Diversity-Oriented Synthesis of Heterocycles and Macrocycles by Controlled Reactions of Oxetanes with α-Iminocarbenes

Alejandro Guarnieri-Ibáñez,^{*a*} Florian Medina,^{*a*} Céline Besnard,^{*b*} Sarah L. Kidd,^{*c*} David R. Spring,^{*c*} and Jérôme Lacour^{*a*,*}

 ^a University of Geneva, Department of Organic Chemistry, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland
^b Laboratory of Crystallography, University of Geneva, quai Ernest Ansermet 24, CH-1211 Genève 4, Switzerland
^c Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK

jerome.lacour@unige.ch

Supporting Information

Table of Contents

1. General remarks	S3
2. Table S1. Initial experiments and optimization studies. Products 4	S3
3. Table S2. Initial experiments and optimization studies. Products 5	S4
4. Figure S1	S5
5. General procedure I: synthesis of N-sulfonyl-1,2,3-triazoles	S5
Analysis data for unreported triazoles	S6
6. General procedure II: synthesis of tetrahydrofurans 9	S6
Analysis data for tetrahydrofurans 9	S7

7. General procedure III: synthesis of macrocycles 5 and 6	S11	
Analysis data for macrocycles 5	S11	
Analysis data for macrocycles 6	S17	
Analysis data for byproducts 6aA and 10aA	S19	
8. General procedure IV: hydrogenation of macrocycles 5	S20	
Analysis data for hydrogenated products 16	S20	
9. Deprotection of N-macrocycles 16aA and 16aB	S23	
10. Synthesis of aldehyde 18	S23	
11. Synthesis of dithiane 19	S24	
12. Synthesis of amine 20	S24	
13. Synthesis of spiroindoline 7	S25	
14. Synthesis of spirotetrahydroisoquinoline 8	S25	
15. NMR spectra of new compounds	S27	
16. Computational details	S82	
17. Crystallographic data	S88	
18. Structural Diversity Computational Analysis	S95	
A) Principal Moment of Inertia (PMI)	S95	
Table S3	S103	
Table S4	S105	
Table S5	S106	
Figure S2	S107	
B) Principal component analysis	S108	
Figure S3	S115	
19. References		

1. General remarks

Unless otherwise stated, reagents were purchased from commercial sources and used without further purification. 2,6-Dioxaspiro[3.3]heptane and 3,3-bis(chloromethyl)oxetane were synthesized according to the reported procedures.¹ NMR spectra were recorded on 400 or 500 MHz spectrometer at 23 °C. ¹H-NMR: chemical shifts are given in ppm relative to Me₄Si with solvent resonances used as internal standards (CDCl₃ δ = 7.26 ppm or acetone-d₆ δ = 2.05 ppm). Data were reported as follows: chemical shift (δ) in ppm on the δ scale, multiplicity (*s* = singulet, *d* = doublet, *t* = triplet, *dd* = doublet of doublet, *q* = quintuplet and *m* = multiplet), coupling constant (Hz) and integration. ¹³C-NMR: chemicals shifts were given in ppm relative to Me₄Si with solvent resonances used as internal standards (CDCl₃ δ = 77.16 ppm or acetone-d₆ δ = 29.84 and 206.26 ppm). IR spectra were recorded using an ATR sampler and are reported in wave numbers (cm⁻¹). Melting points (Mp) were measured in open capillary tubes and were uncorrected. Electrospray mass spectra (ESI) were obtained by the department of Mass Spectrometry of the University of Geneva. Flash column chromatography was performed with silica gel 40 - 63 µm or alumina (neutral Brockmann I, 50 - 200 µm).

2. Table S1. Initial experiments and optimization studies. Products 4

In a 2 mL screw-cap vial equipped with a magnetic stirring bar, $Rh_2(L)_4$ (1 mol %), 4-phenyl-*N*-tosyltriazole **1a** (0.05 mmol, 1 equiv) and 3,3-dimethyloxetane **3A** (0.075 mmol, 1.5 equiv) were dissolved in 0.5 mL (0.1 M) of solvent. The vial was flushed with nitrogen, capped and stirred at the corresponding temperature for the corresponding amount of time. The solution was cooled to room temperature and 1,3,5-trimethoxybenzene (0.25 equiv) was added as reference for NMR yield determination.

0 ЗА							
	Ŋ	N_{N} -Ts Rh ₂ L ₄ (1 mol ⁴	^{%)} \	O N−Ts			
	Ph	/ Solvent, T (°C),	t (h)	Ph			
	0	1a 1 M	4	aA			
	0.						
Entry	Solvent	Catalyst	T (°C)	Time (h)	Yield ^a		
1	CH_2CI_2	-	60 °C	24 h	-		
2	CH_2CI_2	-	100 °C	24 h	-		
3	CH_2CI_2	Rh ₂ (S-TCPTTL) ₄	60 °C	24 h	62%		
4	CH_2CI_2	Rh ₂ (S-TCPTTL) ₄	80 °C	5 h	70%		
5	CH_2CI_2	Rh ₂ (S-TCPTTL) ₄	100 °C	3 h	80%		
6 ^b	CH_2CI_2	Rh ₂ (S-TCPTTL) ₄	100 °C	3 h	81%		
7	Toluene	Rh ₂ (S-TCPTTL) ₄	100 °C	3 h	60%		
8	CHCl₃	Rh ₂ (S-TCPTTL) ₄	100 °C	3 h	70% ^c		
9	1,2-DCE	Rh ₂ (S-TCPTTL) ₄	100 °C	3 h	50% ^c		
10	CH_2CI_2	Rh₂(Oct)₄	100 °C	3 h	75%		
11	CH_2CI_2	Rh2(Piv)4	100 °C	3 h	75%		
12	CH_2CI_2	Rh ₂ (S-PTTL) ₄	100 °C	3 h	69%		
13	CH_2CI_2	Rh ₂ (<i>R</i> -DOSP) ₄	100 °C	3 h	70%		
14	CH_2Cl_2	Rh₂(esp)₄	100 °C	3 h	79%		

 $R = n-C_7H_{15} : Rh_2(Oct)_4$ R = t-Bu : Rh_2(Piv)_4

 $R = n - C_{12}H_{25} : Rh_2(R - DOSP)_4$

 $R = H : Rh_2(S-PTTL)_4$ R = CI : Rh_2(S-TCPTTL)_4

^aDetermined by ¹H NMR. ^b3 equivalents of oxetane. ^c Partial hydrolysis of the imine.

3. Table S2. Initial experiments and optimization studies. Products 5

In a 2 mL screw-cap vial equipped with a magnetic stirring bar, $Rh_2(L)_4$ (1 mol %) and triazole **1k** (0.1 mmol, 1 equiv) were dissolved in 0.1 mL (1 M) of 3,3-dimethyloxetane. The vial was flushed with nitrogen, capped and stirred at the corresponding temperature for the corresponding amount of time. The solution was cooled to room temperature and 1,3,5-trimethoxybenzene (4.21 mg, 0.25 equiv) was added as reference for NMR yield determination.

Entry	Solvent	Catalyst	Temperature	Time	Yield ^a
1	-	-	100 °C	24 h	-
2 ^b	-	Rh ₂ (OAc) ₄	100 °C	5 h	28%
3	-	Rh2(OAc)4	100 °C	3 h	31%
4	-	Rh2(Oct)4	100 °C	3 h	36%
5	-	Rh2(Piv)4	100 °C	3 h	42%
6	-	Rh ₂ (esp) ₂	100 °C	3 h	36%
7	-	Rh ₂ (<i>R</i> -DOSP) ₄	100 °C	3 h	28%
8	-	Rh ₂ (<i>R</i> -TBSP) ₄	100 °C	3 h	27%
9	-	Rh₂(S-PTTL)₄	100 °C	13 h	21%
10	-	Rh ₂ (S-TFPTTL) ₄	100 °C	3 h	45%
11	-	Rh ₂ (S-TCPTTL) ₄	100 °C	3 h	46%
12 ^c	-	Rh ₂ (S-TCPTTL) ₄	100 °C	3 h	47%
13	-	Rh ₂ (S-TCPTTL) ₄	80 °C	10 h	45%
14	CH_2Cl_2	Rh ₂ (S-TCPTTL) ₄	100 °C	3 h	36%
15	CHCl₃	Rh ₂ (S-TCPTTL) ₄	100 °C	3 h	40%
16	Toluene	Rh ₂ (S-TCPTTL) ₄	100 °C	3 h	38%

 $\begin{aligned} \mathsf{R} &= \mathsf{Me} : \mathsf{Rh}_2(\mathsf{OAc})_4 \\ \mathsf{R} &= \mathit{n}\text{-}\mathsf{C}_7\mathsf{H}_{15} : \mathsf{Rh}_2(\mathsf{Oct})_4 \\ \mathsf{R} &= \mathit{t}\text{-}\mathsf{Bu} : \mathsf{Rh}_2(\mathsf{Piv})_4 \end{aligned}$

 $R = n-C_{12}H_{25} : Rh_2(R-DOSP)_4$ $R = t-Bu : Rh_2(R-TBSP)_4$

 $\label{eq:result} \begin{array}{l} \mathsf{R} = \mathsf{H} : \mathsf{Rh}_2(S\text{-}\mathsf{PTTL})_4 \\ \mathsf{R} = \mathsf{F} : \mathsf{Rh}_2(S\text{-}\mathsf{TFPTTL})_4 \\ \mathsf{R} = \mathsf{CI} : \mathsf{Rh}_2(S\text{-}\mathsf{TCPTTL})_4 \end{array}$

^aDetermined by ¹H NMR. ^bPerformed at 0.5 M. ^cPerformed with 2 mol%.

4. Figure S1

Top: reactivity of the *N*-sulfonyl-4-phthalimido-1,2,3-triazoles **1p** and **1q** with 3,3-diemthyloxetane. Bottom: Stick views of the crystal structures of (*Z*)-**5pA** (left) and (*E*)-**5pA** (right). The benzyl group R' and H-atoms are omitted for clarity.

5. General procedure I: synthesis of *N*-sulfonyl-1,2,3-triazoles

Important note: Sulfonyl azides are potentially explosive materials and must be handled with caution.

<u>Azide synthesis</u>: Following the reported procedure,² to a stirred solution of sulfonyl chloride (10.0 mmol, 1.0 equiv) in 60 mL water/acetone mixture (1:2), NaN₃ (1.3 equiv, 845 mg) was slowly added at 0 °C. The resulting solution was stirred at room temperature for 12 h. The residue was suspended in 20 mL of Et₂O, the layers were separated and the aqueous phase was extracted with Et₂O (3 x 20 mL). The organic layers were combined, dried over MgSO₄, filtered and concentrated under reduced pressure. The desired azide was obtained sufficiently pure to be used without any further purification.

<u>Caution</u>: Care should be taken to protect the reaction mixture from light at each step of the synthesis of the triazoles.

Method A:

Following the reported procedure,³ 0.1 mmol (0.05 equiv, 19 mg) of copper(I) thiophene-2carboxylate (CuTC) and 2 mmol (1 equiv) of the corresponding sulfonyl azide were diluted in 7 mL of toluene. Then 2.6 mmol (1.3 equiv) of the corresponding alkyne was added and the solution was stirred at room temperature overnight and protected from light. The mixture was diluted with 20 mL of saturated NH₄Cl_{aq} and extracted with EtOAc (3 x 15 mL). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The yellowish solid obtained was filtrated over a pad of silica gel or purified by column chromatography (silica gel, pentane/EtOAc) to afford the desired product. Products of type **1** were then stored at -20 °C in the dark under nitrogen atmosphere. **Method B:**

Following the reported procedure,⁴ 1 mmol (1 equiv, 0.171 g) of *N*-ethynylphthalimide, 1.2 mmol (1.2 equiv) of the corresponding sulfonyl azide and 10 mmol (0.1 equiv, 0.019 g) of CuTC were dissolved in

4 mL of toluene and stirred at room temperature overnight and protected from light. The mixture was filtrated through a short pad of silica gel with acetone and the resulting solid was washed three times with Et₂O, to yield the desired triazole. Products of type **1** were then stored at -20 °C in the dark under nitrogen atmosphere.

Analysis data for unreported triazoles

1-(benzylsulfonyl)-4-phthalimido-1*H*-1,2,3-triazole (1p):

Following general procedure I, Method B: **1p** is obtained as a white solid (0.32 g, 88% yield) starting from the corresponding alphatoluenesulfonyl azide (0.236 g, 1.2 mmol, 1.2 equiv). **M.p.** = 134-136 °C; **Rf** = 0.45 (silica gel, pentane/EtOAc, 1:1); ¹**H NMR (500 MHz, CDCl₃):** δ 7.98 (*dd*, *J* = 5.5, 3.0 Hz, 2H), 7.92 (*s*, 1H), 7.84 (*dd*, *J* = 5.5, 3.1 Hz, 2H), 7.43-7.32 (*m*, 3H), 7.15-7.12 (*m*, 2H), 4.90 (*s*, 2H)

ppm; 13 C NMR (100 MHz, CDCl₃): δ 165.2 (C), 136.7 (C), 135.2 (CH),

131.6 (C), 130.8 (CH), 130.3 (CH), 129.6 (CH), 125.0 (C), 124.5 (CH), 120.8 (CH), 61.7 (CH₂) ppm; **IR (neat):** 1727, 1568, 1380, 1367, 1171, 1080, 979, 781 cm⁻¹; **HR-MS (ESI):** $m/z = 369.0649 [M+H]^+$ (calculated for C₁₇H₁₃N₄O₄S m/z = 369.0652).

1-(4-methoxybenze)-4-phthalimido-1*H*-1,2,3-triazole (1q):

Following general procedure I, Method B: **1q** is obtained as a white solid (0.18 g, 70% yield) starting from the corresponding 4methoxybenzenesulfonyl azide (0.17 g, 0.8 mmol; 1.2 equiv). **M.p.** = 99-101 °C; **Rf** = 0.34 (silica gel, pentane/EtOAc, 1:1); ¹**H NMR (500 MHz, CDCl₃)**: δ 8.42 (s, 1H), 8.13-8.07 (m, 2H), 7.98 (dd, J = 5.5, 3.1 Hz, 2H), 7.83 (dd, J = 5.5, 3.0 Hz, 2H), 7.09-7.03 (m, 2H), 3.91 (s, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃)**: 165.9 (C), 165.3 (C), 136.8 (C), 135.1 (CH₂), 131.8 (CH₂), 131.6 (C), 126.4 (C), 124.4 (CH₂), 118.6 (CH), 115.4 (CH₂), 56.2 (CH₃)

ppm; **IR (neat):** 1731, 1591, 1572, 1372, 1166, 714 cm⁻¹; **HR-MS (ESI):** $m/z = 417.0846 [M+H+CH_{3}OH]^{+}$ (calculated for C₁₈H₁₇N₄O₆S m/z = 417.0863).

6. General procedure II: synthesis of tetrahydrofurans 9

In a 2 mL screw-cap vial equipped with a magnetic stirring bar, $Rh_2(S-TCPTTL)_4$ (2.96 mg, 0.0015 mmol, 1 mol%), *N*-sulfonyltriazole **1** (0.15 mmol, 1 equiv) and the corresponding oxetane **3** (0.225 mmol, 1.5 equiv) were dissolved in 1.5 mL of anhydrous CH_2Cl_2 (0.1 M). The vial was flushed with nitrogen, capped and stirred at 100 °C for a specific amount of time (see procedures below). The solution was cooled to 0 °C and LiAlH₄ (8.54 mg, 0.225 mmol, 1.5 equiv.) was slowly added. The solution was stirred at room temperature for 1 h. Then, 5 mL of EtOAc were added dropwise followed by 200 µL of H₂O and dried over Na_2SO_4 . The solution was filtered, concentrated under reduced pressure and purified by column chromatography.

Analysis data for tetrahydrofurans 9

Compound 9aA:

Following general procedure II, compound **9aA** is obtained as a white solid (42.3 mg, 80% yield) starting from triazole **1a** (44.04 mg, 0.15 mmol) and 3,3-dimethyloxetane **3A** with a 3 hours reaction time.

Purification: column chromatography (neutral Al_2O_3 , pentane/Et₂O, 1:1) **M.p.** = 99.5-100.5 °C; **Rf** = 0.59 (neutral Al_2O_3 , pentane/Et₂O, 2:8); ¹**H NMR (400 MHz, CDCl₃):** δ 7.62-7.54 (*m*, 2H), 7.31-7.27 (*m*, 4H), 7.24-7.18 (*m*, 3H),

4.65 (*dd*, *J* = 7.6, 5.1 Hz, 1H), 3.60 (*d*, *J* = 8.3 Hz, 1H), 3.55 (*d*, *J* = 8.3 Hz, 1H), 3.22 (*dd*, *J* = 12.4, 7.6 Hz, 1H), 2.96 (*dd*, *J* = 12.4, 5.0 Hz, 1H), 3.13 (*s*, 3H), 2.23 (*d*, *J* = 12.7 Hz, 1H), 2.06 (*d*, *J* = 12.7 Hz, 1H), 1.13 (*s*, 3H), 0.85 (*s*, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 144.8 (C), 143.3 (C), 137.0 (C), 129.7 (CH), 128.5 (CH), 127.2 (CH), 127.1 (CH), 125.2 (CH), 86.4 (C), 80.3 (CH₂), 52.6 (CH₂), 50.0 (CH₂), 40.6 (C), 27.5 (CH₃), 27.3 (CH₂), 21.6 (CH₂) ppm; IR (neat): 3249, 2958, 2865, 1444, 1337, 1161, 1095, 1027, 817, 694, 537 cm⁻¹; HR-MS (ESI): m/z = 360.1631 [M+H]⁺ (calculated for C₂₀H₂₆NO₃S m/z = 360.1628).

Compound 9bA:

Following general procedure II, compound **9bA** is obtained as a yellowish solid (35.2 mg, 63% yield) starting from triazole **1b** (48.4 mg, 0.15 mmol) and 3,3-dimethyloxetane **3A** with a 3 hours reaction time.

Purification: column chromatography (neutral Al₂O₃, pentane/EtOAc, 7:3).

M.p. = 119-121 °C; **Rf** = 0.30 (silica gel, pentane/EtOAc, 8:2); ¹**H NMR (400 MHz, CDCl₃)**: δ 7.62-7.54 (*m*, 2H), 7.24-7.15 (*m*, 4H), 6.84-6.76 (*m*, 2H), 4.61 (*dd*, *J* = 7.5, 5.1 Hz, 1H), 3.79 (*s*, 3H), 3.58 (*d*, *J* = 8.3 Hz, 1H), 3.52 (*d*, *J* = 8.3 Hz, 1H), 3.19 (*dd*, *J* = 12.4, 7.5 Hz, 1H), 2.93 (*dd*, *J* = 12.4, 5.1 Hz, 1H), 2.39 (*s*,

3H), 2.19 (*d*, *J* = 12.6 Hz, 1H), 2.03 (*d*, *J* = 12.7 Hz, 1H), 1.13 (*s*, 3H), 0.86 (*s*, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃)**: δ 158.7 (C), 143.3 (C), 137.0 (C), 136.7 (C), 129.7 (CH), 127.1 (CH), 126.4 (CH), 113.8 (CH), 86.1 (C), 80.2 (CH₂), 55.4 (CH₃), 52.7 (CH₂), 50.0 (CH₂), 40.6 (C), 27.6 (CH₃), 27.3 (CH₃), 21.6 (CH₃) ppm; **IR (neat)**: 3252, 2928, 1513, 1410, 1317, 1251, 1160, 1062, 1033, 827, 809 cm⁻¹; **HR-MS (ESI)**: m/z = 412.1554 [M+Na]⁺ (calculated for C₂₁H₂₇NNaO₄S m/z = 412.1553).

Compound 9cA:

Following general procedure II, compound **9cA** is obtained as a white solid (42.3 mg, 68% yield) starting from triazole **1c** (53.5 mg, 0.15 mmol) and 3,3-dimethyloxetane **3A** with a 6 hours reaction time.

Purification: column chromatography (neutral Al₂O₃, pentane/EtOAc, 8:2). **M.p.** = 130-131 °C; **Rf** = 0.51 (silica gel, pentane/EtOAc, 8:2); ¹**H NMR (400 MHz, CDCl₃**): δ 7.53-7.46 (*m*, 4H), 7.37 (*d*, *J* = 8.2 Hz, 2H), 7.18 (*d*, *J* = 8.1 Hz, 2H), 4.67 (*t*, *J* = 6.4 Hz, 1H), 3.62 (*d*, *J* = 8.4 Hz, 1H), 3.56 (*d*, *J* = 8.4 Hz, 1H), 3.27 (*dd*, *J* = 12.6, 6.5 Hz, 1H), 3.01 (*dd*, *J* = 12.6, 6.3 Hz, 1H), 2.38 (*s*, 3H), 2.22

(d, J = 12.8 Hz, 1H), 2.01 (d, J = 12.8 Hz, 1H), 1.14 (s, 3H), 0.85 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.1 (C), 143.5 (C), 136.8 (C), 129.7 (CH), 129.4 (q, J = 32.3 Hz, C), 127.0 (CH), 125.7 (CH), 125.4 (q, J = 3.8 Hz, CH), 124.2 $(q, J = 272.0 \text{ Hz}, \text{CF}_3)$, 86.2 (C), 80.3 (CH₂), 52.5 (CH₂), 50.4 (CH₂), 40.7 (C), 27.2 (CH₃), 27.1 (CH₃), 21.6 (CH₃) ppm; IR (neat): 3317, 2961, 1330, 1314, 1155, 1115, 1068, 831, 808, 655 cm⁻¹; HR-MS (ESI): m/z = 450.1314 [M+Na]⁺ (calculated for C₂₁H₂₄F₃NNaO₃S m/z = 450.1321).

Compound 9dA:

Following general procedure II, compound **9dA** is obtained as a white solid (38.2 mg, 58% yield) starting from triazole **1d** (56.7 mg, 0.15 mmol), 2 mol% of Rh₂(*S*-TCPTTL)₄ and 3,3-dimethyloxetane **3A** with a 6 hours reaction time. Purification: column chromatography (neutral Al₂O₃, pentane/EtOAc, 8:2) **M.p.** = 112-114 °C; **Rf** = 0.51 (silica gel, pentane/EtOAc, 8:2); ¹**H NMR (400 MHz, CDCl₃):** δ 7.66 (*dd*, *J* = 7.9, 1.8 Hz, 1H), 7.50 (*d*, *J* = 8.3 Hz, 2H), 7.40 (*dd*,

J = 7.9, 1.3 Hz, 1H, 7.29-7.23 (m, 1H), 7.15 (d, J = 8.0 Hz, 2H), 7.06 (td, J = 7.6, 1.8 Hz, 1H), 4.76-4.61 (m, 1H), 3.65-3.54 (m, 2H), 3.53-3.44 (m, 2H), 2.38 (s, 3H), 2.24 (d, J = 13.4 Hz, 1H), 2.17 (d, J = 13.5 Hz, 1H), 1.12 (s, 3H), 0.88 (s, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃)**: δ 143.0 (C), 142.8 (C), 137.0 (C), 134.7 (CH), 129.6 (CH), 128.9 (CH), 128.3 (CH), 127.4 (CH), 127.1 (CH), 120.4 (C), 86.5 (C), 79.1 (CH₂), 50.5 (CH₂), 49.3 (CH₂), 40.9 (C), 27.2 (CH₃), 26.9 (CH₃), 21.6 (CH₃) ppm; **IR (neat)**: 3289, 2853, 1322, 1163, 1034, 816, 758, 673 cm⁻¹; **HR-MS (ESI)**: m/z = 438.0743 [M+H]⁺ (calculated for C₂₀H₂₅BrNO₃S m/z = 438.0733).

