Supporting Information for

Reversible C-C bond formation at a triply cyclometallated platinum(IV) centre

Paul A Shaw, Guy J Clarkson and Jonathan P Rourke

Department of Chemistry, Warwick University, Coventry. UK CV4 7AL. Email: j.rourke@warwick.ac.uk

Contents:	
Experimental	page S2
Table S1: Summary of X-ray data	page S18
Xray structure 1	page S19
Xray structure Me-1	page S24
Xray structure 2(t)	page S30
Xray structure 4	page S36
Xray structure 5	page S41
Xray structure 6	page S47
Xray structure 10	page S53
Variable temperature NMR spectra of 7	page S60
Comparisons of the NMR spectra of 5 and 7.	page S62
Kinetic analysis of the isomerization of a-Me7 to b-Me7	page S63

Experimental

General

All chemicals were used as supplied, unless noted otherwise. All NMR spectra were obtained on a Bruker Avance 400, 500 or 600 MHz spectrometers and were recorded at room temperature, in chloroform, unless stated otherwise. ¹H and ¹³C signals are referenced to external TMS, assignments being made with the use of decoupling, GOESY and COSY pulse sequences. ¹⁹F and ³¹P chemical shifts are quoted from the directly observed signals (referenced to external CFCl₃ and 85% H₃PO₄, respectively). ¹H-¹⁹⁵Pt correlation spectra were recorded using a variant of the HMBC pulse sequence and the ¹⁹⁵Pt chemical shifts reported are taken from these spectra (referenced to external Na₂PtCl₆). All elemental analyses were performed by Warwick Analytical Service. The initial [(2,6-di(4fluorophenyl)pyridine)Pt(DMSO)] complex was prepared as previously reported (G. W. V.

Cave, N. W. Alcock and J. P. Rourke, *Organometallics*, 1999, **18**, 1801-1803. (b) G. W. V. Cave, F. P. Fanizzi, R. J. Deeth, W. Errington and J. P. Rourke, *Organometallics*, 2000, **19**, 1355-1364.).

The following labelling schemes were used for symmetrical and unsymmetrical complexes, as appropriate:

$F \stackrel{i}{\underset{m}{\overset{e}{\underset{l}{\overset{l}{\underset{l}{\overset{l}{\underset{l}{\overset{l}{\underset{l}{\overset{l}{\underset{l}{\underset$	$F = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$	$F = \begin{bmatrix} g \\ e \\ e \\ H - Pt \\ Bn_2P \\ u \\ t \\ s \end{bmatrix} = \begin{bmatrix} g \\ h \\ h \\ h \\ r \\ s \end{bmatrix}$	$F = \begin{bmatrix} a & b & b \\ b & a & pt \\ B & b & c \\ b & a & pt \\ B & b & c \\ W & y & t \\ W & W & t \\ W & W & t \\ W & W & W & t \\ W & W & W & t \\ W & W & W & $
1	Me-1	9	5 a-Me-5 b-Me-5
2(t) 2(c)	Me-2(t) Me-2(c)		6
	3 b-Me(3)		7 a-Me-7 b-Me-7
	4 b-Me-4		8 10

Synthesis of Complex 1

PBn₃ (64 mg, 0.21 mol, 1.1 eq) was added to a solution of [(2,6-di(4-fluorophenyl)pyridine) Pt(DMSO)] (100 mg, 0.19 mol) in CHCl₃ (10 ml). The solution was stirred (10 min at RT) before the solvent was removed under vacuum. The crude product was then purified by column chromatography on silica, loading and eluting with toluene to give pure 1 (151 mg, 0.18 mol, 95%).

$$\begin{split} &\delta_{\rm H} = 7.67~(1\rm H,\,t,\,{}^{3}J_{\rm H-H} = 8~{\rm Hz},\,H_{\rm i}),\,7.50~(2\rm H,\,dd,\,{}^{3}J_{\rm H-H} = 8.5~{\rm Hz},\,{}^{4}J_{\rm H-F} = 5.5~{\rm Hz},\,H_{\rm e}),\,7.41~(6\rm H,\,d,\,{}^{3}J_{\rm H-H} = 7.5,\,{\rm Bn-}o),\,7.29~(2\rm H,\,d,\,{}^{3}J_{\rm H-H} = 8~{\rm Hz},\,H_{\rm h}),\,7.23~(9\rm H,\,m,\,{\rm Bn-}\textit{m},p),\,7.01~(2\rm H,\,dd,\,{}^{3}J_{\rm H-H} = 11~{\rm Hz},\,{}^{4}J_{\rm H-J} = 3~{\rm Hz},\,{}^{3}J_{\rm H-Pt} = 25~{\rm Hz},\,H_{\rm b}),\,6.70~(2\rm H,\,td,\,{}^{3}J_{\rm H-H} = {}^{3}J_{\rm H-F} = 9~{\rm Hz},\,{}^{4}J_{\rm H-H} = 3~{\rm Hz},\,H_{\rm d}),\,3.54~(6\rm H,\,d,\,{}^{2}J_{\rm H-P} = 10~{\rm Hz},\,{}^{3}J_{\rm H-Pt} = 31~{\rm Hz},\,{\rm Bn-}\textit{CH}_{2})~{\rm ppm}. \end{split}$$

$$\begin{split} &\delta_{\rm C} = 29.59 \; (d,\,^{1}J_{\rm C-P} = 32 \; {\rm Hz},\,^{2}J_{\rm C-Pt} = 32 \; {\rm Hz},\, {\rm Bn-}{\it CH}_{2}),\, 109.36 \; (d,\,^{2}J_{\rm C-F} = 23.5 \; {\rm Hz},\, {\rm C}_{d}),\, 113.57 \; (d, \,^{4}J_{\rm C-P} = 3 \; {\rm Hz},\,^{3}J_{\rm C-Pt} = 26.5 \; {\rm Hz},\, {\rm C}_{h}),\, 123.26 \; (d,\,^{2}J_{\rm C-F} = 17 \; {\rm Hz},\,^{2}J_{\rm C-Pt} = 56 \; {\rm Hz},\, {\rm C}_{b}),\, 124.86 \; (d,\,^{3}J_{\rm C-F} = 8 \; {\rm Hz},\,^{3}J_{\rm C-Pt} = 28 \; {\rm Hz},\, {\rm C}_{e}),\, 125.8 \; (s,\, {\rm Bn-}{\it p}),\, 127.47 \; (s,\, {\rm Bn-}{\it m}),\, 129.336 \; (d,\,^{3}J_{\rm C-P} = 6 \; {\rm Hz},\, {\rm Bn-}{\it o}),\, 132.66 \; (d,\,^{2}J_{\rm C-P} = 5.5 \; {\rm Hz},\,^{3}J_{\rm C-Pt} = 17 \; {\rm Hz},\, {\rm Bn-}{\it i}),\, 139.07 \; (s,\, {\rm C}_{i}),\, 145.82 \; (t,\,^{3}J_{\rm C-P} = ^{4}J_{\rm C-F} = 2 \; {\rm Hz},\,^{2}J_{\rm C-Pt} = 27.5 \; {\rm Hz},\, {\rm C}_{f}),\, 163.20 \; (d,\,^{1}J_{\rm C-F} = 253 \; {\rm Hz},\,^{3}J_{\rm C-Pt} = 53 \; {\rm Hz},\, {\rm C}_{e}),\, 164.13 \; (s,\,^{2}J_{\rm C-Pt} = 67 \; {\rm Hz},\, {\rm C}_{g}),\, 168.53 \; (m,\,^{1}J_{\rm C-Pt} = 719 \; {\rm Hz},\, {\rm C}_{a})\; {\rm ppm}. \end{split}$$

 $\delta_{\rm F}$ = -110.54 (⁴J_{F-Pt} = 28 Hz) ppm. $\delta_{\rm P}$ = -1.23 (¹J_{P-Pt} = 3847 Hz) ppm. $\delta_{\rm Pt}$ = -4151 (d, ¹J_{Pt-P} = ~3900 Hz) ppm.

HR-MS (ESI): found 764.1774, calculated 764.1784 = $C_{38}H_{30}F_2PN^{194}Pt = [M]^+$.

Elemental analysis found (calculated): C 59.43 (59.68), H 3.99 (3.95) N 1.72 (1.83).

Crystals suitable for Xray analysis were grown by the slow evaporation of solvent from a chloroform solution, Figure 1 and Table S1; full details on page S19.

Synthesis of Me-1

Complex **1** (120 mg, 15.7×10^{-2} mmol) was dissolved in iodomethane (3 ml) and heated at reflux for two days, by which time an insoluble product had formed. The solvent was then removed, and the product washed with acetone. To the dry powder was added AgBF₄ (excess) and the mixture solubilized in acetone (10 ml); the resulting insoluble AgCl was removed by filtration. K₂CO₃ solution (2M, 1 ml) was then added, and the mixture stirred and heated to 50°C for 2 hours. The solvent was then removed, and the crude product was purified by column chromatography on silica, loading and eluting with toluene. (89 mg, 11.4×10^{-2} mmol, 73%).

$$\begin{split} \textbf{Me-1} \ \delta_{H} &= 7.60 \ (1\text{H}, \text{t}, 3^{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{i}), 7.45 \ (1\text{H}, \text{d}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{j}), 7.38 \ (1\text{H}, \text{dd}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{i}), \\ 8.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-F}} &= 5.5 \text{ Hz}, \text{H}_{e}), 7.31 \ (6\text{H}, \text{d}, {}^{3}\text{J}_{\text{H-H}} = 7 \text{ Hz}, \text{Bn-}o), 7.21 \ (1\text{H}, \text{d}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{h}), \\ 7.13 \ (9\text{H}, \text{m}, \text{Bn-}m.p), 6.80 \ (1\text{H}, \text{dd}, {}^{3}\text{J}_{\text{H-F}} = 9 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = 1.5 \text{ Hz}, {}^{3}\text{J}_{\text{H-Pt}} = ~30 \text{ Hz}, \text{H}_{n}), 6.75 \ (1\text{H}, \text{dd}, {}^{3}\text{J}_{\text{H-F}} = 10 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = 2 \text{ Hz}, {}^{3}\text{J}_{\text{H-Pt}} = ~25 \text{ Hz}, \text{H}_{b}), 6.58 \ (1\text{H}, \text{td}, {}^{3}\text{J}_{\text{H-F}} = {}^{3}\text{J}_{\text{H-H}} = 8.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = 2 \text{ Hz}, \text{H}_{d}), 6.42 \ (1\text{H}, \text{dd}, {}^{3}\text{J}_{\text{H-F}} = 9.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = 1.5 \text{ Hz}, \text{H}_{p}), 3.43 \ (6\text{H}, \text{d}, {}^{2}\text{J}_{\text{H-P}} = 9 \text{ Hz}, {}^{3}\text{J}_{\text{H-Pt}} = 32 \text{ Hz}, \text{Bn}CH_{2}), 2.52 \ (3\text{H}, \text{s}, \text{Me}) \text{ ppm}. \end{split}$$

$$\begin{split} &\delta_{\rm C} = 19.21 \; ({\rm s},{\rm Me}), 25.52 \; ({\rm d},{}^{1}J_{\rm C-P} = 30 \; {\rm Hz}, {}^{2}J_{\rm C-Pt} = 30 \; {\rm Hz}, \; {\rm Bn}{\rm CH}_{2}), 105.11 \; ({\rm d},{}^{2}J_{\rm C-F} = 20 \; {\rm Hz}, \\ &C_{\rm d}), 109.32 \; ({\rm m},{\rm C}_{\rm h,p}), 113.77 \; ({\rm d},{}^{4}J_{\rm H-P} = 3 \; {\rm Hz},{}^{3}J_{\rm H-Pt} = 27 \; {\rm Hz}, {\rm H_{j}}), 117.03 \; ({\rm d},{}^{2}J_{\rm C-F} = 18 \; {\rm Hz},{}^{2}J_{\rm C-Pt} \\ &= 47 \; {\rm Hz}, {\rm C}_{\rm n}), 118.86 \; ({\rm d},{}^{2}J_{\rm C-F} = 18 \; {\rm Hz},{}^{2}J_{\rm C-Pt} = 56 \; {\rm Hz}, {\rm C}_{\rm b}), 120.81 \; ({\rm d},{}^{3}J_{\rm C-F} = 10 \; {\rm Hz},{}^{3}J_{\rm C-Pt} = 30 \\ &{\rm Hz}, {\rm C}_{\rm e}), 121.60 \; ({\rm d},{}^{5}J_{\rm C-P} = 2 \; {\rm Hz}, {\rm Bn}{\rm -}p), 123.33 \; ({\rm s}, {\rm Bn}{\rm -}m), 125.18 \; ({\rm d},{}^{3}J_{\rm C-P} = 5.5 \; {\rm Hz}, {\rm Bn}{\rm -}o), \\ &128.61 \; ({\rm d},{}^{2}J_{\rm C-P} = 5 \; {\rm Hz},{}^{3}J_{\rm C-Pt} = 16 \; {\rm Hz}, {\rm Bn}{\rm -}q), 113.32 \; ({\rm d},{}^{3}J_{\rm C-F} = 8 \; {\rm Hz}, {\rm C}_{\rm q}), 134.43 \; ({\rm s}, {\rm C}_{\rm i}), \\ &140.42 \; ({\rm m}, {\rm C}_{\rm l}), 141.66 \; ({\rm m}, {\rm C}_{\rm f}), 157.81 \; ({\rm d},{}^{1}J_{\rm C-F} = 253 \; {\rm Hz},{}^{3}J_{\rm C-Pt} = 56 \; {\rm Hz}, {\rm C}_{\rm o}), 159.02 \; ({\rm d},{}^{1}J_{\rm C-F} = \\ &252 \; {\rm Hz},{}^{3}J_{\rm C-Pt} = 46 \; {\rm Hz}, {\rm C}_{\rm c}) \; 160.37 \; ({\rm s},{}^{2}J_{\rm C-Pt} = 61 \; {\rm Hz}, {\rm C}_{\rm g/k}), 160.67 \; ({\rm s},{}^{2}J_{\rm C-Pt} = 61 \; {\rm Hz}, {\rm C}_{\rm g/k}), \\ &165.78 \; ({\rm m},{}^{1}J_{\rm C-Pt} = 700 \; {\rm Hz}, {\rm C}_{\rm a}), 166.15 \; ({\rm m},{}^{1}J_{\rm C-Pt} = 702 \; {\rm Hz}, {\rm C}_{\rm m}) \; {\rm ppm}. \\ &\delta_{\rm F} = -110.69 \; ({}^{4}J_{\rm F-Pt} = 26.5 \; {\rm Hz}, {\rm F}_{\rm c}), -113.14 \; ({}^{4}J_{\rm F-Pt} = 29 \; {\rm Hz}, {\rm F}_{\rm o}) \; {\rm ppm}. \; \delta_{\rm P} = 1.18 \; ({}^{1}J_{\rm P-Pt} = 3893 \; {\rm Hz}) \\ {\rm ppm}. \; \delta_{\rm Pt} = -4097 \; ({\rm d},{}^{1}J_{\rm Pt-P} = \sim 3900 \; {\rm Hz}) \; {\rm ppm}. \\ &{\rm HR-MS} \; ({\rm ESI}): \; {\rm found} \; 778.1918, \; {\rm calculated} \; 778.1940 = {\rm C}_{39}{\rm H}_{32}{\rm F}_{2}{\rm NP}^{194}{\rm Pt} = [{\rm M}]^+. \end{split}$$

Elemental analysis found (calculated): C 60.00 (60.15), H 4.07 (4.14) N 1.73 (1.80).

Crystals suitable for Xray analysis were grown by the slow evaporation of solvent from a chloroform solution, Figure 6 and Table S1; full details on page S24.

Synthesis of Complex 2(t)

Complex **1** (80 mg, 10.4×10^{-2} mmol) was dissolved in acetone (40 ml), and water (10 ml) added. To this solution, an acetone solution of PhICl₂ (34 mg, 12.6 x10⁻² mmol, 1.2 eq) was added dropwise with stirring at room temperature, resulting in the yellow colour disappearing. The solvent was removed, the crude product washed with acetone and collected by filtration as a light cream solid (75 mg, 93.9x10⁻³ mmol, 90%).

