

The average charge number can also be evaluated in terms of the electrode potential E. The comparison of 

eqn (JA2) with the Nernst equation  

red( 1) 1( / ) ln( / )z z z zE E kT e c c      (JA3) 

evidences the correspondence   

red( 1)( 1) ( ) [ ]z zz z e E E         .  (JA4) 

Assuming a constant NP capacitance, the standard redox potential can be approximated by  

red( 1) pzc NP(2 1) / 2z zE E z e C       (JA5)  

where pzcE  is the NP potential of zero charge (with respect to that of the electrode), which basically arises 

from  
2 2

NP pzc( ) / 2 ( )z z e C z eE k      (JA6)  

and 

eE k    ,   (JA7) 

where k is an arbitrary constant. Substituting eqns (JA6) and (JA7) in (JA1), the average value of z can be 

expressed as in terms of temperature and the electrode potential as 
2

2

z z

z

z z

z

z
z

 

 




  (JA8) 

where pzc: exp[ ( ) / ]e E E kT     and 
2

NP: exp( / 2 )e kTC   . 
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The sum in eqn (JA8) cannot be evaluated analytically but there is an alternative procedure to evaluate 

the (average) charge number as a function of the electrode potential E which is basically equivalent to a 

mean field approximation. The NP is considered as an isolated system with a charge z ; the tilde denotes 

its continuous character. Similarly to eqn (JA6), the NP energy is 
2 2

NP pzc( ) / 2 ( )z z e C z eE k    . The 

relation between z  and E  

pzc NP/E E ze C    (JA9) 

is now obtained from eqn (JA7) with the electrochemical potential of the electrons in the NP evaluated 

from the variation of ( )z  with respect to its number of electrons (i.e., the negative z) as 

2

NP pzcd / d /z ze C eE k       .  

Although only discrete values of the NP charge number are allowed, the average charge number 

in eqn (JA8) describes the state of the NP solution. In Figure S2, this average value has been represented 

against ln  for different values of ln  and compared to the continuous charge number in eqn (JA9), 

here transformed to  

pzc

2

NP

( ) / ln

/ 2ln

e E E kT
z

e kTC






   .  (JA10) 

The sum in eqn (JA8) runs over integer values of z and extends from an arbitrary large negative value to a 

large positive value; the plot in Figure S2 is restricted to a region when the limits of the sum are 

irrelevant. When the charging energy 
2

NP/ 2e C  is larger than ca. 2.5 times the thermal energy kT the 

average charge number shows the Coulomb staircase. On the contrary, the average charge number shows 

a linear dependence on pzcln ( ) /e E E kT    when 
2

NP/ 2e kTC  is lower than 2.5. The mean field or 

continuous approximation is then very accurate under the latter conditions, while it also predicts the 

correct slope of the staircase when 
2

NP/ 2 2.5e kTC  . The NP capacitances involved in this work are 

relatively large because we are modeling NPs with diameters between 2 nm and 20 nm, in aqueous 

solution and without taking into account the protecting monolayer as a low-permittivity dielectric shell. 

The thermal energy kT  at room temperature is then larger that the charging energy, 
2

NP/ 2e C , and 

therefore it is reasonable to consider the NP charge number as a continuous variable and eqn (JA10) can 

be used instead of eqn (JA8), as no Coulomb staircase appears under these conditions.  
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Figure S2. The variation of the average NP charge number with the electrode potential shows the 

Coulomb staircase when the charging energy 
2

NP/ 2e C  is a few times larger than the thermal energy kT ; 

the spacing of the ticks in the ordinate scale is one unit. The assumption of the NP charge as a continuous 

variable is equivalent to a mean field approximation. This approximation is very accurate when 
2

NP/ 2e kTC  
is lower than ca. 2.5 . For larger values of this ratio, the mean field approximation (dashed 

lines, only two are shown for the sake of clarity) does not show the quantized charging but still predicts 

the correct slope for the variation of charge number with electrode potential. 

 

 The restriction to constant NP capacitance has allowed us to clearly establish the conditions under 

which the average NP charge number does not exhibit quantized charging (i.e. the Coulomb staircase). In 

most theoretical studies, the NP capacitance is estimated from relatively simple electrostatic models. In 

this work, the NP capacitance has been calculated from the numerical solution of a modified Poisson-

Boltzmann equation that takes into account the finite ion size and the dielectric saturation effect, in 

addition to the presence of a Stern layer. Obviously, for the purpose of evaluating the differential NP 

capacitance, the electric charge on the NP must be assumed to be a continuous quantity. Furthermore, 

when the NP capacitance is not known, the condition of Fermi level equilibration should not be expressed 

in terms of this capacitance, as in eqn (JA9), but rather in terms of the electric potentials, as in eqn (20), 

E pzc NPE   .  