Compound 9eA:

Following general procedure II, compound **9eA** is obtained as a white solid (47.5 mg, 74% yield) starting from triazole **1e** (55.2 mg, 0.15 mmol) and 3,3-dimethyloxetane **3A** with a 3 hours reaction time.

Purification: column chromatography (neutral Al₂O₃, pentane/EtOAc, 8:2). **M.p.** = 137-139 °C; **Rf** = 0.52 (silica gel, pentane/EtOAc (7:3); ¹**H NMR (400 MHz, CDCl₃**): δ 7.69-7.59 (*m*, 3H), 7.51-7.44 (*m*, 2H), 7.28 (*dd*, *J* = 8.6, 2.0 Hz, 1H), 7.15 (*dd*, *J* = 8.9, 2.5 Hz, 1H), 7.10 (*d*, *J* = 2.5 Hz, 1H), 7.05 (*d*, *J* = 8.0 Hz, 2H), 4.70 (*t*, *J* = 6.2 Hz, 1H), 3.92 (*s*, 3H), 3.65 (*d*, *J* = 8.4 Hz, 1H), 3.61 (*d*, *J* = 8.3 Hz, 1H), 3.32 (*dd*, *J* = 12.5, 7.1 Hz, 1H), 3.05 (*dd*, *J* = 12.5, 5.5 Hz, 1H), 2.31

(s, 3H), 2.25 (d, J = 12.7 Hz, 1H), 2.15 (d, J = 12.7 Hz, 1H), 1.16 (s, 3H), 0.85 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 157.9 (C), 143.1 (C), 139.8 (C), 136.9 (C), 133.7 (C), 129.7 (CH), 129.5 (CH), 128.7 (C), 127.2 (CH), 127.0 (CH), 124.0 (CH), 123.8 (CH), 119.2 (CH), 105.6 (CH), 86.4 (C), 80.2 (CH₂), 55.5 (CH₃), 52.7 (CH₂), 50.2 (CH₂), 40.7 (C), 27.5 (CH₃), 27.3 (CH₃), 21.6 (CH₃) ppm; IR (neat): 2926, 1605, 1312, 1293, 1213, 1152, 1062, 1033, 804, 655 cm⁻¹; HR-MS (ESI): m/z = 462.1715 [M+Na]⁺ (calculated for C₂₅H₂₉NNaO₄S m/z = 462.1710).

Compound 9fA:

Following general procedure II, compound **9fA** is obtained as a white solid (40.8 mg, 75% yield) starting from triazole **1f** (45.2 mg, 0.15 mmol) and 3,3-dimethyloxetane **3A** with a 3 hours reaction time.

Purification: column chromatography (neutral Al_2O_3 , pentane/EtOAc, 8:2). **M.p.** = 92.5-94.5 °C; **Rf** = 0.31 (silica gel, pentane/EtOAc (8:2); ¹**H NMR (400**

MHz, CDCl₃): δ 7.62 (*d*, *J* = 8.3 Hz, 2H), 7.25-7.20 (m, 3H), 7.11 (*dd*, *J* = 3.1,

1.3 Hz, 1H), 6.86 (*dd*, *J* = 5.0, 1.3 Hz, 1H), 4.65-4.60 (*m*, 1H), 3.56 (*s*, 2H), 3.19 (*dd*, *J* = 12.4, 7.4 Hz, 1H), 3.01 (*dd*, *J* = 12.4, 5.3 Hz, 1H), 2.40 (*s*, 3H), 2.15 (*d*, *J* = 12.7 Hz, 1H), 2.00 (*d*, *J* = 12.7 Hz, 1H), 1.12 (*s*, 3H), 0.91 (*s*, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 146.4 (C), 143.4 (C), 137.0 (C), 129.8 (CH), 127.1 (CH), 126.5 (CH), 125.6 (CH), 120.7 (CH), 85.2 (C), 80.3 (CH₂), 52.0 (CH₂), 49.8 (CH₂), 40.6 (C), 27.5 (CH₃), 27.3 (CH₃), 21.7 (CH₃) ppm; **IR (neat):** 3237, 2922, 2861, 1448, 1329, 1160, 1099, 1026, 791, 665 cm⁻¹; HR-MS (ESI): m/z = 366.1194 [M+H]⁺ (calculated for C₁₈H₂₄NO₃S₂ m/z = 366.1192).

Compound 9gA:

Following general procedure II, compound **9gA** is obtained as a white solid (29.4 mg, 71% yield) starting from triazole **1g** (32.7 mg, 0.15 mmol) and 3,3-dimethyloxetane **3A** with a 3 hours reaction time.

Purification: column chromatography (silica gel, pentane/EtOAc, 8:2).

M.p. = 92.5-94.5 °C; **Rf** = 0.51 (silica gel, pentane /EtOAc, 6:4); ¹**H NMR (400 MHz, CDCl₃**): δ 7.41-7.32 (*m*, 4H), 7.28-7.23 (*m*, 1H), 4.44 (*t*, *J* = 6.3 Hz, 1H), 3.67

(d, J = 8.4 Hz, 1H), 3.61 (d, J = 8.4 Hz, 1H), 3.48 (dd, J = 13.4, 6.5 Hz, 1H), 3.32 (dd, J = 13.4, 5.9 Hz, 1H), 2.61 (s, 3H), 2.11 (s, 2H), 1.16 (s, 3H), 0.90 (s, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃)**: δ 144.9 (C), 128.7 (CH), 127.4 (CH), 125.5 (CH), 86.5 (C), 79.9 (CH₂), 53.3 (CH₂), 50.9 (CH₂), 40.8 (CH₃), 40.7 (C), 27.3 (CH₃), 27.1 (CH₃) ppm; **IR (neat)**: 3277, 2961, 1425, 1312, 1150, 1050, 1027, 968, 768, 699 cm⁻¹, **HR-MS (ESI)**: m/z = 306.1126 [M+Na]⁺ (calculated for C₁₄H₂₁NNaO₃S m/z = 306.1134).

Compound 9hA:

Following general procedure II, compound **9hA** is obtained as a yellowish solid (33.0 mg, 58% yield) starting from triazole **9h** (48.3 mg, 0.15 mmol) and 3,3-dimethyloxetane **3A** with a 3 hours reaction time. The treatment with LiAlH₄ is at 0 °C during 30 minutes.

Purification: column chromatography (neutral Al₂O₃, pentane/EtOAc, 9:1). **M.p.** = 126-127 °C; **Rf** = 0.44 (silica gel, pentane/EtOAc, 8:2); ¹**H NMR (400 MHz, CDCl₃):** δ 8.19 (*d*, *J* = 8.8 Hz, 2H), 7.76 (*d*, *J* = 8.8 Hz, 2H), 7.25-7.16 (*m*,

5H), 4.87 (*t*, *J* = 6.0 Hz, 1H), 3.55 (*q*, *J* = 8.4 Hz, 2H), 3.40 (*dd*, *J* = 12.7, 6.0 Hz, 1H), 3.13 (*dd*, *J* = 12.7, 5.9 Hz, 1H), 2.15-1.98 (*m*, 2H), 1.13 (*s*, 1H), 0.86 (*s*, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.9 (C), 146.1 (C), 144.4 (C), 128.6 (CH), 128.2 (CH), 127.3 (CH), 125.2 (CH), 124.2 (CH), 86.0 (C), 79.9 (CH₂), 52.9 (CH₂), 50.9 (CH₂), 40.7 (C), 27.3 (CH₃), 27.1 (CH₃) ppm; IR (neat): 3275, 2962, 2925, 1529, 1343, 1166, 1091, 1055, 1027, 851, 763, 736, 684 cm⁻¹; HR-MS (ESI): m/z = 391.1321 [M+H]⁺ (calculated for C₁₉H₂₃N₂O₅S m/z = 391.1322).

Compound 9aB:

Following general procedure II, compound **9aB** is obtained as a white solid (29.8 mg, 60% yield) starting from triazole **1a** (44.9 mg, 0.15 mmol) and unsubstituted oxetane **3B** with a 3 hours reaction time.

Purification: column chromatography (neutral Al₂O₃, pentane/Et₂O, 1:1).

M.p. = 72.5-74.5 °C; **Rf** = 0.44 (neutral Al₂O₃, pentane/Et₂O, 2:8); ¹**H NMR (400 MHz, CDCl₃)**: δ 7.66-7.58 (*m*, 2H), 7.32-4.27 (*m*, 4H), 7.25-7.21 (*m*, 3H), 4.69 (*dd*,

J = 8.8, 4.2 Hz, 1H, $4.01-3.92 (m, 1\text{H}), 3.90-3.82 (m, 1\text{H}), 3.29 (dd, <math>J = 12.3 \text{ Hz}, 8.5 \text{ Hz}, 1\text{H}), 2.98 (dd, <math>J = 12.3, 4.1 \text{ Hz}, 1\text{H}), 2.49-2.34 (m, 4\text{H}), 2.17-2.07 (m, 1\text{H}), 2.04-1.92 (m, 1\text{H}), 1.87-1.74 (m, 1\text{H}) \text{ ppm}; {}^{13}\text{C}$ **NMR (100 MHz, CDCl_3):** δ 144.3 (C), 143.4 (C), 136.9 (C), 129.8 (CH), 128.5 (CH), 127.4 (CH), 127.1 (CH), 125.2 (CH), 85.8 (C), 68.6 (CH₂), 51.7 (CH₂), 35.2 (CH₂), 26.1 (CH₂), 21.6 (CH₃) ppm; **IR (neat):** 3256, 2920, 1429, 1323, 1158, 1089, 1064, 816, 697 cm⁻¹; **HR-MS (ESI):** m/z = 332.1309 [M+H]⁺ (calculated for C₁₈H₂₂NO₃S m/z = 332.1315).

Compound 9aC:

Following general procedure II, compound **9aC** is obtained as a white solid (48.1 mg, 75% yield) starting from triazole **1a** (44.8 mg, 0.15 mmol) and 3,3-bis(chloromethyl)oxetane **3C** with a 3 hours reaction time. Purification: column chromatography (neutral Al_2O_3 , pentane/Et₂O, 1:1).

M.p. = 97.5-99.5 °C; **Rf** = 0.5 (neutral Al₂O₃, pentane/Et₂O, 2:8); ¹**H NMR** (400 MHz, CDCl₃): δ 7.63 (*d*, *J* = 8.3 Hz, 2H), 7.39-7.23 (*m*, 7H), 4.79-4.70

(*m*, 1H), 3.89 (*d*, J = 9.8 Hz, 1H), 3.83-3.66 (*m*, 3H), 3.40 (*d*, J = 11.1 Hz, 1H), 3.35 (*d*, J = 11.2 Hz, 1H), 3.21 (*dd*, J = 13.0, 8.8 Hz, 1H), 2.95 (*dd*, J = 13.0, 4.5 Hz, 1H), 2.46 (*d*, J = 13.8 Hz, 1H), 2.40 (*s*, 3H), 2.35 (*d*, J = 13.8 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 143.7 (C), 142.7 (C), 136.9 (C), 129.9 (CH), 129.0 (CH), 128.0 (CH), 127.1 (CH), 125.1 (CH), 86.8 (C), 73.5 (CH₂), 52.0 (CH₂), 51.8 (C), 48.2 (CH₂), 47.5 (CH₂), 42.7 (CH₂), 21.7 (CH₃) ppm; IR (neat): 3285, 1440, 1408, 1326, 1163, 1042, 815, 707, 661 cm⁻¹; HR-MS (ESI): m/z = 428.0863 [M+H]⁺ (calculated for C₂₀H₂₄Cl₂NO₃S m/z = 428.0849).

Compound 9aD:

Following general procedure II, compound **9aD** is obtained as a white solid (24.6 mg, 44% yield) starting from triazole **1a** (44.9 mg, 0.15 mmol) and 2,6-dioxaspiro[3.3]heptane **3D** with a 3 hours reaction time.

Purification: column chromatography (neutral Al₂O₃, pentane/EtOAc, 6:4). **M.p.** = 192.5-194.5 °C; **Rf** = 0.25 (silica gel, pentane/EtOAc, 1:1); ¹**H NMR (400 MHz, CDCl₃):** δ 7.67 (*d*, *J* = 8.0 Hz, 2H), 7.40-7.27 (*m*, 7H), 4.13 (*d*, *J* =

7.7 Hz, 1H), 3.88 (d, J = 10.8 Hz, 1H), 3.82-3.73 (m, 2H), 3.70 (s, 2H), 2.71 (d, J = 10.9 Hz, 1H), 2.66 (d, J = 11.4 Hz, 1H), 2.43 (s, 3H), 1.98 (d, J = 11.2 Hz, 1H), 1.85 (d, J = 11.2 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 143.7 (C), 141.6 (C), 134.3 (C), 129.8 (CH), 128.6 (CH), 128.0 (CH), 127.6 (CH), 125.4 (CH), 82.8 (C), 74.3 (CH₂), 65.6 (CH₂), 56.6 (CH₂), 52.1 (CH₂), 46.7 (C), 43.0 (CH₂), 21.7 (CH₃) ppm; IR (neat): 2874, 1333, 1152, 1001, 812, 699, 666, 561 cm⁻¹; HR-MS (ESI): m/z = 374.1423 [M+H]⁺ (calculated for C₂₀H₂₃NO₄S m/z = 374.1421).

Compound 9iA:

Following general procedure II but without adding $Rh_2(S-TCPTTL)_4$, compound **9iA** is obtained as a colorless oil (24.6 mg, 50% yield) starting from triazole **1i** (40.1 mg, 0.15 mmol) and 3,3-dimethyloxetane **3A**, heating at 60 °C during 6 hours.

Purification: column chromatography (neutral Al₂O₃, pentane/Et₂O, 7:3).

Rf = 0.41 (silica gel, pentane/Et₂O, 1:1); ¹**H** NMR (400 MHz, CDCl₃): δ 7.74 (*d*, *J* = 8.3 Hz, 2H), 7.31 (*d*, *J* = 8.0 Hz, 2H), 4.54 (*t*, *J* = 6.0 Hz, 1H), 3.61 (*d*, *J* = 8.2 Hz, 1H), 3.52 (*d*, *J* = 8.2 Hz, 1H), 3.49-3.38 (*m*, 1H), 3.23-3.08 (*m*, 2H), 3.00 (*dd*, *J* = 12.1, 6.8 Hz, 1H), 2.43 (*s*, 3H), 1.84 (*d*, *J* = 13.4 Hz, 1H), 1.77 (*d*, *J* = 13.4 Hz, 1H), 1.13 (*s*, 3H), 1.08 (*t*, *J* = 7.0 Hz, 3H), 1.04 (*s*, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 143.7 (C), 136.7 (C), 129.9 (CH), 127.3 (CH), 108.3 (C), 80.7 (CH₂), 56.5 (CH₂), 49.4 (CH₂), 46.7 (CH₂), 39.2 (C), 28.4 (CH₃), 26.8 (CH₃), 21.7 (CH₃), 15.8 (CH₃) ppm; **IR (neat):** 1599, 1443, 1325, 1157, 1081, 1040, 813, 660 cm⁻¹; **HR-MS (ESI):** m/z = 350.1391 [M+Na]⁺ (calculated for C₁₆H₂₅NNaO₄S m/z = 350.1397).

7. General procedure III: synthesis of macrocycles 5 and 6

Method A:

In a 2 mL screw-cap vial equipped with a magnetic stirring bar, $Rh_2(S-TCPTTL)_4$ (1 or 2 mol %) and the corresponding triazole (0.2 mmol, 1 equiv) were dissolved in 0.20 mL (1 M) of the corresponding oxetane. The vial was flushed with nitrogen and capped. After several hours stirring at 100 °C, the solution was concentrated under reduced pressure and the residue was purified by column chromatography.

Method B:

In a 2 mL screw-cap vial equipped with a magnetic stirring bar, 0.1 mmol (1 equiv) of the corresponding 4-phthalimido *N*-sulfonyltriazole was dissolved in 0.10 mL (1 M) of 3,3-dimethyloxetane. The vial was flushed with nitrogen and capped. After stirring at 60 °C during 2 h, the solution was concentrated under reduced pressure and the residue was purified by column chromatography.

Analysis data for macrocycles 5

Compound 5aA:

Following general procedure III, Method A: **5aA** is obtained as a white solid (34.2 mg, 34% yield) starting from triazole **1a** (57.2 mg, 0.19 mmol), 3,3-dimethyloxetane **3A** and using 1 mol% of $Rh_2(S$ -TCPTTL)₄ with a 5 hour reaction time.

Purification: column chromatography (silica gel, pentane/Et₂O, 8:2).

M.p. = 135-137 °C; **Rf** = 0.47 (Silica gel, pentane/Et₂O, 8:2); ¹**H NMR (400 MHz, acetone-***d*₆**)**: δ 7.77-7.68 (*m*, 2H), 7.48-7.38 (*m*, 5H), 7.34-7.28 (*m*, 2H), 5.66 (*s*, 1H), 3.50 (*s*, 2H), 3.24 (*s*, 2H), 3.19 (*s*, 2H), 3.16 (*s*, 2H), 3.12 (*s*, 2H), 2.82 (*s*, 2H), 2.44 (*s*, 3H), 1.08 (*s*, 6H), 0.83 (*s*, 6H), 0.69 (*s*, 6H) ppm; ¹³C NMR (100 MHz, acetone-*d*₆): 153.9 (C), 143.9 (C), 138.2 (C), 135.1 (C),

130.3 (CH), 129.8 (CH), 129.4 (CH), 128.4 (CH), 128.2 (CH), 113.4 (CH), 83.2 (CH₂), 78.0 (CH₂), 76.6 (CH₂), 75.3 (CH₂), 73.2 (CH₂), 58.1 (CH₂), 38.1 (C), 36.7 (C), 36.4 (C), 24.3 (CH₃), 22.9 (CH₃), 22.2 (CH₃), 21.4 (CH₃) ppm; **IR (neat):** 2962, 2856, 1345, 1331, 1119, 1102, 1075, 763, 672 cm⁻¹; **HR-MS (ESI):** m/z = 530.2957 [M+H]⁺ (calculated for $C_{30}H_{44}NO_5S$ m/z = 530.2935).

Compound 5bA:

Following general procedure III, Method A: **5bA** is obtained as a white solid (21.3 mg, 19% yield) starting from triazole **1b** (65.8 mg, 0.2 mmol), 3,3-dimethyloxetane **3A** and using 1 mol% of $Rh_2(S$ -TCPTTL)₄ with a 3 hour reaction time.

Purification: column chromatography (silica gel, pentane/Et₂O, 8:2).

M.p. = 93-95 °C; **Rf** = 0.38 (silica gel, pentane/Et₂O, 8:2); ¹H NMR (400 MHz, acetone- d_6): δ 7.72 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.7 Hz, 2H), 6.97 (d, J = 8.7 Hz, 2H), 5.56 (s, 1H), 3.83 (s, 3H), 3.47 (s, 2H), 3.23 (s, 2H), 3.18 (s, 2H), 3.15 (s, 2H), 3.11 (s, 2H), 2.81 (s, 2H); 2.43 (s, 3H), 1.07 (s, 6H), 0.83 (s, 3H), 0.69 (s, 3H) ppm; ¹³C NMR (100 MHz, acetone- d_6): δ 161.3 (C), 153.8 (C), 143.8 (C), 138.2 (C), 130.2 (CH), 129.6

(CH), 128.4 (CH), 127.3 (C), 114.8 (CH), 112.1 (CH), 83.2 (CH₂), 77.9 (CH₂), 76.5 (CH₂), 75.3 (CH₂), 73.0 (CH₂), 58.0 (CH₂), 55.7 (CH₃), 38.0 (C), 36.7 (C), 36.4 (C), 24.3 (CH₃), 22.9 (CH₃), 22.2 (CH₃), 21.4 (CH₃) ppm; **IR (neat):** 2959, 2867, 1605, 1511, 1333, 1250, 1157, 1111, 1074, 1026, 1000, 846, 738, 658, 547 cm⁻¹; **HR-MS (ESI):** m/z = 582.2860 [M+Na]⁺ (calculated for C₃₁H₄₅NNaO₆S m/z = 582.2860).

Compound 5cA:

Following general procedure III, Method A: **5cA** is obtained as white solid (45.7 mg, 38% yield) starting from triazole **1c** (73.9 mg, 0.2 mmol), 3,3-dimethyloxetane **3A** and using 1 mol% of $Rh_2(S$ -TCPTTL)₄ with a 28 hour reaction time.

Purification: column chromatography (silica gel, pentane/Et₂O, 9:1). **M.p.** = 148-150 °C; **Rf** = 0.51 (silica gel, pentane/Et₂O, 8:2); ¹**H NMR (400 MHz, acetone-***d*₆**):** δ 7.77 (*d*, *J* = 7.9 Hz, 2H), 7.72 (*d*, *J* = 8.3 Hz, 2H), 7.56 (*d*, *J* = 8.0 Hz, 2H), 7.44 (*d*, *J* = 8.0 Hz, 2H), 5.86 (*s*, 1H), 3.53 (*s*, 2H), 3.24 (*s*, 2H), 3.22 (*s*, 2H), 3.16 (*s*, 2H), 3.12 (*s*, 2H), 2.84 (*s*, 2H), 2.44 (*s*, 3H), 1.08 (*s*, 3H), 0.83 (*s*, 3H), 0.72 (*s*, 3H) ppm; ¹³**C NMR (100 MHz, acetone***d*₆**):** δ 152.3 (C), 144.1 (C), 139.3 (C), 138.0 (C), 131.0 (*q*, J = 32.3 Hz, C),

130.4 (CH), 128.7 (CH), 128.3 (CH), 125.2 (q, J = 271.6 Hz, CF₃), 126.4 (q, J = 3.8 Hz, CH), 115.4 (CH), 83.1 (CH₂), 78.0 (CH₂), 76.7 (CH₂), 75.2 (CH₂), 73.7 (CH₂), 58.2 (CH₂), 38.1 (C), 36.7 (C), 36.5 (C), 24.2 (CH₃), 22.9 (CH₃), 22.2 (CH₃), 21.4 (CH₃) ppm; **IR (neat):** 2963, 2874, 1324, 1162, 1121, 1106, 1063, 1003, 851, 547 cm⁻¹; **HR-MS (ESI):** m/z = 598.2805 [M+H]⁺ (calculated for C₃₁H₄₃F₃NO₅S m/z = 598.2809).

Compound 5gA:

Following general procedure III, Method A: **5gA** is obtained as a white solid (8.7 mg, 10% yield) starting from triazole **1g** (44.8 mg, 0.2 mmol), 3,3-dimethyloxetane **3A** and using 1 mol% of $Rh_2(S-TCPTTL)_4$ with a 3 hour reaction time.

Purification: column chromatography (silica gel, pentane/Et₂O, 8:2).

