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Abstract: The protonation of azulene derivatives with quantum interference effect is studied by
the conductance measurements of single-molecule junctions. Three azulene derivatives with
different connectivities are synthesized and reacted with trifluoroacetic acid to form the
protonation state. It is found that the protonated azulene molecular junctions produce more than
one order of magnitude higher conductance than the neutral states, while the molecules with
destructive interference show more significant changes. These experimental observations are
supported by our recently-developed parameter free theory of connectivity, which suggests that
the largest conductance change occurs when destructive interference near the Fermi energy in

the neutral state is alleviated by protonation.



1. Synthesis and characterization
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Scheme S1 Chemical structures of azulene derivatives.
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Scheme S2 Synthetic routes to azulene derivatives 1,3 Az, 4,7 Az and 5,7 Az.

Materials and Characterization Techniques. The reagents and starting materials including
compound 2 were commercially available and used without any further purification, if not
specified elsewhere. Compounds 1, 3 and 4 were synthesized according to the previous
reports.’ 2"H NMR and '3C NMR spectra were recorded on Bruker AVANCE IIl 400 and 300



MHz spectrometers. Elemental analysis was performed on a Carlo Erba model 1160 elemental

analyzer.

Synthesis of 1,3-bis(4-(methylthio)phenyl)azulene (1,3 Az).

To a Schlenk flask equipped with a stir bar was added compound 1 (0.20 g, 0.70 mmol),
compound 2 (0.25 g, 1.5 mmol), Pd(PPh3)4 (40 mg, 35 uymol). The vessel was sealed and
evacuated/backfilled with nitrogen for three times, followed by the addition of dry toluene (10
mL) and a degassed 2.0 mL of aqueous solution of K,COj3; (2.0 M) via syringe. The mixture was
heated at 90 °C for 24 h. After cooling, the organic layer was separated, concentrated, and
redissolved in CH,Cl, (20 mL). This CH,CI, solution was washed sequentially with water (10
mL) and brine (2 x 10 mL), and then dried over anhydrous Na,SO,4. The crude product was
purified by column chromatography on silica gel with petroleum ether (60-90 °C) and CH,Cl,
(8:1, vlv) as eluent. Compound 1,3 Az was obtained as a green solid (164 mg) in 63% yield. 'H
NMR (CD,Cl,, 300 MHz): 6 8.50 (d, 2H, J = 9.6 Hz), 8.07 (s, 1H), 7.57-7.55 (m, 5H), 7.39 (d,
4H, J = 8.1 Hz), 7.14-7.12 (m, 2H), 2.55 (s, 6H). '3C NMR (CD,Cl,; 75 MHz): 6 138.4, 136.0,
135.8, 135.3, 133.1, 129.3, 126.1, 122.9, 15.0. Anal. Calcd for Co4H2S,: C, 77.38; H, 5.41; S,
17.21. Found: C, 77.35; H, 5.42; S, 17.15.

Synthesis of (azulene-4,7-diylbis(4,1-phenylene))bis(methylsulfane) (4,7 Az).

4,7 Az was synthesized similarly as for 1,3 Az with 3 (0.15 g, 0.52 mmol), compound 2 (0.19 g,
1.2 mmol) and Pd(PPh3), (30 mg, 26 pmol). Compound 4,7 Az was obtained as a dark blue
solid (85 mg) in 42% yield. '"H NMR (CD.Cl,, 300 MHz): 6 8.68 (d, 1H, J = 1.8 Hz), 7.88-7.84
(m, 2H), 7.65-7.60 (m, 4H), 7.50 (d, 1H, J = 3Hz), 7.41-7.37 (m, 4H), 7.25 (d, 1H, J = 10.8 Hz),
7.17 (d, 1H, J = 3.6 Hz), 2.57 (s, 3H), 2.55 (s, 3H) 3C NMR (CD,Cl,; 75 MHz): 6 149.1, 141.5,
140.9, 140.4,139.4,138.2, 137.9, 137.5, 137.3, 136.5, 134.6, 130.2, 128.9, 127.1, 126.3, 125.9,
121.0, 118.8, 16.0, 15.8. Anal. Calcd for Co4H20S,: C, 77.38; H, 5.41; S, 17.21. Found: C, 77.21;
H, 5.52; S, 17.16.