The electrochemical equilibrium between a metal electrode with fixed   and the solution 

containing NPs is achieved through charge transfer. This transfer changes the concentrations of NPs in 

different redox states until their fractions are given by eqn (JA2), the Fermi level equilibration condition. 

Equation (JA2) essentially says that the transfer of a single electron from the electrode to one NP with 

charge number z causes a dramatic change: the NP is transformed to a reduced state with charge number 

z – 1 and its electrochemical potential changes discretely from 
aq

NPz  to 1

aq

NPz  , with 

1

aq aq

NP NP
1

( ) ( 1) lnz z

z

z

c
z z kT

c
   



     .  (JA11) 
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Yet, the electrochemical potential of the electrons in the solution of NPs, 1

aq aq

NP NP
: z z     for any z, 

does not undergo any dramatic change due to this electron transfer. The latter is a property of the solution 

and not as a property of a single NP. Moreover,   is not equal to any of the allowed NP energies given 

by eqn (JA6) with discrete z. The fact that the electrochemical potential   of the electrons in the solution 

of NPs is a continuous variable makes it possible to make it equal to the electrochemical potential of the 

electrons in the electrode. The latter statement is valid regardless of whether the Coulomb staircase is 

observable. 

 

 

2. Schematic description of the Fermi level changes upon NP collision with an electrode and 

supplementary figures 

Schemes S1 and S2 consider the case of electrode and NP made of the same metal pzc( 0)E  , for 

electrode potential equal (
E 0  , Scheme S1) and higher (

E 0  , Scheme S2) than the common pzc. 

 

Scheme S1. Electrode and NP made of the same metal. Top panel: Fermi levels. Bottom panel: potential 

difference between metal and solution. The electrode is at the common pzc. Before collision, the NP is 

positively charged and, therefore, has a lower Fermi level than the electrode. As the NP capacitance 

varies with the distance to the electrode, the potential difference between the NP and the solution varies 

when the NP approaches the electrode. Upon collision the potentials reach the same value, and the NP 

potential does not change when it moves into the bulk of the solution. 
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Scheme S2. Similar to Scheme S1, with the electrode at a positive potential. Before collision, the NP is 

positively charged and has a lower Fermi level than the electrode. As the NP capacitance varies with the 

distance to the electrode, the potential difference between the NP and the solution varies both when the 

NP approaches the electrode and when it departs from the electrode after collision 
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Figure S3. Potential difference between the NP and the electrode after collision as a function of the NP 

distance and electrode potential for NP 2nmR  , calculated: A) with r 78   (model I) and B) with the 

Booth model for the relative permittivity (model II). C) Effect of the NP radius on the differential 

capacitance at 0.2 V calculated with the Booth model. Differential capacitance at the electrode potential 

as a function of the NP distance and electrode potential for NP 2nmR  , calculated: D) with r 78   

(model I) and E) with the Booth model for the relative permittivity (model II). F) Effect of the NP radius 

on the differential capacitance at 0.2 V calculated with the Booth model. 
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Figure S4. The immersion of the NP in the electric double layer of the electrode at 0.2 V. Small NPs (R = 

2 nm) are completely immersed in the double layer in dilute electrolyte solutions (A), but the thickness of 

the double layer decreases in more concentrated electrolyte solutions (B). The effect of the electric double 

layer is smaller on larger particles, as they only partially feel the effects of the double layer even in dilute 

electrolyte solutions (C). s = 1 nm, calculated with Model II. All assuming no specific adsorption of 

chloride. 
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Figure S5. Surface charge densities of the electrode (A, C) and the NP (B, D) for pzc 0.5VE  , for the 

electrode potentials where the repulsive force changes to attractive (A, B) and again to repulsive (C, D). 

NPR = 2 nm, s = 1 nm, calculated with model II. 
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Figure S6. Surface charge density of the electrode at the point closest to the NP (r = 0, z = 0) (A) and the 

surface charge density at the NP surface at the point closest to the electrode (r = 0, z = 10 Å) (B), as the 

function of electrode potential, for 
pzcE  values of 0, 100 and 500 mV. 