M.p. = 124-125 °C; **Rf** = 0.61 (silica gel, pentane/Et₂O, 7:3); ¹**H NMR (400 MHz, acetone-***d₆***)**: δ 7.44 (*s*, 5H), 5.61 (*s*, 1H), 3.56 (*s*, 2H), 3.53 (*s*, 2H), 3.33 (*s*, 2H), 3.28 (*s*, 2H), 3.23 (*s*, 2H), 3.21 (*s*, 2H), 2.93 (*s*, 3H), 1.04 (*s*, 6H), 0.97 (*s*, 6H), 0.85 (*s*, 6H) ppm; ¹³**C NMR (100 MHz, acetone-***d₆***)**: δ 154.4 (C), 134.8 (C), 129.9 (CH), 129.4 (CH), 128.5 (CH), 113.5 (CH), 82.6 (CH₂), 77.9 (CH₂),

76.7 (CH₂), 75.9 (CH₂), 73.8 (CH₂), 58.2 (CH₂), 38.1 (C), 37.8 (CH₃), 36.83 (C), 36.78 (C), 24.2 (CH₃), 22.8 (CH₃), 22.5 (CH₃) ppm; **IR (neat):** 2961, 2871, 1483, 1334, 1151, 1107, 1067, 1002, 966, 789, 773, 707 cm⁻¹; **HR-MS (ESI):** m/z = 454.2622 [M+H]⁺ (calculated for $C_{24}H_{40}NO_5S$ m/z = 454.2622).

Compound 5hA:

Following general procedure III, Method A: **5hA** is obtained as a yellowish solid (69.2 mg, 64% yield) starting from triazole **1h** (63.9 mg, 0.19 mmol), 3,3-dimethyloxetane **3A** and using 2 mol% of $Rh_2(S-TCPTTL)_4$ with a 3 hour reaction time.

Purification: column chromatography (silica gel, pentane/Et₂O, 8:2). **M.p.** = 120.5-122.5 °C; **Rf** = 0.56 (silica gel, pentane/Et₂O, 8:2); ¹**H NMR (400 MHz, CDCl₃):** δ 8.37-8.30 (*m*, 2H), 8.07-8.00 (*m*, 2H), 7.43-7.34 (*m*, 3H), 7.21-7.13 (*m*, 2H), 5.72 (*s*, 1H), 3.52 (*s*, 2H), 3.20 (*s*, 2H), 3.15 (*s*, 2H), 3.11 (*s*, 2H), 3.06 (*s*, 2H), 2.72 (*s*, 2H), 1.11 (*s*, 6H), 0.82 (*s*, 6H), 0.58 (*s*, 6H) ppm; ¹³**C NMR (100 MHz, CDCl₃):** δ 154.2 (C), 150.0 (C), 145.8

(C), 133.6 (CH), 129.5 (CH), 128.8 (CH), 128.7 (CH), 127.4 (CH), 123.8 (CH), 111.5 (CH), 82.6 (CH₂), 77.7 (CH₂), 76.3 (CH₂), 74.6 (CH₂), 72.8 (CH₂), 57.8 (CH₂), 37.6 (C), 36.2 (CH), 35.8 (CH), 24.0 (CH₃), 22.7 (CH₃), 21.9 (CH₃) ppm; **IR (neat):** 2964, 2875, 1528, 1349, 1332, 1165, 1107, 1074, 1004, 767, 741 cm⁻¹; **HR-MS (ESI):** m/z = 583.2445 [M+Na]⁺ (calculated for C₂₉H₄₀N₂NaO₇S m/z = 583.2449).

Compound 5jA:

Following general procedure III, Method A: **5jA** is obtained as a white solid (38.4 mg, 39% yield) starting from triazole **1j** (54.1 mg, 0.19 mmol), 3,3-dimethyloxetane **3A** and using 1 mol% of $Rh_2(S$ -TCPTTL)₄ with a 7 hour reaction time.

Purification: column chromatography (silica gel, pentane/Et₂O, 8:2). **M.p.** = 97-99 °C; **Rf** = 0.52 (silica gel, pentane/Et₂O, 7:3); ¹**H NMR (400 MHz, acetone-***d*₆): δ 7.69 (*d*, *J* = 8.3 Hz, 2H), 7.42 (*d*, *J* = 8.0 Hz, 2H), 6.89 (*s*, 1H), 3.74 (*s*, 3H), 3.71 (*s*, 2H), 3.30 (*s*, 2H), 3.20 (*s*, 2H), 3.17 (*s*, 2H), 3.09 (*s*, 2H), 2.95 (*s*, 2H), 2.42 (*s*, 3H), 0.98 (*s*, 6H), 0.83 (*s*, 6H), 0.73 (*s*, 6H) ppm; ¹³**C NMR (100 MHz, acetone-***d*₆): δ 164.4 (C), 144.7 (C), 139.7 (C),

137.7 (C), 130.6 (CH), 127.8 (CH), 124.0 (CH), 82.3 (CH₂), 78.1 (CH₂), 76.9 (CH₂), 76.2 (CH₂), 75.8 (CH₂), 55.9 (CH₂), 52.3 (CH₃), 38.8 (C), 36.6 (C), 36.5 (C), 23.9 (CH₃), 22.9 (CH₃), 22.3 (CH₃), 21.4 (CH₃) ppm; **IR** (neat): 2961, 2879, 1723, 1353, 1267, 1164, 1111, 1020, 724, 655 cm⁻¹; **HR-MS (ESI)**: m/z = 512.2671 [M+H]⁺ (calculated for $C_{26}H_{42}NO_7S$ m/z = 512.2677).

Compound 5kA:

Following general procedure III, Method A: **5kA** is obtained as a white solid (55.1 mg, 46% yield) starting from triazole **1k** (72.7 mg, 0.20 mmol), 3,3-dimethyloxetane **3A** and using 1 mol% of $Rh_2(S-TCPTTL)_4$ with a 3 hour reaction time.

Purification: column chromatography (silica gel, pentane/Et₂O, 9:1).

M.p. = 117.5-119.5 °C; **Rf** = 0.40 (silica gel, pentane/Et₂O, 9:1); ¹**H NMR** (400 MHz, acetone- d_6): δ 7.88-7.82 (m, 2H), 7.81-7.75 (m, 2H), 7.47-7.40 (m, 3H), 7.35-7.29 (m, 2H), 5.68 (s, 1H), 3.51 (s, 2H), 3.24 (s, 2H), 3.20 (s, 2H), 3.15 (s, 2H), 3.12 (s, 2H), 2.82 (s, 2H), 1.09 (s, 6H), 0.83 (s, 6H), 0.70 (s, 6H) ppm; ¹³C NMR (100 MHz, acetone- d_6): 154.5 (C), 140.1 (C), 134.7

(C), 133.0 (CH), 130.2 (CH), 130.0 (CH), 129.5 (CH), 128.2 (CH), 127.7 (CH), 112.9 (CH), 83.1 (CH₂), 78.0 (CH₂), 76.6 (CH₂), 75.2 (CH₂), 73.2 (CH₂), 58.2 (CH₂), 38.0 (C), 36.7 (C), 36.3 (CH), 24.2 (CH₃), 22.9 (CH₃), 22.2 (CH₃) ppm; **IR (neat):** 2963, 2871, 1469, 1346, 1330, 1163, 1101, 1074, 1004, 766, 596, 552 cm⁻¹; **HR-MS (ESI):** $m/z = 594.1894 [M+H]^+$ (calculated for C₂₉H₄₁BrNO₅S m/z = 594.1883).

Compound 5IA:

Following general procedure III, Method A: **5IA** is obtained as a white solid (40.2 mg, 37% yield) starting from triazole **1I** (62.3 mg, 0.20 mmol), 3,3-dimethyloxetane **3A** and using 1 mol% of $Rh_2(S-TCPTTL)_4$ with a 10 hour reaction time.

Purification: column chromatography (silica gel, pentane/Et₂O, 7:3). **M.p.** = 96-98 °C; **Rf** = 0.44 (silica gel, pentane/Et₂O, 7:3); ¹**H NMR (400 MHz, acetone-***d*₆**)**: δ 7.80-7.74 (*m*, 2H), 7.46-7.39 (*m*, 3H), 7.35-7.30 (*m*, 2H), 7.17-7.11 (*m*, 2H), 5.65 (*s*, 1H), 3.91 (*s*, 3H), 3.49 (*s*, 2H), 3.24 (*s*, 2H), 3.22 (*s*, 2H), 3.16 (*s*, 2H), 3.13 (*s*, 2H), 2.86 (*s*, 2H), 1.08 (*s*, 3H), 0.83 (*s*, 3H), 0.71 (*s*, 3H) ppm; ¹³C **NMR (100 MHz, acetone-***d*₆**)**: 163.9

(C), 153.9 (C), 135.2 (C), 132.9 (C), 130.4 (CH), 129.8 (CH), 129.4 (CH), 128.2 (CH), 114.9 (CH), 113.5 (CH), 83.2 (CH₂), 78.0 (CH₂), 76.6 (CH₂), 75.3 (CH₂), 73.3 (CH₂), 58.1 (CH₂), 56.1 (CH₃), 38.1 (C), 36.7 (C), 36.5 (C), 24.3 (CH₃), 22.9 (CH₃), 22.3 (CH₃) ppm; **IR (neat):** 2960, 2872, 1340, 1258, 1157, 1114, 766 cm⁻¹; **HR-MS (ESI):** m/z = 546.2888 [M+H]⁺ (calculated for $C_{30}H_{44}NO_6S$ m/z = 546.2884).

Compound 5mA:

Following general procedure III, Method A: **5mA** is obtained as a white solid (35.3 mg, 34% yield) starting from triazole **1m** (57.0 mg, 0.20 mmol), 3,3-dimethyloxetane **3A** and using 1 mol% of $Rh_2(S-TCPTTL)_4$ with a 4 hour reaction time.

Purification: column chromatography (silica gel, pentane/Et₂O, 8:2). **M.p.** = 145-147 °C; **Rf** = 0.51 (silica gel, pentane/Et₂O, 8:2); ¹**H NMR (400 MHz, acetone-***d*₆**):** δ 7.89-7.81 (*m*, 2H), 7.71-7.58 (*m*, 3H), 7.45-7.39 (*m*, 3H), 7.33-7.30 (*m*, 2H), 5.68 (*s*, 1H), 3.54 (*s*, 2H), 3.25 (*s*, 2H), 3.21 (*s*, 2H), 3.16 (*s*, 2H), 3.12 (*s*, 2H), 2.84 (*s*, 2H), 1.09 (*s*, 6H), 0.83 (*s*, 6H), 0.68 (*s*, 6H)

ppm; ¹³C NMR (100 MHz, acetone- d_6): 154.0 (C), 141.1 (C), 135.1 (C), 133.2 (CH), 129.9 (CH), 129.7 (CH), 129.4 (CH), 128.3 (CH), 128.2 (CH), 113.1 (CH), 83.1 (CH₂), 78.0 (CH₂), 76.6 (CH₂), 75.4 (CH₂), 73.4 (CH₂), 58.1 (CH₂), 38.1 (C), 36.7 (C), 36.5 (C), 24.3 (CH₃), 22.9 (CH₃), 22.4 (CH₃) ppm; **IR (neat):** 2970, 2865, 1333, 1163, 1104, 1074, 998, 746 cm⁻¹; **HR-MS (ESI):** m/z = 516.2779 [M+H]⁺ (calculated for C₂₉H₄₂NO₅S m/z = 516.2778).

Compound 5nA:

Following general procedure III, Method A: **5nA** is obtained as white solid (20.9 mg, 20% yield) starting from triazole **1n** (58.2 mg, 0.2 mmol), 3,3-dimethyloxetane **3A** and using 2 mol% of $Rh_2(S-TCPTTL)_4$ with a 7 hour reaction time.

Purification: column chromatography (silica gel, pentane/EtOAc, 9:1).

M.p. = 139.5-141.5 °C; **Rf** = 0.65 (silica gel, pentane/EtOAc, 9:1); ¹H NMR (400 MHz, acetone- d_6): δ 7.79 (d, J = 8.1 Hz, 2H), 7.68 (d, J = 8.1 Hz, 2H), 5.80 (s, 1H), 3.60 (s, 2H), 3.58 (s, 2H), 3.33 (s, 2H), 3.28 (s, 2H), 3.23 (s, 2H), 3.21 (s, 2H), 2.95 (s, 3H), 1.04 (s, 6H), 1.00 (s, 6H), 0.85 (s, 6H) ppm; ¹³C NMR (100 MHz, acetone- d_6): δ 152.7 (C), 139.0 (C), 131.1 (q, J = 32.3 Hz, C), 129.2 (CH), 126.4 (q, J = 3.9 Hz, CH), 125.2 (q, J = 271.3 Hz, CF₃), 115.4 (CH), 82.6 (CH₂),

77.9 (CH₂), 76.8 (CH₂), 75.8 (CH₂), 74.2 (CH₂), 58.3 (CH₂), 38.1 (C), 37.9 (CH₃), 36.9 (C), 36.8 (C), 24.2 (CH₃), 22.8 (CH₃), 22.5 (CH₃) ppm; **IR (neat):** 2961, 2875, 1327, 1152, 1111, 1082, 1065, 1006, 793 cm⁻¹; **HR-MS (ESI):** $m/z = 522.2503 [M+H]^+$ (calculated for C₂₅H₃₉F₃NO₅S m/z = 522.2496).

Compound 5aB:

Following general procedure III, Method A: **5aB** is obtained as a colourless oil (31.0 mg, 35% yield) starting from triazole **1a** (59.7 mg, 0.20 mmol), oxetane **3B** and using 1 mol% of Rh₂(*S*-TCPTTL)₄ with a 17 hour reaction time. Purification: column chromatography (neutral Al₂O₃, pentane/EtOAc, 8:2). **Rf** = 0.56 (neutral Al₂O₃, pentane/EtOAc, 8:2); ¹**H NMR (400 MHz, acetone-***d*₆): δ 7.80-7.72 (*m*, 2H), 7.48-7.34 (*m*, 7H), 5.64 (*s*, 1H), 3.75 (*t*, *J* = 5.8 Hz, 2H), 3.65-3.55 (*m*, 4H), 3.50-3.45 (*m*, 4H), 3.42 (*dd*, *J* = 5.9, 4.9, 2H), 2.44 (*s*,

3H), 1.90-1.80 (*m*, 2H), 1.75 (*q*, *J* = 5.7 Hz, 2H), 1.68 (*q*, *J* = 5.4 Hz, 2H); ¹³C NMR (100 MHz, acetone- d_6): 152.9 (C), 144.3 (C), 137.5 (C), 135.7 (C), 130.4

(CH), 129.6 (CH), 129.4 (CH), 128.2 (CH), 127.6 (CH), 109.5 (CH), 69.3 (CH₂), 67.4 (CH₂), 66.8 (CH₂), 66.7 (CH₂), 66.4 (CH₂), 47.6 (CH₂), 30.7 (2 CH₂), 29.2 (CH₂), 21.43 (CH₃); **IR (neat):** 2923, 2861, 1340, 1163, 1120, 1078, 766, 668 cm⁻¹; **HR-MS (ESI):** m/z = 446.2007 $[M+H]^+$ (calculated for C₂₄H₃₂NO₅S m/z = 446.1996).

Compound 5hB:

Following general procedure III, Method A: **5hB** is obtained as a yellowish solid (48.5 mg, 50% yield) starting from te triazole **1h** (67.4 mg, 0.20 mmol), oxetane **3B** and using 2 mol% of Rh₂(*S*-TCPTTL)₄ with a 3 hour reaction time. Purification: column chromatography (neutral Al₂O₃, pentane/EtOAc, 7:3). **M.p.** = 100.5-102.5 °C; **Rf** = 0.67 (neutral Al₂O₃, pentane/EtOAc, 7:3); ¹**H NMR** (400 MHz, acetone-*d₆*): δ 8.51-8.46 (*m*, 2H), 8.19-8.14 (*m*, 2H), 7.41 (*s*, 5H), 5.64 (*s*, 1H), 3.71-3.64 (*m*, 4H), 3.60 (*t*, *J* = 5.8 Hz, 2H), 3.46 (*dd*, *J* = 5.2, 10.6 Hz, 4H), 3.33 (*dd*, *J* = 4.9, 6.0 Hz 2H), 1.97-1.88 (*m*, 2H), 1.71-1.62 (*m*, 4H) ppm; ¹³C NMR (100 MHz, acetone-*d₆*): δ 155.5 (C), 151.2 (C), 145.8 (C), 134.8 (C), 130.0 (CH), 129.6 (CH), 129.4 (CH), 128.1 (CH), 125.1 (CH), 108.4 (CH),

69.2 (CH₂), 67.0 (CH₂), 66.6 (CH₂), 66.5 (CH₂), 66.3 (CH₂), 47.9 (CH₂), 30.7 (CH₃), 30.5 (CH₃), 29.3 (CH₃) ppm; **IR (neat)**: 2918, 2870, 1530, 1345, 1165, 1118, 1084, 741, 752, 604 cm⁻¹; **HR-MS (ESI)**: m/z = 499.1506 [M+Na]⁺ (calculated for C₂₃H₃₂NNaO₅S m/z = 499.1509).

Compound 5kB:

Following general procedure III, Method A: **5kB** is obtained as a white solid (42.2 mg, 40% yield) starting from triazole **1k** (74.1 mg, 0.20 mmol), oxetane **3B** and using 1 mol% of Rh₂(S-TCPTTL)₄ with a 4 hour reaction time. Purification: column chromatography (neutral Al₂O₃, pentane/EtOAc, 7:3). **M.p.** = 97.5-98.5 °C; **Rf** = 0.71 (neutral Al₂O₃, pentane/EtOAc, 7:3); ¹**H NMR** (400 MHz, acetone-d₆): δ 7.87-7.79 (*m*, 4H), 7.41 (*s*, 5H), 5.61 (*s*, 1H), 3.71 (*t*, *J* = 5.8 Hz, 2H), 3.65-3.56 (*m*, 4H), 3.50-3.42 (*m*, 4H), 3.38 (*t*, *J* = 5.4 Hz, 2H), 1.93-1.84 (*m*, 2H), 1.75-1.64 (*m*, 4H) ppm; ¹³**C NMR (100 MHz, acetone-d₆):** δ 154.5 (C), 139.5 (C), 135.2 (C), 133.1 (CH), 130.0 (CH), 129.8 (CH) 129.4 (CH),

127.9 (CH), 127.7 (C), 108.9 (CH), 69.2 (CH₂), 67.1 (CH₂), 66.7 (CH₂), 66.7 (CH₂), 66.3 (CH₂), 47.8 (CH₂), 30.7 (CH₂), 30.6 (CH₂), 29.2 (CH₂) ppm; **IR (neat)**: 2945, 2920, 2863, 1347, 1167, 1125, 1070, 751 cm⁻¹; **HR-MS (ESI)**: $m/z = 510.0947 [M+H]^+$ (calculated for $C_{23}H_{29}N_2BrO_5S m/z = 510.0944$).

Compound 5IB:

Following general procedure III, Method A: **5IB** is obtained as a colourless oil (45.8 mg, 50% yield) starting from triazole **1I** (63.4 mg, 0.2 mmol), oxetane **3B** and using 1 mol% of $Rh_2(S$ -TCPTTL)₄ with a 24 hour reaction time.

Purification: column chromatography (neutral Al₂O₃, pentane/EtOAc, 8:2). **Rf** = 0.54 (neutral Al₂O₃, pentane/EtOAc, 7:3); ¹**H NMR (400 MHz, acetone** *d*₆): δ 7.84-7.77 (*m*, 2H), 7.45-7.35 (*m*, 5H), 7.17-7.10 (*m*, 2H), 5.64 (*s*, 1H), 3.91 (*s*, 3H), 3.77 (*t*, *J* = 5.8 Hz, 2H), 3.62-3.54 (*m*, 4H), 3.50-3.41 (*m*, 6H), 1.89-1.80 (*m*, 2H), 1.77 (*q*, *J* = 5.7 Hz, 2H), 1.68 (*q*, *J* = 5.4 Hz, 2H) ppm; ¹³**C**

NMR (100 MHz, acetone-*d*₆**):** δ 164.0 (C), 152.7 (C), 135.8 (C), 132.0 (C), 130.3 (CH), 129.5 (CH), 129.4 (CH), 127.6 (CH), 115.1 (CH), 109.7 (CH), 69.3 (CH₂), 67.4 (CH₂), 66.9 (CH₂), 66.7 (CH₂), 66.4 (CH₂), 56.2 (CH₃), 47.6 (CH₂), 30.8 (CH₂), 30.7 (CH₂), 29.2 (CH₂) ppm; **IR (neat):** 2926, 2862, 1254, 1158, 1121, 1080, 736 cm⁻¹; **HR-MS (ESI):** m/z = 462.1958 [M+H]⁺ (calculated for C₂₄H₃₂NO₆S m/z = 462.1945).

Compound 5mA:

Following general procedure III, Method A: **5mA** is obtained as a colourless oil (27.8 mg, 33% yield) starting from triazole **1m** (55.4 mg, 0.19 mmol), oxetane **3B** and using 1 mol% of Rh₂(*S*-TCPTTL)₄ with a 10 hour reaction time. Purification: column chromatography (neutral Al₂O₃, pentane/EtOAc, 8:2). **Rf** = 0.75 (neutral Al₂O₃, pentane/EtOAc, 7:3); ¹**H** NMR (400 MHz, acetone-

d₆): δ 7.92-7.85 (*m*, 2H), 7.73-7.60 (*m*, 3H), 7.44-7.35 (*m*, 5H), 5.66 (*s*, 1H), 3.72 (*t*, *J* = 5.8 Hz, 2H), 3.67-3.61 (*m*, 2H), 3.58 (*t*, *J* = 5.9 Hz, 2H), 3.50-3.44 (*m*, 4H), 3.40 (*dd*, *J* = 5.9, 4.9 Hz, 2H), 1.90-1.83 (*m*, 2H), 1.76-1.64 (*m*, 4H)

ppm; ¹³C NMR (100 MHz, acetone-*d*₆): δ 153.3 (C), 140.3 (C), 135.5 (C), 133.5 (CH), 129.9 (CH), 129.6 (CH), 129.47 (CH), 128.1 (CH), 127.7 (CH), 109.4 (CH), 69.3 (CH₂), 67.3 (CH₂), 66.8 (CH₂), 66.7 (CH₂), 66.3 (CH₂), 47.7 (CH₂), 30.7 (CH₂), 29.2 (CH₂) ppm; **IR (neat)**: 2924, 2861, 1338, 1164, 1121, 1076, 740, 690 cm⁻¹; **HR-MS (ESI)**: m/z = 432.1860 [M+H]⁺ (calculated for C₂₃H₃₀NO₅S m/z = 432.1839).

Following general procedure III, Method B: **(Z)-5pA** is obtained as a white solid (20.3 mg, 34% yield) starting from triazole **1p** (36.8 mg, 0.10 mmol) and 3,3-dimethyloxetane **3A**.