 $\begin{aligned} & \mathbf{2(t)} \ \delta_{\mathrm{H}} = 7.95 \ (1\mathrm{H}, \mathrm{t}, {}^{3}\mathrm{J}_{\mathrm{H}\text{-H}} = 8.5 \ \mathrm{Hz}, \mathrm{H}_{\mathrm{i}}), 7.76 \ (2\mathrm{H}, \mathrm{dd}, {}^{3}\mathrm{J}_{\mathrm{H}\text{-H}} = 8.5 \ \mathrm{Hz}, {}^{4}\mathrm{J}_{\mathrm{H}\text{-F}} = 6 \ \mathrm{Hz}, \mathrm{H}_{\mathrm{e}}), 7.64 \\ & (2\mathrm{H}, \mathrm{dd}, {}^{3}\mathrm{J}_{\mathrm{H}\text{-H}} = 8 \ \mathrm{Hz}, {}^{5}\mathrm{J}_{\mathrm{H}\text{-P}} = 1.5 \ \mathrm{Hz}, \mathrm{H}_{\mathrm{h}}), 6.37 \ (6\mathrm{H}, \mathrm{m}, \mathrm{Bn-}m,p), 7.34 \ (2\mathrm{H}, \mathrm{dd}, {}^{3}\mathrm{J}_{\mathrm{H}\text{-F}} = 9.5 \ \mathrm{Hz}, \\ & {}^{4}\mathrm{J}_{\mathrm{H}\text{-H}} = 2 \ \mathrm{Hz}, {}^{3}\mathrm{J}_{\mathrm{H}\text{-Pt}} = 43 \ \mathrm{Hz}, \mathrm{H}_{\mathrm{b}}), 7.21 \ (4\mathrm{H}, \mathrm{d}, {}^{3}\mathrm{J}_{\mathrm{H}\text{-H}} = 7 \ \mathrm{Hz}, \mathrm{Bn-}o), 6.93 \ (1\mathrm{H}, \mathrm{d}, {}^{3}\mathrm{J}_{\mathrm{H}\text{-H}} = 7 \ \mathrm{Hz}, \mathrm{H}_{\mathrm{l}}), \\ & 6.83 \ (2\mathrm{H}, \mathrm{td}, {}^{3}\mathrm{J}_{\mathrm{H}\text{-H}} = {}^{3}\mathrm{J}_{\mathrm{H}\text{-F}} = 8.5 \ \mathrm{Hz}, {}^{4}\mathrm{J}_{\mathrm{H}\text{-H}} = 2 \ \mathrm{Hz}, \mathrm{H}_{\mathrm{d}}), 6.91 \ (1\mathrm{H}, \mathrm{t}, {}^{3}\mathrm{J}_{\mathrm{H}\text{-H}} = 7 \ \mathrm{Hz}, \mathrm{H}_{\mathrm{m}}), 6.57 \ (1\mathrm{H}, \mathrm{t}, \mathrm{s}), \\ & 3\mathrm{J}_{\mathrm{H}\text{-H}} = 7 \ \mathrm{Hz}, \mathrm{H}_{\mathrm{n}}), 6.19 \ (1\mathrm{H}, \mathrm{d}, {}^{3}\mathrm{J}_{\mathrm{H}\text{-H}} = \mathrm{Hz}, {}^{3}\mathrm{J}_{\mathrm{H}\text{-Pt}} = 47 \ \mathrm{Hz}, \mathrm{H}_{\mathrm{o}}), 4.20 \ (2\mathrm{H}, \mathrm{dd}, {}^{2}\mathrm{J}_{\mathrm{H}\text{-H}} = 15 \ \mathrm{Hz}, {}^{2}\mathrm{J}_{\mathrm{H}\text{-P}} \\ & = 12 \ \mathrm{Hz}, \ \mathrm{Bn}CH_{2}), 4.06 \ (2\mathrm{H}, \mathrm{dd}, {}^{2}\mathrm{J}_{\mathrm{H}\text{-H}} = 15 \ \mathrm{Hz}, {}^{2}\mathrm{J}_{\mathrm{H}\text{-P}} = 12 \ \mathrm{Hz}, {}^{3}\mathrm{J}_{\mathrm{H}\text{-Pt}} = 18 \ \mathrm{Hz}, \ \mathrm{Bn}CH_{2}), 3.61 \ (2\mathrm{H}, \mathrm{d}, {}^{2}\mathrm{J}_{\mathrm{H}\text{-P}} = 16 \ \mathrm{Hz}, \mathrm{H}_{\mathrm{i}}) \ \mathrm{pm}. \end{aligned}$

$$\begin{split} &\delta_{C} = 29.28 \; (d,\,^{1}J_{C-P} = 30 \; Hz,\,^{2}J_{C-Pt} = 25 \; Hz, BnCH_{2}), 34.76 \; (d,\,^{1}J_{C-P} = 40 \; Hz,\,^{2}J_{C-Pt} = 62 \; Hz, C_{j}), \\ &111.68 \; (d,\,^{2}J_{C-F} = 25.5 \; Hz, C_{d}), 116.59 \; (s, C_{h}), 122.49 \; (d,\,^{2}J_{C-F} = 19 \; Hz,\,^{2}J_{C-Pt} = 32 \; Hz, C_{b}), \\ &125.17 \; (s, C_{m}), 125.61 \; (d,\,^{3}J_{C-P} = 18 \; Hz, C_{1}), 126.89 \; (s,\,^{3}J_{C-Pt} = 45 \; Hz, C_{n}), 129.79 \; (s, Bn-p), \\ &128.02 \; (d,\,^{3}J_{C-F} = 8 \; Hz,\,^{3}J_{C-Pt} = 16 \; Hz, C_{e}), 128.84 (s,\,^{2}J_{C-Pt} = 13.5 \; Hz, C_{o}), 129.21 \; (s, Bn-m), \\ &130.39 \; (d,\,^{3}J_{C-P} = \; Hz, Bn-o), \; 131.19 \; (s,\,^{1}J_{C-Pt} = 449 \; Hz, C_{p}), \; 131.93 \; (d,\,^{2}J_{C-P} = 8 \; Hz,\,^{3}J_{C-Pt} = 16 \; Hz, Bn-i), \; 140.23 \; (s, C_{i}), \; 140.53 \; (d,\,^{2}J_{C-P} = 9 \; Hz, C_{k}), \; 143.47 \; (m, C_{f}), \; 161.91 \; (s,\,^{2}J_{C-Pt} = 33 \; Hz, \\ &C_{g}), \; 162.49 \; (m,\,^{1}J_{C-Pt} = 468 \; Hz, C_{a}), \; 163.10 \; (d,\,^{1}J_{C-Pt} = 256 \; Hz,\,^{3}J_{C-F} = 40 \; Hz, C_{c}) \; ppm. \\ &\delta_{F} = -108.450 \; (^{4}J_{F-Pt} = 20 \; Hz) \; ppm. \; \delta_{P} = 19.37 \; (^{1}J_{P-Pt} = 2649 \; Hz) \; ppm. \; \delta_{Pt} = -2911 \; (d,\,^{1}J_{Pt-P} = \\ &\sim 2700 \; Hz) \; ppm. \end{split}$$

HR-MS (ESI): found 762.1628, calculated 762.1627 = $C_{38}H_{29}F_2NP^{194}Pt = [M-C1]^+$.

Crystals suitable for Xray analysis were grown by the slow evaporation of solvent from a chloroform solution, Figure 2 and Table S1; full details on page S30.

Synthesis of Me-2(t)

Complex **Me-1** (50 mg, 64.3x10⁻³ mmol) was dissolved in acetone (40 ml), and water (10 ml) added. To this solution, an acetone solution of PhICl₂ (21 mg, 77.1x10⁻³ mmol, 1.2 eq) was added dropwise with stirring at room temperature, resulting in the yellow colour disappearing. The solvent was removed, and the crude product washed with acetone and collected by filtration as a light cream solid. (43 mg, 52.7x10⁻³ mmol, 82%).

$$\begin{split} &\delta_{\rm H} = 7.93~(2{\rm H},\,{\rm m},\,{\rm H}_{\rm i,j}),\,7.76~(1{\rm H},\,{\rm dd},\,{}^{3}{\rm J}_{\rm H-H} = 8.5~{\rm Hz},\,{}^{4}{\rm J}_{\rm H-F} = 5.5~{\rm Hz},\,{\rm H_e}),\,7.65~(1{\rm H},\,{\rm d},\,{}^{3}{\rm J}_{\rm H-H} = 7~{\rm Hz},\,{\rm H_h}),\,7.37~(7{\rm H},\,{\rm m},\,{\rm Bn}),\,7.31~(1{\rm H},\,{\rm d},\,{}^{3}{\rm J}_{\rm H-F} = ~{\rm Hz},\,{\rm H_n}),\,7.24~(2{\rm H},\,{\rm d},\,{}^{3}{\rm J}_{\rm H-H} = 6.5~{\rm Hz},\,{\rm Bn}),\,7.17~(2{\rm H},\,{\rm d},\,{}^{3}{\rm J}_{\rm H-H} = 6.5~{\rm Hz},\,{\rm Bn}),\,6.91~(1{\rm H},\,{\rm d},\,{}^{3}{\rm J}_{\rm H-H} = 7.5~{\rm Hz},\,{}^{4}{\rm J}_{\rm H-Pt} = 12~{\rm Hz},\,{\rm H_t}),\,6.83~(1{\rm H},\,{\rm td},\,{}^{3}{\rm J}_{\rm H-H} = {}^{3}{\rm J}_{\rm H-F} = 8~{\rm Hz},\,{}^{4}{\rm J}_{\rm H-H} = 2.5~{\rm Hz},\,{\rm H_d}),\,6.79~(1{\rm H},\,{\rm t},\,{}^{3}{\rm J}_{\rm H-H} = 7.5~{\rm Hz},\,{\rm H_u}),\,6.65~(1{\rm H},\,{\rm dd},\,{}^{3}{\rm J}_{\rm H-F} = ~{\rm Hz},\,{}^{4}{\rm J}_{\rm H-H} = {\rm Hz},\,{\rm H_z},\,{\rm H_u}),\,6.65~(1{\rm H},\,{\rm dd},\,{}^{3}{\rm J}_{\rm H-F} = ~{\rm Hz},\,{}^{4}{\rm J}_{\rm H-H} = {\rm Hz},\,{\rm H_z},\,{\rm H_u}),\,6.58~(1{\rm H},\,{\rm t},\,{}^{3}{\rm J}_{\rm H-H} = 7.5~{\rm Hz},\,{\rm H_u}),\,6.18~(1{\rm H},\,{\rm d},\,{}^{3}{\rm J}_{\rm H-H} = 7.5~{\rm Hz},\,{\rm H_z},\,{\rm H_u}),\,4.21~(2{\rm H},\,{\rm m},\,{\rm Bn}CH_2),\,4.06~(2{\rm H},\,{\rm m},\,{\rm Bn}CH_2),\,3.60~(2{\rm H},\,{\rm d},\,{}^{2}{\rm J}_{\rm H-P} = 11.5~{\rm Hz},\,{}^{3}{\rm J}_{\rm H-Pt} = 15~{\rm Hz},\,{\rm H_r}),\,2.75~(3{\rm H},\,{\rm s},\,{\rm Me})~{\rm ppm}. \end{split}$$

$$\begin{split} &\delta_{\rm C} = 24.95 \; ({\rm s},\,{\rm Me}),\, 28.90 \; ({\rm d},\,{}^1{\rm J}_{\rm C-P} = 29 \; {\rm Hz},\,{}^2{\rm J}_{\rm C-Pt} = 28 \; {\rm Hz},\, {\rm Bn}{\rm CH}_2),\, 29.70 \; ({\rm d},\,{}^1{\rm J}_{\rm C-Pt} = 29 \; {\rm Hz},\,{}^2{\rm J}_{\rm C}.\\ &{}_{\rm P} = 22 \; {\rm Hz},\, {\rm Bn}{\rm CH}_2),\, 34.77 \; ({\rm d},\,{}^1{\rm J}_{\rm C-P} = 40 \; {\rm Hz},\,{}^2{\rm J}_{\rm C-Pt} = 68 \; {\rm Hz},\, {\rm C}_r),\, 111.65 \; ({\rm d},\,{}^2{\rm J}_{\rm C-F} = 24 \; {\rm Hz},\, {\rm C}_d),\\ &115.96 \; ({\rm d},\,{}^2{\rm J}_{\rm C-F} = 20 \; {\rm Hz},\, {\rm C}_p),\, 116.45 \; ({\rm d},\,{}^4{\rm J}_{\rm C-P} = 3.5 \; {\rm Hz},\,{}^3{\rm J}_{\rm C-Pt} = 18 \; {\rm Hz},\, {\rm C}_h),\, 120.43 \; ({\rm m},\, {\rm C}_{\rm j,n}),\\ &122.35 \; ({\rm d},\,{}^2{\rm J}_{\rm C-F} = 18 \; {\rm Hz},\,{}^2{\rm J}_{\rm C-Pt} = 18 \; {\rm Hz},\, {\rm C}_b),\, 125.11 \; ({\rm s},\, {\rm C}_u),\, 125.62 \; ({\rm d},\,{}^3{\rm J}_{\rm C-P} = 17.5 \; {\rm Hz},\,{}^3{\rm J}_{\rm C-Pt} = \\ &39 \; {\rm Hz},\, {\rm C}_t),\, 126.86 \; ({\rm s},\,{}^3{\rm J}_{\rm C-Pt} = 46 \; {\rm Hz},\, {\rm C}_v),\, 127.76 \; ({\rm m},\, {\rm Bn}),\, ({\rm d},\,{}^3{\rm J}_{\rm C-F} = 8.5 \; {\rm Hz},\,{}^3{\rm J}_{\rm C-Pt} = 23 \; {\rm Hz},\, {\rm C}_e),\\ &128.74 \; ({\rm s},\,{}^2{\rm J}_{\rm C-Pt} = 14 \; {\rm Hz},\, {\rm C}_w),\, 127.17 \; ({\rm m},\, {\rm Bn}),\, 130.42 \; ({\rm m},\, {\rm Bn}),\, 131.52 \; ({\rm s},\, {\rm c}_s),\, 132.04 \; ({\rm m},\, {\rm Bn}),\\ &139.97 \; ({\rm s},\, {\rm C}_i),\, 140.62 \; ({\rm d},\,{}^3{\rm J}_{\rm C-F} = 7.5 \; {\rm Hz},\, {\rm C}_q),\, 140.65 \; ({\rm d},\,{}^2{\rm J}_{\rm C-P} = 10.5 \; {\rm Hz},\,{}^1{\rm J}_{\rm C-Pt} = 53 \; {\rm Hz},\, {\rm C}_x),\\ &142.01 \; ({\rm t},\,{}^3{\rm J}_{\rm C-P} = {}^4{\rm J}_{\rm C-F} = 2.5 \; {\rm Hz},\,{}^2{\rm J}_{\rm C-Pt} = 13.5 \; {\rm Hz},\, {\rm C}_i),\, 143.65 \; ({\rm t},\,{}^3{\rm J}_{\rm C-P} = 4 \; {\rm J}_{\rm C-F} = 2.5 \; {\rm Hz},\,{}^2{\rm J}_{\rm C-Pt} = \sim 13 \\\\ {\rm Hz},\, {\rm C}_f),\, 161.84 \; ({\rm d},\,{}^1{\rm J}_{\rm C-F} = 254 \; {\rm Hz},\,{}^3{\rm J}_{\rm C-Pt} = 53 \; {\rm Hz},\, {\rm C}_o),\, 163.38 \; ({\rm m},\,{}^1{\rm J}_{\rm C-Pt} = 558 \; {\rm Hz},\\\\ {\rm C}_{a/m}),\, 163.97 \; ({\rm m},\,{}^1{\rm J}_{\rm C-Pt} = 556 \; {\rm Hz},\, {\rm C}_{a/m}) \; {\rm ppm}. \end{split}$$

$$\begin{split} \delta_{F} &= -108.61 \; (^{4}J_{F-Pt} = 19 \; Hz, F_{c}), -111.30 \; (^{4}J_{F-Pt} = 22 \; Hz, F_{o}) \; ppm. \; \delta_{P} = 19.76 \; (^{1}J_{P-Pt} = 2657 \; Hz) \\ ppm. \; \delta_{Pt} &= -2885 \; (d, \, ^{1}J_{Pt-P} = \sim 2700 \; Hz) \; ppm. \end{split}$$

HR-MS (ESI): found 776.1787, calculated 776.1784 = $C_{39}H_{31}F_2NP^{194}Pt = [M-C1]^+$.

Synthesis of Complexes 3 and 4

To a solution of **1** (20 mg, 26.2x10⁻³ mmol) in chloroform (10 ml), was added a solution of PhICl₂ (3.6 mg, 13.1x10⁻³ mmol, 0.5 eq in 2 ml chloroform) dropwise at room temperature. After addition of the final drop, solvent was removed, and the crude mixture washed with hexane. Acetone was used to dissolve the **4**, leaving behind **2**(**t**). To a sample of the **4** (9 mg) in chloroform (0.6 ml) was added PhICl₂ (4 mg, excess) at room temperature. Full conversion to **3** was observed, though it was not isolated.

 $3 \delta_{\rm H} = 7.91 (1\text{H}, \text{t}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{Hi}), 7.83 (1\text{H}, \text{d}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{\text{h/j}}), 7.78 (2\text{H}, \text{dd}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, {}^{4}\text{J}_{\text{H-F}} = 5 \text{ Hz}, \text{H}_{\text{m}}), 7.33 (1\text{H}, \text{d}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{\text{h/j}}), 7.16 (6\text{H}, \text{m}, \text{Bn}-p), 7.10 (9\text{H}, \text{m}, \text{H}_{\text{b,n}}, \text{Bn}-m), 7.04 (1\text{H}, \text{m}, \text{C}_{\text{e}}), 6.93 (1\text{H}, \text{td}, {}^{3}\text{J}_{\text{H-H}} = {}^{3}\text{J}_{\text{H-F}} = 8.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = 2 \text{ Hz}, \text{H}_{\text{d}}), 6.41 (6\text{H}, \text{d}, {}^{3}\text{J}_{\text{H-H}} = 7.5 \text{ Hz}, \text{Bn}-o), 3.94 (6\text{H}, \text{d}, {}^{2}\text{J}_{\text{H-H}} = 13 \text{ Hz}, {}^{3}\text{J}_{\text{H-Pt}} = 11 \text{ Hz}, \text{Bn}CH_{2}) \text{ ppm}.$

$$\begin{split} &\delta_{\rm C} = 31.63 \; (d,\,^{1}J_{\rm C-P} = 32 \; {\rm Hz},\,^{2}J_{\rm C-Pt} = 26 \; {\rm Hz},\, {\rm Bn}{\rm CH}_{2}),\, 113.62 \; (d,\,^{2}J_{\rm C-F} = 20 \; {\rm Hz},\, {\rm C}_{d}),\, 114.9562 \; (d,\,^{2}J_{\rm C-F} = 23 \; {\rm Hz},\, {\rm C}_{n}),\, 119.26,\, (s,\, {\rm C}_{h/j}),\, 122.35 \; (d,\,^{2}J_{\rm C-F} = 21 \; {\rm Hz},\,^{2}J_{\rm C-Pt} = 35 \; {\rm Hz},\, {\rm C}_{b}),\, 126.66 \; (d,\,^{4}J_{\rm C-P} = 5 \; {\rm Hz},\, {\rm C}_{h/j}),\, 127.65 \; (d,\,^{5}J_{\rm C-P} = 4 \; {\rm Hz},\, {\rm Bn}{\rm -}p),\, 128.90 \; (d,\,^{4}J_{\rm C-P} = 3 \; {\rm Hz},\, {\rm Bn}{\rm -}m),\, 130.03 \; (d,\,^{3}J_{\rm C-F} = 5 \; {\rm Hz},\, {\rm C}_{e}),\, 131.07 \; (d,\,^{3}J_{\rm C-P} = 6.5 \; {\rm Hz},\, {\rm Bn}{\rm -}o),\, 131.73 \; (d,\,^{2}J_{\rm C-P} = 9.5 \; {\rm Hz},\, {\rm Bn}{\rm -}i),\, 132.36 \; (d,\,^{3}J_{\rm C-F} = 8 \; {\rm Hz},\, {\rm C}_{m}),\, 130.60 \; (s,\, {\rm C}_{f/l}),\, 139.97 \; (s,\, {\rm C}_{i}),\, 140.89 \; ({\rm C}_{f/l}),\, 141.36 \; (d,\,^{3}J_{\rm C-F} = 6 \; {\rm Hz},\, {\rm C}_{a}),\, 161.75 \; (d,\,^{1}J_{\rm C-F} = 255 \; {\rm Hz},\, {\rm C}_{c}),\, 163.47 \; (s,\, {\rm C}_{k}),\, 163.93 \; (d,\,^{1}J_{\rm C-F} = 248 \; {\rm Hz},\, {\rm C}_{o}),\, 164.31 \; (d,\,^{3}J_{\rm C-P} = 4 \; {\rm Hz},\, {\rm C}_{g}) \; {\rm ppm}. \end{split}$$