NPR = 2 nm, s = 1 nm, calculated 

with model II. 

 

3. Approximate solution of the PBE for a spherical NP with a Stern layer 

The main text includes an approximate solution of the PBE for an isolated spherical NP in electrolyte 

solution with the aim of discussing its differential capacitance. For the sake of simplicity, the 

approximation discussed is of intermediate complexity. We comment here some details of this 

approximation as well as another, more accurate approximation. To the best of our knowledge, there are 

no approximated solutions of the PBE modified to include finite ion size and dielectric saturation effects 

outside a spherical NP. The results presented in the main text are based on the exact numerical solution of 

the modified PBE and not in the approximations here discussed for the classical PBE.   

 The potential distribution inside the Stern layer is  

NP NP
NP NP NP

0 r

( ) ( ) 1 ,
zF R R

r R R r R
RT r


  

 

 
      

 
.  (PBE1) 

Outside this layer the PBE is approximated byPBE1 

2 2

NP

NP

2 4
sinh sinh sinh ,

2
r R

r R

 
      


       


.  (PBE2) 

and integrated with the boundary conditions 0   and 0   when r   to yield   



 13 

1/2

2

NP NP

1 2 4
2sinh 1 csch 2sinh tanh

2 ( ) 4 2 ( ) 4R R

   


    

 
       

  
.  (PBE3) 

The boundary condition 
2

NP 0 r NP( ) / [ (1 / ) ]R zF RT R           then gives 

2

0 r NP NP NP

NP

0 r NP NP NP
NP

NP

(1 / ) ( ) ( )4
2sinh tanh

2 ( ) 4

1 / ( ) ( )
2 ( )sinh 4 tanh

2 4

RT R R R

zF R

RT R R R
R

zF R

       


 

      
 

   
  

 

   
   

 

  (PBE4) 

from which the differential capacitance of the NP and the potential drop in the Stern layer can be 

evaluated as 

2

NP NP NP

NP

2NP NP
0 r NP NP

d
( ) 4

d ( )

( ) ( )
4 ( ) ( ) cosh sech

2 4

zF
C R R

RT R

R R
R R




 

   
    

  


  
     

 

  (PBE5) 

NP
NP NP

0 r NP

NP NP
NP

NP

( ) ( )

( ) ( )2
( )sinh 2 tanh

2 4

RzF
R R

RT R

R R
R

R


  

  

   
 

  


  
   

 

  (PBE6) 

which are used in the main text. 

 A more accurate approximate solution of the PBE outside the Stern layer is PBE1 

NP

( ) 4artanh 4artanh
1 2 ( )

Bs
r Bs

R


 
 

 
    or  

NP

2 2

NP

1 ( )( )
tanh 2

4 1 2 ( )

Rr
Bs

R B s

 

 

 


  
  (PBE7) 

where 

NP
NPexp[ ( )]

R
s r R

r


 


      (PBE8) 

and B is determined as a function NP( )R   of by solving the algebraic equation  

NP NP

2

NP

( ) 1 ( )
tanh 2

4 1 2 ( )

R R
B

R B

   

 

  


  
.  (PBE9) 
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The surface charge density is then obtained as PBE1  

2

0 r NP
NP

20 r NP
NP

1/2

NP

2 NP

2 2
2 NPNP NP

(1 / )
( )

2 ( )
(1 / ) sinh

2

( )
ln cosh

( )2 8 4
1 sech

( )( ) 4 ( )
sinh

2

RT R
R

zF

RT R
R

zF

R

R

RR R

  
  

   


 

 

    


  


 

   
       

  
  

  (PBE10) 

and the potential drop in the Stern layer is  

NP
NP NP

0 r NP

( ) ( )
RzF

R R
RT R


  

  
  


.  (PBE11) 

 

4. Force between charged plates (PP) at different potentials separated by a z:z electrolyte 

solution 

In a z:z electrolyte the Poisson-Boltzmann equation (PBE), eqn (4), can be multiplied by 2   and 

integrated to give 

2 2( ) 2 (cosh )B     (PP1) 

where B  is an integration constant. To describe the interaction between two parallel plates, we note that 
2