Purification: column chromatography (silica gel, pentane/EtOAc, 7:3). **M.p.** = 176-178 °C; **Rf** = 0.58 (silica gel, pentane/EtOAc, 7:3); ¹**H NMR (400 MHz, CDCl_3)**: δ 7.96 (*dd*, *J* = 5.5, 3.1 Hz, 2H), 7.84 (*dd*, *J* = 5.5, 3.1 Hz, 2H), 7.55-7.48 (*m*, 2H), 7.42-7.34 (*m*, 3H), 5.70 (*s*, 1H), 4.37 (*s*, 2H), 3.55 (*s*, 2H), 3.47 (*s*, 2H), 3.28 (*s*, 2H), 3.22 (*s*, 2H), 3.21 (*s*, 2H), 3.11 (*s*, 2H), 1.01 (*s*, 6H), 0.89 (*s*, 6H), 0.82 (*s*, 6H) ppm; ¹³**C NMR (100 MHz, CDCl_3)**: 167.0 (C), 135.4 (C), 135.1 (CH), 131.5 (C), 131.2 (CH), 129.0 (C), 128.8 (CH), 128.6 (CH), 124.4 (CH), 110.5 (CH), 80.5 (CH₂), 76.6

(CH₂), 76.1 (CH₂), 75.3 (CH₂), 72.7 (CH₂), 56.8 (CH₂), 55.7 (CH₂), 37.8 (C), 36.3 (C), 35.8 (C), 24.0 (CH₃), 22.7 (CH₃), 22.4 (CH₃) ppm; **IR (neat):** 1728, 1348, 1118, 723, 519 cm⁻¹; **HR-MS (ESI):** m/z = 599.2791 [M+H]⁺ (calculated for C₃₂H₄₃N₂O₇S m/z = 599.2786).

Compound (E)-5pA:

Following general procedure III, Method B: **(***E***)-5pA** is obtained as a white solid (7.7 g, 13% yield) starting from triazole **1p** (36.8 mg, 0.10 mmol) and 3,3-dimethyloxetane **3A**.

Purification: column chromatography (silica gel, pentane/EtOAc, 7:3). **M.p.** = 204-206 °C; **Rf** = 0.76 (silica gel, pentane/EtOAc, 7:3); ¹**H NMR (500 MHz, acetone-***d₆***)**: δ 7.94-7.90 (*m*, 2H), 7.90-7.87 (*m*, 2H), 7.45-7.41 (*m*, 2H), 7.41-7.35 (*m*, 3H), 5.83 (*s*, 1H), 4.47 (*s*, 2H), 3.49 (*s*, 4H), 3.27 (*s*, 2H), 3.23 (*s*, 4H), 3.05 (*s*, 2H), 0.90 (*s*, 6H), 0.88 (*s*, 6H), 0.84 (*s*, 6H) ppm; ¹³**C NMR (100 MHz, acetone-***d₆***)**: δ 166.7 (C), 137.7 (C), 135.3 (CH), 133.3 (C), 132.0 (CH), 129.7 (C), 129.30 (CH), 129.29 (CH), 124.3 (CH), 119.5 (CH), 76.5 (CH₂), 76.4 (CH₂), 76.0 (CH₂), 75.9 (CH₂), 75.5 (CH₂), 61.3 (CH₂), 55.2 (CH₂), 37.2 (C), 36.6

(C), 36.5 (C), 23.7 (CH₃), 22.9 (CH₃), 22.1 (CH₃) ppm; **IR (neat):** 1726, 1348, 1103, 907, 726, 533, 504 cm⁻¹; **HR-MS (ESI):** m/z = 616.3053 [M+NH₄]⁺ (calculated for $C_{32}H_{46}N_3O_7S$ m/z = 616.3051).

Compound (Z)-5qA:

Following general procedure III, Method B: **(Z)-5qA** is obtained as a white solid (16.4 mg, 27% yield) starting from triazole **1q** (38.0 mg, 0.10 mmol) and 3,3-dimethyloxetane **3A**.

Purification: column chromatography (silica gel, pentane/EtOAc, 8:2). **M.p.** = 145-147 °C; **Rf** = 0.50 (silica gel, pentane/EtOAc, 7:3); ¹**H NMR (400 MHz, CDCl₃)**: δ 7.95-7.90 (*m*, 4H), 7.85-7.79 (*m*, 2H), 7.01 (*d*, *J* = 8.9 Hz, 2H), 5.55 (*s*, 1H), 3.84 (*s*, 3H), 3.41 (*s*, 2H), 3.31 (*s*, 2H), 3.26 (*s*, 2H), 3.18 (*s*, 2H), 3.06 (*s*, 2H), 2.83 (*s*, 2H), 1.09 (*s*, 6H), 0.81 (*s*, 6H), 0.57 (*s*, 6H) ppm; ¹³**C NMR (100 MHz, CDCl₃)**: 166.8 (C), 162.9 (C), 137.9 (C), 135.0 (CH), 131.6 (C), 131.5 (C), 129.8 (CH), 124.3 (CH), 114.2 (CH), 111.3 (CH), 80.8 (CH₂), 76.5 (CH₂), 75.8 (CH₂), 75.0 (CH₂), 72.2 (CH₂), 55.7

(CH₃), 55.6 (CH₂), 37.5 (C), 36.3 (C), 35.4 (C), 24.0 (CH₃), 22.7 (CH₃), 22.0 (CH₃) ppm. **IR (neat):** 2962, 2874, 1728, 1346, 1158, 1115, 726, 454 cm⁻¹; **HR-MS (ESI):** m/z = 615.2744 [M+H]⁺ (calculated for $C_{32}H_{43}N_2O_8S$ m/z = 615.2735).

Compound (E)-5qA:

Following general procedure III, Method B: **(***E***)-5qA** is obtained as a white solid (7.1 mg, 12% yield) starting from triazole **1q** (38.0 mg, 0.10 mmol) and 3,3-dimethyloxetane **3A**.

Purification: column chromatography (silica gel, pentane/EtOAc, 8:2).

M.p. = 187-189 °C; **Rf** = 0.71 (silica gel, pentane/EtOAc, 7:3); ¹**H NMR (400 MHz, CDCl₃):** δ 7.93 (*dd*, *J* = 5.5, 3.0 Hz, 2H), 7.81-7.77 (*m*, 2H), 7.75 (*dd*, *J* = 5.5, 3.0, 2H), 7.02-6.97 (*m*, 2H), 5.32 (*s*, 1H), 3.88 (*s*, 3H), 3.52 (*s*, 2H), 3.40 (*s*, 2H), 3.17 (*s*, 2H), 3.14 (*s*, 2H), 3.05 (*s*, 2H), 2.98 (*s*, 2H), 0.96 (*s*, 3H), 0.84 (*s*, 3H) and 0.83 (*s*, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃):** 166.3 (C), 163.2 (C), 139.3 (C), 134.3 (CH), 132.4 (C), 130.3 (C), 130.0 (CH), 124.0 (CH), 118.0 (CH), 114.3 (CH), 76.1 (CH₂), 75.9 (CH₂), 75.4 (CH₂), 75.3 (CH₂), 74.8 (CH₂), 60.3 (CH₂), 55.7 (CH₃), 36.6 (C), 36.04 (C), 36.02 (C), 23.8 (CH₃), 22.7 (CH₃), 22.0

(CH₃) ppm; **IR (neat):**2925, 2852, 1730, 1356, 1165, 1102, 751, 559 cm⁻¹; **HR-MS (ESI):** m/z = 615.2726 [M+H]⁺ (calculated for $C_{32}H_{43}N_2O_8S$ m/z = 615.2735).

Analysis data for macrocycles 6

Compound 6gA:

Following general procedure III, Method A: **6gA** is obtained as a white solid (41.5 mg, 57% yield) starting from triazole **1g** (44.8 mg, 0.2 mmol), 3,3-dimethyloxetane **3A** and using 1 mol% of $Rh_2(S$ -TCPTTL)₄ with a 3 hour reaction time.

Purification: column chromatography (silica gel, pentane/Et₂O, 8:2).

M.p. = 84-85 °C; **Rf** = 0.53 (silica gel, pentane/Et₂O, 7:3); ¹**H NMR (400 MHz, acetone-***d*₆**)**: δ 7.46-7.39 (*m*, 2H), 7.31-7.24 (*m*, 2H), 7.17-7.10 (*m*, 1H), 6.61 (*s*, 1H), 4.52 (*d*, *J* = 9.2 Hz, 1H), 3.76 (*d*, *J* = 7.5 Hz, 1H), 3.60-3.50 (*m*, 3H), 3.30-3.24 (*m*, 4H), 3.08 (*d*, *J* = 8.3 Hz, 1H), 3.02 (*d*, *J* = 7.5 Hz, 1H), 1.01 (*s*, 3H), 0.94 (*s*, 3H),

0.92 (*s*, 3H), 0.86 (*s*, 3H) ppm; ¹³**C NMR (100 MHz, acetone**-*d*₆): δ 143.4 (C), 137.9 (C), 129.2 (CH), 126.6 (CH), 124.1 (CH), 116.8 (CH), 76.3 (CH₂), 75.4 (CH₂), 73.9 (CH₂), 69.8 (CH₂), 40.8 (CH₃), 37.1 (C), 36.7 (C), 22.7 (CH₃), 22.3 (CH₃), 21.6 (CH₃), 21.6 (CH₃) ppm; **IR (neat)**: 2950, 2857, 1636, 1305, 1245, 1203, 1114, 1083, 1028, 936, 811, 762, 690 cm⁻¹; **HR-MS (ESI)**: m/z = 390.1707 [M+Na]⁺ (calculated for C₁₉H₂₉NNaO₄S m/z = 390.1710).

Compound 6nA:

Following general procedure III, Method A: **6nA** is obtained as white solid (41.8 mg, 48% yield) starting from triazole **1n** (58.2 mg, 0.2 mmol), 3,3-dimethyloxetane **3A** and using 2 mol% of $Rh_2(S$ -TCPTTL)₄ with a 7 hour reaction time.

Purification: column chromatography (silica gel, pentane/EtOAc, 9:1). **M.p.** = 62-64°C; **Rf** = 0.54 (silica gel, pentane/EtOAc, 8:2); ¹**H NMR (400 MHz, acetone-***d*₆**):** δ 7.66-7.56 (*m*, 4H), 6.85 (*s*, 1H), 4.56 (*d*, *J* = 9.2 Hz, 1H), 3.76 (*d*, *J* = 7.5 Hz, 1H), 3.65-3.58 (*m*, 2H), 3.54 (*d*, *J* = 7.9 Hz, 1H), 3.31 (*s*, 3H), 3.29 (*d*, *J* = 8.5 Hz, 1H), 3.08 (*d*, *J* = 8.5 Hz, 1H), 3.03 (*d*, *J* = 7.6 Hz, 1H), 1.02 (*s*, 3H), 0.95 (*s*, 3H), 0.93 (*s*, 3H), 0.87 (*s*, 3H) ppm; ¹³**C NMR (100 MHz, acetone-***d*₆**):** δ 142.2 (C), 141.8 (C), 127.5 (*q*, *J* = 32.0 Hz, C), 126.1 (*q*, *J* = 3.9 Hz, CH), 125.7 (*q*, *J* =

270.5 Hz, CF₃), 124.0 (CH), 120.2 (CH), 76.4 (CH₂), 75.3 (CH₂), 73.8 (CH₂), 70.2 (CH₂), 40.8 (CH₃), 37.1 (C), 36.7 (C), 22.6 (CH₃), 22.3 (CH₃), 21.6 (CH₃), 21.6 (CH₃) ppm; **IR (neat):** 2956, 2870, 1638, 1607, 1326, 1301, 1323, 1205, 1102, 1078, 1026, 943, 822 cm⁻¹; **HR-MS (ESI):** m/z = 458.1578 [M+H]⁺ (calculated for C₂₀H₂₈F₃NNaO₄S m/z = 458.1583).

Compound 6oA:

Following general procedure III, Method A: **60A** is obtained as a colorless oil (46.2 mg, 61% yield) starting from triazole **10** (49.1 mg, 0.19 mmol), 3,3-dimethyloxetane **3A** and using 1 mol% of $Rh_2(S$ -TCPTTL)₄ with a 3 hour reaction time.

Purification: column chromatography (neutral Al₂O₃, pentane/EtOAc, 8:2).

Rf = 0.39 (silica gel, pentane/EtOAc, 8:2); ¹**H NMR** (400 MHz, acetone-*d*₆): δ 7.34 (*d*, *J* = 8.8 Hz, 2H), 6.86 (*d*, *J* = 8.9 Hz, 2H), 6.42 (s, 1H), 4.49 (*d*, *J* = 9.2 Hz, 1H), 3.78 (s, 3H), 3.74 (*d*, *J* = 7.5 Hz, 1H), 3.57 (*d*, *J* = 9.2 Hz, 1H), 3.52 (s, 2H), 3.26 (*d*, *J* = 8.6 Hz, 1H), 3.24 (s, 3H), 3.07 (*d*, *J* = 8.5 Hz, 1H), 3.02 (*d*, *J* = 7.4 Hz, 1H), 0.99 (s, 3H), 0.93 (s, 3H), 0.91 (s, 3H), 0.85 (s, 3H) ppm; ¹³**C NMR** (100 MHz, acetone-*d*₆): δ 159.2 (C), 143.5 (C), 130.4 (C), 125.6 (CH), 114.7 (CH), 114.6 (CH),

76.2 (CH₂), 75.5 (CH₂), 73.9 (CH₂), 69.7 (CH₂), 55.5 (CH₃), 40.8 (CH₃), 37.1 (C), 36.7 (C), 22.7 (CH₃), 22.4 (CH₃), 21.6 (CH₃), 21.6 (CH₂) ppm; **IR (neat):** 2959, 2871, 1638, 1510, 1303, 1242, 1206, 1078, 1023, 929, 800 cm⁻¹; **HR-MS (ESI):** m/z = 398.1996 [M+H]⁺ (calculated for $C_{20}H_{32}NO_5S$ m/z = 398.1996).

Analysis data for byproducts 6aA and 10aA

Compound 6aA:

Following general procedure III, Method A: **6aA** is obtained as a colourless oil (9.3 mg, 11% yield) starting from triazole **1a** (57.2 mg, 0.19 mmol), 3,3-dimethyloxetane **3A** and using 1 mol% of $Rh_2(S-TCPTTL)_4$ with a 5 hour reaction time.

Purification: column chromatography (silica gel, pentane/Et₂O, 8:2). **Rf** = 0. 53 (silica gel, pentane/Et₂O, 8:2); ¹**H NMR (400 MHz, CDCl₃)**: δ 7.87 (*d*, *J* = 8.4 Hz, 2H), 7.51-7.41 (*m*, 4H), 7.26 (*t*, *J* = 7.8 Hz, 2H), 7.17-7.09 (*m*, 1H), 6.63 (*s*, 1H), 4.57 (*d*, *J* = 9.2 Hz, 1H), 3.85 (*d*, *J* = 9.1 Hz, 1H), 3.78-3.71 (*m*, 2H), 3.67 (*d*, *J* = 8.1 Hz, 1H), 3.27 (*d*, *J* = 8.4 Hz, 1H), 3.15 (*t*, *J* = 8.1 Hz, 2H), 2.45 (*s*, 3H), 1.04 (*s*, 3H), 0.96 (*s*, 3H), 0.93 (*s*,

3H), 0.84 (*s*, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃)**: δ 145.2 (C), 144.1 (C), 137.8 (C), 137.1 (C), 130.8 (CH), 129.2 (CH), 128.3 (CH), 126.8 (CH), 123.9 (CH), 116.2 (CH), 76.1 (CH₂), 75.4 (CH₂), 74.1 (CH₂), 72.0 (CH₂), 37.2 (C), 36.8 (C), 22.7 (CH₃), 22.4 (CH₃), 21.7 (CH₃), 21.6 (CH₃), 21.5 (CH₃) ppm; **IR (neat)**: 2924, 2854, 1633, 1311, 1249, 1204, 1074, 931, 762 cm⁻¹; **HR-MS (ESI)**: m/z = 444.2199 [M+H]⁺ (calculated for C₂₅H₃₄NO₄S m/z = 444.2203).

Compound 10aA:

Following general procedure III, Method A: **10aA** is obtained as a colourless oil (4.2 mg, 5% yield) starting from triazole **1a** (57.2 mg, 0.19 mmol), 3,3-dimethyloxetane **3A** and using 1 mol% of $Rh_2(S-TCPTTL)_4$ with a 5 hour reaction time.

Purification: column chromatography (silica gel, pentane/Et₂O, 8:2). **Rf =** 0.29 (silica gel, pentane/Et₂O, 8:2); ¹**H NMR (400 MHz, CDCl₃)**: δ 7.68-7.60 (*m*, 2H), 7.52-7.46 (*m*, 2H), 7.43-7.33 (*m*, 5H), 5.24 (*s*, 1H), 3.64 (*s*, 2H), 3.44 (*s*, 2H), 3.35 (*s*, 2H), 3.08 (*s*, 2H), 2.41 (*s*, 3H), 0.98 (*s*, 6H), 0.91 (*s*, 6H)

ppm; ¹³C NMR (100 MHz, CDCl₃): δ 154.9 (C), 144.2 (C), 136.8 (C), 136.6 (C), 130.4 (CH), 129.5 (CH), 129.5 (CH), 128.4 (CH), 127.7 (CH), 112.0 (CH), 77.7 (CH₂), 77.4 (CH₂), 77.2 (CH₂), 61.6 (CH₂), 37.6 (C), 37.1 (C), 25.0 (CH₃), 22.7 (CH₃), 21.4 (CH₃) ppm; **IR (neat)**: 2923, 2854, 1727, 1346, 1262, 1110, 1081, 805, 768, 739, 654 cm⁻¹; **HR-MS (ESI)**: m/z = 466.2018 [M+Na]⁺ (calculated for C₂₅H₃₃NNaO₄S m/z = 466.2023).

8. General procedure IV: hydrogenation of macrocycles 5

To a stirred solution of the corresponding macrocycle **5** (0.1 mmol) in 10 mL of MeOH was added 40% w/w Pd(OH)₂/C (20% Pd, 50% water) for macrocycles of type **5A** or 20% w/w Pd/C (10%) for macrocycles **5B** and the heterogeneous mixture was stirred under hydrogen (1 atm) for 3 h. Then it was filtered over celite and washed with 20 mL of MeOH. The organic phase was concentrated to afford the desired product **16** without further purification.

Analysis data for hydrogenated products 16

Compound 16aA:

Following general procedure IV, **16aA** is obtained as a white solid (57.9 mg, 95% yield) starting from **5aA** (61.1 mg, 0.11 mmol).

M.p. = 104-106 °C; **Rf** = 0.62 (silica gel, pentane/Et₂O, 7:3); ¹**H NMR (400 MHz, CDCl₃):** δ 7.69 (*d*, *J* = 8.2 Hz, 2H), 7.39-7.27 (*m*, 5H), 7.25-7.20 (*m*, 2H), 4.46 (*t*, *J* = 6.5 Hz, 1H), 3.59 (*d*, *J* = 15.3 Hz, 1H), 3.42-3.28 (*m*, 6H), 3.19-3.08 (*m*, 3H), 2.95-2.77 (*m*, 4H), 2.40 (*s*, 3H), 1.16 (*s*, 3H), 0.98 (*s*, 3H), 0.87 (*s*, 3H), 0.84 (*s*, 3H), 0.71 (*s*, 3H), 0.64 (*s*, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃):** δ 143.1 (C), 140.3 (C), 136.9 (C), 129.7 (CH), 128.6 (CH), 128.0 (CH), 127.8 (CH), 126.9 (CH), 80.8 (CH), 80.5 (CH₂), 77.0 (CH₂), 75.9 (CH₂), 75.8 (CH₂), 75.0 (CH₂), 56.8 (CH₂), 56.2 (CH₂), 37.5 (C), 36.5 (C), 36.1 (C), 24.5 (CH₃), 24.1 (CH₃), 22.7 (CH₃), 22.6 (CH₃), 22.6 (CH₃), 22.4 (CH₃), 21.6 (CH₃) ppm; **IR (neat):** 2959, 2870, 1338,

1158, 1103, 988, 740, 701, 657 cm⁻¹; **HR-MS (ESI):** $m/z = 532.3075 [M+H]^+$ (calculated for C₃₀H₄₆NO₅S m/z = 532.3091).

Compound 16hA:

Following general procedure IV, **16hA** is obtained as a white solid (41.6 mg, 92% yield) starting from **5hA** (47.8 mg, 0.09 mmol).

M.p. = 92-94 °C; **Rf** = 0.73 (silica gel, pentane/EtOAc, 1:1); ¹**H NMR (400 MHz, CDCl₃):** δ 7.56 (*d*, *J* = 8.6 Hz, 2H), 7.37-7.22 (*m*, 5H), 6.65 (*d*, *J* = 8.5 Hz, 2H), 4.52 (*dd*, *J* = 8.6, 4.0 Hz, 1H), 4.07 (*br* s, 2H), 3.55 (*d*, *J* = 15.1 Hz, 1H), 3.41-3.20 (*m*, 8H), 3.13 (*d*, *J* = 8.7 Hz, 1H), 2.93 (*t*, *J* = 8.2 Hz, 2H), 2.88-2.79 (*m*, 2H), 1.15 (*s*, 3H), 0.96 (*s*, 3H), 0.86 (*s*, 3H), 0.84 (*s*, 3H), 0.74 (*s*, 3H), 0.70 (*s*, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃):** δ 150.3 (C), 140.7 (C), 129.9 (CH), 128.5 (CH), 128.2 (C), 127.9 (CH), 127.0 (CH), 114.2 (CH), 81.3 (CH), 80.1 (CH₂), 77.4 (CH₂), 76.0 (CH₂), 75.9 (CH₂), 75.2 (CH₂), 57.2 (CH₂), 56.9 (CH₂), 37.5 (C), 36.6 (C), 36.2 (C), 24.4 (CH₃), 24.3 (CH₃), 22.7 (CH₃), 22.63 (CH₃), 22.61 (CH₃), 22.5

(CH₃) ppm; **IR (neat):** 3447, 3360, 2958, 2863, 1598, 1316, 1147, 1114, 1087, 767, 703 cm⁻¹; **HR-MS** (**ESI**): $m/z = 533.3046 [M+H]^+$ (calculated for C₂₉H₄₅N₂O₅S m/z = 533.3044).

Compound 16IA:

Following general procedure IV, **16IA** is obtained as a white solid (45.6 mg, 95% yield) starting from **5IA** (47.6 mg, 0.09 mmol).