$$\begin{split} \delta_{F} &= -107.92 \; (^{4}J_{F\text{-Pt}} = 29.5 \; \text{Hz}), -111.26 \; \text{ppm.} \; \delta_{P} = 9.14 \; (^{1}J_{P\text{-Pt}} = 2434 \; \text{Hz}) \; \text{ppm.} \; \delta_{Pt} = -1719 \; (\text{d}, \text{d}) \\ ^{1}J_{Pt\text{-P}} &= \sim 2450 \; \text{Hz}) \; \text{ppm.} \end{split}$$

$$\begin{split} & 4 \, \delta_{H} = 7.94 \, (1H, t, {}^{3}J_{H-H} = 7.5 \, Hz, H_{i}), 7.90 \, (2H, dd, {}^{3}J_{H-H} = 8 \, Hz, {}^{4}J_{H-F} = 4.5 \, Hz, H_{e}), 7.72 \, (1H, d, {}^{3}J_{H-H} = 7.5 \, Hz, H_{h}), 7.52 \, (2H, dd, {}^{3}J_{H-H} = 8 \, Hz, {}^{4}J_{H-F} = 5.5 \, Hz, H_{m}), 7.47 \, (1H, d, {}^{3}J_{H-H} = 7.5 \, Hz, H_{j}), 7.37 \, (1H, m, Bn-o), 7.25 \, (9H, m, Bn-m,p), 7.10 \, (2H, t, {}^{3}J_{H-H} = {}^{3}J_{H-F} = 8.5 \, Hz, H_{n}), 6.73 \, (1H, td, {}^{3}J_{H-H} = {}^{3}J_{H-F} = 8.5 \, Hz, {}^{4}J_{H-H} = 2.5 \, Hz, H_{d}), 6.66 \, (1H, dt, {}^{3}J_{H-F} = 10 \, Hz, {}^{4}J_{H-H} = {}^{4}J_{H-P} = 2 \, Hz, {}^{3}J_{H-Pt} = {}^{-55} \, Hz, H_{b}), 3.46 \, (6H, d, {}^{2}J_{H-P} = 11 \, Hz, {}^{3}J_{H-Pt} = 30 \, Hz, BnCH_{2}) \, ppm. \\ \delta_{C} = 29.53 \, (d, {}^{1}J_{C-P} = 34.5 \, Hz, {}^{2}J_{C-Pt} = 34.5 \, Hz, BnCH_{2}), 110.23 \, (d, {}^{2}J_{C-F} = 23.5 \, Hz, C_{d}), 114.90 \, (d, {}^{2}J_{C-F} = 23.5 \, Hz, C_{n}), 115.96 \, (s, C_{h}), 121.66 \, (dd, {}^{2}J_{C-F} = 20 \, Hz, {}^{3}J_{C-P} = 2 \, Hz, C_{b}), 122.76 \, (d, {}^{4}J_{C-P} = 2 \, Hz, C_{j}), 126.15 \, (d, {}^{3}J_{C-F} = 9.5 \, Hz, {}^{3}J_{C-F} = 8 \, Hz, C_{m}), 133.71 \, (d, {}^{2}J_{C-P} = 5.5 \, Hz, Bn-i), 136.66 \, (s, C_{1}), 139.19 \, (s, C_{i}), 142.76 \, (s, C_{f}), 146.19 \, (t, {}^{2}J_{C-P} = {}^{3}J_{C-F} = 6 \, Hz, C_{a}), 160.71 \, (s, C_{k}), 162.09 \, (d, {}^{1}J_{C-F} = 253 \, Hz, C_{e}), 163.83 \, (d, {}^{1}J_{C-F} = 250 \, Hz, C_{o}), 164.51 \, (s, C_{g}) \, ppm. \\ \delta_{F} = -110.84 \, ({}^{4}J_{F-Pt} = 64 \, Hz), -111.36 \, ppm. \, \delta_{P} = -1.76 \, ({}^{1}J_{P-Pt} = 4272 \, Hz) \, ppm. \, \delta_{Pt} = -3807 \, (d, {}^{1}J_{P+P} = \sim 4300 \, Hz) \, ppm. \end{split}$$

HR-MS (ESI): found 764.1779, calculated 764.1784 = $C_{38}H_{31}F_2NP^{194}Pt = [M-C1]^+$.

Crystals suitable for Xray analysis were grown by the slow evaporation of solvent from a chloroform solution, Figure 3 and Table S1; full details on page S36.

Synthesis of b-Me-3 and b-Me-4

To a chloroform solution of **Me-1** (10 mg, 12.9×10^{-3} mmol) was added PhICl₂ (1.8 mg, 6.43x10⁻³ mmol, 0.5eq) which gave a 50/50 mixture of **Me-2(t)** and **b-Me-4**. The complexes were not physically separated, but the spectroscopic data acquired on pure **Me-2(t)** allowed the identification of data from **b-Me-4**. The use of one equivalent of PhICl₂ gave an equivalent mixture of **Me-2(t)** and **b-Me-3**.

b-Me-3 (key data only) $\delta_{\rm H} = 2.41$ (3H, s, Me) ppm. $\delta_{\rm F} = -107.90$ (⁴J_{F-Pt} = 63 Hz), -112.52 ppm. $\delta_{\rm P} = 7.50$ (¹J_{P-Pt} = 2432 Hz) ppm.

b-Me-4 $\delta_{\rm H} = 7.89 \ (1\text{H}, \text{t}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{i}), 7.70 \ (1\text{H}, \text{d}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{h/j}), 7.53 \ (1\text{H}, \text{dd}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{h/j}), 7.53 \ (1\text{H}, \text{dd}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{h/j}), 7.53 \ (1\text{H}, \text{dd}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{a}), 7.32 \ (6\text{H}, \text{d}, {}^{3}\text{J}_{\text{H-H}} = 7.5 \text{ Hz}, \text{H}_{o}), 7.30 \ (1\text{H}, \text{d}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{h/j}), 7.22 \ (9\text{H}, \text{m}, \text{Bn-}m,p), 7.01 \ (1\text{H}, \text{dd}, {}^{3}\text{J}_{\text{H-F}} = 10 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = 2.5 \text{ Hz}, \text{H}_{p}), 6.92 \ (1\text{H}, \text{td}, {}^{3}\text{J}_{\text{H-H}} = {}^{3}\text{J}_{\text{H-F}} = 8.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = 2.5 \text{ Hz}, \text{H}_{n}), 6.67 \ (1\text{H}, \text{td}, {}^{3}\text{J}_{\text{H-F}} = 8 \text{ Hz}, \text{H}_{d}), 6.42 \ (1\text{H}, \text{dt}, {}^{3}\text{J}_{\text{H-F}} = 8.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = {}^{4}\text{J}_{\text{H-P}} = 2 \text{ Hz}, {}^{3}\text{J}_{\text{H-Pt}} = 54 \text{ Hz}, \text{H}_{b}), 3.43 \ (6\text{H}, \text{m}, \text{Bn}CH_{2}), 2.61 \ (3\text{H}, \text{s}, \text{Me}) \text{ ppm}.$

 $\delta_{F} = -110.96 ({}^{4}J_{F-Pt} = 63 \text{ Hz}), -112.78 \text{ ppm}. \delta_{P} = -1.96 ({}^{1}J_{P-Pt} = 4253 \text{ Hz}) \text{ ppm}. \delta_{Pt} = -3821 (d, {}^{1}J_{Pt-P} = \sim 4300 \text{ Hz}) \text{ ppm}.$

Synthesis of Complex 2(c) and 5

Solid complex **2(t)** (60 mg, 75.2x10⁻³ mmol) was added to the top of a silica column and chloroform run through. After 20 column volumes of chloroform, the solvent system was changed to 40:60 EtOAC:hexane which cleanly eluted first **5** (yield 47 mg, 58.7x10⁻³ mmol 78 %), followed by the **2(c)** (yield 12 mg, 15.0x10⁻³ mmol 20 %).

 $\begin{aligned} & \mathbf{2(c)} \ \delta_{\mathrm{H}} = 8.34 \ (1\mathrm{H}, \mathrm{d}, {}^{4}\mathrm{J}_{\mathrm{H-P}} = 7.5 \ \mathrm{Hz}, {}^{3}\mathrm{J}_{\mathrm{H-Pt}} = 31 \ \mathrm{Hz}, \mathrm{H}_{o}), 7.84 \ (1\mathrm{H}, \mathrm{t}, {}^{3}\mathrm{J}_{\mathrm{H-H}} = 8 \ \mathrm{Hz}, \mathrm{H}_{i}), 7.80 \\ & (2\mathrm{H}, \mathrm{dd}, {}^{3}\mathrm{J}_{\mathrm{H-H}} = 8.5 \ \mathrm{Hz}, {}^{4}\mathrm{J}_{\mathrm{H-F}} = 5 \ \mathrm{Hz}, \mathrm{H}_{e}), 7.60 \ (2\mathrm{H}, \mathrm{d}, {}^{3}\mathrm{J}_{\mathrm{H-H}} = 8 \ \mathrm{Hz}, \mathrm{H}_{h}), 7.27 \ (1\mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{l/m}}), \\ & 7.24 \ (2\mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{l/m}}), 7.15 \ (2\mathrm{H}, \mathrm{t}, {}^{3}\mathrm{J}_{\mathrm{H-H}} = 7.5 \ \mathrm{Hz}, \mathrm{Bn-}p), 7.07 \ (4\mathrm{H}, \mathrm{t}, {}^{3}\mathrm{J}_{\mathrm{H-H}} = 7.5 \ \mathrm{Hz}, \mathrm{Bn-}m), 7.02 \\ & (2\mathrm{H}, \mathrm{dd}, {}^{3}\mathrm{J}_{\mathrm{H-F}} = 10.5 \ \mathrm{Hz}, {}^{4}\mathrm{J}_{\mathrm{H-H}} = 2.5 \ \mathrm{Hz}, {}^{3}\mathrm{J}_{\mathrm{H-Pt}} = \sim 20 \ \mathrm{Hz}, \mathrm{H}_{b}), 6.90 \ (2\mathrm{H}, \mathrm{td}, {}^{3}\mathrm{J}_{\mathrm{H-H}} = {}^{3}\mathrm{J}_{\mathrm{H-F}} = 8.5 \ \mathrm{Hz}, \\ & {}^{4}\mathrm{J}_{\mathrm{H-H}} = 2.5 \ \mathrm{Hz}, \mathrm{H}_{d}), 6.19 \ (4\mathrm{H}, \mathrm{d}, {}^{3}\mathrm{J}_{\mathrm{H-H}} = 7.5 \ \mathrm{Hz}, \mathrm{Bn-}o), 2.97 \ (4\mathrm{H}, \mathrm{m}, \mathrm{Bn}CH_{2}), 2.65 \ (2\mathrm{H}, \mathrm{m}, \mathrm{H}_{j}) \\ & \mathrm{ppm}. \end{aligned}$

$$\begin{split} &\delta_{\rm C} = 29.40 \; ({\rm d}, {}^{1}\!{\rm J}_{{\rm C}\text{-P}} = 29 \; {\rm Hz}, {}^{2}\!{\rm J}_{{\rm C}\text{-Pt}} = 34 \; {\rm Hz}, \; {\rm Bn}{\rm CH}_{2}), \; 34.42 \; ({\rm d}, {}^{1}\!{\rm J}_{{\rm C}\text{-P}} = 47 \; {\rm Hz}, {}^{2}\!{\rm J}_{{\rm C}\text{-Pt}} = 66 \; {\rm Hz}, {\rm C}_{j}), \\ &112.16 \; ({\rm d}, {}^{2}\!{\rm J}_{{\rm C}\text{-F}} = 24 \; {\rm Hz}, {\rm C}_{\rm d}), \; 116.72 \; ({\rm s}, {}^{3}\!{\rm J}_{{\rm C}\text{-Pt}} = 13 \; {\rm Hz}, {\rm C}_{\rm h}), \; 121.66 \; ({\rm d}, {}^{2}\!{\rm J}_{{\rm C}\text{-F}} = 18 \; {\rm Hz}, {}^{2}\!{\rm J}_{{\rm C}\text{-Pt}} = 22 \\ &{\rm Hz}, \; {\rm H}_{\rm b}), \; 125.37 \; ({\rm m}, {\rm C}_{{\rm l/m,n}}), \; 127.59 \; ({\rm d}, {}^{5}\!{\rm J}_{{\rm C}\text{-Pt}} = 3 \; {\rm Hz}, \; {\rm Bn}\text{-}p), \; 128.26 \; ({\rm m}, {\rm C}_{{\rm e},{\rm l/m}}), \; 128.23 \; ({\rm d}, {}^{4}\!{\rm J}_{{\rm C}\text{-P}} = 3 \; {\rm Hz}, \; {\rm Bn}\text{-}p), \; 128.26 \; ({\rm m}, {\rm C}_{{\rm e},{\rm l/m}}), \; 128.23 \; ({\rm d}, {}^{4}\!{\rm J}_{{\rm C}\text{-P}} = 3 \; {\rm Hz}, \; {\rm Bn}\text{-}p), \; 128.26 \; ({\rm m}, {\rm C}_{{\rm e},{\rm l/m}}), \; 128.23 \; ({\rm d}, {}^{4}\!{\rm J}_{{\rm C}\text{-P}} = 3 \; {\rm Hz}, \; {\rm Bn}\text{-}p), \; 128.26 \; ({\rm m}, {\rm C}_{{\rm e},{\rm l/m}}), \; 128.23 \; ({\rm d}, {}^{4}\!{\rm J}_{{\rm C}\text{-P}} = 3 \; {\rm Hz}, \; {\rm Bn}\text{-}p), \; 128.00 \; ({\rm s}, {\rm C}_{{\rm o}}), \; 138.09 \; ({\rm d}, {}^{2}\!{\rm J}_{{\rm C}\text{-P}} = 5 \; {\rm Hz}, \; {\rm Bn}\text{-}o), \; 131.16 \; ({\rm d}, {}^{2}\!{\rm J}_{{\rm C}\text{-P}} = 10 \; {\rm Hz}, {}^{2}\!{\rm J}_{{\rm C}\text{-Pt}} = 26 \; {\rm Hz}, \; {\rm C}_{{\rm k}}), \; 143.73 \; ({\rm m}, {\rm C}_{{\rm o}}), \; 138.09 \; ({\rm d}, {}^{2}\!{\rm J}_{{\rm C}\text{-P}} = 9 \; {\rm Hz}, {}^{1}\!{\rm J}_{{\rm C}\text{-Pt}} = 50 \; {\rm Hz}, {\rm C}_{{\rm p}}), \; 140.07 \; ({\rm s}, {\rm C}_{{\rm i}}), \; 140.57 \; ({\rm s}, \; {\rm Bn}\text{-}i), \; 143.73 \; ({\rm m}, {\rm C}_{{\rm f}}), \; 161.45 \; ({\rm s}, {}^{2}\!{\rm J}_{{\rm C}\text{-Pt}} = 33 \; {\rm Hz}, {\rm C}_{{\rm g}}), \; 161.68 \; ({\rm m}, {}^{1}\!{\rm J}_{{\rm C}\text{-Pt}} = 532 \; {\rm Hz}, {\rm H}_{{\rm a}}), \; 164.13 \; ({\rm d}, {}^{1}\!{\rm J}_{{\rm C}\text{-F}} = 40 \; {\rm Hz}, {}^{4}\!{\rm J}_{{\rm C}\text{-Pt}} = 254 \; {\rm Hz}, {\rm C}_{{\rm c}}) \; {\rm ppm}. \end{split}$$

 $\delta_{\rm F} = -108.14 \ ({}^{4}J_{\rm F-Pt} = 21 \ {\rm Hz}) \ ppm. \ \delta_{\rm P} = 29.00 \ ({}^{1}J_{\rm P-Pt} = 2692 \ {\rm Hz}) \ ppm. \ \delta_{\rm Pt} = -3114 \ (d, \, {}^{1}J_{\rm Pt-P} = -2700 \ {\rm Hz}) \ ppm.$

HR-MS (ESI): found 762.1627, calculated 762.1594 = $C_{38}H_{29}F_2NP^{194}Pt = [M-C1]^+$; found 820.1213, calculated 820.1195 = $C_{38}H_{29}F_2CINP^{194}PtNa = [M+Na]^+$.