0 r( ) ( ) / 2zz E z     is independent of the position between the plates, where 

b( ) 2 [cosh ( ) 1]z RTc z    is the local osmotic pressure measured with respect to its bulk value. The 

local electric field, eqn (PP2), satisfies 

2 b
2 2

0 r

4
( ) 2 [cosh ( ) ] [cosh ( ) ]z

RT RTc
E z z B z B

zF
  

 

 
    
 

 (PP2) 

where we have used 
2 2 b

0 r ( / ) 2RT zF RTc    . As required by the mechanical equilibrium, the total 

stress 

2 b

0 r

1
( ) ( ) 2 ( 1)

2
zz E z RTc B       (PP3) 

is indeed independent of position. Therefore, the force on a plate can be determined by evaluating the 

integration constant B in eqn (PP1) from the values of the potential at the plates and their separation.  
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The integration of eqn (PP1) in planar geometry under arbitrary boundary conditions can be done 

analytically but involves elliptic integrals or Jacobi elliptic functions.PP1,PP2 To avoid these complications, 

it is customary to discuss the interaction between plates using the classical HHF method for the small 

potentials.PP3 Consider that the plate located at z = 0 has potential 
NP  and the plate at z = s has potential 

E . For the sake of simplicity, these dimensionless potentials are both small so that the PBE can be 

linearized to 
2 2 2d / dz   . The solution of this equation is  

NPE
NP( ) cosh( ) sinh( )

sinh( ) tanh( )
z z z

s s


   

 

 
   

 
. (PP4) 

Then, the electric field is  

E NPcosh( ) cosh[ ( )]1 d

d sinh( )

z z s

z s

   

 

 
  (PP5) 

and the constant B  is given by 

2 22 2

2 NP E NP E1 d 1 d
2( 1) 2cosh 2

d d 2cosh( / 2) 2sinh( / 2)
B

z z s s

    
 

   

       
             

       
. (PP6) 

Thus, we conclude that the total force 

b( ) 2 ( 1)F s RTc B A  , (PP7) 

where A  is the plate area, is positive (i. e., repulsive) when NP E  , but it can be attractive when the 

separation s between the plates is small and their potentials are different, even if they are of the same 

sign.PP4,PP5 Consider, without loss of generality, that NP E 0   . The force reverses from repulsive to 

attractive when NP E NP Etanh( / 2) ( ) / ( )s       , that is, when E NP e s   ; this is consistent 

with the arguments made above, as the condition E NP4artanh[tanh( / 4)exp( )]s   
 
 for vanishing 

force mentioned at the beginning of this section corresponds to E NP e s    for small potentials. The 

force between the plates is attractive if E NP e s    and repulsive if NP E NP e s     . 

The attractive interaction between plates with dissimilar potentials of the same sign corresponds 

to an attractive interaction between charges densities of opposite sign.PP6,PP7 The plates have opposite 

charge densities when NP E cosh( )s   , and hence the condition NP E e s   for observing an 

attractive force implies that the plates bear charge densities of opposite sign as 

e cosh( ) sinh( ) cosh( )s s s s      . Indeed, the charge density on the plate at z = 0 is  
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NP E
NP 0 r 0 r

0

NP E
0 r NP E

cosh( )d

d sinh( )

( ) tanh( / 2) 0
2 tanh( / 2)

z

sRT RT

zF z zF s

RT
s

zF s

  
      



 
     






  

 
    

 

 (PP8) 

and the charge density on the plate at z = s is  

E NP
E 0 r 0 r

NP E
0 r NP E

cosh( )d

d sinh( )

( ) tanh( / 2) .
2 tanh( / 2)

z s

sRT RT

zF z zF s

RT
s

zF s

  
      



 
     






 

 
   

 

 (PP9) 

The latter vanishes when 
NP E cosh( )s   . Then, the plates have charge densities of opposite sign 

when 
NP E cosh( )s   . For fixed 

E  and 
NP , the repulsive force is maximum at a separation such 

that 
NP E cosh( )s   , which corresponds to vanishing charge density on the plate at z = s. 

 

Figure S7. Force 
b2 ( 1)RTc B A  between two parallel plates of area 

2

NPA R   separated by 1 nm thick 

layer of a 10 mmol/L 1:1 electrolyte solution. The potential of one plate is indicated in the abscissa axis. 

Four values (0, 10, 50 and 100 mV) have been considered for the potential difference 

NP E( / )( )RT zF    between the plates. The shaded regions correspond to ranges of attraction between 

two plates at potentials of the same sign. 