M.p. = 89-91 °C ; **Rf** = 0.44 (silica gel, pentane/Et₂O, 7:3); ¹**H NMR (400 MHz, CDCl₃):** δ 7.83-7.74 (*m*, 2H), 7.41-7.27 (*m*, 5H), 7.15-7.07 (*m*, 2H), 4.56 (*dd*, *J* = 9.3, 3.8 Hz, 1H), 3.90 (*s*, 3H), 3.56 (*d*, *J* = 15.3 Hz, 1H), 3.45-3.33 (*m*, 5H), 3.33-3.23 (*m*, 2H), 3.16 (*dd*, *J* = 8.5, 4.5 Hz, 2H), 2.94 (*d*, *J* = 2.7 Hz, 1H), 2.91 (*d*, *J* = 9.6 Hz, 1H), 2.85 (*d*, *J* = 8.4 Hz, 1H), 2.80-2.77 (*m*, 1H), 1.17 (*s*, 3H), 0.98 (*s*, 3H), 0.88 (*s*, 3H), 0.85 (*s*, 3H), 0.73 (*s*, 3H), 0.66 (*s*, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃):** δ 163.8 (C), 141.2 (C), 132.4 (C), 130.6 (CH), 129.3 (CH), 128.8 (CH), 127.8 (CH), 115.1 (CH), 81.4 (CH), 81.1 (CH₂), 77.3 (CH₂), 76.3 (CH₂), 76.2 (CH₂), 75.4 (CH₂), 57.6 (CH₂), 56.9 (CH₂), 56.1 (CH₃), 37.9 (C), 37.0 (C), 36.5 (*c*),

24.8 (CH₃), 24.2 (CH₃), 22.9 (CH₃), 22.8 (CH₃), 22.7 (2 CH₃) ppm; **IR (neat):** 2961, 2852, 1597, 1495, 1454, 1337, 1259, 1154, 1121, 1105, 1025, 763, 699 cm⁻¹; **HR-MS (ESI):** m/z = 548.3032 [M+H]⁺ (calculated for C₃₀H₄₆NO₆S m/z = 548.3040).

Compound 16mA:

Following general procedure IV, **16mA** is obtained as a white solid (49.8 mg, 97% yield) starting from **5mA** (51.0 mg, 0.10 mmol).

M.p. = 115.5-117.5 °C; **Rf** = 0.61 (silica gel, pentane/Et₂O, 7:3); ¹H NMR (400 MHz, CDCl₃): δ 7.86-7.77 (*m*, 2H), 7.58-7.52 (*m*, 1H), 7.52-7.45 (*m*, 2H), 7.38-7.27 (*m*, 3H), 7.25-7.19 (*m*, 2H), 4.44 (*t*, *J* = 6.5 Hz, 1H), 3.62 (*d*, *J* = 15.3 Hz, 1H), 3.42-3.26 (*m*, 6H) 3.17-3.07 (*m*, 3H), 2.98-2.88 (*m*, 2H), 2.82 (*dd*, *J* = 13.5, 8.7 Hz, 2H), 1.16 (*s*, 3H), 0.99 (*s*, 3H), 0.87 (*s*, 3H), 0.84 (*s*, 3H), 0.71 (*s*, 3H), 0.64 (*s*, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 140.2 (C), 140.0 (C), 132.4 (CH), 129.1 (CH), 128.6 (CH), 128.1 (CH), 127.8 (CH), 126.9 (CH), 80.7 (CH), 80.6 (CH₂), 77.1 (CH₂), 76.0 (CH₂), 75.9 (CH₂), 75.1 (CH₂), 56.7 (CH₂), 56.1 (CH₂),

37.5 (C), 36.5 (C), 36.1 (C), 24.5 (CH₃), 24.1 (CH₃), 22.7 (CH₃), 22.62 (CH₃), 22.61 (CH₃), 22.5 (CH₃) ppm; **IR (neat):** 2958, 2851, 1335, 1160, 1106. 1084, 774, 748 cm⁻¹; **HR-MS (ESI):** $m/z = 518.2951 [M+H]^+$ (calculated for C₂₉H₄₄NO₅S m/z = 518.2935).

Compound 16aB:

Following general procedure IV, **16aB** is obtained as a white solid (43.4 mg, 90% yield) starting from **5aB** (48.2 mg, 0.11 mmol).

M.p. = 117.5-119.5 °C; **Rf** = 0.52 (silica gel, pentane/EtOAc, 1:1); ¹**H NMR (400 MHz, CDCl₃):** δ 7.68-7.59 (*m*, 2H), 7.39-7.27 (*m*, 5H), 7.25-7.21 (*m*, 2H), 4.57 (*dd*, *J* = 8.7, 2.3 Hz, 1H), 3.72-3.46 (*m*, 10H), 3.42 (*dd*, *J* = 14.9, 2.3 Hz, 1H), 3.37-3.29 (*m*, 1H), 3.19-3.09 (*m*, 1H), 3.03 (*dd*, *J* = 14.9, 8.6 Hz, 1H), 2.39 (*s*, 3H), 2.26-2.13 (*m*, 1H), 1.94-1.65 (*m*, 5H) ppm ; ¹³**C NMR (100 MHz, CDCl₃):** δ 143.3 (C), 140.5 (C), 136.4 (C), 129.8 (CH), 128.7 (CH), 128.1 (CH), 127.4 (CH), 126.7 (CH), 82.9 (CH), 69.1 (CH₂), 67.1 (CH₂), 66.2 (CH₂), 66.0 (CH₂), 65.9 (CH₂), 56.7 (CH₂), 47.9 (CH₂), 30.4 (CH₂), 30.1 (CH₂), 28.9 (CH₂), 21.6 (CH₃) ppm; **IR (neat):** 2917, 1660, 1444,

1302, 1120, 703, 552 cm⁻¹; **HR-MS (ESI)**: m/z = 448.2148 $[M+H]^+$ (calculated for C₂₄H₃₄NO₅S m/z = 448.2152).

Compound 16hB:

Following general procedure IV, **16hB** is obtained as a white solid (44.2 mg, 98% yield) starting from **5hB** (47.8 mg, 0.11 mmol).

M.p. = 49-51 °C; **Rf** = 0.31 (silica gel, pentane/EtOAc, 3:7); ¹**H NMR (400 MHz, acetone-***d*₆**)**: δ 7.52-7.43 (*m*, 2H), 7.41-7.34 (*m*, 4H), 7.33-7.27 (*m*, 1H), 6.77-6.70 (*m*, 2H), 5.44 (*br s*, 2H), 4.55 (*dd*, *J* = 8.6, 2.6 Hz, 1H), 3.65-3.36 (*m*, 10H), 3.35-3.24 (*m*, 2H), 3.18-3.04 (*m*, 2H), 2.21-2.09 (*m*, 1H), 1.91-1.80 (*m*, 1H), 1.78-1.61 (*m*, 4H) ppm; ¹³**C NMR (100 MHz, acetone-***d*₆**)**: δ 153.5 (C), 141.7 (C), 130.1 (CH), 129.4 (CH), 128.6 (CH), 127.4 (CH), 126.5 (C), 114.1 (CH), 83.2 (CH), 69.6 (CH₂), 67.2 (CH₂), 66.4 (CH₂), 66.3 (CH₂), 66.2 (CH₂), 57.4 (CH₂), 48.0 (CH₂), 31.2 (CH₂), 30.8 (CH₂), 29.7 (CH₂). ppm; **IR (neat)**: 3464, 3368, 2925, 2864, 1596, 1312, 1139,

1116, 1089, 701 cm⁻¹; **HR-MS (ESI)**: m/z = 449.2112 $[M+H]^+$ (calculated for C₂₃H₃₃N₂O₅S m/z = 449.2105).

Compound 16IB:

Following general procedure IV, **16IB** is obtained as a white solid (49.5 mg, 96% yield) starting from **5IB** (51.2 mg, 0.11 mmol).

M.p. = 80-82 °C; **Rf** = 0.48 (silica gel, pentane/EtOAc, 1:1); ¹**H NMR (400 MHz, acetone-***d*₆**)**: δ 7.74 (*d*, *J* = 8.9 Hz, 2H), 7.43-7.27 (*m*, 5H), 7.08 (*d*, *J* = 8.9 Hz, 2H), 4.56 (*dd*, *J* = 8.7, 2.8 Hz, 1H), 3.88 (*s*, 3H), 3.64-3.39 (*m*, 10H), 3.36-3.26 (*m*, 2H), 3.25-3.13 (*m*, 2H) 2.20-2.09 (*m*, 1H), 1.93-1.81 (*m*, 1H), 1.78-1.61 (*m*, 4H) ppm; ¹³**C NMR (100 MHz, acetone-***d*₆**)**: δ 163.8 (C), 141.5 (C), 132.2 (C), 130.2 (CH), 129.4 (CH), 128.7 (CH), 127.5 (CH), 115.1 (CH), 82.9 (CH), 69.4 (CH₂), 67.2 (CH₂), 66.3 (CH₂), 66.3 (CH₂), 66.2 (CH₂), 57.1 (CH₂), 56.1 (CH₃), 47.9 (CH₂), 31.2 (CH₂), 30.8 (CH₂), 29.6 (CH₂) ppm; **IR (neat):** 2923, 2864, 1338, 1255, 1154, 1115, 1091, **IS (JER)**: m/z = 464, 2000 [M4 H]t (calculated for C, H, NO S, m/z = 464, 2101)

701, 557 cm⁻¹; **HR-MS (ESI)**: $m/z = 464.2090 [M+H]^+$ (calculated for C₂₄H₃₄NO₆S m/z = 464.2101).

Compound 16mB:

Following general procedure IV, **16mB** is obtained as a white solid (42.5 mg, 99% yield) starting from **5mB** (42.9 mg, 0.10 mmol).

M.p. = 87-89 °C; **Rf** = 0.54 (silica gel, pentane/EtOAc, 1:1); ¹**H NMR (400 MHz, acetone-***d*₆**)**: δ 7.87-7.79 (*m*, 2H), 7.69-7.55 (*m*, 3H), 7.42-7.28 (*m*, 5H), 4.56 (*dd*, *J* = 8.7, 2.9 Hz, 1H), 3.68-3.15 (*m*, 14H), 2.13 (*m*, 1H), 1.87 (*m*, 1H), 1.68 (*m*, 4H); ¹³**C NMR (100 MHz, acetone-***d*₆**)**: δ 141.3 (C), 140.6 (C), 133.4 (CH), 130.0 (CH), 129.4 (CH), 128.8 (CH), 128.1 (CH), 127.5 (CH), 82.8 (CH), 69.3 (CH₂), 67.2 (CH₂), 66.3 (CH₂), 66.3 (CH₂), 66.2 (CH₂), 56.9 (CH₂), 47.8 (CH₂), 31.2 (CH₂), 30.7 (CH₂), 29.5 (CH₂) ppm; **IR (neat):** 2922, 2862, 1338, 1159, 1118, 1090, 736, 696 cm⁻¹;

HR-MS (ESI): $m/z = 434.2008 [M+H]^+$ (calculated for C₂₃H₃₂NO₅S m/z = 434.1996).

9. Deprotection of N-macrocycles 16aA and 16aB

In a 2 mL screw-cap vial equipped with a magnetic stirring bar the corresponding macrocycle (0.1 mmol) was dissolved in 1 mL of *n*-Bu₂O. Then LiAlH₄ (5 equiv) was slowly added at 0°C. The vial was flushed with nitrogen and capped. After 4 hours stirring at 120 °C, the reaction mixture was cooled down to room temperature and 200 μ L of H₂O were added dropwise at 0 °C. The mixture was stirred at room temperature during 15 minutes, filtered over celite and purified by flash chromatography (neutral Al₂O₃, pentane/EtOAc 1:1).

Compound 17aA:

17aA is obtained as a colorless oil (25.2 mg, 70% yield) starting from **16aA** (50.7 mg, 0.09 mmol).

Rf = 0.53 (neutral Al₂O₃, pentane/EtOAc 1:1); ¹**H NMR (400 MHz, CDCl₃)**: δ 7.35-7.29 (*m*, 4H), 7.26-7.22 (*m*, 1H), 4.37 (*d*, *J* = 9.6 Hz, 1H), 3.55-3.42 (*m*, 4H), 3.30 (*d*, *J* = 8.7 Hz, 1H), 3.11 (*d*, *J* = 8.6 Hz, 1H), 3.01-2.81 (*m*, 5H), 2.59-2.45 (*m*, 3H), 3.07 (*s*, 3H), 0.89 (*s*, 3H), 0.87 (*s*, 6H), 0.83 (*s*, 3H), 0.80 (*s*, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃)**: δ 142.0 (C), 128.3 (CH), 127.4 (CH), 126.5 (CH), 80.43 (CH₂), 80.40 (CH), 76.7 (CH₂), 76.3 (CH₂), 75.7 (CH₂), 75.3 (CH₂), 60.3 (CH₂), 58.9 (CH₂), 36.2 (C), 36.2 (C), 35.4 (C), 25.0 (CH₃), 23.6 (CH₃), 23.0 (CH₃), 22.7 (CH₃), 22.7 (CH₃), 22.5 (CH₃) ppm; **IR (neat)**: 2957, 2871, 1109, 700

cm⁻¹; **HR-MS (ESI)**: $m/z = 378.3007 [M+H]^+$ (calculated for C₂₃H₄₀NO₃ m/z = 378.3003).

Compound 17aB:

17aB is obtained as a colorless oil (26.6 mg, 90 % yield) starting **from 16aB** (45.1 mg, 0.10 mmol).

Rf = 0.25 (neutral Al₂O₃, pentane/EtOAc 1:1); ¹**H NMR (400 MHz, CDCl₃):** δ 7.38-7.30 (*m*, 4H), 7.29-7.24 (*m*, 1H), 4.48 (*dd*, *J* = 9.9, 2.2 Hz, 1H), 3.81-3.71 (*m*, 1H), 3.70-3.60 (*m*, 5H), 3.60-3.53 (*m*, 2H), 3.52-3.44 (*m*, 2H), 2.96-2.85 (*m*, 2H), 2.82-2.74 (*m*, 1H), 2.63 (*dd*, *J* = 12.9, 2.4 Hz, 1H), 1.96-1.74 (*m*, 6H) ppm; ¹³**C NMR (100 MHz, CDCl₃):** δ 141.5 (C), 128.5 (CH), 127.6 (CH), 126.5 (CH), 81.0 (CH), 71.0 (CH₂), 67.5 (CH₂), 67.3 (CH₂), 67.2 (CH₂), 65.5 (CH₂), 58.0 (CH₂), 48.5 (CH₂), 30.44 (CH₂), 30.41 (CH₂), 29.8 (CH₂) ppm; **IR (neat):** 2919, 2860, 1112, 701, 516 cm⁻¹; **HR-MS**

(ESI): $m/z = 294.2064 [M+H]^+$ (calculated for $C_{17}H_{28}NO_3 m/z = 294.2064$).

10. Synthesis of aldehyde 18

In a 2 mL screw-cap vial equipped with a magnetic stirring bar, $Rh_2(S-TCPTTL)_4$ (2.96 mg, 0.0015 mmol, 1 mol%), *N*-tosyl-4-phenyl-1,2,3-triazole **1a** (44.9 mg, 0.15 mmol, 1 equiv) and 3,3-dimethyloxetane **3A** (23 µL, 0.225 mmol, 1.5 equiv) were dissolved in 1.5 mL of anhydrous CH_2Cl_2 (0.1 M). The vial was flushed with nitrogen, capped and stirred at 100 °C for 3 h. The solution was cooled to room temperature and 180

mg of silica gel were added. The obtained suspension was stirred at room temperature for 24 h until hydrolysis of the imine was complete. Solvent was removed under reduced pressure and the preabsorbed silica was purified by column chromatography (silica gel, pentane/Et₂O 9:1) to afford aldehyde **18** as a colorless oil (21.2 mg, 69% yield).

Rf = 0.45 (silica gel, pentane/Et₂O, 9:1); ¹**H NMR (400 MHz, CDCl₃)**: δ 9.53 (*s*, 1H), 7.44-7.33 (*m*, 4H), 7.32-7.27 (*m*, 1H), 3.73 (*d*, *J* = 8.3 Hz, 1H), 3.67 (*d*, *J* = 8.2 Hz, 1H), 2.69 (*d*, *J* = 12.7 Hz, 1H), 1.92 (*d*, *J* = 12.7 Hz, 1H), 1.07 (*s*, 3H), 1.05 (*s*, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃)**: 199.7 (CH), 139.7 (C), 128.8 (CH), 127.9 (CH), 125.6 (CH), 91.3 (C), 80.4 (CH₂), 48.5 (CH₂), 40.4 (C), 26.3 (CH₃), 26.1 (CH₃) ppm; **IR (neat)**: 2975, 1712, 1452, 1369, 1271, 1175, 1112, 1070, 1026, 709, 501 cm⁻¹; **HR-MS (ESI)**: m/z = 205.1225 [M+H]⁺ (calculated for $C_{13}H_{16}O_2$ m/z = 205.1223).

11. Synthesis of dithiane 19

In a 2 mL screw-cap vial equipped with a magnetic stirring bar, Rh₂(S-TCPTTL)₄ (2.96 mg, 0.0015 mmol, 1 mol%), N-tosyl-4-phenyl-1,2,3-triazole 1a (44.7 mg, 0.15 mmol, 1 equiv) and 3,3-dimethyloxetane **3A** (23 µL, 0.225 mmol, 1.5 equiv) were dissolved in 1.5 mL of anhydrous CH_2Cl_2 (0.1 M). The vial was flushed with nitrogen, capped and stirred at 100 °C for 3 h. The solution was cooled to room temperature and 1,3-propanedithiol (30 µL, 0.3 mmol, 2 equiv),

chlorotrimethylsilane (6 μL, 0.045 mmol, 0.3 equiv) and Zn(OTf)₂ (5.5 mg, 0.015 mmol, 0.1 equiv) were added to the reaction mixture. The solution was stirred at room temperature for 1 h. Solvent was removed under reduced pressure and the residue was purified by column chromatography (neutral Al₂O₃, pentane/Et₂O 9:1) to afford **19** as a white solid (30.6 mg, 70% yield).

M.p. = 83-85 °C; **Rf** = 0.27 (silica gel, pentane/Et₂O, 9:1); ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.46 (*m*, 2H), 7.39-7.31 (m, 2H), 7.31-7.27 (m, 1H), 4.33 (s, 1H), 3.78 (d, J = 8.3 Hz, 1H), 3.59 (d, J = 8.3 Hz, 1H), 2.84-2.74 (*m*, 4H), 2.62 (*d*, *J* = 12.9 Hz, 1H), 2.27 (*d*, *J* = 12.9 Hz, 1H), 2.06-1.93 (*m*, 1H), 1.87-1.71 (*m*, 1H), 1.19 (s, 3H), 0.80 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 143.7 (C), 127.8 (CH), 127.5 (CH), 126.5 (CH), 89.1 (C), 80.9 (CH₂), 60.2 (CH), 50.1 (CH₂), 40.2 (C), 31.0 (CH₂), 30.8 (CH₂), 27.6 (CH₃), 27.2 (CH₃), 25.8 (CH₂) ppm; **IR (neat):** 2958, 2865, 1465, 1441, 1277, 1045, 906, 763, 706, 681, 571 cm⁻¹; **HR-MS (ESI):** $m/z = 317.0992 [M+Na]^+$ (calculated for $C_{16}H_{22}NaOS_2 m/z = 317.1004$).

12. Synthesis of amine 20

To a stirred solution of compound 9hA (137.6 mg, 0.35 mmol, 1 equiv) in a mixture of CH₃CN/DMSO (49:1, 14 mL) were added K₂CO₃ (194 mg, 1.4 mmol, 4 equiv) and PhSH (180 μL, 1.75 mmol, 5 equiv). The reaction mixture was stirred at 50 °C for 2 h. After being cooled to 20 °C, solvent was evaporated and the residue was directly purified by column chromatography (silica gel, pentane/EtOAc 7:3) to afford compound **20** as a colorless oil (46.6 mg, 65% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.43-7.29 (*m*, 4H), 7.25-7.18 (*m*, 1H), 3.62 (*d*, *J* = 8.3 Hz, 1H), 3.58 (*d*, *J* = 8.3 Hz, 1H), 3.02-2.63 (m, 2H), 2.06 (d, J = 12.5 Hz, 1H), 1.96 (d, J = 12.5 Hz, 1H), 1.14 (s, 3H), 0.91 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 145.9 (C), 128.3 (CH), 126.6 (CH), 125.7 (CH), 79.5 (CH₂), 53.4 (CH₂), 51.4 (CH₂), 40.5 (C), 27.4 (CH₃), 27.2 (CH₃) ppm; IR (neat): 2957, 2866, 1448, 1260, 1054, 764, 734, 703 cm⁻¹; **HR-MS (ESI)**: $m/z = 206.1539 [M+H]^+$ (calculated for C₁₃H₂₀NO m/z = 206.1539).

13. Synthesis of spiroindoline 7

In a 2 mL screw-cap vial equipped with a magnetic stirring bar, 2aminotetrahydrofuran **9dA** (65.8 mg, 0.15 mmol, 1 equiv) was dissolved in 0.9 mL of dry toluene. Pd(OAc)₂ (6.7 mg, 0.03 mmol, 20 mol %), (±)-BINAP (37.4 mg, 0.06 mmol, 40 mol %) and K₂CO₃ (51.8 mg, 0.38 mmol, 2.5 equiv) were added and the mixture was stirred at 115 °C for 12 h. Then, it was cooled to room temperature, quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic fraction was washed with H₂O (3 x 10 mL), brine (20 mL),

dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, pentane/EtOAc, 9:1) to afford compound **7** as a white solid (46.1 mg, 86% yield).

M.p. = 139.5-141.5 °C; **Rf** = 0.52 (silica gel, pentane/EtOAc, 8:2); ¹**H NMR (400 MHz, CDCl₃)**: δ 7.70 (*d*, *J* = 8.3 Hz, 2H), 7.66 (*d*, *J* = 8.2 Hz, 1H), 7.29 (*ddd*, *J* = 8.3, 7.5, 1.3 Hz, 1H), 7.25-7.18 (*m*, 3H), 7.05 (*td*, *J* = 7.5, 1.0 Hz, 1H), 4.00 (*d*, *J* = 11.2 Hz, 1H), 3.82 (*d*, *J* = 11.2 Hz, 1H), 3.61 (*d*, *J* = 8.5 Hz, 1H), 3.55 (*d*, *J* = 8.5 Hz, 1H), 2.35 (*s*, 3H), 2.06 (*d*, *J* = 13.4 Hz, 1H), 1.86 (*d*, *J* = 13.4 Hz, 1H), 1.18 (*s*, 3H), 1.17 (*s*, 3H) ppm; ¹³**C NMR (100 MHz, CDCl₃)**: δ 144.3 (C), 141.7 (C), 135.4 (C), 134.1 (C), 129.9 (CH), 129.8 (CH), 127.5 (CH), 124.2 (CH), 123.9 (CH), 114.7 (CH), 86.9 (C), 80.6 (CH₂), 63.0 (CH₂), 52.7 (CH₂), 40.3 (C), 26.60 (CH₃), 26.59 (CH₃), 21.7 (CH₃); **IR (neat)**: 2969, 2840, 1598, 1459, 1343, 1162, 1117, 1096, 1051, 1034, 1015, 948, 759, 660 cm⁻¹; **HR-MS (ESI)**: m/z = 358.1459 [M+H]⁺ (calculated for C₂₀H₂₄NO₃S m/z = 358.1471).