Elemental analysis found (calculated.EtOAc): C 54.32 (56.86), H 4.59 (4.20), N 1.40 (1.58). **5** $\delta_{H} = 7.85 (1H, t, {}^{3}H_{H-H} = 8 Hz, H_{i}), 7.72 (1H, dd, {}^{3}J_{H-H} = 8.5 Hz, {}^{4}J_{H-F} = 5.5 Hz, H_{m}), 7.48$ (1H, d, {}^{3}J_{H-H} = 8 Hz, H_{h}), 7.46 (1H, d, {}^{3}J_{H-H} = 8 Hz, H_{j}), 7.35 (6H, m, H_{e}, Bn), 7.23 (6H, m, H_{v}, Bn'), 7.07 (1H, td, {}^{3}J_{H-H} = 3 Hz, {}^{3}J_{H-H} = 2.5 Hz, H_{n}), 6.94 (1H, t, {}^{3}J_{H-H} = 8 Hz, H_{u}), 6.88 (1H, dd, {}^{3}J_{H-F} = 9.5 Hz, {}^{4}J_{H-H} = 2.5 Hz, H_{p}), 6.68 (1H, t, {}^{3}J_{H-H} = 8 Hz, H_{u}), 6.61 (1H, td, {}^{3}J_{H-H} = {}^{3}J_{H-F} = 8 Hz, {}^{3}J_{H-H} = 2.5 Hz, H_{d}), 6.55 (1H, dt, {}^{3}J_{H-F} = 10.5 Hz, {}^{4}J_{H-H} = {}^{4}J_{H-P} = 2.5 Hz, {}^{3}J_{H-H} = ~60 Hz, H_b), 6.28 (1H, d, {}^{3}J_{H-H} = 8 Hz, H_{s}), 4.12 (1H, dd, {}^{2}J_{H-H} = 14 Hz, {}^{2}J_{H-P} = 9 Hz, H_{Bn'}), 4.03 (1H, dd, {}^{2}J_{H-H} = 13.5 Hz, {}^{2}J_{H-P} = 11 Hz, H_{x}), 3.49 (1H, dd, {}^{2}J_{H-H} = 15.5 Hz, {}^{2}J_{H-P} = 8.5 Hz, H_{Bn}), 3.35 (2H, m, H_{x,Bn}), 3.09 (1H, t, {}^{2}J_{H-P} = {}^{2}J_{H-H} = 14 Hz, H_{Bn'}) ppm.

$$\begin{split} &\delta_{\rm C} = 24.82 \; ({\rm d},\,{}^{1}{\rm J}_{\rm C-P} = 20 \; {\rm Hz},\, {\rm C}_{\rm Bn}),\, 25.78 \; ({\rm d},\,{}^{1}{\rm J}_{\rm C-P} = 30 \; {\rm Hz},\, {\rm C}_{\rm Bn'}),\, 33.33 \; ({\rm d},\,{}^{1}{\rm J}_{\rm C-P} = 36 \; {\rm Hz},\, {\rm C}_{x}),\\ &110.12 \; ({\rm d},\,{}^{2}{\rm J}_{\rm C-F} = 22.5 \; {\rm Hz},\, {\rm C}_{\rm d}),\, 113.60 \; ({\rm d},\,{}^{2}{\rm J}_{\rm C-F} = 22.5 \; {\rm Hz},\, {\rm C}_{\rm n}),\, 116.59 \; ({\rm s},\, {\rm C}_{\rm h}),\, 118.00 \; ({\rm d},\,{}^{2}{\rm J}_{\rm C-F} = 20 \; {\rm Hz},\, {\rm C}_{\rm p}),\, 121.78 \; ({\rm dd},\,{}^{2}{\rm J}_{\rm C-F} = 19 \; {\rm Hz},\,{}^{3}{\rm J}_{\rm C-P} = 5 \; {\rm Hz},\, {\rm C}_{\rm b}),\, 125.24 \; ({\rm m},\, {\rm C}_{\rm j,e}),\, 126.209 \; ({\rm d},\,{}^{5}{\rm J}_{\rm C-P} = 4 \; {\rm Hz},\, {\rm C}_{\rm l}),\, 126.69 \; ({\rm d},\,{}^{5}{\rm J}_{\rm C-P} = 3 \; {\rm Hz},\, {\rm Bn}{\rm -}p),\, 127.04 \; ({\rm d},\,{}^{4}{\rm J}_{\rm C-P} = 3.5 \; {\rm Hz},\, {\rm C}_{\rm u}),\, 127.48 \; ({\rm s},\, {\rm Bn'}{\rm -}p),\, 128.44 \; {\rm Hz},\, {\rm C}_{\rm u}),\, 127.48 \; ({\rm s},\, {\rm Bn'}{\rm -}p),\, 128.44 \; {\rm Hz},\, {\rm C}_{\rm u}),\, 127.48 \; ({\rm s},\, {\rm Bn'}{\rm -}p),\, 128.44 \; {\rm Hz},\, {\rm C}_{\rm u}),\, 127.48 \; ({\rm s},\, {\rm Bn'}{\rm -}p),\, 128.44 \; {\rm Hz},\, {\rm C}_{\rm u}),\, 127.48 \; {\rm (s},\, {\rm Bn'}{\rm -}p),\, 128.44 \; {\rm Hz},\, {\rm C}_{\rm u}),\, 127.48 \; {\rm (s},\, {\rm Bn'}{\rm -}p),\, 128.44 \; {\rm Hz},\, {\rm C}_{\rm u}),\, 127.48 \; {\rm (s},\, {\rm Bn'}{\rm -}p),\, 128.44 \; {\rm Hz},\, {\rm C}_{\rm u}),\, 127.48 \; {\rm (s},\, {\rm Bn'}{\rm -}p),\, 128.44 \; {\rm Hz},\, {\rm C}_{\rm u}),\, 127.48 \; {\rm (s},\, {\rm Bn'}{\rm -}p),\, 128.44 \; {\rm Hz},\, {\rm C}_{\rm u}),\, 127.48 \; {\rm (s},\, {\rm Bn'}{\rm -}p),\, 128.44 \; {\rm Hz},\, {\rm C}_{\rm u}),\, 127.48 \; {\rm (s},\, {\rm Bn'}{\rm -}p),\, 128.44 \; {\rm Hz},\, {\rm C}_{\rm u}),\, {\rm (s},\, {\rm (s},\, {\rm C}_{\rm u}),\, {\rm (s},\, {\rm C}_{\rm u}),\, {\rm (s},\, {\rm (s},$$

(s, Bn-*m*), 129.00 (s, Bn'-*m*), 130.00 (d, ${}^{3}J_{C-P} = 7.5$ Hz, Bn'-*o*), 130.10 (d, ${}^{3}J_{C-P} = 5$ Hz, C_v), 130.42 (d, ${}^{3}J_{C-P} = 6$ Hz, Bn-*o*), 131.47 (d, ${}^{4}J_{C-P} = 3.5$ Hz, C_s), 133.09 (d, ${}^{2}J_{C-P} = 10$ Hz, C_{Bn}), 133.54 (d, ${}^{2}J_{C-P} = 4.5$ Hz, C_{Bn}), 134.41 (d, ${}^{3}J_{C-F} = 9$ Hz, C_m), 135.70 (m, C₁), 135.97 (d, ${}^{2}J_{C-P} = 3$ Hz, C_w), 136.16 (s, C_i), 141.33 (d, ${}^{3}J_{C-P} = 5$ Hz, C_r), 141.68 (s, C_f), 144.36 (d, ${}^{3}J_{C-F} = 8$ Hz, C_q), 144.78 (dd, ${}^{3}J_{C-F} = 6$ Hz, ${}^{2}J_{C-P} = 3.5$ Hz, C_a), 159.72 (s, C_k), 162.50 (dd, ${}^{1}J_{C-F} = 253$ Hz, ${}^{4}J_{C-P} =$ 3.5 Hz, H_c), 163.03 (d, ${}^{1}J_{C-F} = 249$ Hz, C_o), 163.30 (d, ${}^{3}J_{C-P} = 3.5$ Hz, C_g) ppm. $\delta_{F} = -110.38$ (${}^{4}J_{F-Pt} = 57$ Hz), -112.08 ppm. $\delta_{P} = -9.29$ (${}^{1}J_{P-Pt} = 4552$ Hz) ppm. $\delta_{Pt} = -3985$ (d, ${}^{1}J_{Pt-P} = \sim4500$ Hz) ppm.

HR-MS (ESI): found 762.1622, calculated $762.1627 = C_{38}H_{29}F_2NP^{194}Pt = [M-C1]^+$.

Crystals suitable for Xray analysis were grown by the slow evaporation of solvent from a chloroform solution, Figure 4 and Table S1; full details on page S41.

Elemental analysis found (calculated.CHCl₃): C 52.10 (51.52), H 3.44 (3.46), N 1.51 (1.50).

Synthesis of Me-2(c) and a-Me-5 and b-Me-5

Me-2(t) (20 mg, 24.6x10⁻³ mmol) was dissolved in chloroform (5 ml) and heated to 50°C (5 days). The solvent was then removed, **a-Me-5** and **b-Me-5** extracted with acetone, leaving the less soluble **Me-2(c)**. **Me-2(c)** was purified by column chromatography on silica, loading with dichloromethane and eluting with EtOAc (yield 10 mg, $12.3x10^{-3}$ mmol, 50%). **a-Me-5** and **b-Me-5** could not be separated from each other, but it was possible to separate their spectroscopic data.

Me-2(c) $\delta_{\rm H} = 8.27 (1 {\rm H}, {\rm d}, {}^{3}{\rm J}_{\rm H-H} = 8 {\rm Hz}, {}^{3}{\rm J}_{\rm H-Pt} = 31.5 {\rm Hz}, {\rm H_{s}}), 7.80 (1 {\rm H}, {\rm d}, {}^{3}{\rm J}_{\rm H-H} = 8 {\rm Hz}, {\rm H_{i}}),$ 7.76 (1H, t, ${}^{3}J_{H-H} = 8$ Hz, H_i), 7.73 (1H, dd, ${}^{3}J_{H-H} = 8$ Hz, ${}^{4}J_{H-F} = 3$ Hz, H_e), 7.56 (1H, d, ${}^{3}J_{H-H} = 8$ Hz, H_b), 7.20 (1H, m, H_t), 7.14 (2H, m, H_{uv}), 7.08 (2H, m, Bn-*p*), 7.00 (4H, m, Bn-*m*), 6.92 $(1H, dd, {}^{3}J_{H-F} = 8 Hz, {}^{4}J_{H-H} = 2.5 Hz, {}^{3}J_{H-Pt} = 22 Hz, H_{b}), 6.87 (1H, dd, {}^{3}J_{H-F} = 7 Hz, {}^{4}J_{H-H} = 2.5 Hz, {}^{3}J_{H-Pt} = 2.5 H$ Hz, ${}^{3}J_{H-P_{1}} = 24$ Hz, H_n), 6.82 (1H, td, ${}^{3}J_{H-H} = {}^{3}J_{H-F} = 8.5$ Hz, ${}^{4}J_{H-H} = 2.5$ Hz, H_d), 6.65 (1H, dd, ${}^{3}J_{H-F} = 9 \text{ Hz}, {}^{4}J_{H-H} = 2.5 \text{ Hz}, H_{p}), 6.15 (2H, dd, {}^{3}J_{H-H} = 7.5 \text{ Hz}, \text{Bn-}o), 6.12 (2H, dd, {}^{3}J_{H-H} = 7.5 \text{ Hz}), 6.12 (2H, dd, {}^{3}J_{H-H} = 7.5 \text{ H$ Hz, Bn-o), 2.83 (4H, m, H_x, BnCH₂), 2.69 (3H, s, Me) 2.56 (2H, m, BnCH₂) ppm. $\delta_{\rm C} = 24.36 \,({\rm s, Me}), 29.27 \,({\rm m, Bn}CH_2), 34.38 \,({\rm d, {}^1J_{\rm C-P}} = 47 \,{\rm Hz}, {}^2J_{\rm C-Pt} = 64 \,{\rm Hz}, {\rm C_x}), 112.08 \,({\rm d, C_x})$ ${}^{2}J_{C-F} = 23 \text{ Hz}, C_{d}$, 116.13 (d, ${}^{2}J_{C-F} = 25 \text{ Hz}, C_{p}$), 116.51 (s, ${}^{3}J_{C-Pt} = 15 \text{ Hz}, C_{p}$), 119.24 (d, ${}^{2}J_{C-F} = 15 \text{ Hz}, C_{p}$), 110.25 (d, ${}^{2}J_{C-F} = 15 \text{ Hz}, C$ $17 \text{ Hz}, {}^{2}\text{J}_{C-Pt} = 22 \text{ Hz}, \text{C}_{n}, 120.58 \text{ (s}, {}^{3}\text{J}_{C-Pt} = 14.5 \text{ Hz}, \text{C}_{i}), 121.50 \text{ (d}, {}^{2}\text{J}_{C-F} = 18 \text{ Hz}, {}^{2}\text{J}_{C-Pt} = 26$ Hz, C_b), 125.27 (m, C_{uv}), 127.56 (s, Bn-p), 128.31 (m, C_{et}), 128.91 (s, Bn-m), 129.41 (m, Bn*o*), 131.24 (m, Bn-*i*), 136.04 (s, C_s), 138.15 (d, ${}^{2}J_{C-P} = 8 \text{ Hz}$, ${}^{1}J_{C-Pt} = 25.5 \text{ Hz}$, C_r), 139.83 (s, C_i), 141.20 (d, ${}^{2}J_{C-P} = 7 \text{ Hz}$, ${}^{2}J_{C-Pt} = 23 \text{ Hz}$, C_{w}), 141.43 (s, C_{a}), 142.32 (m, C_{1}), 143.80 (m, C_{f}), $162.06 (s, {}^{2}J_{C-Pt} = 30 Hz, C_{k}), 162.35 (s, {}^{2}J_{C-Pt} = 29.5 Hz, C_{s}), 162.59 (m, {}^{1}J_{C-Pt} = 528 Hz, C_{h/m}),$ $162.73 \text{ (d, } {}^{1}J_{C-F} = 259 \text{ Hz}, {}^{3}J_{C-Pt} = 35 \text{ Hz}, C_{o}, 163.23 \text{ (m, } {}^{1}J_{C-Pt} = 530 \text{ Hz}, C_{b/m}, 164.04 \text{ (d, } {}^{1}J_{C-F})$ $= 259 \text{ Hz}, {}^{3}\text{J}_{C-Pt} = 36 \text{ Hz}, C_{c}$) ppm.

$$\begin{split} \delta_{F} &= -108.24 \; (^{4}J_{F\text{-Pt}} = 20 \; \text{Hz}), -110.53 \; (^{4}J_{F\text{-Pt}} = 23 \; \text{Hz}) \; \text{ppm.} \; \delta_{P} = 29.06 \; (^{1}J_{P\text{-Pt}} = 2723 \; \text{Hz}) \; \text{ppm.} \\ \delta_{Pt} &= -3120 \; (\text{d}, \, ^{1}J_{Pt\text{-P}} = \sim 3100 \; \text{Hz}) \; \text{ppm.} \end{split}$$

HR-MS (ESI): found 776.1787, calculated 776.1784 = $C_{39}H_{31}F_2PN^{194}Pt = [M-C1]^+$. Elemental analysis found (calculated.CH₂Cl₂): C 52.75 (53.49), H 3.77 (3.70), N 1.72 (1.56). **a-Me-5** $\delta_H = 7.85 (1H, t, {}^3J_{H-H} = 8 Hz, H_i)$, 7.68 (2H, m, H_{h,m}), 7.46 (1H, d, ${}^3J_{H-H} = 8 Hz, H_j)$, 7.34 (5H, m, Bn), 7.15 (6H, H_v, Bn), 7.07 (1H, td, ${}^3J_{H-H} = {}^3J_{H-F} = 8.5 Hz, {}^4J_{H-H} = Hz, H_n)$, 6.95 (1H, t, ${}^3J_{H-H} = 7.5 Hz, H_u$), 6.87 (1H, dd, ${}^3J_{H-F} = 9.5 Hz, {}^4J_{H-H} = 2.5 Hz, H_p$), 6.70 (1H, t, ${}^3J_{H-H} = 7.5 Hz, H_i$), 6.44 (1H, dd, ${}^3J_{H-F} = 9.5 Hz, {}^4J_{H-H} = 2.5 Hz, H_d$), 6.39 (1H, dt, ${}^3J_{H-F} = 9.5 Hz, {}^4J_{H-H} = 4J_{H-F} = 2.5 Hz, H_b$), 6.29 (1H, d, ${}^3J_{H-H} = 7.5 Hz, H_s$), 4.04 (2H, m, H_x, Bn*CH*₂)*, 3.48 (1H, dd, {}^2J_{H-H} = 15.5 Hz, {}^2J_{H-F} = 8 Hz, Bn*CH*₂), 3.30 (2H, m, H_x, Bn*CH*₂), 3.16 (1H, t, {}^2J_{H-H} = {}^2J_{H-F} = 14 Hz, Bn*CH*₂)*, 2.53 (3H, s, Me) ppm. * Same carbon
$$\begin{split} &\delta_{\rm C} = 23.87~({\rm s},{\rm Me}), 24.69~({\rm d},{}^{1}{\rm J}_{\rm C-P} = 21~{\rm Hz},{\rm Bn}{\rm CH}_{2}), 26.05~({\rm d},{}^{1}{\rm J}_{\rm C-P} = 28~{\rm Hz},{\rm Bn}{\rm CH}_{2})^{*}, 33.22\\ &({\rm d},{}^{1}{\rm J}_{\rm C-P} = 37~{\rm Hz},{\rm C}_{\rm x}), 113.51~({\rm d},{}^{2}{\rm J}_{\rm C-F} = 23~{\rm Hz},{\rm C}_{\rm d}), 114.10~({\rm d},{}^{2}{\rm J}_{\rm C-F} = 22.5~{\rm Hz},{\rm C}_{\rm n}), 117.79~({\rm d},{}^{2}{\rm J}_{\rm C-F} = 22~{\rm Hz},{\rm C}_{\rm p}), 119.88({\rm dd},{}^{2}{\rm J}_{\rm C-F} = 19~{\rm Hz},{}^{3}{\rm J}_{\rm C-P} = 6~{\rm Hz},{\rm C}_{\rm b}), 120.26~({\rm s},{\rm C}_{\rm h}), 125.27~({\rm s},{\rm C}_{\rm j}), \\ &126.28~({\rm d},{}^{5}{\rm J}_{\rm C-P} = 4~{\rm Hz},{\rm C}_{\rm t}), 126.43~({\rm d},{}^{5}{\rm J}_{\rm C-P} = 2~{\rm Hz},{\rm Bn}{\rm -}p), 127.03~({\rm d},{}^{4}{\rm J}_{\rm C-P} = 3~{\rm Hz},{\rm C}_{\rm u}), 127.38\\ &({\rm m},{\rm Bn}{\rm -}p), 128.39~({\rm s},{\rm Bn}{\rm -}m), 128.96~({\rm s},{\rm Bn}{\rm -}m), 130.04~({\rm m},{\rm Bn}{\rm -}o), 130.39~({\rm m},{\rm C}_{\rm v},{\rm Bn}{\rm -}o), \\ &131.29~({\rm d},{}^{4}{\rm J}_{\rm C-P} = 3.5~{\rm Hz},{\rm C}_{\rm s}), 133.13~({\rm d},{}^{3}{\rm J}_{\rm C-F} = 9~{\rm Hz},{\rm C}_{\rm m}), 133.62~({\rm m},{\rm Bn}{\rm -}i), 134.58~({\rm d},{}^{3}{\rm J}_{\rm C-F} = 8.5~{\rm Hz},{\rm C}_{\rm m}), 135.97~({\rm m},{\rm C}_{\rm L,w}), 137.56~({\rm s},{\rm C}_{\rm i}), 140.66~({\rm s},{\rm C}_{\rm r}), 141.32~({\rm m},{\rm C}_{\rm f}), 144.06~({\rm d},{}^{3}{\rm J}_{\rm C-F} = 8.5~{\rm Hz},{\rm C}_{\rm q}), 148.23~({\rm m},{\rm C}_{\rm a}), 159.86~({\rm s},{\rm C}_{\rm k}), 162.92~({\rm d},{}^{1}{\rm J}_{\rm C-F} = 249~{\rm Hz},{\rm C}_{\rm o}), 162.99~({\rm d},{}^{1}{\rm J}_{\rm C-F} = 246~{\rm Hz},{}^{4}{\rm J}_{\rm C-P} = 5~{\rm Hz},{\rm C}_{\rm c}), 164.08~({\rm s},{\rm C}_{\rm g})~{\rm ppm}. \end{split}$$