Figure S7 evaluates the force 
b2 ( 1)RTc B A  for a typical area A  of a 2 nm NP and shows a 

remarkable agreement with the results shown in Figure 3A-C, which are then partly explained. Moreover, 

eqn (PP6) explains that repulsion dominates when 
NP  and E  are increased in magnitude while keeping 

constant NP E  , as observed in Figure 3A-C. Finally, although these results have been derived from 

the linearized PBE, these conclusions are expected to hold qualitatively for large potentials. 
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 The relation between the surface charge densities and the surface potentials can be presented in 

matrix form as 

NP NP

0 r

E E

coth( ) csch( )

csch( ) coth( )

s s

s s

  
  

  

    
    

    
. (PP10) 

At large separations, 1s  , there is no mutual influence and the areal capacitance of the isolated plates 

is 
GC 0 rC     . In general, the areal capacitance of one plate,  

E
NP NP NP ,

( ) /
s

C s


     

0 r coth( )s    , is a decreasing function of s. 

 When the plates interact at constant potentials, the (surface density of) potential energy is 

   2 20 r
NP NP E E NP E NP E

2 20 r
NP E NP E

1
( ) 2 csch( ) coth( )

2 2

( ) tanh( / 2) ( ) coth( / 2)
4

W s s s

s s

  
         

  
     

      
 

      

 (PP11) 

and its derivative gives the force ( )F s  between the plates 

2 22

0 r NP E NP E

2 2

b NP E NP E

( ) d

d 2 2cosh( / 2) 2sinh( / 2)

.
2cosh( / 2) 2sinh( / 2)

F s W

A s s s

RTc
s s

      

 

   

 

     
       

     

     
     

     

 (PP12) 

By subtracting the energy of the isolated plates, the interaction energy isPP3,PP8 

   

  

int NP NP E E NP NP E E

2 20 r
NP E NP E

1 1

2 2

[1 coth( )] 2 csch( )
2

W

s s

       

  
     

     

   

 (PP13) 

where E GC EC    and 
NP GC NPC    are surface charge densities corresponding to infinite 

separation.  

 The linear PBE should not be used to describe the interaction at constant charge for small 

separations, as the potentials may take then so large values that the PBE cannot be linearized.PP9  

 

5. Force between a spherical NP and a planar electrode (SP) at constant potentials in an 

electrolyte solution 
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Consider a spherical NP and a planar electrode at a separation s in an electrolyte solution with Debye 

parameter  . For large particles (
NP 1R  ) and low potentials ( 1  ), the interaction potential 

energy between the NP and the electrode when they are hold at constant potentials isPP3,SP1  

   2 2

int NP E NP E( ) ( ) ln 1 e ( ) ln 1 e
4

s sC
W s             

 
 (SP1) 

where 
0 r NP4C R     

is the capacitance of an isolated NP in the absence of electrolyte. Observe that 

intW
 is the sum of a positive term proportional to the square of the average potential which describes the 

potential energy of the NP-electrode system when it is charged as a whole and a negative term 

proportional to the square of the potential difference that describes the potential energy of a capacitor that 

uses the NP and the electrode as its “plates”.SP2  

When the NP and the electrode interact at constant potentials, their potential energy is 

   

   

 

2 2

NP NP E E int NP GC E

2 2 2 2 2

NP E NP E NP GC E

2 2

NP,NP NP E,E E NP,E NP E

1 1
( ) ( )

2 2

1 e 1
( ) ln 1 e 2 ln

4 1 e 2

1
2

2

s
s

s

W s Q Q W s C C A

C
C C A

C C C

 






   

     

   

 




 

     

 
      

 

   

 (SP2) 

where in the last step we have introduced the capacitance matrix coefficients and GC 0 rC     . The 

charge on the NP is 

 2

NP NP,NP NP NP,E E NP E

1 1 e
( ) 1 ln 1 e ln

2 2 1 e

s
s

s

C
Q s C C C





   


 

 

 
        

. (SP3) 

The force between the NP and the electrode is  

2 2

int NP E NP Ed ( ) ( )
( )

d 4 e 1 e 1s s

W C
F s

s



 

      
    

  
 (SP4) 

where the first term describes a repulsive contribution and the second one an attractive contribution that 

dominates at short separations, i.e. if 
2 2

NP E NP Ee ( ) / 2s      . The similarity between eqns (PP6) and 

(SP4) is not casual, as the force between a sphere and a plane is closely related to the force between two 

planar surfaces.SP3,PP8 In the limit of large separations ( 1s  ) this force reduces to 