14. Synthesis of spirotetrahydroisoquinoline 8

In a 2 mL screw-cap vial equipped with a magnetic stirring bar, 2-aminotetrahydrofuran **9** (0.15 mmol, 1 equiv) and paraformaldehyde ((HCHO)_n, 9.5 mg, 0.315 mmol, 2.1 equiv) were dissolved in 0.7 mL of anhydrous 1,2-DCE. Trifluoroacetic anhydride (TFAA, 64 μ L, 0.45 mmol, 3 equiv) was added and the solution was cooled to 0 °C. MsOH (97 μ L, 1.5 mmol, 10 equiv) was slowly added and the solution was stirred at 0 °C for 25 min. Then, 4 mL of H₂O was added and the mixture was stirred for an additional 5 min at 0 °C and 10 min at room temperature. After that, 15 mL of CHCl₃ and 20 mL of H₂O were added to the reaction mixture. The layers were separated and the aqueous fraction was extracted with CHCl₃ (3 x 15 mL). The organic fraction was washed with 50 mL of sat. NaHCO₃ solution, 50 mL of brine, dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by column chromatography

Compound 8A:

Compound **8A** is obtained as a white solid (49.2 mg, 88% yield) starting from 2-aminotetrahydrofuran **9aA** (53.9 mg, 0.15 mmol).

Purification: column chromatography (silica gel, pentane/Et₂O, 8:2) **M.p.** = 107-108 °C; **Rf** = 0.38 (silica gel, pentane/Et₂O, 7:3); ¹**H NMR (400 MHz, CDCl₃**): δ 7.73 (*d*, *J* = 8.3 Hz, 2H), 7.52 (*dd*, *J* = 7.8, 1.3 Hz, 1H), 7.34 (*d*, *J* = 8.0 Hz, 2H), 7.23 (*dd*, *J* = 7.7, 1.3 Hz, 1H), 7.17 (*td*, *J* = 7.5, 1.4 Hz, 1H), 6.99

 $(dd, J = 7.6, 1.2 \text{ Hz}, 1\text{H}), 4.59 (d, J = 14.8 \text{ Hz}, 1\text{H}), 3.95-3.87 (m, 2\text{H}), 3.86-3.77 (m, 2\text{H}), 2.62 (dd, J = 11.0, 1.3 \text{ Hz}, 1\text{H}), 2.47-2.39 (m, 4\text{H}), 1.83 (dd, J = 13.5, 1.4 \text{ Hz}, 1\text{H}), 1.27 (s, 3\text{H}), 1.24 (s, 3\text{H}) ppm; {}^{13}\text{C}$ **NMR (100 MHz, CDCl_3):** δ 144.0 (C), 141.2 (C), 133.4 (C), 130.7 (C), 129.9 (CH), 127.8 (CH), 127.6 (CH), 127.3 (CH), 125.8 (CH), 125.4 (CH), 82.6 (C), 81.6 (CH₂), 53.4 (CH₂), 52.2 (CH₂), 47.6 (CH₂), 40.6 (C), 28.8 (CH₃), 27.6 (CH₃), 21.7 (CH₃) ppm; **IR (neat):** 2955, 2845, 1336, 1166, 1054, 971, 815, 763, 657 cm⁻¹; **HR-MS (ESI):** m/z = 372.1629 [M+H]⁺ (calculated for C₂₁H₂₆NO₃S m/z = 372.1628).

Compound 8B:

Compound **8B** is obtained as a white solid (33.3 mg, 65% yield) starting from 2-aminotetrahydrofuran **9aB** (49.7 mg, 0.15 mmol).

Purification: column chromatography (silica gel, pentane/EtOAc, 8:2)

M.p. = 156-158 °C; **Rf** = 0.48 (silica gel, pentane/EtOAc, 7:3); ¹**H NMR (400 MHz, CDCl₃):** δ 7.73 (*d*, *J* = 8.3 Hz, 2H), 7.41 (*dd*, *J* = 7.7, 1.4 Hz, 1H), 7.35 (*d*, *J* = 8.1 Hz, 2H), 7.23 (*t*, *J* = 7.6 Hz, 1H), 7.17 (*td*, *J* = 7.4, 1.5 Hz, 1H), 6.99 (*dd*, *J* = 7.6, 1.3 Hz,

1H), 4.63 (*d*, *J* = 14.8 Hz, 1H), 4.22-4.06 (*m*, 2H), 3.82-3.69 (*m*, 2H), 2.60-2.49 (*m*, 2H), 2.43 (*s*, 3H), 2.21-2.10 (*m*, 2H), 1.97-1.86 (*m*, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 144.0 (C), 140.7 (C), 133.2 (C), 131.0 (C), 130.0 (CH), 127.8 (CH), 127.5 (CH), 127.4 (CH), 125.7 (CH), 125.6 (CH), 81.6 (C), 70.1 (CH₂), 51.9 (CH₂), 47.9 (CH₂), 39.4 (CH₂), 26.1 (CH₂), 21.7 (CH₃) ppm; IR (neat): 2925, 2858, 1333, 1164, 1051, 962, 810, 762, 657 cm⁻¹; HR-MS (ESI): m/z = 344.1321 [M+H]⁺ (calculated for C₁₉H₂₂NO₃S m/z = 344.1315).

Compound 8C:

Compound **8C** is obtained as a white solid (59.7 mg, 90% yield) starting from 2-iminotetrahydrofuran **9aC** (64.3 mg, 0.15 mmol). Purification: column chromatography (silica gel, pentane/Et₂O, 8:2) **M.p.** = 57-59 °C; **Rf** = 0.28 (silica gel, pentane/Et₂O, 7:3); ¹**H NMR (400 MHz, CDCl₃):** δ 7.74 (*d*, *J* = 8.3 Hz, 2H), 7.48 (*dd*, *J* = 7.7, 1.4 Hz, 1H), 7.37 (*d*, *J* = 8.0 Hz, 2H), 7.31-7.26 (*m*, 1H), 7.22 (*td*, *J* = 7.5, 1.5 Hz, 1H), 7.02 (*dd*, *J* = 7.6, 1.3 Hz, 1H), 4.63 (*d*, *J* = 14.9 Hz, 1H), 4.14 (*d*, *J* = 10.2 Hz, 1H),

4.04-3.93 (*m*, 2H), 3.92-3.75 (*m*, 5H), 2.63 (*dd*, *J* = 11.2, 1.4 Hz, 1H), 2.56 (*d*, *J* = 14.6 Hz, 1H), 2.44 (*s*, 3H), 2.06 (*dd*, *J* = 14.6, 1.5 Hz, 1H) ppm; ¹³**C NMR (100 MHz, CDCl₃):** 144.3 (C), 138.8 (C), 133.3 (C), 131.0 (C), 130.1 (CH), 128.0 (CH), 127.9 (CH), 127.8 (CH), 126.0 (CH), 125.0 (CH), 82.5 (C), 74.4 (CH₂), 51.8 (C), 51.1 (CH₂), 49.1 (CH₂), 48.2 (CH₂), 47.6 (CH₂), 46.8 (CH₂), 21.7 (CH₃) ppm; **IR (neat):** 2864, 1333, 1161, 1045, 1018, 811, 735, 657 cm⁻¹; **HR-MS (ESI):** m/z = 440.0858 [M+H]⁺ (calculated for $C_{21}H_{24}Cl_2NO_3S$ m/z = 440.0849).

15. NMR spectra of new compounds

Compound 1p: ¹H NMR (CDCl₃, 500 MHz)

Compound 1p: ¹³C NMR (CDCl₃, 100 MHz)

Compound 1q, ¹H NMR (CDCl₃, 500 MHz)

Compound 1q, ^{13}C NMR (CDCl_3, 100 MHz)

Compound 9aA: ¹H NMR (CDCl₃, 400 MHz)

Compound 9aA: ¹³C NMR (CDCl₃, 100 MHz)

Compound 9bA: ¹H NMR (CDCl₃, 400 MHz)

Compound 9bA: ¹³C NMR (CDCl₃, 400 MHz)

Compound 9cA: ¹H NMR (CDCl₃, 400 MHz)

Compound 9cA: ¹³C NMR (CDCl₃, 400 MHz)

Compound 9dA: ¹H NMR (CDCl₃, 400 MHz)

Compound 9dA: ¹³C NMR (CDCl₃, 100 MHz)

Compound 9eA: ¹H NMR (CDCl₃, 400 MHz)

Compound 9eA: ¹³C NMR (CDCl₃, 100 MHz)

Compound 9fA: ¹H NMR (CDCl₃, 400 MHz)

Compound 9fA: ¹³C NMR (CDCl₃, 100 MHz)

Compound 9gA: ¹H NMR (CDCl₃, 400 MHz)

Compound 9gA: ¹³C NMR (CDCl₃, 400 MHz)

Compound 9hA: ¹H NMR (CDCl₃, 400 MHz)

Compound 9hA: ¹H NMR (CDCl₃, 400 MHz)

Compound 9aB: ¹H NMR (CDCl₃, 400 MHz)

Compound 9aB: ¹³C NMR (CDCl₃, 100 MHz)

Compound 9aC: ¹H NMR (CDCl₃, 400 MHz)

Compound 9aC: ¹³C NMR (CDCl₃, 100 MHz)

Compound 9aD: ¹H NMR (CDCl₃, 400 MHz)

Compound 9aD: ¹³C NMR (CDCl₃, 100 MHz)

Compound 9iA: ¹H NMR (CDCl₃, 400 MHz)

Compound 9iA: ¹³C NMR (CDCl₃, 400 MHz)

Compound 5aA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 5aA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 5bA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 5bA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 5cA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 5cA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 5gA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 5gA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 5hA: ¹H NMR (CDCl₃, 400 MHz)

Compound 5hA: ¹³C NMR (CDCl₃, 100 MHz)

Compound 5jA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 5jA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 5kA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 5kA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 5IA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 5IA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 5mA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 5mA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 5nA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 5nA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 5aB: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 5aB: 13 C NMR (acetone- d_6 , 100 MHz)

Compound 5hB: ¹H NMR (acetone-d₆, 400 MHz)

Compound 5hB: ¹³C NMR (acetone-d₆, 100 MHz)

Compound 5kB: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 5kB: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 5IB: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 5IB: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 5mB: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 5mB: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound (E)-5pA: ¹H NMR (acetone-d₆, 500 MHz)

Compound (E)-5pA, ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound (Z)-5pA: ¹H NMR (CDCl₃, 400 MHz)

Compound (Z)- 5pA: ¹³C NMR (CDCl₃, 100 MHz)

Compound (E)-5qA: ¹H NMR (CDCl₃, 400 MHz)

Compound (E)-5qA: ¹³C NMR (CDCl₃, 100 MHz)

Compound (Z)-5qA: ¹H NMR (CDCl₃, 400 MHz)

Compound (Z)-5qA: ¹³C NMR (CDCl₃, 100 MHz)

Compound 6gA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 6gA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 6nA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 6nA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 6oA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 6oA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 6aA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 6aA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 10aA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 10aA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 16aA: ¹H NMR (CDCl₃, 400 MHz)

Compound 16aA: ¹³C NMR (CDCl₃, 100 MHz)

Compound 16hA: ¹H NMR (CDCl₃, 400 MHz)

Compound 16hA: ¹³C NMR (CDCl₃, 100 MHz)

Compound 16IA: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 16IA: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 16mA: ¹H NMR (CDCl₃, 400 MHz)

Compound 16mA: ¹³C NMR (CDCl₃, 100 MHz)

Compound 16aB: ¹H NMR (CDCl₃, 400 MHz)

Compound 16aB: ¹³C NMR (CDCl₃, 100 MHz)

Compound 16hB: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 16hB: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 16IB: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 16IB: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 16mB: ¹H NMR (acetone-*d*₆, 400 MHz)

Compound 16mB: ¹³C NMR (acetone-*d*₆, 100 MHz)

Compound 17aA: ¹H NMR (CDCl₃, 400 MHz)

Compound 17aA: ¹³C NMR (CDCl₃, 100 MHz)

Compound 17aB: ¹H NMR (CDCl₃, 400 MHz)

Compound 17aB: ¹³C NMR (CDCl₃, 100 MHz)

Compound 18: ¹H NMR (CDCl₃, 400 MHz)

Compound 18: ¹³C NMR (CDCl₃, 400 MHz)

Compound 19: ¹H NMR (CDCl₃, 400 MHz)

Compound 19: ¹³C NMR (CDCl₃, 400 MHz)

Compound 20: ¹H NMR (CDCl₃, 400 MHz)

Compound 20: ¹³C NMR (CDCl₃, 400 MHz)

Compound 7: ¹H NMR (CDCl₃, 400 MHz)

Compound 7: ¹³C NMR (CDCl₃, 400 MHz)

Compound 8A: ¹H NMR (CDCl₃, 400 MHz)

Compound 8A: ¹³C NMR (CDCl₃, 400 MHz)

Compound 8B: ¹H NMR (CDCl₃, 400 MHz)

Compound 8B: ¹³C NMR (CDCl₃, 400 MHz)

Compound 8C: ¹H NMR (CDCl₃, 400 MHz)

Compound 8C: ¹³C NMR (CDCl₃, 400 MHz)

16. Computational details

Geometry optimizations have been performed with the Gaussian 09⁵ package at the BP86⁶ level of hybrid density functional theory. The sulphur and bromine atoms were represented by the relativistic effective core potential (RECP) from the Stuttgart group and the associated basis sets⁷ augmented by a d polarization function⁸. The remaining atoms (H, C, O, N) were represented by a 6-311G^{**} basis set⁹. All energies reported in the present work are Zero-point energies corrected.

Computed Energies and Cartesian Coordinates

Compound (<i>E</i>)-5pA		С	-3.277530	-1.359912	1.979484		
BP8	36 Energy = -	1891.39857	398	С	-4.496005	-1.511070	1.047680
Z-point correction = 0.677155			С	-5.078120	-2.925398	1.250868	
Ent	halpy correc	tion = 0.721	550	С	-2.305651	2.437400	3.447202
Gib	bs correctio	n = 0.599795	5	С	-4.077480	-1.324925	-0.423231
				0	-3.095675	-2.299009	-0.785201
С	0.405681	4.835754	-1.472396	C	-2.720419	-2.208811	-2.159631
С	0.603322	3.487510	-1.829765	C	-5.561155	-0.447874	1.382833
С	-0.329913	2.860808	-2.677814	C	-1.809743	-4.571666	-2.129989
С	-1.437636	3.568547	-3.160748	Н	-1.158939	0.596414	-0.532694
С	-1.628482	4.907937	-2.797294	Н	-1.710047	2.134007	0.829157
С	-0.704781	5.538514	-1.951439	Н	-0.504693	3.202641	1.597733
С	1.802123	2.727315	-1.346128	Н	-0.777339	-0.528655	2.402316
S	1.769104	2.331834	0.483978	Н	-1.862512	-0.252995	3.799091
Ν	0.274439	1.431938	0.774647	Н	-3.589987	-1.591439	3.021444
С	-0.814329	2.155149	1.474284	Н	-2.496184	-2.089782	1.690703
С	-1.162884	1.574668	2.871130	Н	-4.973057	-1.429447	-1.073725
С	0.068918	1.637309	3.795222	Н	-3.666613	-0.305257	-0.569762
0	2.920771	1.420750	0.746391	Н	-2.479666	-1.158649	-2.418274
0	1.645197	3.604500	1.255519	Н	-3.561064	-2.537006	-2.808622
С	-0.137057	0.466199	-0.161439	Н	-0.620775	-2.805733	-0.447888
С	0.528579	-0.596985	-0.669830	Н	0.570015	-3.264403	-1.721188
Ν	1.797061	-1.074451	-0.248313	Н	3.851626	-2.981255	2.906490
С	2.053116	-1.705919	1.005212	Н	6.304494	-3.299572	2.424223
С	3.512696	-2.019494	0.995392	Н	7.280563	-2.515963	0.286715
С	4.064544	-1.576924	-0.214447	Н	5.838962	-1.386063	-1.443015
С	2.988169	-0.935615	-1.022862	Н	2.737975	3.304391	-1.405129
С	5.418543	-1.740388	-0.499287	Н	1.946992	1.760825	-1.850018
С	6.213464	-2.371171	0.472920	Н	-0.176760	1.817092	-2.965619
С	5.659309	-2.816259	1.686346	Н	-2.158987	-4.700275	-1.094679
С	4.292670	-2.645046	1.965540	Н	-0.923158	-5.209445	-2.283865
0	1.225704	-1.943624	1.866395	Н	-2.603044	-4.933156	-2.804850
0	3.057715	-0.388155	-2.108912	Н	-2.150076	3.073340	-3.825585
0	-0.045766	-1.255210	-1.732018	Н	-2.492103	5.461225	-3.175271
С	-0.333610	-2.665611	-1.502259	Н	-0.847514	6.584351	-1.667568
С	-1.486727	-3.093253	-2.428552	Н	1.121033	5.325312	-0.807298
С	-1.077256	-2.922115	-3.905498	Н	-1.999119	3.493433	3.531641
С	-1.605432	0.103571	2.778058	Н	-2.580345	2.084913	4.455090
0	-2.752657	-0.030826	1.925356	Н	-3.204305	2.381909	2.814320

Н	0.896363	1.031219	3.395030
Н	-0.179666	1.257619	4.800215
Н	0.427120	2.673529	3.898738
Н	-5.161077	0.569046	1.256592
Н	-5.892009	-0.552298	2.429305
Н	-6.448081	-0.561375	0.736910
Н	-1.914011	-3.175917	-4.577443
Н	-0.235188	-3.589357	-4.152143
Н	-0.762753	-1.888536	-4.114755
Н	-5.955216	-3.076890	0.599826
Н	-5.404011	-3.070403	2.294185
Н	-4.336860	-3.700028	1.004056

Compound (Z)-5pA

BP86 Energy = -1891.39567739 Z-point correction = 0.677810 Enthalpy correction = 0.722225 Gibbs correction = 0.600529

С	4.029316	-1.771380	0.760432	
С	5.414596	-1.519552	0.768417	
С	6.030510	-0.981356	1.902794	
С	5.270637	-0.689994	3.044371	
С	3.891264	-0.934882	3.043597	
С	3.271862	-1.468145	1.906466	
С	3.370173	-2.364444	-0.446292	
S	3.022848	-1.142385	-1.816313	
Ν	1.701880	-0.197117	-1.203811	
С	1.854904	1.265489	-1.047885	
С	1.438970	2.153980	-2.267242	
С	-0.091114	2.341335	-2.310861	
0	-0.511886	3.154178	-1.213188	
С	-1.936428	3.232395	-1.094118	
С	-2.308887	4.333539	-0.078867	
С	-1.503714	4.130747	1.217722	
0	-1.775914	2.839966	1.776352	
С	-0.702180	2.349424	2.573372	
С	-1.039747	0.934915	3.080973	
С	-1.399119	0.014063	1.903949	
0	-0.263268	-0.096866	1.000259	
С	-0.412842	-0.869034	-0.117214	
С	0.490006	-0.908631	-1.127906	
0	2.532548	-1.967440	-2.963905	
0	4.184107	-0.219110	-1.970077	
С	-1.945590	5.720866	-0.647416	
С	-3.821744	4.248640	0.201592	
С	2.124954	3.525056	-2.076935	
С	1.884182	1.542112	-3.608616	
С	0.175201	0.388257	3.853962	

С	-2.278468	0.992587	4.002060
Ν	-1.549053	-1.727676	-0.211799
С	-2.813790	-1.369027	-0.766549
С	-3.633338	-2.616967	-0.721554
С	-2.862338	-3.646315	-0.162312
С	-1.511299	-3.106270	0.174175
С	-4.943430	-2.835441	-1.143041
С	-5.466116	-4.130654	-0.987255
С	-4.693262	-5.163041	-0.425840
С	-3.372929	-4.933467	-0.002868
0	-3.121064	-0.264405	-1.175169
0	-0.554700	-3.673126	0.667163
н	1.801366	4.231618	-2.859079
Н	3.219879	3.417551	-2.144779
Н	1.872364	3.968823	-1.102401
Н	-0.039982	-0.614468	4.259126
Н	0.425189	1.046448	4.702617
Н	1.058078	0.313926	3.201726
Н	3.295510	-0.715713	3.933292
Н	-0.526457	3.012853	3.448158
Н	0.229631	2.322589	1.974039
Н	-5.127955	-6.159995	-0.319795
Н	-2.341626	2.254211	-0.776111
Н	-2.385937	3.483307	-2.079103
Н	5.753576	-0.275644	3.933234
Н	2.389682	-2.813177	-0.227690
Н	3.999179	-3.103049	-0.965196
Н	-2.762312	-5.728169	0.431371
Н	-6.488996	-4.341867	-1.308553
Н	-5.532836	-2.026228	-1.579774
Н	6.007420	-1.741720	-0.122458
Н	7.106849	-0.791145	1.897254
Н	1.381920	0.583435	-3.814586
Н	2.968517	1.357019	-3.613948
Н	1.648927	2.232219	-4.435760
Н	-3.139037	1.434122	3.477690
Н	-2.063308	1.616333	4.884899
н	-2.558309	-0.012034	4.361151
Н	2.195837	-1.661238	1.904157
Н	-0.374164	2.833738	-3.266975
н	-0.601448	1.357720	-2.278560
н	-2.133489	6.517907	0.091829
н	-2.554085	5.942659	-1.539751
н	-0.885206	5.758320	-0.940341
н	-4.082565	3.290962	0.676432
Н	-4.400740	4.341063	-0.732826
Н	-4.137642	5.063491	0.874245
Н	-0.426918	4.213814	0.981809
Н	-1.763354	4.921991	1.952718
Н	0.288488	-1.603922	-1.946011
Н	-1.654185	-0.987752	2.293048

Н	-2.257662	0.432639	1.356196
Н	2.916212	1.442200	-0.822699
Н	1.264205	1.562456	-0.166457

Compound (E)-5qA

BP86 Energy = -1966.62943710 Z-point correction = 0.681272 Enthalpy correction = 0.726910 Gibbs correction = 0.603560

S	-2.167260	-0.766279	-1.748416
0	0.353012	0.378895	1.899245
0	-2.391434	-1.154885	-3.171068
0	3.173812	-0.478273	-1.719044
0	-2.841535	0.419328	-1.153621
Ν	-0.410730	-0.444666	-1.612906
0	0.387199	2.906975	-1.142074
Ν	-0.909264	1.782004	0.472278
0	3.666787	-0.045473	1.766311
0	-2.653334	1.269375	1.971512
0	-3.225335	-5.572155	1.604596
С	-0.140829	0.600895	0.639691
С	0.107418	-0.337393	-0.304258
Н	0.819781	-1.115405	-0.007322
С	-2.514112	-2.195463	-0.702018
С	1.257721	1.403923	2.401788
Н	0.670718	2.238059	2.828722
Н	1.875352	1.777790	1.569094
С	-2.624999	3.338021	0.661167
С	-1.717880	3.818224	-0.292271
С	-0.601706	2.836889	-0.434667
С	0.433511	-1.241968	-2.537043
Η	-0.235103	-1.783495	-3.221474
Н	1.016231	-1.979949	-1.955571
С	4.243214	0.226448	-1.084753
Η	3.845454	1.083815	-0.507147
Η	4.932081	0.628970	-1.859550
С	-2.479922	-3.480608	-1.271584
Η	-2.289919	-3.598738	-2.339968
С	2.399310	0.400778	-2.550441
Η	3.079336	0.956050	-3.232231
Η	1.866559	1.143571	-1.926882
С	-2.143328	2.016727	1.158094
С	-1.917887	5.036015	-0.939032
Η	-1.204337	5.398470	-1.682314
С	2.151595	0.777601	3.487796
С	-2.795420	-2.009886	0.657360
Η	-2.838079	-1.005861	1.085664
С	1.399845	-0.394804	-3.408176
С	1.289065	0.294530	4.671464