$$\begin{split} \delta_{F} &= -112.37, -113.51 \; (^{4}J_{F\text{-Pt}} = 52 \; \text{Hz}) \; \text{ppm.} \; \delta_{P} = -8.22 \; (^{1}J_{P\text{-Pt}} = 4527 \; \text{Hz}) \; \text{ppm.} \; \delta_{Pt} = -3439 \; (\text{d}, 1300 \; \text{Hz}) \; \text{ppm.} \; \delta_{Pt} = -3439 \; (\text{d}, 1300 \; \text{Hz}) \; \text{ppm.} \end{split}$$

b-Me-5 $\delta_{\rm H} = 7.79 \ (1\text{H}, \text{t}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{i}), 7.44 \ (1\text{H}, \text{d}, {}^{3}\text{J}_{\text{H-H}} = 8 \text{ Hz}, \text{H}_{h}), 7.34 \ (7\text{H}, \text{m}, \text{H}_{e,j}), \text{Bn}), 7.15 \ (6\text{H}, \text{m}, \text{H}_{v}, \text{Bn}), 6.93 \ (1\text{H}, \text{dd}, {}^{3}\text{J}_{\text{H-F}} = 9.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = 2.5 \text{ Hz}, \text{H}_{n}), 6.89 \ (1\text{H}, \text{t}, {}^{3}\text{J}_{\text{H-H}} = 7.5 \text{ Hz}, \text{H}_{u}), 6.69 \ (1\text{H}, \text{dd}, {}^{3}\text{J}_{\text{H-F}} = 9.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = 2.5 \text{ Hz}, \text{H}_{p}), 6.66 \ (1\text{H}, \text{t}, {}^{3}\text{J}_{\text{H-H}} = 7.5 \text{ Hz}, \text{H}_{t}), 6.61 \ (1\text{H}, \text{td}, {}^{3}\text{J}_{\text{H-H}} = {}^{3}\text{J}_{\text{H-F}} = 8 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = 2.5 \text{ Hz}, \text{H}_{d}), 6.51 \ (1\text{H}, \text{dt}, {}^{3}\text{J}_{\text{H-F}} = 10.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = {}^{4}\text{J}_{\text{H-P}} = 2.5 \text{ Hz}, \text{H}_{d}), 6.51 \ (1\text{H}, \text{dt}, {}^{3}\text{J}_{\text{H-F}} = 10.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = {}^{4}\text{J}_{\text{H-P}} = 2.5 \text{ Hz}, {}^{3}\text{J}_{\text{H-F}} = 10.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = {}^{4}\text{J}_{\text{H-P}} = 2.5 \text{ Hz}, {}^{3}\text{J}_{\text{H-F}} = 10.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = {}^{4}\text{J}_{\text{H-P}} = 2.5 \text{ Hz}, {}^{3}\text{J}_{\text{H-F}} = 10.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = {}^{4}\text{J}_{\text{H-P}} = 2.5 \text{ Hz}, {}^{3}\text{J}_{\text{H-F}} = 10.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = {}^{4}\text{J}_{\text{H-P}} = 2.5 \text{ Hz}, {}^{3}\text{J}_{\text{H-F}} = 10.5 \text{ Hz}, {}^{3}\text{J}_{\text{H-H}} = {}^{4}\text{J}_{\text{H-P}} = 2.5 \text{ Hz}, {}^{3}\text{J}_{\text{H-F}} = {}^{2}\text{S} \text{ Hz}, {}^{3}\text{J}_{\text{H-H}} = {}^{2}\text{J}_{\text{H-P}} = {}^{2}\text{S} \text{ Hz}, {}^{3}\text{J}_{\text{H-H}} = {}^{3}\text{$

$$\begin{split} &\delta_{C} = 22.38 \; (s, Me), 24.76 \; (d, {}^{1}J_{C-P} = 21 \; Hz, BnCH_{2}), 25.69 \; (d, {}^{1}J_{C-P} = 28.5 \; Hz, BnCH_{2})^{*}, 33.17 \\ &(d, {}^{1}J_{C-P} = 35 \; Hz, C_{x}), 110.05 \; (d, {}^{2}J_{C-F} = 24 \; Hz, C_{d}), 115.22 \; (d, {}^{2}J_{C-F} = 21 \; Hz, C_{p}), 115.80 \; (d, {}^{2}J_{C-F} = 22 \; Hz, C_{n}), 117.00 \; (s, C_{h}), 121.91 \; (dd, {}^{2}J_{C-F} = 19 \; Hz, {}^{3}J_{C-P} = 5 \; Hz, C_{b}), 125.02 \; (d, {}^{3}J_{C-F} = 10 \; Hz, C_{e}), 125.82 \; (d, {}^{5}J_{C-P} = 4 \; Hz, C_{t}), 126.82 \; (m, C_{u}, Bn-p), 127.40 \; (m, C_{j} \; Bn-p), 128.42 \; (s, Bn-m), 129.03 \; (s, Bn-m), 130.04 \; (d, {}^{3}J_{C-P} = 7 \; Hz, Bn-p), 130.39 \; (d, {}^{3}J_{C-P} = 5 \; Hz, Bn-p), 130.94 \; (m, C_{s,v}), 133.21 \; (d, {}^{3}J_{C-F} = 11 \; Hz, C_{m}), 133.49 \; (m, Bn-i), 135.42 \; (s, C_{l}), 135.94 \; (s, C_{w}), 136.78 \; (s, C_{i}), 141.29 \; (s, C_{r}), 141.81 \; (m, C_{f}), 143.81 \; (d, {}^{3}J_{C-F} = 9.5 \; Hz, C_{q}), 145.36 \; (m, C_{a}), 157.98 \; (s, C_{k}), 162.32 \; (d, {}^{1}J_{C-F} = 249.5 \; Hz, C_{o}), 162.69 \; (d, {}^{1}J_{C-F} = 254.5 \; Hz, {}^{4}J_{C-P} = 5 \; Hz, C_{c}), 164.11 \; (s, C_{g}) \; ppm. \end{split}$$

 $\delta_{F} = -110.49 \ (^{4}J_{F-Pt} = 53 \text{ Hz}), -113.73 \text{ ppm}. \ \delta_{P} = -6.91 \ (^{1}J_{P-Pt} = 4622 \text{ Hz}) \text{ ppm}. \ \delta_{Pt} = -3466 \ (d, 1^{1}J_{Pt-P} = \sim 4750 \text{ Hz}) \text{ ppm}.$

HR-MS (ESI mixture): found 776.1781, calculated 776.1784 = $C_{39}H_{31}F_2PN^{194}Pt = [M-C1]^+$.

Synthesis of Complex 6

Complex 5 (10 mg, 12.5×10^{-3} mmol) was dissolved in chloroform (1 ml) and treated with PhICl₂ (4 mg, 15.0×10^{-3} mmol, 1.2 eq) at room temperature. The solvent was removed under vacuum, and the crude product washed with hexane (10.8 mg, 12.4×10^{-3} mmol, 99%).

$$\begin{split} & \mathbf{6} \ \delta_{\mathrm{H}} = 8.11 \ (1\mathrm{H}, \mathrm{dd}, {}^{3}\mathrm{J}_{\mathrm{H-H}} = 9 \ \mathrm{Hz}, {}^{4}\mathrm{J}_{\mathrm{H-F}} = 5.5 \ \mathrm{Hz}, \mathrm{H_{m}}), 7.89 \ (1\mathrm{H}, \mathrm{dd}, {}^{3}\mathrm{J}_{\mathrm{H-F}} = 9.5 \ \mathrm{Hz}, {}^{4}\mathrm{J}_{\mathrm{H-H}} = 2.5 \\ & \mathrm{Hz}, {}^{3}\mathrm{J}_{\mathrm{H-Pt}} = 23 \ \mathrm{Hz}, \mathrm{H_{b}}), 7.70 \ (1\mathrm{H}, \mathrm{t}, {}^{3}\mathrm{J}_{\mathrm{H-H}} = 7.5 \ \mathrm{Hz}, \mathrm{H_{i}}), 7.40 \ (6\mathrm{H}, \mathrm{m}, \mathrm{H_{e,h/j,n}}, \mathrm{Bn}), 7.23 \ (2\mathrm{H}, \mathrm{d}, \mathrm{H}, \mathrm{H}) \\ & {}^{3}\mathrm{J}_{\mathrm{H-H}} = \ \mathrm{Hz}, \mathrm{Bn-}o), 7.10 \ (4\mathrm{H}, \mathrm{H_{h/j}}, \mathrm{Bn}), 6.96 \ (4\mathrm{H}, \mathrm{m}, \mathrm{H_{d,t,u,v}}), 6.73 \ (1\mathrm{H}, \mathrm{dd}, {}^{3}\mathrm{J}_{\mathrm{H-F}} = 9 \ \mathrm{Hz}, {}^{4}\mathrm{J}_{\mathrm{H-H}} = \\ & 2.5 \ \mathrm{Hz}, \mathrm{H_{q}}), 6.55 \ (1\mathrm{H}, \mathrm{d}, {}^{3}\mathrm{J}_{\mathrm{H-H}} = 7 \ \mathrm{Hz}, \mathrm{H_{s}}), 6.34 \ (2\mathrm{H}, \mathrm{d}, {}^{3}\mathrm{J}_{\mathrm{H-H}} = 8 \ \mathrm{Hz}, \mathrm{Bn-}o), 4.76 \ (1\mathrm{H}, \mathrm{t}, {}^{2}\mathrm{J}_{\mathrm{H-H}} = \\ & {}^{2}\mathrm{J}_{\mathrm{H-P}} = 15 \ \mathrm{Hz}, \mathrm{Bn}CH_{2})^{*}, 3.86 \ (1\mathrm{H}, \mathrm{dd}, {}^{2}\mathrm{J}_{\mathrm{H-H}} = 16 \ \mathrm{Hz}, {}^{2}\mathrm{J}_{\mathrm{H-P}} = 9.5 \ \mathrm{Hz}, \mathrm{Bn}CH_{2})^{*}, 3.75 \ (1\mathrm{H}, \mathrm{t}, {}^{2}\mathrm{J}_{\mathrm{H-H}} = \\ & {}^{2}\mathrm{J}_{\mathrm{H-P}} = 14 \ \mathrm{Hz}, \mathrm{H_{x}}), 3.54 \ (1\mathrm{H}, \mathrm{t}, {}^{2}\mathrm{J}_{\mathrm{H-H}} = {}^{2}\mathrm{J}_{\mathrm{H-P}} = 15 \ \mathrm{Hz}, \mathrm{Bn}CH_{2})^{**}, 3.15 \ (1\mathrm{H}, \mathrm{dd}, {}^{2}\mathrm{J}_{\mathrm{H-H}} = 15 \ \mathrm{Hz}, \\ & {}^{2}\mathrm{J}_{\mathrm{H-P}} = 11 \ \mathrm{Hz}, \mathrm{Bn}CH_{2})^{**}, 2.66 \ (1\mathrm{H}, \mathrm{t}, {}^{2}\mathrm{J}_{\mathrm{H-H}} = {}^{2}\mathrm{J}_{\mathrm{H-P}} = 14 \ \mathrm{Hz}, \mathrm{H_{x}}) \ \mathrm{ppm}. \end{split}$$

*,** protons attached to the same carbon.

$$\begin{split} &\delta_{\rm C} = 26.69~({\rm d},\,{}^{1}J_{\rm C-P} = 30~{\rm Hz},\,{\rm C}_{x}),\,30.04~({\rm d},\,{}^{1}J_{\rm C-P} = 27~{\rm Hz},\,{\rm Bn}{\rm CH}_{2}),\,31.62~({\rm d},\,{}^{1}J_{\rm C-P} = 36~{\rm Hz},\\ &{\rm Bn}{\rm CH}_{2}),\,114.25~({\rm m},\,{\rm C}_{{\rm d},{\rm p}}),\,115.24~({\rm d},\,{}^{2}J_{{\rm C}-{\rm F}} = 22.5~{\rm Hz},\,{\rm C}_{{\rm n}}),\,118.33~({\rm d},\,{}^{2}J_{{\rm C}-{\rm F}} = 24.5~{\rm Hz},\,{}^{2}J_{{\rm C}-{\rm Pt}} = 24.5~{\rm Hz},\,{}^{2}J_{{\rm C}-{\rm Pt}} = 24.5~{\rm Hz},\,{}^{2}J_{{\rm C}-{\rm Pt}} = 3.5~{\rm Hz},\,{\rm C}_{{\rm n}}),\,126.87~({\rm d},\,{}^{3}J_{{\rm C}-{\rm F}} = 9.5~{\rm Hz},\,{\rm C}_{{\rm e}}),\,127.07~({\rm d},\,{}^{5}J_{{\rm C}-{\rm P}} = 3~{\rm Hz},\,{\rm Bn}{\rm -}p),\,127.30~({\rm d},\,{}^{4}J_{{\rm C}-{\rm P}} = 3~{\rm Hz},\,{\rm C}_{{\rm u}}),\,127.93~({\rm d},\,{}^{5}J_{{\rm C}-{\rm P}} = 2.5~{\rm Hz},\,{\rm Bn}{\rm -}p),\,128.35~({\rm d},\,{}^{3}J_{{\rm C}-{\rm P}} = 2.5~{\rm Hz},\,{\rm C}_{{\rm v}}),\,128.47~({\rm d},\,{}^{4}J_{{\rm C}-{\rm P}} = 3.5~{\rm Hz},\,{\rm Bn}{\rm -}m),\,129.27~({\rm s},\,{}^{3}J_{{\rm C}-{\rm P}} = 18~{\rm Hz},\,{\rm C}_{{\rm h/j}}),\,129.69~({\rm d},\,{}^{4}J_{{\rm C}-{\rm P}} = 3.5~{\rm Hz},\,{\rm Bn}{\rm -}m),\,130.26~({\rm s},\,{\rm C}_{{\rm s}}),\,130.62~({\rm m},\,{\rm Bn}{\rm -}o),\,130.94~({\rm d},\,{}^{2}J_{{\rm C}-{\rm P}} = 9.5~{\rm Hz},\,{\rm Bn}{\rm -}i),\,131.60~({\rm s},\,{\rm C}_{{\rm h/j}}),\,131.90~({\rm d},\,{}^{2}J_{{\rm C}-{\rm P}} = 9.5~{\rm Hz},\,{\rm Bn}{\rm -}i),\,133.48~({\rm d},\,{}^{3}J_{{\rm C}-{\rm F}} = 10~{\rm Hz},\,{\rm C}_{{\rm m}}),\,135.82~({\rm d},\,{}^{4}J_{{\rm C}-{\rm F}} = 3.5~{\rm Hz},\,{\rm C}_{{\rm l}}),\,138.68~({\rm d},\,{}^{4}J_{{\rm C}-{\rm F}} = 1.5~{\rm Hz},\,{\rm C}_{{\rm l}}),\,139.00~({\rm s},\,{\rm C}_{{\rm i}}),\,140.51~({\rm d},\,{}^{3}J_{{\rm C}-{\rm F}} = 8~{\rm Hz},\,{\rm C}_{{\rm q}}),\,140.74~({\rm d},\,{}^{3}J_{{\rm C}-{\rm P}} = 6~{\rm Hz},\,{\rm C}_{{\rm r}}),\,141.44~({\rm d},\,{}^{2}J_{{\rm C}-{\rm P}} = 6.5~{\rm Hz},\,{\rm C}_{{\rm w}}),\,162.42~({\rm s},\,{\rm C}_{{\rm g/k}}),\,162.47~({\rm d},\,{}^{1}J_{{\rm C}-{\rm F}} = 275.5~{\rm Hz},\,{\rm C}_{{\rm c}}),\,163.07~({\rm d},\,{}^{1}J_{{\rm C}-{\rm F}} = 249.5~{\rm Hz},\,{\rm C}_{{\rm o}}),\,165.05~({\rm s},\,{\rm C}_{{\rm g/k}})~{\rm ppm}. \end{split}$$

 $\delta_{\rm F} = -103.68 \ ({}^{4}J_{\rm F-Pt} = 28.5 \ {\rm Hz}), -111.13 \ {\rm ppm}. \ \delta_{\rm P} = -0.41 \ ({}^{1}J_{\rm P-Pt} = 2271 \ {\rm Hz}) \ {\rm ppm}. \ \delta_{\rm Pt} \ (213 {\rm K}) = -1902 \ ({\rm d}, {}^{1}J_{\rm Pt-P} = \sim 2300 \ {\rm Hz}) \ {\rm ppm}.$

Elemental analysis found (calculated): C 49.94 (52.46), H 3.12 (3.36), N 1.42 (1.61). Crystals suitable for Xray analysis were grown by the slow evaporation of solvent from a chloroform solution, Figure 5 and Table S1; full details on page S47.

Synthesis of Complex 7

AgBF₄ (4.8 mg, 25.00x10⁻³ mmol, 2eq) was added to a slurry of the complex 2(t) (10 mg, 12.53x10⁻³ mmol, 1eq) in acetone (0.6 ml). AgCl was removed by filtration, giving a clear, deep yellow solution of **7**.