Synthesis of ((6-methylazulene-5,7-diyl)bis(4,1-phenylene))bis(methylsulfane) (5,7 Az).

5,7 Az was synthesized similarly as for 1,3 Az with compound 4 (0.10 g, 0.33 mmol), compound
2 (0.12 g, 0.73 mmol), Pd(PPh3)4 (19 mg, 17 pmol). Compound 5,7 Az was obtained as a dark
blue solid (45 mg) in 35% yield. "H NMR (CD,Cl,, 400 MHz): 6 8.29 (s, 2H), 7.82 (s, 1H), 7.34-
7.26 (m, 10H), 2.53 (s, 6H), 2.09 (s, 3H). '3C NMR (CDCl,; 100 MHz): 6 145.1, 143.6, 138.0,



137.4,137.3, 137.1, 137.0, 129.6, 126.4, 117.8, 27.7, 15.6. Anal. Calcd for Cy5H22S,: C, 77.68;
H, 5.74; S, 16.59. Found: C, 77.57; H, 5.81; S, 16.43.

TH NMR and 3C NMR spectra
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Fig. S1-2 3C NMR spectra of 1,3 Az.
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Fig. S1-6 '3C NMR spectra of 5,7 Az.



2. Single-molecule conductance measurements.
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Fig. S2-1 (a) Conductance histograms of 1,3 Az in 1,2,4-trichlorobenzene and the conductance

peak located at G = 1036 Gy. (b) 2D histogram and stretched distance distribution (inset).
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Fig. S2-2 2D histograms and stretched distance distributions (inset) for 4,7 Az (a) without and
(b) withTFA in THF/TMB.
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Fig. S2-3 2D histograms and stretched distance distributions (inset) for 5,7 Az (a) without and
(b) with TFA in THF/TMB.
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Fig. S2-4 (a) Conductance histograms of 1,3 Az with 5% (V/V) acetic acid in THF/TMB and the

conductance peak located at G = 1038 G,. (b) 2D histogram and stretched distance distribution

(inset).
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3. Calculation

The optimized geometry of each structure shown in Fig. 4a was self-consistently obtained using
the SIESTA?® implementation of density functional theory (DFT). SIESTA employs norm-
conserving pseudo-potentials to account for the core electrons and linear combinations of
atomic orbitals to construct the valence states. The generalized gradient approximation (GGA)
of the exchange and correlation functional is used with the Perdew-Burke-Ernzerhof
parameterization (PBE),* a double- polarized (DZP) basis set, a real-space grid defined with
an equivalent energy cut-off of 250 Ry. The geometry optimization for each structure is

performed to the forces smaller than 10 meV/Ang.

Fig. S3-1 (a-c) TB core transmission coefficients of 1,3 Az, 4,7 Az and 5,7 Az neutral (dashed
line) and protonated (solid line) with spin down and up resonances, (d-g) TB core transmission
coefficients of (a-c) neutral (dashed line) and total transmission coefficient (Tit=Tup*Tdown) Of

protonated molecules (solid line). (h-j) room temperature conductance of (d-g).

Figure S3-1 shows results obtained from tight binding modelling of the junctions. These curves
were obtained as follows: For the neutral state, for all calculation each site energy was assigned
€0 = 0 and to obtain the correct gaps the nearest-neighbor couplings for molecule 1,3 Az, 4,7

Az and 5,7 Az are y=-1.85, y=-1.89,and y =-2.1 respectively. These molecular cores in turn



were weakly coupled to single channel leads by matrix elements -0.1. For the tight-binding
Hamiltonian parameters of the leads, we chose the site energy € = 0 and nearest neighbour
couplings y =-1. The transmission coefficient T(E) was computed using the GOLLUM code®.
For the protonated state, site energies for spin up and down differ by 0.4 eV and the
couplings were the same as the neutral molecules.