Н	0.782810	1.147195	5.153145
Н	1.911551	-0.201404	5.434845
Н	0.515723	-0.413045	4.335865
С	-3.000625	-4.420333	0.907681
С	-2.724107	-4.588422	-0.466456
Н	-2.719505	-5.600075	-0.877194
С	-3.770085	4.054603	1.002147
Н	-4.473079	3.666362	1.742390
С	2.898618	-0.438329	2.904387
Н	3.563093	-0.873871	3.681825
Н	2.160283	-1.210782	2.613347
С	4.146176	-1.170358	1.024736
Н	3.287774	-1.753016	0.633166
Н	4.738112	-1.838007	1.687872
С	5.034675	-0.702391	-0.143645
С	0.602482	0.613021	-4.259734
Н	-0.150593	0.093311	-4.873028
Н	1.275485	1.165739	-4.936241
Н	0.078795	1.342378	-3.623935
С	-3.070306	5.766304	-0.601878
Н	-3.264902	6.723876	-1.091339
С	-3.982166	5.283042	0.353489
Н	-4.871137	5.872686	0.591100
С	-3.038506	-3.127686	1.465030
Н	-3.262415	-2.974576	2.521257
С	3.152610	1.853784	3.954842
Н	3.816390	2.160313	3.132880
Н	3.780276	1.463515	4.772766
Н	2.626140	2.746099	4.333138
С	2.158905	-1.379987	-4.323205
Н	2.762997	-2.086899	-3.734380
Н	2.841186	-0.829771	-4.992255
Н	1.459736	-1.954205	-4.954085
С	6.242948	0.086867	0.401860
Н	6.905835	0.408699	-0.418469
Н	6.836141	-0.542818	1.085933
Н	5.917052	0.977289	0.959730
С	5.520348	-1.951049	-0.906725
Н	4.672757	-2.522323	-1.313323
Н	6.107301	-2.612330	-0.247208
Н	6.166182	-1.659190	-1.751113
С	-3.522823	-5.461911	3.002908
Н	-3.666080	-6.491337	3.353674
Н	-4.447577	-4.883377	3.173002
Н	-2.688090	-4.997391	3.556475

Compound (Z)-5qA

BP86 Energy = -1966.62619351 Z-point correction = 0.681408 Enthalpy correction = 0.727253 Gibbs correction = 0.602100

С	-0.118172	5.787489	-0.752080
С	0.277685	4.451302	-0.738925
С	1.601069	4.076837	-1.011720
С	2.579377	5.024160	-1.307880
С	2.189133	6.374111	-1.323887
С	0.861548	6.749780	-1.050704
С	1.707781	2.589476	-0.925924
Ν	0.395540	2.134391	-0.592444
С	-0.524714	3.221369	-0.465643
С	0.016320	0.761932	-0.470773
0	0.133549	0.157848	0.746647
C	0.806575	0.882827	1.811639
C	0.764497	0.050320	3.103650
C	-0.691724	-0.233159	3,519800
0	-1 705923	3 122434	-0 189357
0	2 681481	1 878908	-1 091760
c	-0.453312	0 136979	-1 579985
N	-0 863635	-1 203736	-1 697200
C	-0.803033	-2 3503/1	-1.057200
c c	0.150477	-2.5555544	-2 025167
c c	0.551227	-2.570811	-2.023107
c c	-2 510124	-2.940322	-3.311200
3 0	-2.319124	-1.407520	-2.2130/2
C C	-2.0/4/25	-2.045102	-2.30/342
C C	-5.554056	-1.110005	-0.740072
C C	-3.702110	0.187334	-0.201049
C	-4.484390	0.402531	0.878989
C	-5.105181	-0.686686	1.521040
C	-4.929974	-1.993191	1.018964
C	-4.144/1/	-2.210294	-0.110009
0	-5.89//5/	-0.584787	2.629624
C	-6.128041	0.722602	3.168940
0	-2.769850	-0.302313	-3.181031
С	2.270519	-2.191073	-1.863838
0	2.815615	-2.424549	-0.562494
С	3.906377	-1.553823	-0.248860
С	4.590234	-2.034580	1.048778
С	5.605407	-0.963810	1.492749
С	1.159419	-4.439599	-1.575543
С	3.527218	-2.261414	2.139821
0	2.802135	-1.051920	2.391979
С	1.491834	-1.291939	2.898824
С	5.303131	-3.380359	0.800660
С	1.484420	0.872028	4.195274
Н	2.007636	-4.895535	-2.112449
Н	0.257566	-5.035598	-1.792060
Н	1.374406	-4.503361	-0.498265
Н	-1.221507	0.709152	3.736650
Н	-0.724112	-0.852395	4.431646

Н	-1.241452	-0.755729	2.723169
Н	1.537791	-1.829371	3.871061
Н	0.924156	-1.925138	2.188064
Н	0.589375	7.807865	-1.073063
Н	3.538700	-0.517199	-0.136102
Н	4.650890	-1.563396	-1.073922
Н	-1.152684	6.066874	-0.540749
Н	2.927255	7.146361	-1.553960
Н	3.606621	4.720038	-1.520551
Н	0.489363	-1.915239	-3.893898
Н	-0.434163	-3.412342	-3.659807
Н	1.293266	-3.493868	-4.115931
Н	2.543221	1.027090	3.939279
Н	1.443021	0.337520	5.158279
Н	1.005826	1.855545	4.337234
Н	2.997824	-2.523212	-2.636468
Н	2.091516	-1.107379	-2.015523
Н	5.731800	-3.783985	1.733632
Н	6.128952	-3.251178	0.081744
Н	4.603370	-4.122817	0.387234
Н	5.099028	-0.021091	1.748941
Н	6.336178	-0.757810	0.692373
Н	6.166089	-1.304601	2.379241
Н	2.830844	-3.048429	1.796637
Н	4.015134	-2.609751	3.074861
Н	-0.573386	0.747375	-2.476312
Н	0.287741	1.842407	1.983581
Н	1.852619	1.067610	1.520587
Н	-0.916455	-3.132562	-0.918268
Н	0.284225	-2.066454	-0.146821
Н	-3.226949	1.035943	-0.755890
Н	-4.602606	1.421215	1.249440
Н	-5.429813	-2.819271	1.529035
Н	-4.013747	-3.213565	-0.519063
Н	-6.788397	0.571636	4.031929
Н	-5.186828	1.192447	3.504658
Н	-6.626879	1.379207	2.434639

Compound (E)-5kA

BP86 Energy = -1583.95316043 Z-point correction = 0.625018 Enthalpy correction = 0.665893 Gibbs correction = 0.551049

С	3.891230	-0.175728	-1.460338
С	2.895867	0.724398	-1.062621
С	2.872973	1.177615	0.264061
С	3.833748	0.762251	1.195027
С	4.833259	-0.133291	0.796953

С	4.845131	-0.596818	-0.524735
S	1.547703	2.309663	0.786782
Ν	0.130731	1.275746	1.153773
С	0.351848	0.412084	2.342864
С	-0.801693	0.436880	3.383253
С	-0.375544	-0.476431	4.553175
Br	6.212459	-1.825865	-1.071777
О	1.954819	2.915869	2.087542
О	1.168824	3.126824	-0.393996
С	-0.399734	0.593550	0.027972
C	-1.178713	1.123634	-0.954145
C	-1.784056	2.471246	-1.050235
C	-2.288110	3.150545	0.076950
0	-1.353030	0.284896	-2.046683
c	-2.728802	-0.061700	-2.371137
C	-2.740724	-1.431758	-3.075427
c	-4 206289	-1 787654	-3 399023
c	-1 907046	-1 371388	-4 371277
c	-2 121761	-2 496735	-2 149468
0	-2 850207	-2 558829	-0 922330
c	-2 190631	-3 35/177/	0.022330
c	-2.130031	-3 /03059	1 353876
c c	-3.052255	-3.403033	2 3791/0
c c	-2.293090	-4.287334	2.379140
	1 072706	1 /10729	2.783038
c c	-1.972790	-1.419730	2.515560
c	-3.220907	-1.901322	2 20/2/1
C C	-1.025411	2 002082	3.034041 1 051221
с ц	-4.423243	-3.332363	0.091704
п	-0.120049		-0.061794
	-5.105544	0.709692	-5.050959
	-5.51/251	-0.112005	-1.440765
	1.254760	0.709095	2.859997
	0.520020	-0.029595	2.013902
	-3.700389	-1.342319	1.143799
	-3.909137	-2.022937	2.791928
н	3.813921	1.159249	2.211/5/
н	-2.906483	-0.044764	3.574052
н	-2.457006	0.576207	1.955343
н	2.158428	1.089042	-1.//94/5
н	-2.349213	-0.653380	-5.081460
н	-1.877296	-2.356543	-4.865747
н	-0.8/3883	-1.053832	-4.163937
н	5.597522	-0.459294	1.503847
Н	-2.13988/	-3.48641/	-2.654988
Н	-1.064556	-2.234035	-1.94/808
Н	-1.192394	-2.926377	0.286385
Н	-2.043497	-4.388849	-0.316580
Н	-0.111553	2.254058	4.381006
Н	-1.843510	1.904986	4.631348
Н	-1.262729	2.561720	3.070844
н	3.930676	-0.536617	-2.489115

Н	-4.802494	-1.891009	-2.480220
Н	-4.255790	-2.744375	-3.944819
Н	-4.670432	-1.014842	-4.034298
Н	-0.237845	-1.515110	4.217952
Н	-1.147091	-0.474857	5.340677
Н	0.565918	-0.122336	5.004905
Н	-5.036448	-4.050932	1.967257
Н	-4.329444	-5.014293	0.646897
Н	-4.962222	-3.385388	0.307951
Н	-1.301493	-3.879307	2.616488
Н	-2.170860	-5.313759	1.994718
Н	-2.868633	-4.347799	3.318830
С	-1.894826	3.086507	-2.314908
С	-2.485210	4.347120	-2.446239
С	-2.985870	5.011440	-1.318839
С	-2.885383	4.406475	-0.057706
Н	-1.490727	2.572622	-3.190087
Н	-2.550019	4.815143	-3.432121
Н	-3.448782	5.996347	-1.420721
Н	-3.273681	4.917956	0.826957
Н	-2.203388	2.688226	1.061375

Compound (Z)-5kA

BP86 Energy = -1583.95300197 Z-point correction = 0.625808 Enthalpy correction = 0.666527 Gibbs correction = 0.552032

Br	-5.039316	-2.866541	-1.018091
S	-0.906394	0.093697	3.037348
С	0.870354	0.376856	-3.081256
С	1.036786	1.434926	-1.973242
Н	2.055275	1.379038	-1.549591
Н	0.878507	2.444404	-2.389267
С	-0.571509	3.540443	-0.557313
С	1.105649	-1.041525	-2.524139
Н	0.410491	-1.226951	-1.681219
Н	0.881399	-1.785772	-3.318774
С	-2.818024	-2.746527	0.802822
Н	-2.731720	-3.817116	0.611504
С	-3.825000	-1.994352	0.184913
С	3.939644	0.175500	1.309402
Н	3.878301	0.880991	0.452276
Н	4.918862	0.338952	1.808906
С	-0.171988	1.996146	1.328806
Н	-0.587252	2.773747	1.972850
С	-1.409664	3.625391	-1.691663
Н	-1.741177	2.704558	-2.176599
С	4.663341	-1.399131	-0.319067
Н	5.719347	-1.555078	-0.010821

Н	4.627765	-0.519143	-0.990380
С	1.458377	0.072477	1.574020
Н	1.558484	0.202013	0.487820
Н	1.268011	-0.995619	1.747206
С	-3.975853	-0.623774	0.432251
Н	-4.778119	-0.060932	-0.047083
С	-0.172992	2.217374	-0.018958
С	-3.092823	0.011606	1.312577
Н	-3.207121	1.072095	1.542222
С	-1.931638	-2.108237	1.678269
Н	-1.150478	-2.672421	2.191265
С	-1.838783	4.866555	-2.169919
Н	-2.494900	4.912788	-3.043301
С	4.157254	-2.633918	-1.087641
С	1.900047	0.694317	-4.185852
Н	1.721598	1.694006	-4.615664
Н	1.822169	-0.042520	-5.001886
Н	2.927955	0.656840	-3.796375
С	-1.443049	6.048648	-1.526372
Н	-1.779826	7.018227	-1.901795
С	-0.167975	4.737404	0.071651
Н	0.510015	4.688312	0.927170
С	-2.073482	-0.735632	1.918297
С	2.792937	0.472981	2.295162
С	4.292532	-3.899975	-0.218001
Н	5.354026	-4.112331	-0.009373
Н	3.869540	-4.780891	-0.730050
Н	3.775502	-3.773302	0.745264

С	-0.609212	5.978089	-0.403135
Н	-0.287240	6.894467	0.098480
С	4.993480	-2.773593	-2.375748
Н	4.823045	-1.920511	-3.050238
Н	4.722074	-3.695745	-2.915886
Н	6.070742	-2.826812	-2.145267
С	2.667049	-2.449263	-1.436031
Н	2.342468	-3.279075	-2.100242
Н	2.058805	-2.491022	-0.511610
С	-0.557757	0.425054	-3.661824
Н	-1.311042	0.203613	-2.890119
Н	-0.671745	-0.309167	-4.476116
Н	-0.771849	1.422404	-4.079496
С	2.985906	-0.337916	3.591940
Н	3.073855	-1.412328	3.368718
Н	2.134441	-0.203622	4.274838
Н	3.905887	-0.018915	4.110788
С	2.844749	1.980421	2.612648
Н	3.830345	2.246221	3.029934
Н	2.080190	2.246909	3.357228
Н	2.675569	2.598010	1.715136
0	2.457840	-1.192666	-2.089426
0	0.076927	1.186120	-0.903874
0	3.838892	-1.162897	0.823300
Ν	0.275506	0.843176	2.008600
0	-0.198115	-0.966034	3.807776
0	-1.640859	1.208873	3.695897

17. Crystallographic data

All data were collected on an Agilent supernova dual source diffractometer equipped with an Atlas detector, using Cu K α radiation. Data reduction was carried out in the crysalis Pro Software.¹⁰ Structure solution was made using direct methods (Shelxs¹¹ or sir2004¹²). Refinements were carried out in ShexlL¹¹ within the Olex2¹³ software.

Details for the refinement for each structure can be found below with. For each structure, a representation of the asymmetric units shown as displacement ellipsoids, drawn as 50 percent probability, is depicted.

Compound 9aA

CCDC number	1534813
Empirical formula	C ₂₀ H ₂₅ NO ₃ S
Formula weight	359.47
Temperature/K	180.1(9)
Crystal system	triclinic
Space group	P-1
a/Å	8.3686(4)
b/Å	10.3246(4)
c/Å	12.6600(5)
α/°	70.135(3)
β/°	77.897(3)
γ/°	68.067(4)
Volume/ų	950.00(7)
Z	2
$\rho_{calc}g/cm^3$	1.257
µ/mm⁻¹	1.657
F(000)	384.0
Crystal size/mm ³	$0.4844 \times 0.2604 \times 0.1423$
Radiation	CuKα (λ = 1.54184)
20 range for data collection/	7.458 to 146.836
Index ranges	$-10 \leq h \leq 9,-12 \leq k \leq 12,-15 \leq l \leq 15$
Reflections collected	14320
Independent reflections	$3724 [R_{int} = 0.0274, R_{sigma} = 0.0189]$
Data/restraints/parameters	3724/1/232
Goodness-of-fit on F ²	1.039
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0486$, $wR_2 = 0.1410$
Final R indexes [all data]	$R_1 = 0.0510$, $wR_2 = 0.1437$
Largest diff. peak/hole / e Å ⁻³	0.88/-0.37

Compound 5kA

CCDC number	1//3610
Empirical formula	
Formula weight	594.59
Temperature/K	180.10(14)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	14.0045(3)
b/Å	12.0323(2)
c/Å	17.8455(4)
α/°	90
β/°	100.017(2)
γ/°	90 🔥 🖓 🖞 🦞
Volume/ų	2961.25(11)
Z	
$\rho_{calc}g/cm^3$	1.334
µ/mm⁻¹	2.850
F(000)	1248.0
Crystal size/mm ³	0.7111 × 0.5249 × 0.2855
Radiation	CuKα (λ = 1.54184)
20 range for data collection/	° 7.428 to 145.164
Index ranges	-17 ≤ h ≤ 13, -14 ≤ k ≤ 14, -21 ≤ l ≤ 21
Reflections collected	20048
Independent reflections	5813 [$R_{int} = 0.0226, R_{sigma} = 0.0170$]
Data/restraints/parameters	5813/0/340
Goodness-of-fit on F ²	1.060
Final R indexes [I>=2σ (I)]	$R_1 = 0.0293$, $wR_2 = 0.0797$
Final R indexes [all data]	$R_1 = 0.0306$, $wR_2 = 0.0806$
Largest diff. peak/hole / e Å ⁻³	0.38/-0.41

Compound 6gA

CCDC number	1534812
Empirical formula	C ₁₉ H ₂₉ NO ₄ S
Formula weight	367.49
Temperature/K	181(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	17.4991(2)
b/Å	5.67440(6)
c/Å	20.5923(3)
α/°	90
β/°	107.1557(13)
γ/°	90
Volume/Å ³	1953.78(4)
Z	4
$\rho_{calc}g/cm^3$	1.249
µ/mm⁻¹	1.655
F(000)	792.0
Crystal size/mm ³	$0.683 \times 0.123 \times 0.032$
Radiation	CuKα (λ = 1.54184)
20 range for data collection/	° 8.984 to 147.822
Index ranges	-21 ≤ h ≤ 16, -6 ≤ k ≤ 7, -25 ≤ l ≤ 24
Reflections collected	12491
Independent reflections	3874 [R _{int} = 0.0279, R _{sigma} = 0.0241]
Data/restraints/parameters	3874/0/231
Goodness-of-fit on F ²	1.051
Final R indexes [I>=2σ (I)]	R ₁ = 0.0377, wR ₂ = 0.1005
Final R indexes [all data]	$R_1 = 0.0412$, $wR_2 = 0.1050$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.31/-0.40

Compound (Z)-5pA

CCDC number	1443620
Empirical formula	$C_{32}H_{42}N_2O_7S$
Formula weight	598.73
Temperature/K	180.00(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	9.20537(16)
b/Å	23.7526(5)
c/Å	14.5525(3)
α/°	90
β/°	92.7036(16)
γ/°	90
Volume/Å ³	3178.39(10)
Z	4
ρ_{calc} mg/mm ³	1.251
m/mm ⁻¹	1.302
F(000)	1280.0
Crystal size/mm ³	0.3563 × 0.2427 × 0.1806
Radiation	CuKα (λ = 1.54184)
2Θ range for data collection	7.13 to 144.92°
Index ranges	$-7 \leq h \leq 11,-29 \leq k \leq 27,-16 \leq l \leq 17$
Reflections collected	12141
Independent reflections	6139 [R_{int} = 0.0165, R_{sigma} = 0.0204]
Data/restraints/parameters	6139/0/385
Goodness-of-fit on F ²	1.024
Final R indexes [I>=2σ (I)]	R ₁ = 0.0481, wR ₂ = 0.1176
Final R indexes [all data]	R ₁ = 0.0507, wR ₂ = 0.1196
Largest diff. peak/hole / e Å-	³ 0.59/-0.58

The geometry of the phthalimido group is ill-defined, due to a disorder affecting this group. This disorder seems to be partly due to a libration around an axis passing through N32 and the centre of C36-C37, as reflected on the large ellipsoids of O1 and O2. The combination of this with a rotation around an axis perpendicular to the ring and passing through N32 may also explain the large displacement parameters of C36 C37.

Compound (E)-5pA

CCDC number	1443618
Empirical formula	C ₃₂ H ₄₂ N ₂ O ₇ S
Formula weight	598.73
Temperature/K	210.00(14)
Crystal system	triclinic
Space group	P-1
a/Å	8.58394(13)
b/Å	10.36548(13)
c/Å	19.8233(3)
α/°	96.6637(11)
β/°	102.3792(13)
γ/°	102.1801(12)
Volume/ų	1659.83(4)
Z	2
$\rho_{calc}mg/mm^3$	1.198
m/mm⁻¹	1.247
F(000)	640.0
Crystal size/mm ³	$0.3551 \times 0.2181 \times 0.0347$
Radiation	CuKα (λ = 1.54184)
2Θ range for data collection	8.854 to 144.824°
Index ranges	$-9 \le h \le 10, -12 \le k \le 9, -24 \le l \le 23$
Reflections collected	11170
Independent reflections	6391 [R _{int} = 0.0198, R _{sigma} = 0.0272]
Data/restraints/parameters	6391/0/385
Goodness-of-fit on F ²	1.018
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0362$, $wR_2 = 0.0994$
Final R indexes [all data]	$R_1 = 0.0412$, $wR_2 = 0.1054$
Largest diff. peak/hole / e Å-	³ 0.27/-0.30

Compound 7

CCDC number	1534815
Empirical formula	C ₂₀ H ₂₃ NO ₃ S
Formula weight	357.45
Temperature/K	180.12(10)
Crystal system	monoclinic
Space group	P21/n
a/Å	11.0583(3)
b/Å	12.1489(3)
c/Å	13.6776(3)
α/°	90
β/°	98.545(2)
γ/°	90
Volume/ų	1817.14(8)
Z	4
$\rho_{calc}g/cm^3$	1.307
µ/mm⁻¹	1.732
F(000)	760.0
Crystal size/mm ³	0.595 × 0.422 × 0.108
Radiation	CuKα (λ = 1.54184)
20 range for data collection/°	9.786 to 147.176
Index ranges	-13 ≤ h ≤ 13, -14 ≤ k ≤ 14, -17 ≤ l ≤ 10
Reflections collected	11597
Independent reflections	3592 [R _{int} = 0.0280, R _{sigma} = 0.0221]
Data/restraints/parameters	3592/0/229
Goodness-of-fit on F ²	1.040
Final R indexes [I>=2σ (I)]	$R_1 = 0.0409$, $wR_2 = 0.1118$
Final R indexes [all data]	$R_1 = 0.0431$, $wR_2 = 0.1141$
Largest diff. peak/hole / e Å ⁻³	0.36/-0.40

Compound 8A

CCDC number	1534814
Empirical formula	C ₂₁ H ₂₅ NO ₃ S
Formula weight	371.48
Temperature/K	179(2)
Crystal system	triclinic
Space group	P-1
a/Å	10.6084(6)
b/Å	10.7200(5)
c/Å	10.8762(7)
α/°	117.600(6)
β/°	110.658(5)
γ/°	94.009(4)
Volume/ų	984.19(11)
Z	2
$\rho_{calc}g/cm^3$	1.254
µ/mm⁻¹	1.617
F(000)	396.0
Crystal size/mm ³	$0.493 \times 0.13 \times 0.026$
Radiation	Cu Kα (λ = 1.54184)
20 range for data collection/°	9.284 to 146.602
Index ranges	$-13 \le h \le 13$, $-13 \le k \le 13$, $-13 \le l \le 12$
Reflections collected	14460
Independent reflections	3882 [R _{int} = 0.0391, R _{sigma} = 0.0291]
Data/restraints/parameters	3882/88/269
Goodness-of-fit on F ²	1.039
Final R indexes [I>=2σ (I)]	$R_1 = 0.0413$, $wR_2 = 0.1124$
Final R indexes [all data]	$R_1 = 0.0485$, $wR_2 = 0.1187$
Largest diff. peak/hole / e $Å^{-3}$	0.41/-0.36

One part of the molecule is disordered and was refined using two components (green and red part on the side figure). Restraints (DFIX) were applied on distances. Restraints (RIGU) and constraints (EADP) were applied on anisotropic displacement parameter.