7 $\delta_{\rm H}$ (Acetone-d₆) = 8.30 (1H, t, ${}^{3}J_{\rm H-H}$ = 8 Hz, H_i), 8.01 (1H, d, ${}^{3}J_{\rm H-H}$ = 8 Hz, H_h), 7.88 (1H, d, ${}^{3}J_{\rm H-H}$ = 8 Hz, H_j), 7.76 (1H, dd, ${}^{3}J_{\rm H-H}$ = 9 Hz, ${}^{4}J_{\rm H-F}$ = 5.5 Hz, H_m), 7.73 (1H, dd, ${}^{3}J_{\rm H-H}$ = 8.5 Hz, ${}^{4}J_{\rm H-F}$ = 5.5 Hz, H_e), 7.60 (1H, d, ${}^{3}J_{\rm H-H}$ = 7 Hz, H_v)*, 7.52 (2H, d, ${}^{3}J_{\rm H-H}$ = 7 Hz, H_{Bn}), 7.39 (7H, m, H_{u,n,Bn,Bn'}), 7.23 (1H, dd, ${}^{3}J_{\rm H-F}$ = 9.5 Hz, ${}^{4}J_{\rm H-H}$ = 2.5 Hz, H_p), 7.22 (3H, m, H_{Bn'}), 7.17 (1H, t, ${}^{3}J_{\rm H-H}$ = 8 Hz, H_t), 7.08 (1H, d, ${}^{3}J_{\rm H-H}$ = 8 Hz, H_s), 6.87 (1H, td, ${}^{3}J_{\rm H-H}$ = ${}^{3}J_{\rm H-F}$ = 8.5 Hz, ${}^{4}J_{\rm H-H}$ = 2.5 Hz, H_d), 6.46 (1H, dt, ${}^{3}J_{\rm H-F}$ = 9 Hz, ${}^{4}J_{\rm H-H}$ = ${}^{4}J_{\rm H-P}$ = 2.5 Hz, ${}^{3}J_{\rm H-H}$ = ${}^{2}J_{\rm H-F}$ = 8.5 Hz, ${}^{4}J_{\rm H-H}$ = 2.5 Hz, H_a), 6.87 (1H, td, ${}^{3}J_{\rm H-F}$ = 8.5 Hz, ${}^{4}J_{\rm H-H}$ = 2.5 Hz, H_d), 6.46 (1H, dt, ${}^{3}J_{\rm H-F}$ = 9 Hz, ${}^{4}J_{\rm H-H}$ = ${}^{4}J_{\rm H-P}$ = 2.5 Hz, ${}^{3}J_{\rm H-H}$ = ${}^{2}J_{\rm H-F}$ = 8.5 Hz, ${}^{4}J_{\rm H-H}$ = 2.5 Hz, ${}^{3}J_{\rm H-H}$ = ${}^{2}J_{\rm H-F}$ = 8.5 Hz, ${}^{4}J_{\rm H-H}$ = 2.5 Hz, ${}^{3}J_{\rm H-F}$ = 8.5 Hz, ${}^{4}J_{\rm H-H}$ = 2.5 Hz, ${}^{3}J_{\rm H-F}$ = ${}^{2}J_{\rm H-F}$ = 8.5 Hz, ${}^{4}J_{\rm H-H}$ = 2.5 Hz, ${}^{3}J_{\rm H-H}$ = ${}^{3}J_{\rm H-F}$ = 8.5 Hz, ${}^{4}J_{\rm H-H}$ = 2.5 Hz, ${}^{4}J_{\rm H-H}$ = 15 Hz, ${}^{2}J_{\rm H-F}$ = 9.5 Hz, ${}^{4}J_{\rm H-H}$ = ${}^{4}J_{\rm H-P}$ = 2.5 Hz, ${}^{3}J_{\rm H-H}$ = 12.5 Hz, ${}^{4}J_{\rm H-H}$ = 15 Hz, ${}^{2}J_{\rm H-P}$ = 9.5 Hz, H_x), 3.98 (3H, m, H_{x,Bn}), 3.49 (2H, d, {}^{2}J_{\rm H-H} = 12.5 Hz, ${}^{3}J_{\rm H-H}$ with no effect on H_x.

**At 298 K, irradiating this proton affects one H_x proton, and both Bn_{alkyl} , but no effect on Bn'_{alkyl} protons.

$$\begin{split} &\delta_{C} \left(\text{Acetone-d}_{6}\right) = 27.03 \; (d, {}^{1}J_{C-P} = 25 \; \text{Hz}, C_{Bn}\right), 27.99 \; (d, {}^{1}J_{C-P} = 27 \; \text{Hz}, C_{Bn'}), 28.90 \; (m, C_{x}), \\ &112.56 \; (d, {}^{2}J_{C-F} = 25 \; \text{Hz}, C_{d}), 116.60 \; (d, {}^{2}J_{C-F} = 25 \; \text{Hz}, C_{n}), 118.37 \; (m, C_{h,p}), 123.00 \; (dd, {}^{2}J_{C-F} = 21 \; \text{Hz}, {}^{3}J_{C-P} = 6 \; \text{Hz}, H_{b}), 125.15 \; (s, C_{j}), 126.05 \; (m, C_{a}), 126.49 \; (d, {}^{3}J_{C-F} = 9 \; \text{Hz}, C_{e}), 127.30 \; (d, {}^{5}J_{C-P} = 3 \; \text{Hz}, C_{Bn'}), 127.77 \; (d, {}^{5}J_{C-P} = 3 \; \text{Hz}, C_{Bn}), 128.37 \; (s, C_{l}), 128.63 \; (d, {}^{1}J_{C-P} = 1.5 \; \text{Hz}, C_{Bn'}), \\ &129.11 \; (d, {}^{1}J_{C-P} = 1.5 \; \text{Hz}, C_{Bn}), 129.76 \; (d, {}^{3}J_{C-P} = 7 \; \text{Hz}, C_{Bn'}), 129.96 \; (m, C_{Bn}), 130.57 \; (d, {}^{3}J_{C-P} = 5 \; \text{Hz}, C_{u}), 131.80 \; (d, {}^{3}J_{C-F} = 8 \; \text{Hz}, C_{q}), 132.18 \; (d, {}^{3}J_{C-P} = 5 \; \text{Hz}, C_{v}), 132.83 \; (m, C_{1,Bn}), 134.63 \; (d, {}^{3}J_{C-F} = 9.5 \; \text{Hz}, C_{m}), 135.31 \; (d, {}^{2}J_{C-P} = 3.5 \; \text{Hz}, C_{w}), 136.53 \; (s, C_{s}), 139.27 \; (br \; s, C_{r}), 140.90 \; (s, C_{f}), 142.49 \; (s, C_{i}) 158.66 \; (s, C_{k}), 160.71 \; (d, {}^{3}J_{C-P} = 3 \; \text{Hz}, C_{g}), 161.56 \; (dd, {}^{1}J_{C-F} = 255 \; \text{Hz}, {}^{4}J_{C-P} = 5 \; \text{Hz}, C_{c}), 163.08 \; (d, {}^{1}J_{C-F} = 250 \; \text{Hz}, C_{o}) \; \text{ppm}. \end{split}$$

 $\delta_{\rm F}$ (Acetone-d₆) = -108.51 (⁴J_{F-Pt} = 65 Hz), -110.60 ppm. $\delta_{\rm P}$ (Acetone-d₆) = -9.49 (¹J_{P-Pt} = 4119 Hz) ppm. $\delta_{\rm Pt}$ (Acetone-d₆) = -3612 (d, ¹J_{Pt-P} = ~4200 Hz) ppm.

HR-MS (ESI): found 762.1637, calculated $762.1627 = C_{38}H_{29}F_2NP^{194}Pt = [M]^+$.

Synthesis of Complexes a-Me-7 and b-Me-7

To a slurry of **Me-2(t)** (10 mg, 12.3×10^{-3} mmol) in acetone (0.6 ml) was added AgBF₄ (3 mg, 14.8 x10⁻³ mmol, 1.2 eq). AgCl was removed by filtration, leaving a clear solution of the two isomeric products.

a-Me-7 $\delta_{\rm H}$ (Acetone-d₆) = 8.22 (1H, t, ${}^{3}J_{\rm H-H}$ = 8 Hz, H_i), 7.97 (1H, d, ${}^{3}J_{\rm H-H}$ = 8 Hz, H_{h/j}), 7.77 (1H, d, ${}^{3}J_{\rm H-H}$ = 8 Hz, H_{h/j}), 7.51 (1H, dd, ${}^{3}J_{\rm H-H}$ = 8.5 Hz, ${}^{4}J_{\rm H-F}$ = 5.5 Hz, H_m), 7.27 (H_n), 6.63 (1H, dd, ${}^{3}J_{\rm H-F}$ = 9.5 Hz, ${}^{4}J_{\rm H-H}$ = 3 Hz, H_d), 6.19 (1H, m, ${}^{3}J_{\rm H-Pt}$ = 110 Hz, H_b), 2.53 (3H, s, Me) ppm.

 $δ_{\rm F}$ (Acetone-d₆) = -109.64, -110.18 (⁴J_{F-Pt} = 72 Hz) ppm. $δ_{\rm P}$ (Acetone-d₆) = -7.73 (¹J_{P-Pt} = 4043 Hz) ppm. $δ_{\rm Pt}$ (Acetone-d₆) = -3632 (d, ¹J_{Pt-P} = ~4050 Hz) ppm.

b-Me-7 $\delta_{\rm H}$ (Acetone-d₆) = 8.15 (1H, t, ${}^{3}J_{\rm H-H}$ = 8 Hz, H_i), 7.91 (1H, d, ${}^{3}J_{\rm H-H}$ = 8 Hz, H_{h/j}), 7.76 (1H, d, ${}^{3}J_{\rm H-H}$ = 8 Hz, H_{h/j}), 7.51 (1H, dd, ${}^{3}J_{\rm H-H}$ = 8.5 Hz, ${}^{4}J_{\rm H-F}$ = 5.5 Hz, H_m), 7.47 (1H, d, ${}^{3}J_{\rm H-H}$ = 8 Hz, H_v), 7.27 (H_n), 6.84 (1H, t, ${}^{3}J_{\rm H-H}$ = 7.5 Hz, H_i), 6.76 (1H, td, ${}^{3}J_{\rm H-H}$ = ${}^{3}J_{\rm H-F}$ = 8.5 Hz, ${}^{4}J_{\rm H-H}$ = 2.5 Hz, H_d), 6.58 (2H, m, H_{b,s}) 2.32 (3H, s, Me) ppm.

 $\delta_{\rm F}$ (Acetone-d₆) = -109.95 (⁴J_{F-Pt} = 63 Hz), -112.68 ppm. $\delta_{\rm P}$ (Acetone-d₆) = -0.55 (¹J_{P-Pt} = 4463 Hz) ppm. $\delta_{\rm Pt}$ (Acetone-d₆) = -3478 (d, ¹J_{Pt-P} = ~4450 Hz) ppm.

HR-MS (ESI mixture): found 776.1788, calculated 776.1784 = $C_{39}H_{31}F_2PN^{194}Pt = [M]^+$.

Synthesis of Complex 8

Complex **7** was dissolved in acetone (0.6 ml) in an NMR tube with J Young valve. The solvent was then frozen by immersion in liquid nitrogen, and the ir atmosphere then removed by vacuum. The atmosphere was replaced with CO gas, the tube sealed, and then the solvent was allowed to thaw. The yellow solution became almost colourless within one minute indicating the reaction was complete.

8 $\delta_{\rm H}$ (Acetone-d₆) = 8.00 (2H, m, H_{e,h}), 7.96 (1H, t, ${}^{3}J_{\rm H-H} = 8$ Hz, H_i), 7.71 (1H, d, ${}^{3}J_{\rm H-H} = 7.5$ Hz, H_s), 7.50 (1H, dd, ${}^{3}J_{\rm H-H} = 5.5$ Hz, ${}^{4}J_{\rm H-F} = 8.5$ Hz, H_m), 7.39 (1H, t, ${}^{3}J_{\rm H-H} = 7$ Hz, H_t), 7.26 (7H, m, H_{j,n,u,v}, Bn-*m*,*p*), 7.19 (1H,dd, ${}^{3}J_{\rm H-F} = 9$ Hz, ${}^{4}J_{\rm H-H} = 2.5$ Hz, H_p), 7.14 (1H, td, ${}^{3}J_{\rm H-F} = {}^{4}J_{\rm H-P} = 8$ Hz, ${}^{4}J_{\rm H-H} = 2.5$ Hz, H_b), 7.08 (5H, m, H_d, Bn-*o*), 7.02 (1H, t, ${}^{3}J_{\rm H-H} = 7.5$ Hz, Bn-*p*), 6.91 (2H, t, ${}^{3}J_{\rm H-H} = 7.5$ Hz, Bn-*m*), 3.66 (d, ${}^{2}J_{\rm H-P} = 10$ Hz, ${}^{3}J_{\rm H-Pt} = 15$ Hz, Bn*CH*₂), 3.53 (1H, dd, ${}^{2}J_{\rm H-H} = 14$ Hz, ${}^{2}J_{\rm H-P} = 6.5$ Hz, Bn*CH*₂)*, 3.41 (1H, t, ${}^{2}J_{\rm H-H} = {}^{2}J_{\rm H-P} = 14.5$ Hz, H_x)**, 3.36 (1H, dd, ${}^{2}J_{\rm H-H} = 14$ Hz, ${}^{2}J_{\rm H-P} = 12$ Hz, Bn*CH*₂)*, 3.04 (1H, dd, ${}^{2}J_{\rm H-H} = 14.5$ Hz, ${}^{2}J_{\rm H-P} = 11$ Hz, H_x)** ppm. *,** Coupled protons.

$$\begin{split} &\delta_{\rm C} \,({\rm Acetone-d_6}) = 33.55 \,({\rm d},\,^1{\rm J}_{\rm C-P} = 18 \,{\rm Hz},{\rm C}_x),\, 34.47 \,({\rm d},\,^1{\rm J}_{\rm C-P} = 23.5 \,{\rm Hz},\, {\rm Bn-}{\it CH_2}),\, 36.29 \,({\rm d},\,^1{\rm J}_{\rm C-P} = 25.5 \,{\rm Hz},\, {\rm Bn-}{\it CH_2}),\, 114.10 \,({\rm d},\,^2{\rm J}_{\rm C-F} = 21 \,{\rm Hz},\, {\rm C}_d),\, 116.06 \,({\rm d},\,^2{\rm J}_{\rm C-F} = 21 \,{\rm Hz},\, {\rm C}_n),\, 117.40 \\ &({\rm d},\,^2{\rm J}_{\rm C-F} = 24.5 \,{\rm Hz},\, {\rm C}_p),\, 119.37 \,({\rm s},\,^3{\rm J}_{\rm H-Pt} = 35 \,{\rm Hz},\, {\rm C}_h),\, 122.43 \,({\rm d},\,^2{\rm J}_{\rm C-F} = 21 \,{\rm Hz},\,^2{\rm J}_{\rm C-Pt} = 98 \,{\rm Hz},\, {\rm C}_n),\, 126.91 \,({\rm s},\,^3{\rm J}_{\rm H-Pt} = 24.5 \,{\rm Hz},\, {\rm C}_j),\, 127.72 \,({\rm m},\, {\rm C}_t,\, {\rm Bn-}{\it P}),\, 128.21 \,({\rm dd},\,^3{\rm J}_{\rm C-F} = 8.5 \,{\rm Hz},\,^4{\rm J}_{\rm C-P} = 6 \,{\rm Hz},\, {\rm C}_e),\, 128.83 \,({\rm s},\, {\rm Bn-}{\it m}),\, 129.18 \,({\rm s},\, {\rm C}_u),\, 129.38 \,({\rm s},\, {\rm Bn-}{\it m}),\, 129.84 \,({\rm d},\,^3{\rm J}_{\rm C-P} = 6.5 \,{\rm Hz},\, {\rm Bn-}{\it o}),\, 130.27 \,({\rm s},\, {\rm C}_{\rm s}),\, 130.49 \,({\rm d},\,^3{\rm J}_{\rm C-P} = 4 \,{\rm Hz},\, {\rm Bn-}{\it o}),\, 131.61 \,({\rm d},\,^2{\rm J}_{\rm C-P} = 6 \,{\rm Hz},\, {\rm Bn-}{\it i}),\, 132.09 \,({\rm d},\,^3{\rm J}_{\rm C-P} = 6 \,{\rm Hz},\, {\rm C}_v),\, 132.20 \,({\rm d},\,^3{\rm J}_{\rm C-P} = 6 \,{\rm Hz},\, {\rm C}_r),\, 133.11 \,({\rm d},\,^2{\rm J}_{\rm C-P} = 4 \,{\rm Hz},\, {\rm Bn-}{\it i}),\, 135.26 \,({\rm d},\,^3{\rm J}_{\rm C-F} = 9 \,{\rm Hz},\, {\rm C}_m),\, 135.53 \,({\rm s},\, {\rm C}_1),\, 138.81 \,({\rm s},\, {\rm C}_w),\, 140.63 \,({\rm d},\,^3{\rm J}_{\rm C-P} = 5 \,{\rm Hz},\, {\rm C}_g),\, 162.84 \,({\rm d},\,^1{\rm J}_{\rm C-F} = 255 \,{\rm Hz},\, {\rm d}_{\rm d},\,^3{\rm J}_{\rm C-F} = 9 \,{\rm Hz},\, {\rm C}_{\rm d}),\, 163.78 \,({\rm d},\,^1{\rm J}_{\rm C-F} = 254 \,{\rm Hz},\, {\rm C}_o),\, 165.73 \,({\rm d},\,^3{\rm J}_{\rm C-P} = 4 \,{\rm Hz},\, {\rm C}_k)\,{\rm pm}. \end{split}$$

$$\begin{split} &\delta_{\rm F} \,({\rm Acetone-d_6}) = -105.85\,, -109.55\,\,(^4J_{\rm F-Pt} = 36~{\rm Hz},\,^5J_{\rm F-P} = 5.5~{\rm Hz})~{\rm ppm}.~\delta_{\rm P} \,({\rm Acetone-d_6}) = \\ &11.50\,\,(^1J_{\rm P-Pt} = 1694~{\rm Hz})~{\rm ppm}.~\delta_{\rm Pt} \,({\rm Acetone-d_6}) = -3976\,\,({\rm d},\,^1J_{\rm Pt-P} = \sim 1700~{\rm Hz})~{\rm ppm}. \\ &{\rm HR-MS}~({\rm ESI}):~{\rm found}~762.1606\,,~{\rm calculated}~762.1627 = {\rm C}_{38}{\rm H_{29}}{\rm F_2}{\rm PN}^{194}{\rm Pt} = [{\rm M-CO}]^+;~{\rm found}~790.1560\,,~{\rm calculated}~790.1576 = {\rm C}_{39}{\rm H_{29}}{\rm F_2}{\rm PNO}^{194}{\rm Pt} = [{\rm M}]^+. \\ &{\rm IR}~({\rm solid}):~2097~{\rm cm}^{-1}. \end{split}$$

Synthesis of Complex 9

Complex 7 was dissolved in acetone (0.6 ml) in an NMR tube with J Young valve. The solvent was then frozen by immersion in liquid nitrogen, and the atmosphere removed with vacuum. The atmosphere was replaced with H_2 gas, the tube sealed, and then the solvent allowed to thaw. The yellow solution became almost colourless within one minute indicating the reaction was complete.