The above model captures the effect of spin splitting within the junction in the protonated state,
even though the isolated non-protonated and protonated molecule is not paramagnetic. This is
illustrated by the DFT-predicted spin up and spin down densities of states of the isolated non-
protonated molecule and the protonated molecule in the presence of the TFA counterion shown

in figure S3-2, which shows that indeed they are identical.
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Fig. S3-2 Densities of states of a) isolated non-protonated 1,3 Az molecule b) isolated

protonated 1,3 Az molecule

Furthermore when placed between gold electrodes, the non-protonated molecule remains non-
spin-polarised. This is demonstrated by Figure S3-3c below, which shows plots of the
transmission functions of up and down spins, obtained using DFT, for the non-protonated
junction. As expected the transmission functions of the non-protonated molecule are
independent of spin.

However in the protonated state, when inside a gold junction, charge transfer leads to spin
splitting. For the junction in figure S3-3b, consisting of a TFA counterion and the protonated
molecule connected to gold electrodes, due to the charge transfer from the molecule to the gold,
spin-splitting occurs and the difference between the number (ie Mulliken charge) of spin up and
spin down electrons on the azulene is AQ=0.21. Consequently, as shown in figure S3-3d, the
transmission functions of the different spins are no longer equal. Figure S3-4 below shows the
local spin-dependent densities of states of the protonated junction in two narrow energy
windows centred on the HOMO and LUMO transmission resonances. As expected these

resonances correspond to two distinct spins.
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Fig. $3-3 Transmission function T as a function of electron energy E obtained from the DFT
mean field Hamiltonian. Molecular structure of the junction with 1,3 Az connectivity in (a) non-
protonated and (b) protonated states. The differences between the number (ie Mulliken charge)
of spin up and spin down electrons on the 1,3 Az is AQ=0 and AQ=0.21 for initial and protonated
states. From (c) it is apparent that in the initial non-protonated state the system is not spin
polarised. (d) In the protonated state, due to charge transfer from the molecule to the gold, spin-
splitting occurs. (e) In agreement with our TB calculation the new HOMO-LUMO gap is smaller

than the initial one and arises from the spin-up HOMO and spin down LUMO.
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Fig. S3-4 Transmission function T as a function of electron energy E obtained from the DFT
mean field Hamiltonian. Molecular structure of the junction with 5,7 Az connectivity in (a) non-
protonated and (b) protonated states. From (c) it is apparent that in the initial non-protonated
state the system is not spin polarised. (d) In the protonated state, due to charge transfer from

the molecule to the gold, spin-splitting occurs. (e) In agreement with our TB calculation the new
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HOMO-LUMO gap is smaller than the initial one and arises from the spin-up HOMO and spin
down LUMO.
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Fig. S3-5 The local spin-dependent densities of states of the 1,3 Az protonated junction in two

narrow energy windows centred on the HOMO and LUMO transmission resonances.

Of course the precise magnitude of the splitting depends on the position of the counterion and
in a real junction, an ensemble of positions would be sampled. Our TB model is chosen to
capture the key feature of this splitting, namely that the HOMO-LUMO gap of the protonated
molecule in a junction is smaller than the initial one.

A limitation of our work is that due to our finite available compute resources, we are only able to
model the most stable binding configuration and not a whole ensemble of positions. Another
limitation is that there currently exists no theory, which could predict accurately the position of
the Fermi energy (Eg) relative to frontier orbitals and therefore we can merely state that with a
judicious choice of Ef, experiment is consistent with theory. On the other hand, protonation is
generally expected introduce a negative electrostatic potential in the vicinity of the
molecule, which causes the HOMO to increase in energy and move closer to the Fermi
energy. This effect is independent of the precise location of Er and for a wide range of Fermi

energies, leads to an increase in conductance, as we observe experimentally.
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