NP E( ) e sF s C   

   (SP5) 

and in the absence of electrolyte solution the force is attractive and reduces to  
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2

0 NP E( ) ( )
4

C
F s

s
  
     (SP6) 

 In the case of NPs with smaller radii, i.e. for arbitrary
NPR , and low potentials ( 1  ), the 

interaction potential energy between the NP and the electrode when they are hold at constant potentials 

isPP8  

*

int int int NP NP( ) ( ) ( 2 ) ( ) ( 2 )W s W s W s R s s R          (SP7) 

where 
int ( )W x

 is given by eqn (SP1), 

2 2

NP E 2 NP E 2

NP

( ) ( ) Li ( e ) ( ) Li (e )
4

x xC
x

R

     


          (SP8) 

is a correction function defined from the condition 
int NP( ) d / dW x R x  , and 

2

2 1
Li ( ) /k

k
z z k




  is a 

polylogarithm function whose derivative is 
2dLi ( ) / d ln(1 ) /z z z z   . The force between the NP and 

the electrode is then 

NP

NP

NP NP

( 2 )*
* 2int

NP E ( 2 )

NP

2

NP E ( 2 ) ( 2 )

NP

d 1 1 1 e 1
( ) ( ) ln

d 4 e 1 e 1 e 1

1 1 1 e 1
( ) ln .

4 e 1 e 1 e 1

s R

s Rs s

s

s R s Rs

W C
F s

s R

C

R



 



 


 




 



 



 





  

 
      

   

 
    

   

 (SP9) 

This force is repulsive if 
NP E  , but it can be attractive at short separations if 

NP E  . In the limit 

of large separations ( 1s  ) the force reduces to 

NP

NP

2
2*

NP E

NP

1 e
( ) e 1 e

R
RsF s C

R


 






 

 
   

 
 (SP10) 

and in the absence of electrolyte solution the force is attractive and reduces to  

* 2 NP
0 NP E

NP NP

ln(1 2 / )1 1
( ) ( )

4 2

R sC
F s

s s R R
  


 
     

 
. (SP11) 

 The sphere-plate interaction in electrolyte solutions has been discussed in a number of papers, 

most of them considering the small potential approximation;SP4-SP10 the case of metal sphere and metal 

plate must sometimes be obtained by taking the limit of relative permittivity (of the sphere and the plate) 

tending to infinity. Ohshima has discussed an exact solution for the plate-sphere interaction that is based 

on a generalization of the method of image charges.SP11,SP12 Unfortunately, the expression obtained in 

terms of series expansions is so complicated that has very limited practical value. The important remark 
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from Ohshima work, however, is that the image charges always contribute with an attractive term to the 

interaction force between the sphere and the plate.SP12 

 

6. Solution of the Laplace equation (LE) in the sphere-plate capacitor  

In the absence of electrolyte the potential distribution satisfies the Laplace equation 
2 0  , which can 

be solved analytically in the space between the conducting surfaces of a sphere-plate capacitor. The 

electric field distribution is determined by the boundary conditions and the potential is defined up to an 

arbitrary constant. That is, only the potential difference between the sphere (or nanoparticle NP) and the 

plate (or electrode E) is relevant. For this reason, the description of the electrostatics of the sphere-plate 

interaction often considers that the plate is grounded. Should the plate potential be different, its value 

should be added to the potential distribution described below; with the correct potential difference 

between sphere and plate. In electrostatics it is well known that for a conducting sphere approaching a 

conducting plane, the mutual capacitance coefficient isLE1,LE2 NP,E NP,NPC C   and, therefore, 

NP NP,NP NP NP,E E NP,NP NP E( )Q C C C       , which is reduced to 
NP NP NPQ C   if 

E 0  . 

The centre of the NP of radius 
NPR  is located on the Cartesian z axis at 

centre NPz s R  , where s 

is the separation between NP and electrode. Hereinafter, a tilde ~ denotes division by 
NPR ; e. g., 

NP/s s R . Using bispherical coordinates ( , , )   ,LE3, LE4 the surface 
0 ( )s   with 

2 1/2

0 ( ) arcosh(1 ) ln 1 ( 2 )s s s s s          (LE1) 

is spherical and corresponds to the NP surface; obviously, 
centre NP 0coshz R  . The surface 0   is 

planar and corresponds to the plate ( 0z   in Cartesian coordinates); the origin of coordinates is the plate 

position closest to the NP. The space between the sphere and the plate is (
00 ( )s   , 0    , 

0 2   ). The interior of the NP is 
0 ( )s  .  