18. Structural Diversity Computational Analysis

A) Principal Moment of Inertia (PMI)

General details

Principal Moment of Inertia (PMI) was performed using Molecular Operating Environment (MOE) software package version 2012.10 from the Chemical Computing Group. Merck molecular force field 94X (MMFF94x), an all-atom force field parameterised for small organic molecules with the Generalised Born solvation model, was used to minimise the energy potential of the library members. A LowModeMD search was employed for the conformation generation. Detailed settings for conformational search are listed below.

Rejection Limit	100
RMS Gradient	0.005
Iteration Limit	10000
MM Iteration Limit	500
RMSD Limit	0.15
Energy window	3
Conformation Limit	100

Only the conformer with the lowest energy was retained for principal moment of inertia (PMI) calculations. Normalized PMI ratios (I1/I3 and I2/I3) of these conformers were obtained from MOE and then plotted on a triangular graph, with the canonical coordinates (0,1), (0.5,0.5) and (1,1) representing a perfect rod, disc and sphere respectively (Figure 1).

Collection 1: The 53 DOS compounds from this work.

Collection 2: 40 high-profile synthetic drugs currently produced by the pharmaceutical industry.

See F. Kopp, C. F. Stratton, L. B. Akella and D. S. Tan, Nat. Chem. Biol, 2012, 8, 358.

Imitrex®

Collection 3: 60 randomly selected natural products.

See F. Kopp, C. F. Stratton, L. B. Akella and D. S. Tan, Nat. Chem. Biol, 2012, 8, 358.

telomestatin

rifamycin B

zaragozic acid A

9

ō

radicicol

|| 0

OH O

ċι

HO

epothilone A

cytochalasin B

Table S3

Normalised PMI ratio (npr) values of conformers the DOS library with the lowest energy (energy level = 0 kcal/mol).

Compound	npr1	npr2	Compound	npr1	npr2
9aC	0.325912	0.80446	16IA	0.536893	0.716695
9aB	0.383799	0.810257	16mA	0.438995	0.697837
9aA	0.376249	0.783016	16aB	0.38762	0.713581
9aD	0.335695	0.821046	16hB	0.374193	0.727747
9gA	0.383033	0.776198	16IB	0.338537	0.758569
9bA	0.470873	0.69701	16mB	0.409253	0.696073
9cA	0.488971	0.665658	17aA	0.430651	0.792407
9hA	0.369411	0.793983	17aB	0.605241	0.757192
9dA	0.518106	0.824772	6aA	0.435848	0.661454
9eA	0.445111	0.695143	10aA	0.456618	0.957579
9fA	0.409042	0.780497	Z - 5pA	0.56481	0.773025
9iA	0.336815	0.774293	Е - 5рА	0.441691	0.781744
5kB	0.359148	0.823546	Z -5qA	0.414529	0.864167
5hB	0.424372	0.794063	E-5qA	0.458075	0.73801
5mB	0.531798	0.712014	5kA	0.459637	0.843805
5aB	0.489386	0.743327	5ha	0.528161	0.819399
5IB	0.439253	0.771686	5IA	0.580163	0.800972
60A	0.281595	0.813335	5mA	0.655226	0.753116
6gA	0.366694	0.742862	5aA	0.615298	0.775393
6nA	0.222281	0.857253	5cA	0.43385	0.828854
18	0.330134	0.911499	5bA	0.526538	0.788566
19	0.534916	0.692087	5jA	0.626913	0.834981
20	0.423576	0.836702	5gA	0.635945	0.779043

16aA	0.61757	0.740542
16hA	0.405866	0.721253
8b	0.387198	0.909784
7	0.638487	0.826468

5nA	0.476834	0.83236
8a	0.395942	0.868401
8c	0.369394	0.820057

Table S4

Normalised PMI ratio (npr) values of conformers of 40 top selling drugs with the lowest energy (energy level = 0 kcal/mol).

Compound	npr1	npr2	Compound	npr1	npr2
Lipitor	0.3343	0.8427	Торотах	0.3721	0.7907
Nexium	0.2387	0.7858	Toprol	0.0854	0.9449
Prevacid	0.1367	0.9103	Zetia	0.3674	0.8320
Flonase	0.2843	0.9666	Fosamax	0.6565	0.7739
Servent	0.8749	0.9282	Ability	0.4836	0.6354
Singulair	0.3979	0.7155	Levaquin	0.2100	0.8459
Effexor	0.3994	0.7418	Lamictal	0.2412	0.9155
Plavix	0.3507	0.8350	Celebrex	0.3738	0.6824
Zocor	0.3846	0.7750	Benazepril	0.3379	0.9290
Norvasc	0.4396	0.8183	Zyrtec	0.3208	0.8402
Lexapro	0.4172	0.7481	Coreg	0.6401	0.7545
Seroquel	0.2078	0.9130	Valtrex	0.4538	0.8509
Protonix	0.2323	0.8070	Adderall	0.2184	0.9253
Ambien	0.3818	0.6870	Aciphex	0.1239	0.9138
Actos	0.1733	0.8826	Cymbalta	0.3327	0.7663
Zoloft	0.3094	0.9498	Crestor	0.3525	0.8687
Wellbutrin	0.1861	0.9472	Diovan	0.3509	0.9594
Avandia	0.0876	0.9585	Tricor	0.1028	0.9422
Risperdal	0.2654	0.7797	Concerta	0.5477	0.6565
Zyprexa	0.4262	0.6254	Imitrex	0.2068	0.9075

Table S5

Normalised PMI ratio (npr) values of conformers of 60 natural products with the lowest energy (energy level = 0 kcal/mol).

Compound	npr1	npr2	Compound	npr1	npr2
ТахоІ	0.4444	0.7558	Ginkgolide B	0.4546	0.8718
Actinonin	0.4418	0.7805	Vancomycin	0.5097	0.6634
Discodermolide	0.1283	0.9329	Amphotericin B	0.1342	0.9067
Validamycin	0.2010	0.9501	Radicicol	0.4995	0.8727
Monensin	0.3209	0.8721	Salicylihalamide A	0.1935	0.8944
Calyculin A	0.4042	0.9305	Telomestatin	0.4927	0.5148
Coformycin	0.3093	0.8134	Rifamycin B	0.4922	0.7587
Arglabin	0.3932	0.6626	Apoptolidin	0.1922	0.8755
Mizoribine	0.2479	0.8433	Midecamycin A1	0.3650	0.9474
Forskolon	0.5081	0.7477	Zaragozic acid A	0.5011	0.7235
SQ 26180	0.3285	0.9244	Talaromycin B	0.1546	0.9504
Cephamycin C	0.5613	0.6949	Spongistatin 1	0.4968	0.8135
Avermectin B1a	0.3723	0.8151	Brevetoxin B	0.0410	0.9818
Adriamycin	0.3135	0.7704	Quinine	0.3647	0.8711
Phorbol myristate acetate	0.4660	0.7501	Mycobactin S	0.3865	0.9065
Thienamycin	0.3015	0.8545	Duocarmycin A	0.1237	0.9519
Cyclosporin A	0.4809	0.8960	Bleomycin A2	0.3651	0.9343
FK506	0.4472	0.8793	Brefeldin A	0.3068	0.7850
Trapoxin B	0.7165	0.9000	Cytochalasin B	0.4974	0.6762
Vincristine	0.5370	0.9655	Epothilone A	0.3116	0.8340
Colchicine	0.4272	0.8346	Lactacystin	0.3764	0.8347
Trichostatin A	0.2197	0.8615	Calicheamicin y1	0.1774	0.9247

Fumagillin	0.0865	0.9668	Artemisinin	0.5476	0.6380
Staurosporine	0.4822	0.6733	Compactin	0.3930	0.7646
Erythromycin A	0.4902	0.7797	Lipstatin	0.4059	0.8457
Streptomycin	0.3162	0.9282	Pseudomonic acid A	0.3896	0.6714
Penicillin G	0.3061	0.9575	Daptomycin	0.5603	0.8611
Sperguallin	0.2793	0.8633	Bestatin	0.3910	0.7358
Rapamycin	0.6347	0.8330	Plaunotol	0.4702	0.6467
Echinocandin B	0.6140	0.8022	Geldanamycin	0.3478	0.7321

Figure S2

PMI plot of the DOS library alone (red dots). The DOS compound library exhibited a broad shape distribution with limited 'rod-like' and 'disk-like' features as shown by the absence of compounds within these extreme areas of the plot.

B) Principal component analysis Principal component settings

Weight field	None
Prefix	PCA
Component limit	0
Minimum variance (%)	95
Condition limit	1e+006

Structural and physicochemical parameters used in PCA

Parameter	Description	2D or 3D
ASA_H	Total hydrophobic surface area	3D
ASA_P	Total polar surface area	3D
a_acc	Number of hydrogen bond acceptor atoms	2D
a_aro	Number of aromatic atoms	2D
a_don	Number of hydrogen bond donor atoms	2D
a_nN	Number of nitrogen atoms	2D
a_nO	Number of oxygen atoms	2D
b_rotN	Number of rotatable bonds	2D
chiral	Number of chiral centres	2D
KierFlex	Molecular flexibility	2D
logS	Log solubility in water	2D
mr	Molar refractivity	2D
rings	Number of rings	2D
SlogP	Log octanol/water partition coefficient	2D
TPSA	Topological polar surface area (A2)	2D
vol	Van der Waals volume	3D
weight	Molecular weight	2D
Variance

PC#	Deviation ^a	Condition ^b	Proportion of variance	% Variance ^c	
1	3.280	1.000	63.267	63.267	
2	1.533	4.574	77.099	77.099	
3	1.305	6.311	87.123	87.123	
4	0.954	11.811	92.480	92.480	
5	0.577	32.361	94.435	94.435	
6	0.500	43.022	95.905	95.905	

^a The standard deviation of the data along the principal component vector.

^b Condition number of the covariance matrix if the principal component list were terminated at that row.

^c Percentage of the variance retained if the component list were truncated at that row.

Component loadings

Component loadings for PCA of DOS library with three reference sets

Descriptors	PC1	PC2	PC3	PC4	PC5	PC6
ASA_H	0.0003	-0.0011	0.0008	-0.0009	0.0014	-0.0013
ASA_P	0.0006	0.0012	-0.0008	0.0017	-0.0032	0.0017
KierFlex	0.0137	-0.0005	0.0225	-0.0458	0.0232	0.0273
SlogP	-0.0100	-0.0914	0.0637	-0.0101	-0.0192	0.1591
TPSA	0.0007	0.0010	-0.0007	0.0002	0.0011	0.0010
Weight	0.0003	-0.0002	0.0001	-0.0001	0.0005	-0.0004
a_acc	0.0187	0.0112	0.0307	0.0448	0.0970	0.1759
a_aro	0.0020	-0.0285	-0.0597	0.0132	0.0238	0.1274
a_don	0.0221	0.0453	-0.0239	0.0111	0.0591	0.1555
a_nN	0.0191	0.0137	-0.0894	-0.0723	0.1661	-0.2409
a_nO	0.0172	0.0113	0.0288	0.0387	-0.0137	0.0802
b_1rotN	0.0102	0.0079	-0.0124	-0.0555	-0.1829	0.0183
chiral	0.012	0.0143	0.0481	0.0602	-0.0312	-0.0640
logS	-0.0239	0.0971	0.0125	0.0542	0.1427	0.0166
mr	0.0116	-0.0129	0.0018	-0.0107	0.0220	-0.0274
rings	0.0227	-0.1089	-0.0826	0.3502	-0.1863	-0.3542
vol	0.0003	-0.0003	0.0002	-0.0003	0.0007	-0.0008

Top contributing parameters to each principal component are marked in grey, the darker grey, the more contribution in each column. The values were normalised automatically by the MOE software.

PCA values for compounds

Compound	PC1	PC2	PC3	Compound	PC1	PC2	PC3
9aC	-0.5214	-0.2195	-0.3267	16hA	-0.2855	-0.6662	0.1238
9aB	-0.7266	-0.1262	-0.3089	16iA	-0.2742	-0.8496	0.3795
9aA	-0.6802	-0.3079	-0.2161	16mA	-0.3785	-0.9328	0.3638
9aD	-0.5991	-0.1316	-0.4027	16aB	-0.4657	-0.5294	0.1615
9gA	-0.8790	0.5662	0.0089	16hB	-0.4136	-0.1130	-0.1495
9bA	-0.5895	-0.1697	-0.2442	16iB	-0.3831	-0.3272	0.1335
9cA	-0.5975	-0.3272	-0.2948	16mB	-0.5036	-0.3778	0.0911
9hA	-0.5479	0.0273	-0.4913	17aA	-0.7542	-0.1569	0.4712
9dA	-0.6144	-0.4545	-0.1918	17aB	-0.8635	0.3808	0.2209
9eA	-0.4555	-0.7735	-0.4649	6aA	-0.5446	-0.9055	0.2727
9fA	-0.7066	-0.1556	-0.2089	10aA	-0.5713	-0.7594	0.0720
9iA	-0.7148	0.3593	0.1499	Z - 5pA	-0.1324	-1.0068	0.1652
9kB	-0.4369	-0.6563	0.1295	Е - 5рА	-0.1358	-1.0485	0.1950
5hB	-0.3450	-0.2454	-0.1697	Z -5qA	-0.0617	-0.8532	0.1254
5mB	-0.5323	-0.3972	0.0104	E-5qA	-0.0624	-0.9052	0.1629
5aB	-0.4968	-0.5175	0.0582	5kA	-0.3156	-1.2007	0.3925
5iB	-0.4163	-0.3524	0.0562	5ha	-0.2236	-0.7952	0.1025
60A	-0.6286	-0.0091	0.5635	5iA	-0.2943	-0.8950	0.3211
6gA	-0.7433	-0.0647	0.5260	5mA	-0.4092	-0.9431	0.2789
6nA	-0.6317	-0.1307	0.4837	5aA	-0.3728	-1.0694	0.3317
18	-1.1323	0.4261	0.0683	5cA	-0.2584	-1.1320	0.2879
19	-0.9795	-0.2188	0.1370	5bA	-0.2570	-1.0105	0.3662
20	-1.1207	0.5723	-0.1543	5jA	-0.3476	-0.1976	0.6000
16aA	-0.3484	-1.0900	0.4378	5gA	-0.5645	-0.2193	0.5797

5nA	-0.4541	-0.2879	0.5388
8a	-0.7234	-0.5520	-0.2265
8b	-0.7737	-0.3775	-0.3151

8c	-0.5732	-0.4883	-0.3280
7	-0.7575	-0.5003	-0.2765

PCA for 40 drugs

Compound	PC1	PC2	PC3	Compound	PC1	PC2	PC3
Lipitor	-0.0037	-1.1465	-0.8868	Zyprexa	-0.8492	0.1473	-0.6153
Nexium	-0.5678	0.1034	-0.7787	Торотах	-0.5336	1.1929	0.4201
Prevacid	-0.5803	0.0609	-0.9010	Toprol	-0.7806	0.8399	0.0456
Flonase	-0.3292	0.1231	0.8602	Zetia	-0.5320	-0.6198	-0.6027
Servent	-0.3252	0.1990	-0.2285	Fosamax	-0.8807	2.8344	-0.3950
Singulair	-0.1032	-1.9681	-0.6143	Ability	-0.5155	-0.5341	-0.5628
Effexor	-0.8758	0.5244	-0.0503	Levaquin	-0.6743	0.6963	-0.6524
Plavix	-0.8666	-0.1560	-0.3177	Lamictal	-0.8627	0.6634	-1.1629
Zocor	-0.4764	0.1177	0.9703	Celebrex	-0.6087	-0.1229	-1.1103
Norvasc	-0.4489	0.4731	-0.0759	Benazepril	-0.4176	0.0697	-0.4933
Lexapro	-0.7821	-0.0974	-0.5671	Zyrtec	-0.5837	0.1466	-0.6502
Seroquel	-0.5533	-0.1231	-0.7516	Coreg	-0.4112	-0.3704	-0.9588
Protonix	-0.4622	0.3592	-0.8673	Valtrex	-0.5082	1.5022	-0.8324
Ambien	-0.8398	-0.1799	-0.5196	Adderall	-1.2938	0.9066	-0.2386
Actos	-0.6492	-0.1327	-0.4748	Aciphex	-0.4920	-0.0007	-0.7167
Zoloft	-0.9531	-0.5022	-0.2830	Cymbalta	-0.8527	-0.4412	-0.5503
Wellbutrin	-1.0484	0.3578	0.0618	Crestor	-0.1769	0.5329	-0.5057
Avandia	-0.6430	0.0749	-0.6547	Diovan	-0.3562	-0.4047	-1.1559
Risperdal	-0.5860	-0.4524	-0.5219	Tricor	-0.6959	-0.5221	0.0315

Concerta	-0.9994	0.6400	-0.1029	Imitrex	-0.7704	1.0155	-0.7653

PCA for Natural products

Compound	PC1	PC2	PC3	Staurosporine	-0.3240	-1.2130	-1.2835
Taxol	0.9255	-1.0677	0.1006	Compound	PC1	PC2	PC3
Actinonin	-0.3623	1.0510	0.2595	Erythromycin A	0.6930	0.8578	1.8669
Discodermolide	0.3615	0.6786	1.4436	Streptomycin	0.7382	3.8176	-0.6451
Validamycin	0.4678	3.4146	0.2918	Penicillin G	-0.6513	0.7769	-0.4131
Monensin	0.4428	0.0458	1.7028	Sperguallin	-0.0253	2.7539	-0.8072
Calyculin A	1.6078	0.2816	1.1994	Rapamycin	0.9832	-0.4266	2.1270
Coformycin	-0.5618	2.0187	-0.7029	Echinocandin B	2.0483	0.9687	0.3183
Arglabin	-0.9922	0.6135	0.3881	Ginkgolide B	-0.2213	1.1637	0.3873
Mizoribine	-0.5841	2.2410	-0.5818	Vancomycin	3.2072	-0.1680	-1.5775
Forskolon	-0.4110	0.7926	0.8393	Amphotericin B	1.4367	1.4064	1.8718
SQ 26180	-0.8937	2.0443	-0.2113	Radicicol	-0.6241	0.4572	0.1867
Cephamycin C	-0.1206	2.2535	-0.6028	Salicylihalamide A	-0.3265	-0.0188	0.4357
Avermectin B1a	1.0120	-0.6629	2.2568	Telomestatin	0.2538	-2.0052	-2.6016
Adriamycin	0.2184	0.8786	-0.3825	Rifamycin B	0.6374	-0.1313	0.7220
Phorbolmyristate acetate	0.2485	-0.5175	1.2169	Apoptolidin	2.1198	0.0404	3.0226
Thienamycin	-0.7759	1.7844	-0.2599	Midecamycin A1	0.8984	0.5235	1.9927
Cyclosporin A	1.8259	-0.5744	1.4331	Zaragozic acid	0.6605	0.5951	0.5646
FK506	0.7485	-0.1863	1.8816	Talaromycin B	-0.9077	1.1635	0.5006
Trapoxin B	0.1366	-0.3212	-0.4482	Spongistatin 1	2.0595	-0.5571	2.7758
Vincristine	0.7535	-0.8349	-0.6452	Brevetoxin B	1.0300	-1.4491	2.1498
Colchicine	-0.4722	0.3530	0.0514	Quinine	-0.6858	0.2372	-0.4269
Trichostatin A	-0.7478	0.6134	-0.1741	Mycobactin S	1.0595	-1.1841	0.5053
Fumagillin	-0.2143	0.1150	0.8304				

Duocarmycin A	-0.0340	0.1944	-0.5793	Compactin	-0.5225	0.3140	0.8956
Bleomycin A2	3.6391	2.5659	-2.0158	Compound	PC1	PC2	PC3
Compound	PC1	PC2	PC3	Lipstatin	0.0115	-0.4049	1.0584
Brefeldin A	-0.8333	0.9548	0.6341	Pseudomonic acid A	0.0671	0.9242	0.9823
Cytochalasin B	-0.2636	-0.0814	0.3929	Daptomycin	3.8774	1.8931	-1.7702
Epothilone A	-0.2908	0.1136	0.8195	Bestatin	-0.6043	1.3052	-0.3592
Lactacystin	-0.3472	1.9207	0.1130	Plaunotol	-0.6902	0.4533	0.7347
Calicheamicin γ1	2.6030	-0.6085	1.5956	Geldanamycin	0.0815	0.7974	0.8208
Artemisinin	-0.8297	0.4450	0.6876		I	1	

Figure S3

PCA of DOS library and two reference libraries. a) PC1 *versus* PC2, b) PC1 *versus* PC3 and c) PC2 *versus* PC3. The DOS library (red dots), 40 drugs (blue triangles) and natural products (green rhombus).

Figure S3 suggests the DOS library has significant overlap with both reference sets. In particular, the overlap with both reference sets is greatest Figures S3a and S3b, suggesting PCA1 contributed more favourably to the overlap. This hypothesis is strengthened by the reduced overlap between the DOS library and reference sets in Figure S3c showing PCA2 *versus* PCA3.

19. References

- (a) A.-R. Abdun-Nur and C. H. Issidorides, *J. Org. Chem.*, 1962, **27**, 67-70; (b) G. Wuitschik, M. Rogers-Evans, A. Buckl, M. Bernasconi, M. Märki, T. Godel, H. Fischer, B. Wagner, I. Parrilla, F. Schuler, J. Schneider, A. Alker, W. B. Schweizer, K. Müller and E. M. Carreira, *Angew. Chem. Int. Ed.*, 2008, **47**, 4512-4515; (c) E. M. Carreira and T. C. Fessard, *Chem. Rev.*, 2014, **114**, 8257-8322.
- 2 L. S. Campbell-Verduyn, L. Mirfeizi, R. A. Dierckx, P. H. Elsinga and B. L. Feringa, *Chem. Commun.*, 2009, 2139-2141.
- 3 J. Raushel and V. V. Fokin, Org. Lett., 2010, 12, 4952-4955.
- 4 J. S. Alford and H. M. L. Davies, Org. Lett., 2012, 14, 6020-6023.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Wallingford CT, 2009.
- 6 (a) H. L. Schmider and A. D. Becke, *J Chem Phys*, 1998, **108**, 9624-9631; (b) J. P. Perdew, *Phys. Rev. B.*, 1986, **33**, 8822-8824.
- 7 D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, Theor. Chim. Acta, 1990, 77, 123-141.
- 8 A. Höllwarth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking, *Chem. Phys. Lett.*, 1993, **208**, 237-240.
- 9 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650-654.
- 10 CrysalisPro Software system, Agilent Technologies UK Ltd., Oxford, UK.
- 11 G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112-122.
- 12 M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori and R. Spagna, *J. Appl. Crystallogr.*, 2005, **38**, 381-388.
- 13 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.