9 $\delta_{\rm H}$ (Acetone-d₆) = 8.02 (1H, t, ${}^{3}J_{\rm H-H}$ = 8.5 Hz, H_g), 7.58 (3H, m, H_{h,k,t}), 7.36 (1H, d, ${}^{3}J_{\rm H-H}$ = 8.5 Hz, H_f), 7.29 (1H, t, ${}^{3}J_{\rm H-H}$ = 8.5 Hz, H_s), 7.20 (2H, t, ${}^{3}J_{\rm H-H}$ = ${}^{3}J_{\rm H-F}$ = 9 Hz, H_b), 7.06 (8H, m, H_{c,l}, Bn-*m*,*p*), 6.96 (1H, t, ${}^{3}J_{\rm H-H}$ = 7 Hz, H_r), 6.90 (2H, t, ${}^{3}J_{\rm H-H}$ = 7 Hz, Bn-*o*), 6.84 (1H, m, H_n), 6.78 (2H, t, ${}^{3}J_{\rm H-H}$ = 6 Hz, Bn-*o*), 6.49 (1H, t, ${}^{3}J_{\rm H-H}$ = 8 Hz, H_n), 3.74 (1H, m, H_v), 3.35 (3H, m, H_v, Bn*CH*₂), 2.40 (1H, dd, ${}^{2}J_{\rm H-P}$ = 13 Hz, ${}^{2}J_{\rm H-H}$ = 11 Hz, Bn*CH*₂), -24.34 (1H, m, ${}^{1}J_{\rm H-Pt}$ = 1230 Hz, PtH) ppm.

$$\begin{split} &\delta_{\rm C} \,({\rm Acetone-d_6}) = 29.04 \,({\rm m},{\rm C_v}),\,35.01 \,({\rm d},\,{}^1{\rm J}_{\rm C-P} = \,{\rm Hz},\,{\rm Bn}{\it CH_2}),\,37.88 \,({\rm m},\,{\rm Bn}{\it CH_2}),\,115.18 \,({\rm d},\,{}^2{\rm J}_{\rm C-F} = 19.5 \,\,{\rm Hz},\,{\rm C_l}),\,115.77 \,\,({\rm d},\,{}^2{\rm J}_{\rm C-F} = 24 \,\,{\rm Hz},\,{\rm C_b}),\,116.70 \,\,({\rm d},\,{}^2{\rm J}_{\rm C-F} = 26 \,\,{\rm Hz},\,{\rm C_n}),\,125.46 \,\,({\rm m},\,{\rm C_f}),\,126.62 \,\,({\rm m},\,{\rm C_h}),\,126.80 \,\,({\rm d},\,{}^5{\rm J}_{\rm C-P} = 2 \,\,{\rm Hz},\,{\rm Bn}{\it -p}),\,126.87 \,\,({\rm d},\,{}^5{\rm J}_{\rm C-P} = 3 \,\,{\rm Hz},\,{\rm Bn}{\it -p}),\,127.13 \,\,\,({\rm m},\,{\rm C_r}),\,128.13 \,\,({\rm d},\,{}^4{\rm J}_{\rm C-P} = 2 \,\,{\rm Hz},\,{\rm Bn}{\it -m}),\,128.31 \,\,({\rm m},\,{\rm C_s},\,{\rm Bn}{\it -m}),\,129.82 \,\,({\rm d},\,{}^3{\rm J}_{\rm C-P} = 5 \,\,{\rm Hz},\,{\rm Bn}{\it -o}),\,130.26 \,\,({\rm d},\,{}^4{\rm J}_{\rm C-P} = 3 \,\,{\rm Hz},\,{\rm C_q}),\,130.51 \,\,({\rm d},\,{}^3{\rm J}_{\rm C-P} = 6 \,\,{\rm Hz},\,{\rm Bn}{\it -o}),\,130.76 \,\,({\rm d},\,{}^3{\rm J}_{\rm C-P} = 4.5 \,\,{\rm Hz},\,{\rm C_t}),\,131.01 \,\,({\rm d},\,{}^3{\rm J}_{\rm C-F} = 9 \,\,{\rm Hz},\,{\rm C_c}),\,132.60 \,\,({\rm m},\,{\rm C_j}),\,132.78 \,\,({\rm d},\,{}^2{\rm J}_{\rm C-P} = 6.5 \,\,{\rm Hz},\,{\rm Bn}{\it -i}),\,133.23 \,\,({\rm d},\,{}^2{\rm J}_{\rm C-P} = 6 \,\,{\rm Hz},\,{\rm Bn}{\it -i}),\,136.08 \,\,({\rm m},\,{\rm C_d}),\,136.38 \,\,({\rm d},\,{}^3{\rm J}_{\rm C-P} = 3.5 \,\,{\rm Hz},\,{\rm C_p}),\,131.71 \,\,({\rm m},\,{\rm C_u}),\,139.85 \,\,({\rm s},\,{\rm C_g}),\,141.37 \,\,({\rm d},\,{}^3{\rm J}_{\rm C-F} = 8.5 \,\,{\rm Hz},\,{\rm C_o}),\,160.27 \,\,({\rm s},\,{\rm C_i}),\,160.82 \,\,({\rm s},\,{\rm C_e}),\,162.42 \,\,({\rm d},\,{}^1{\rm J}_{\rm C-F} = 248 \,\,{\rm Hz},\,{\rm H_m}),\,163.41 \,\,({\rm d},\,{}^1{\rm J}_{\rm C-F} = 247 \,\,{\rm Hz},\,{\rm H_a})\,\,{\rm ppm}. \end{split}$$

 $\delta_{\rm F} (\text{Acetone-d}_6) = -110.40, -112.62 \text{ ppm.} \ \delta_{\rm P} (\text{Acetone-d}_6) = 1.31 \ (^1J_{\rm P.Pt} = 5015 \text{ Hz}) \text{ ppm.} \ \delta_{\rm Pt} (\text{Acetone-d}_6) = -4419 \ (\text{d}, \ ^1J_{\rm Pt-P} = \sim 5000 \text{ Hz}), \ (\text{d}, \ ^1J_{\rm Pt-H} = \sim 1500 \text{ Hz}) \text{ ppm.}$

HR-MS (ESI): found 764.1772, calculated 764.1784 = $C_{38}H_{31}F_2PN^{194}Pt = [M]^+$.

Synthesis of Complex 10

A solution of **a-Me-7** and **b-Me-7** in chloroform was left to stand for 4 weeks, after which crystals suitable for Xray analysis formed, Figure 8 and Table S1; full details on page S53. $\delta_{\rm H} = 7.74 \ (1\text{H}, \text{t}, {}^{3}\text{J}_{\text{H-H}} = 7 \text{ Hz}, \text{H}_{i}), 6.99 \ (4\text{H}, \text{d}, {}^{3}\text{J}_{\text{H-H}} = 7.5 \text{ Hz}, \text{Bn-}o), 6.67 \ (1\text{H}, \text{td}, {}^{3}\text{J}_{\text{H-H}} = {}^{3}\text{J}_{\text{H-F}} = 8.5 \text{ Hz}, {}^{4}\text{J}_{\text{H-H}} = 2 \text{ Hz}, \text{H}_{d}), 1.95 \ (3\text{H}, \text{s}, \text{Me}) \text{ ppm}.$ $\delta_{\rm F} = -108.83 \ ({}^{4}\text{J}_{\text{F-Pt}} = 49 \text{ Hz}), -112.66 \text{ ppm}. \delta_{\rm P} = 59.78 \text{ ppm}.$

Complex	1	2(t)	4	л	6	Me-1	10
Empirical formula	$C_{38}H_{30}F_2NPPt$	C ₃₈ H ₂₉ CIF ₂ NPPt	C ₃₈ H ₃₁ CIF ₂ NPPt	$C_{39}H_{30}Cl_4F_2NPPt$	$C_{39}H_{30}Cl_6F_2NPPt$	$C_{40,4}H_{33,2}Cl_{4,2}F_2NPPt$	$C_{42}H_{34}Cl_{10}F_2NOPP$
Formula weight	764.69	799.13	801.15	918.50	989.40	945.63	1187.26
Temperature/K	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)	100(2)
Crystal system	triclinic	triclinic	triclinic	triclinic	monoclinic	monoclinic	monoclinic
Space group	P-1	P-1	P-1	P-1	P2 ₁ /n	I2/a	I2/a
a/Å	12.1213(8)	11.3911(3)	8.51403(11)	10.06885(9)	11.49295(19)	14.61871(18)	23.6952(4)
b/Å	12.1909(7)	11.7933(4)	10.31938(18)	10.97968(11)	22.2749(4)	17.9381(3)	14.2502(3)
c/Å	12.2729(8)	12.8630(3)	18.7511(3)	17.46056(18)	14.2990(2)	28.6293(4)	27.6824(5)
0./°	68.816(6)	100.845(2)	83.1662(13)	107.6381(9)	06	06	06
β/°	69.917(6)	97.595(2)	79.6553(12)	97.2289(9)	91.1028(14)	98.6391(12)	103.1991(19)
7/°	64.636(6)	117.163(3)	76.3618(13)	105.2604(8)	06	06	90
Volume/Å ³	1489.22(19)	1462.18(7)	1569.92(4)	1729.76(3)	3659.93(10)	7422.36(19)	9100.3(3)
Z	2	2	2	2	4	×	8
Q _{calc} g/cm ³	1.705	1.815	1.695	1.763	1.796	1.692	1.733
µ/mm ¹	9.654	10.686	4.646	11.208	4.357	4.167	3.749
F(000)	752.0	784.0	788.0	900.0	1936.0	3720.0	4656.0
Crustal size/mm ³	$0.18 \times 0.14 \times 0.06$	$0.185 \times 0.095 \times 0.03$	$0.24 \times 0.2 \times 0.06$	$0.18 \times 0.08 \times 0.04$	$0.2 \times 0.1 \times 0.06$	$0.57 \times 0.11 \times 0.05$	$0.423 \times 0.22 \times 0.05$
Crystar size/min	yellow block	colourless block	yellow block	yellow block	colourless block	yellow block	colourless block
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	CuK α ($\lambda = 1.54184$)	MoK α ($\lambda = 0.71073$)	CuK α ($\lambda = 1.54184$)	MoK α ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)	MoKa ($\lambda = 0.7107$
20 range /°	7.928 to 147.8	7.226 to 156.402	4.792 to 67.348	8.664 to 147.208	4.504 to 63.73	4.878 to 64.756	5.036 to 61.916
	$-15 \le h \le 15$	$-14 \le h \le 14$	$-12 \le h \le 13$	$-12 \le h \le 12$	$-17 \le h \le 16$	$-22 \le h \le 21$	$-34 \le h \le 31$
Index ranges	$-15 \le k \le 15$	$-14 \le k \le 14$	$-15 \le k \le 16$	$-13 \le k \le 13$	$-32 \le k \le 31$	$-26 \le k \le 26$	$-20 \le k \le 18$
	$-15 \le 1 \le 15$	$-16 \le l \le 16$	$-29 \le 1 \le 29$	$-21 \le 1 \le 20$	$-20 \le 1 \le 20$	$-42 \le 1 \le 40$	$-38 \le 1 \le 39$
Reflections collected	27666	27557	54759	59546	104681	113385	41772
Independent reflections	$5891 [R_{int} = 0.0565,$	$6188 [R_{int} = 0.0564,$	11737 [$\mathbf{R}_{int} = 0.0370$,	$6645 [R_{int} = 0.0543,$	11956 [$R_{int} = 0.0546$,	12768 [$\mathbf{R}_{int} = 0.0573$	$12881 [R_{int} = 0.029]$
	$R_{sigma} = 0.0336$]	$R_{sigma} = 0.0440$]	$R_{sigma} = 0.0305$]	$R_{sigma} = 0.0224$]	$R_{sigma} = 0.0334$]	$R_{sigma} = 0.0396$]	$R_{sigma} = 0.0351]$
Data/restraints/parameters	5891/90/388	6188/0/397	11737/0/397	6645/0/433	11956/0/451	12768/22/503	12881/72/557
Goodness-of-fit on F ²	1.032	1.019	1.017	1.041	1.049	1.041	1.039
Final R indexes [I>=2o (I)]	$R_1 = 0.0294, wR_2 = 0.0762$	$\mathbf{R}_1 = 0.0257, \ \mathbf{wR}_2 = 0.0600$	$\mathbf{R}_1 = 0.0210, \mathbf{w}\mathbf{R}_2 = 0.0422$	$R_1 = 0.0198$, $wR_2 = 0.0488$	$R_1 = 0.0255$, $wR_2 = 0.0490$	$\mathbf{R}_1 = 0.0393, \mathbf{w}\mathbf{R}_2 = 0.0870$	$R_1 = 0.0404, wR_2 =$
Final R indexes [all data]	$\mathbf{R}_1 = 0.0303, \mathrm{wR}_2 = 0.0772$	$\mathbf{R}_1 = 0.0301, \mathrm{wR}_2 = 0.0619$	$R_1 = 0.0250, wR_2 = 0.0435$	$R_1 = 0.0200, wR_2 = 0.0489$	$R_1 = 0.0352, wR_2 = 0.0519$	$\mathbf{R}_1 = 0.0646, \mathbf{w}\mathbf{R}_2 = 0.0958$	$\mathbf{R}_1 = 0.0513, \ \mathbf{wR}_2 =$
Largest diff peak/hole /eÅ- 3	1.48/-1.24	0.95/-0.58	0.87/-0.95	0.70/-1.03	1.46/-0.92	1.70/-1.27	2.09/-1.60

Table S1 Xray data for the structures reported

ps33 Complex 1

Figure SI1 solid state structure of ps33 with only key atoms labeled and thermal ellipsoids drawn at 50% probability level

Crystal structure determination of [ps33]

The asymmetric unit contains the complex, there are two of these in the unit cell. The thermal ellipsoids at the back edge of the pyridine ligand are particularly large and elongated. These atoms were restrained with a SIMU restraint to give them more reasonable thermal parameters. The Pt-P bond is rather bent compared to the rest of the Pt bonds. As a measure of this, the distance the phosphorus P1 lies out of a mean plane through the other atoms (C1, N7, C13 and Pt1) is shown below Least-squares planes (x,y,z in crystal coordinates) and deviations from them

(* indicates atom used to define plane)

10.6987 (0.0103) x - 0.3413 (0.0226) y + 3.9482 (0.0165) z = 10.8593 (0.0183)

- -0.0659 (0.0018) Pt1
- 0.0401 (0.0011) C1
- -0.0142 (0.0004) N7
- 0.0400 (0.0011) C17
- -0.5329 (0.0053) P1

Rms deviation of fitted atoms = 0.0440

Additionally, the bond angle to the trans N ligand is shown below N7 - Pt1 - P1 168.72 (0.10) degrees

Experimental

Single crystals of $C_{38}H_{30}F_2$ NPPt [ps33] were grown from chloroform solution. A suitable crystal was selected and mounted on a glass fibre with Fromblin oil and placed on a Rigaku Oxford Diffraction SuperNova diffractometer with a dual source (Cu at zero) with an AtlasS2 CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation. 1 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

- 2 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3 Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal Data for $C_{38}H_{30}F_2NPPt$ (*M* =764.69 g/mol): triclinic, space group P-1 (no. 2), *a* = 12.1213(8) Å, *b* = 12.1909(7) Å, *c* = 12.1213(8) Å 12.2729(8) Å, $\alpha = 68.816(6)^\circ$, $\beta = 69.917(6)^\circ$, $\gamma = 64.636(6)^\circ$, V = 1489.22(19) Å³, Z = 2, T = 150(2) K, μ (CuK α) = 9.654 mm⁻¹, Dcalc = 1000 K m⁻¹, 1.705 g/cm^3 , 27666 reflections measured (7.928° $\leq 2\Theta \leq 147.8^\circ$), 5891 unique ($R_{\text{int}} = 0.0565$, $R_{\text{sigma}} = 0.0336$) which were used in all calculations. The final R_1 was 0.0294 (I > 2 σ (I)) and wR_2 was 0.0772 (all data).

Table 1 Crystal uata and structure refinement for ps55	Table 1	Crystal	data and	structure	refinement	for ps33.
--	---------	---------	----------	-----------	------------	-----------

Identification code	ps33
Empirical formula	$C_{38}H_{30}F_2NPPt$
Formula weight	764.69
Temperature/K	150(2)
Crystal system	triclinic
Space group	P-1
a/Å	12.1213(8)
b/Å	12.1909(7)
c/Å	12.2729(8)
α/°	68.816(6)
β/°	69.917(6)
γ/°	64.636(6)
Volume/Å ³	1489.22(19)
Z	2
$\varrho_{calc}g/cm^3$	1.705
µ/mm ¹	9.654
F(000)	752.0
Crystal size/mm ³	$0.18 \times 0.14 \times 0.06$ yellow block
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.928 to 147.8
Index ranges	-15 ≤ h ≤ 15, -15 ≤ k ≤ 15, -15 ≤ l ≤ 15
Reflections collected	27666
Independent reflections	5891 [$R_{int} = 0.0565$, $R_{sigma} = 0.0336$]
Data/restraints/parameters	5891/90/388
Goodness-of-fit on F ²	1.032
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0294, wR_2 = 0.0762$
Final R indexes [all data]	$R_1 = 0.0303, wR_2 = 0.0772$
Largest diff. peak/hole / e Å-3	1.48/-1.24

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for ps33. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
Pt1	7659.8(2)	1673.4(2)	6726.0(2)	33.96(7)
P1	7354.1(7)	3656.3(7)	6542.9(7)	29.01(16)
F15	10049(3)	3019(3)	1949(2)	71.7(8)
F3	6320(4)	1175(4)	11626(3)	90.9(11)
N7	7651(3)	6(3)	6736(4)	48.0(8)
C26	6229(3)	6044(3)	5012(3)	29.6(6)
C19	9376(3)	3593(3)	7192(3)	35.5(7)
C32	6450(3)	4448(3)	7765(3)	36.1(7)
C25	6498(3)	4650(3)	5347(3)	35.5(7)
C1	7063(4)	978(4)	8553(4)	46.4(9)
C17	8426(3)	1693(3)	4919(3)	39.4(7)
C20	9726(3)	2343(4)	7825(4)	45.5(8)
C37	3259(4)	4102(4)	8498(4)	45.0(8)
C18	8790(3)	4028(3)	6140(3)	35.8(7)
C27	5104(3)	6854(3)	5533(3)	33.9(7)
C28	4846(3)	8136(3)	5183(3)	39.1(7)
C38	4545(3)	3865(3)	8095(3)	39.1(7)
C29	5697(4)	8638(3)	4305(3)	43.6(8)
C31	7085(3)	6562(3)	4131(3)	36.4(7)
C33	5070(3)	4624(3)	8209(3)	34.3(7)
C12	8457(4)	637(4)	4648(5)	55.0(9)
C2	6871(4)	1398(5)	9544(4)	56.7(10)
C21	10288(4)	1952(5)	8776(4)	56.9(11)
C16	8974(3)	2483(4)	3960(3)	42.9(8)
C15	9497(4)	2251(5)	2828(4)	58.8(10)
C34	4291(4)	5615(4)	8740(4)	47.6(9)
C30	6823(4)	7843(4)	3780(3)	44.3(8)
C24	9567(3)	4447(4)	7558(4)	47.3(9)
C6	6876(4)	-171(4)	8813(5)	62.5(10)
C11	7975(4)	-254(4)	5659(5)	58.3(9)
C36	2502(4)	5083(5)	9030(4)	55.1(11)
C7	7155(4)	-665(4)	7780(5)	61.8(10)
C22	10499(4)	2797(6)	9106(4)	63.7(14)
C35	3022(4)	5841(5)	9149(4)	62.3(12)
C23	10133(4)	4035(6)	8506(4)	58.5(13)
C13	8941(4)	447(5)	3507(5)	62.9(10)
C3	6490(5)	726(6)	10698(5)	70.5(12)
C10	7824(5)	-1323(4)	5631(6)	70.9(11)
C5	6477(5)	-810(5)	9971(5)	71.3(12)
C9	7322(6)	-2021(4)	6653(7)	78.1(12)