The solution of the Laplace equation is
 

3/2 1/2

NP

0 0

sinh[( 1/ 2) ]
( , , ) 2 (cosh cos ) (cos )

exp[(2 1) ( )] 1
m

m

m
s P

m s


      








 

 
  (LE2) 

The electric field is 

cosh cos cosh cos
sin

( ) ( ) cosa s a s
   

       
 

   

        
          

      
E e e e e  (LE3) 

where  

2 1/2

NP 0( ) / sinh ( 2 )a s a R s s     (LE4) 
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is a scale parameter of the bispherical coordinates. The electric field only has   component at the 

surfaces of the sphere and the plate, as the field is normal to these conducting surfaces and they are both 

constant   surfaces, and hence normal to the bispherical unit vector e ; at the plate e  points in the 

positive z direction and at the NP it points towards the inside of the NP. The   component of the field is 

3/2 1/2

NP

0NP 0 0

(cos )2 (cosh cos )

sinh exp[(2 1) ] 1

1
sinh sinh[( 1/ 2) ] ( 1/ 2)(cosh cos )cosh[( 1/ 2) ] .

2
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R m

m m m
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 
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 

 

 
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 


 (LE5) 

At the conducting plate (z = 0 and 0  ) the field is 

3/2 3/2

NP
plate,

0NP 0 0

3

NP

2 1/2 2 1/2 2 1
0NP
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

 (LE6) 

which can be represented (parametrically in  ) against the distance ( ) / tan( / 2)a    along the plate 

to the Cartesian origin for any value of the dimensionless separation 
NP/s s R . Since the charge density 

on the plate is 0 r plate,( , ) zs E    , the total charge on the plate is  

2
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 (LE7) 

where 0 r NP4C R     is the capacitance of the isolated NP. The capacitance of the NP is thenLE3  

2 1/20
NP 2 1/2 2 1

0 00

sinh 1
( ) 2 2 ( 2 )

exp[(2 1) ] 1 [1 ( 2 ) ] 1m
m m

C s C C s s
m s s s





 

  
 

  
     

   (LE8) 

which can be summed analytically in terms of digamma functions.LE4 The interesting property is that 

NP ( )C s C , that is, the charge separation increases as it approaches the electrode when NP and 

electrode are hold at constant potentials; note that NP and electrode bear charges of equal magnitudes and 

opposite signs. The value corresponding to a 2 nm radius NP at 1 nm separation from the electrode is 

NP (0.5) 1.535C C . At this separation and shorter, the NP capacitance can be approximated by   
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NP,NP

1 2
( ) ln

2
C s C

s


 
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 
 (LE9) 

where 
0 (1)    is Euler’s gamma.LE5  

At the sphere surface (
0 ( )s  ) the space charge density is 
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 (LE10) 

In the absence of electrolyte, the force between the NP and the grounded electrode is always attractive 

because the induced charge density on the electrode surface has opposite charge to that on the NP. 

Equation (LE7) clearly shows that a NP with 
NP 0.5V   induces a negative charge on a grounded 

electrode (
E 0  ). The surface charge density 0 r plate,zE  

 
on the electrode surface for 1nms   

and 
NP 2nmR   is significant over a circular region of radius a few times 

NPR . Figure S8 shows   as a 

function of the distance / tan( / 2)a   to the origin of Cartesian coordinates (i.e. the point of closest 

approach to the NP). When compared to the surface charge density on Figure S5 for 
NP 0.5V   and 

E 0  , we observe that the charge density on the electrode is around half in the presence of electrolyte, 

as it should be expected due to the screening of the interaction, but the spatial extension of the distribution 

of charge on the electrode is similar in the presence and in the absence of electrolyte. Similarly, the 

charge density on the NP is also around half in the presence of electrolyte, but its spatial distribution is 

very similar with and without electrolyte. 

 

Figure S8. Surface charge densities on a grounded electrode and a 2 nm radius NP at 0.5 V separated by 

1 nm in aqueous medium ( r 78  ) without electrolyte calculated from eqns (LE6) and (LE10).  
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