C8	6984(5)	-1729(4)	7744(7)	76.7(12)
C14	9471(4)	1245(5)	2574(5)	66.3(11)
C4	6273(5)	-378(5)	10916(5)	75.1(13)

Atom	U ₁₁ +211Ka · D · U.,	U ₁₂ +].	Ua	Um	Un		Un
Pt1	32.39(9)	26.46(9)	47.2(1)	-8.76(6)	-20.3	3(6)	-5.60(6)
P1	27.8(4)	28.2(3)	35.7(4)	-10, 1(3)	-13.8	(3)	-7.1(3)
F15	52.4(15)	113(2)	48.8(13)	-33.1(14)	-10.0	(11)	-18.5(15)
F3	99(2)	114(3)	44.0(14)	3,3(15)	-21.3	(14)	-38(2)
N7	42.0(17)	27.8(13)	82(2)	-10.7(14)	-36.5	(16)	-4.3(12)
C26	28.7(14)	30.0(14)	34.0(14)	-9.4(11)	-14.6	(11)	-6.7(12)
C19	22.5(14)	49.4(18)	39.8(16)	-19.8(14)	-7.4(12)	-9.9(13)
C32	32.3(16)	40.3(16)	42.5(17)	-15.6(14)	-12.4	(13)	-11.4(13)
C25	34.9(16)	35.1(16)	43.2(17)	-14.1(13)	-19.7	(13)	-6.3(13)
C1	44(2)	42 3(19)	46 2(19)	4 8(15)	_23 8	(15)	-119(16)
C17	333(16)	41.0(17)	49.7(19)	-23 0(15)	-23.0	(13)	1 4(13)
C20	33 0(17)	53(2)	48(2)	-18 0(16)	_15 3	(14)	-3 1(15)
C20 C37	34 2(18)	53(2)	48 1(19)	-6.6(16)	-13.6	(14)	-16 8(16)
C18	31 1(15)	43 4(17)	39.0(16)	-12 7(13)	_11 1	(12)	-10.0(10) -14.1(13)
C27	27 8(15)	34 2(15)	37.3(16)	-6.7(12)	_10 2	(12)	-14.1(13) -8.4(12)
C28	37 1(17)	333(16)	43 6(18)	-10, 1(13)	-14.0	(12)	-5.1(12)
C28	31.9(16)	38.2(16)	48 2(18)	-9.4(14)	-13.3	(14)	-10 9(13)
C28	57(2)	35.9(17)	40.2(10)	-2 2(14)	-20 6	(14)	-20.0(15)
C29	37(2)	45 4(17)	42.9(10)	-2.2(14)	-7 0(12)	-20.0(10) -11.0(13)
C33	29 0(15)	10.8(17)	23.4(14)	-10.2(13)	-12 5	(12)	-7.5(13)
C12	42 9(17)	44.2(17)	94(2)	-10.2(15)	-12.5	(12)	$= 7 \cdot 3(13)$
C12	42.0(1/) 55(2)	64(2)	J4(2) 15 9(10)	-38.9(10)	-30.3	(17)	3.3(14)
C21	35 8(19)	80(3)	45.0(19)	-9(2)	-25.4	(10)	-23.0(10) -12(2)
C16	37 4(10)	51(2)	43(2)	-5(2)	10 0	(10)	-12(2) 5 2(15)
C10	30 0(10)	90(2)	44.0(1) 65(2)	-20.9(10)	-10.0	(14)	-3.2(13)
C13	37 4(10)	62(2)	52(2)	-39.7(19)	-22.5	(10)	-1.2(17)
C34	J/04(1)	54(2)	32(2)	-30.2(10)	-10.2	(13)	$-7 \cdot 7(17)$
C30	$\frac{1}{2}$	54(2)	54(2)	20.0(14)	-) . 2 (15)	-20.3(17)
C24 C6	52.0(17)	$1 \qquad 0.5(2)$	J4(2)	-29.9(19)	-3.2(1J) (10)	-22.7(17)
C0	10 6(10)	260(10)	110(2)	10.J(17)	-47.7	(10)	-20.2(13)
C11 C26	40.0(10)) 50.0(15)	54(2)	-32.2(1/)	-49.4	(10)	3.3(14) 11 7/10)
C30	20.4(17)	226(15)	J4(2) 106(2)	-51(2)	-10.2	(13)	-11.7(10)
C_{22}	32 9(10)	127(5)	100(3)	30(3)	-52.0	(19)	-10.0(14)
C22 C25	40(2)	127(3)	59(2)	= 50(3)	-0./(1J) (10)	-20(2)
C33	40(2)	00(3)	67(3)	-30(3)	-13.0	(10)	-3(2)
C25	37.7(19)	(4)	53(2)	-49(3)	3.0(1	/)	-30(2)
C15 C2	48.8(19)) 04(2)	93(2)	-54.4(18)	-32.4	(17)	5.9(10)
C3	62(2)	01(2)	120(2)	11.9(10)	-31.0	(1/)	-22.0(19)
C10 C5	63(2)	40.3(17)	130(3)	-32.0(10)	-37(2) (10)	-2.0(10)
C3	02(2)	02(2)	02(2)	20.0(19)	-40.1	(19)	-20.2(17)
C9 C9	74(2)	38.4(17)	142(3)	-19(2)	-01(2)	-12.1(17)
C0	07(2)	37.1(17)	131(3)	2.0(19)	-55(2) (17)	-10.0(10)
C14 C4	48.4(19)) 82(2) 76(2)	//(Z) 69/2)	-51.9(19)	-23.7	(1/)	2.8(1/)
C4	04(2)	70(2)	09(2)	20(2)	-30.0	(19)	-29.0(19)
Table 4 B	ond Lengths	for ps33.					
Atom	Atom	Length/Å		Atom	Atom	Length/	Å
Pt1	P1	2.2200(8)		C27	C28	1.383(5)
Pt1	N7	2.033(3)		C28	C29	1.378(5)
Pt1	C1	2.075(4)		C38	C33	1.392(5)
Pt1	C17	2.085(4)		C29	C30	1.391(6)
P1	C32	1.842(3)		C31	C30	1.381(5)
P1	C25	1.839(3)		C33	C34	1.395(5)
P1	C18	1.844(3)		C12	C11	1.460(8)
F15	C15	1.341(6)		C12	C13	1.383(7)
F3	C3	1.353(7)		C2	C3	1.388(6)
N7	C11	1.357(7)		C21	C22	1.375(8)
N7	C7	1.345(6)		C16	C15	1.391(6)
C26	C25	1.508(4)		C15	C14	1.385(7)
C26	C27	1.395(4)		C34	C35	1.379(6)
C26	C31	1.393(4)		C24	C23	1.381(7)
C19	C20	1.386(6)		C6	C7	1.473(8)
C19	C18	1.505(5)		C6	C5	1.382(7)
C19	C24	1.399(5)		C11	C10	1.405(6)
C32	C33	1.513(5)		C36	C35	1.390(7)
C1	C2	1.396(7)		C7	C8	1.416(7)
C1	C6	1.419(6)		C22	C23	1.365(8)
C17	C12	1.424(5)		C13	C14	1.377(8)
C17	C16	1.395(6)		C3	C4	1.395(9)
C20							
C20	C21	1.386(6)		C10	C9	1.348(9)
C37	C21 C38	1.386(6) 1.395(5)		C10 C5	C9 C4	1.348(1.348(9) 9)

Table 5	5 Bond .	Angles	for ps33.	
Atom	Ate	om	Atom	Angle/°
IN / N7	PU Dt1		PI C1	168./2(10)
N7	Pt1		C17	79.84(16)
C1	Pt1		P1	103.82(12)
C1	Pt1		C17	159.19(17)
C17	Pt1		P1	96.93(11)
C32	P1		Pt1	123.20(12)
C32	P1 P1		C18 Pt1	99.32(10) 108.02(11)
C25	P1		C32	102.44(16)
C25	P1		C18	106.92(16)
C18	P1		Pt1	115.32(12)
C11	N7		Pt1	117.2(3)
C7	N7		Pt1	117.5(3)
C27	C2	6	C25	124.0(4) 121.4(3)
C31	C2	6	C25	120.4(3)
C31	C2	6	C27	118.2(3)
C20	C1	9	C18	120.9(3)
C20	C1	9	C24	118.6(4)
C24		9 2	C18 D1	120.5(3) 117.9(2)
C35	C2	2 5	P1	117.9(2) 118.1(2)
C2	C1	2	Pt1	132.3(3)
C2	C1		C6	115.8(4)
C6	C1		Pt1	111.8(4)
C12	C1	7	Pt1	112.2(3)
C16		/ 7	Pt1 C12	132.8(3) 114.8(4)
C21	C2	0	C12	120.2(4)
C36	C3	7	C38	120.0(4)
C19	C1	8	P1	112.3(2)
C28	C2	7	C26	120.9(3)
C29	C2	8	C27	120.4(3)
C33	C3	8 0	C37	120.4(4) 119 $1(3)$
C20	C2	2	0.50	119.4(3)
C30	C3	1	C26	120.8(3)
C30 C38	C3 C3	1 3	C26 C32	120.8(3) 123.5(3)
C30 C38	C3 C3	1 3	C26 C32	120.8(3) 123.5(3)
C30 C38 Table 6	C3 C3 6 Torsio	1 3 on Angl	C26 C32 es for ps	120.8(3) 123.5(3) 33.
C30 C38 Table 6 A Pt1	C3 C3 5 Torsio B P1	1 3 on Angl C C32	C26 C32 es for ps: D C33	$120.8(3) \\ 123.5(3)$ 33. Angle/° -63.9(3)
C30 C38 Table 6 A Pt1 Pt1	C3 C3 5 Torsio B P1 P1 P1	1 3 on Angl C C32 C25	C26 C32 es for ps: D C33 C26	$120.8(3) \\ 123.5(3)$ 33. Angle/° -63.9(3) -177.2(2)
C30 C38 Table 6 A Pt1 Pt1 Pt1	C3 C3 5 Torsio B P1 P1 P1 P1	1 3 on Angl C C32 C25 C18	C26 C32 es for ps: D C33 C26 C19	120.8(3) 123.5(3) 33. Angle/° -63.9(3) -177.2(2) -77.4(2)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1	C3 C3 5 Torsio B P1 P1 P1 P1 N7	1 3 m Angl C C32 C25 C18 C11	C26 C32 es for ps D C33 C26 C19 C12	120.8(3) 123.5(3) 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 5 Torsio B P1 P1 P1 N7 N7 N7	1 3 m Angl C C32 C25 C18 C11 C11	C26 C32 es for ps: D C33 C26 C19 C12 C10 C6	$120.8(3) \\ 123.5(3)$ 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 5 Torsio B P1 P1 P1 N7 N7 N7 N7 N7	1 3 on Angl C C32 C25 C18 C11 C11 C7 C7	C26 C32 es for ps: D C33 C26 C19 C12 C10 C6 C8	120.8(3) 123.5(3) 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 5 Torsio B P1 P1 P1 N7 N7 N7 N7 N7 C1	1 3 on Angl C C32 C25 C18 C11 C11 C7 C7 C7 C2	C26 C32 es for ps: D C33 C26 C19 C12 C10 C6 C8 C3	120.8(3) 123.5(3) 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 5 Torsio B P1 P1 P1 N7 N7 N7 N7 N7 C1 C1	1 3 on Angl C C32 C25 C18 C11 C11 C7 C7 C2 C6	C26 C32 es for ps: D C33 C26 C19 C12 C10 C6 C8 C3 C7	120.8(3) 123.5(3) 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 5 Torsio B P1 P1 P1 N7 N7 N7 N7 C1 C1 C1 C1	1 3 on Angl C C32 C25 C18 C11 C11 C7 C7 C2 C6 C6 C6	C26 C32 es for ps: D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5	120.8(3) 123.5(3) 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 5 Torsio B P1 P1 N7 N7 N7 C1 C1 C1 C1 C1 7 C17 C17	1 3 on Angl C C32 C25 C18 C11 C11 C7 C7 C2 C6 C6 C6 C12 C12	C26 C32 es for ps: D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C12	120.8(3) $123.5(3)$ 33. Angle/° $-63.9(3)$ $-177.2(2)$ $-77.4(2)$ $8.3(4)$ $-172.1(3)$ $-9.6(5)$ $171.0(3)$ $-178.3(4)$ $1.2(5)$ $-179.9(4)$ $-0.7(4)$
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 5 Torsio B P1 P1 N7 N7 N7 C1 C1 C1 C1 C17 C17 C17	1 3 m Angl C C32 C25 C18 C11 C11 C7 C7 C2 C6 C6 C6 C12 C12 C16	C26 C32 es for ps D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15	120.8(3) $123.5(3)$ 33. Angle/° $-63.9(3)$ $-177.2(2)$ $-77.4(2)$ $8.3(4)$ $-172.1(3)$ $-9.6(5)$ $171.0(3)$ $-178.3(4)$ $1.2(5)$ $-179.9(4)$ $-0.7(4)$ $-179.2(3)$ $175.9(3)$
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 5 Torsio B P1 P1 N7 N7 N7 C1 C1 C1 C17 C17 C17 C17 C32	1 3 m Angl C C32 C25 C18 C11 C11 C7 C7 C2 C6 C6 C6 C12 C12 C12 C16 C33	C26 C32 es for ps D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38	$120.8(3) \\ 123.5(3)$ 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 C3 Forsio B P1 P1 N7 N7 N7 C1 C1 C1 C17 C17 C17 C17 C32 C32	1 3 m Angl C C32 C25 C18 C11 C7 C7 C2 C6 C6 C12 C12 C12 C16 C33 C33	C26 C32 es for ps D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C34	120.8(3) $123.5(3)$ 33. Angle/° $-63.9(3)$ $-177.2(2)$ $-77.4(2)$ $8.3(4)$ $-172.1(3)$ $-9.6(5)$ $171.0(3)$ $-178.3(4)$ $1.2(5)$ $-179.9(4)$ $-0.7(4)$ $-179.2(3)$ $175.9(3)$ $24.6(5)$ $-154.4(3)$
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 C3 Forsio B P1 P1 N7 N7 N7 C1 C1 C1 C17 C17 C17 C17 C17 C32 C32 C15	1 3 m Angl C C32 C25 C18 C11 C7 C7 C2 C6 C12 C12 C16 C33 C33 C14	C26 C32 es for ps D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C34 C13	120.8(3) 123.5(3) 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5) -154.4(3) 177.5(4)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 C3 Forsio B P1 P1 N7 N7 N7 C1 C1 C17 C17 C17 C17 C17 C17 C32 C32 C32 C15 C3	1 3 m Angl C C32 C25 C18 C11 C7 C7 C2 C6 C6 C12 C12 C16 C33 C33 C14 C4 C4 C14 C4 C14 C14 C32 C25 C25 C18 C11 C11 C7 C25 C25 C18 C11 C11 C7 C25 C25 C18 C11 C11 C7 C25 C25 C18 C11 C7 C25 C25 C18 C11 C7 C25 C25 C18 C11 C7 C25 C25 C25 C18 C11 C7 C25 C25 C25 C25 C25 C25 C25 C25	C26 C32 es for ps D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C34 C13 C5 C34 C13 C5	120.8(3) $123.5(3)$ 33. Angle/° $-63.9(3)$ $-177.2(2)$ $-77.4(2)$ $8.3(4)$ $-172.1(3)$ $-9.6(5)$ $171.0(3)$ $-178.3(4)$ $1.2(5)$ $-179.9(4)$ $-0.7(4)$ $-179.2(3)$ $175.9(3)$ $24.6(5)$ $-154.4(3)$ $177.5(4)$ $-178.6(5)$
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 C3 Forsio B P1 P1 N7 N7 N7 C1 C1 C17 C17 C17 C17 C17 C32 C32 C32 C15 C3 C111 C7	1 3 m Angl C C32 C25 C18 C11 C7 C7 C2 C6 C6 C12 C12 C16 C33 C33 C14 C4 C10 C38 C14 C4 C38 C38 C38 C12 C25 C25 C38 C38 C38 C38 C38 C38 C38 C38	C26 C32 es for ps D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C34 C13 C5 C9 C9	120.8(3) $123.5(3)$ 33. Angle/° $-63.9(3)$ $-177.2(2)$ $-77.4(2)$ $8.3(4)$ $-172.1(3)$ $-9.6(5)$ $171.0(3)$ $-178.3(4)$ $1.2(5)$ $-179.9(4)$ $-0.7(4)$ $-179.2(3)$ $175.9(3)$ $24.6(5)$ $-154.4(3)$ $177.5(4)$ $-178.6(5)$ $2.7(7)$
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 C3 Forsio B P1 P1 N7 N7 N7 C1 C1 C17 C17 C17 C17 C17 C32 C32 C32 C15 C3 C11 C7 C27	1 3 m Angl C C32 C25 C18 C11 C7 C7 C7 C2 C6 C6 C12 C12 C16 C33 C33 C14 C4 C10 C8 C28 C25 C25 C25 C18 C11 C7 C7 C25 C25 C25 C25 C25 C25 C25 C25	C26 C32 es for ps D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C34 C13 C5 C9 C9 C29	120.8(3) 123.5(3) 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5) -154.4(3) 177.5(4) -178.6(5) 2.7(7) -0.5(7) 0.3(6)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 C3 Forsio B P1 P1 N7 N7 N7 C1 C1 C1 C17 C17 C17 C17 C32 C32 C15 C3 C11 C7 C27 C21	1 3 m Angl C C32 C25 C18 C11 C7 C7 C2 C6 C6 C6 C12 C12 C16 C33 C33 C14 C4 C10 C8 C32 C25 C25 C25 C18 C11 C7 C7 C25 C32 C25 C32 C32 C32 C32 C32 C32 C32 C32	C26 C32 es for ps D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C34 C13 C5 C9 C9 C29 C29 C29	120.8(3) 123.5(3) 33. Angle? -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5) -154.4(3) 177.5(4) -178.6(5) 2.7(7) -0.5(7) 0.3(6) 0.2(6)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 C3 Forsio B P1 P1 N7 N7 N7 C1 C1 C1 C1 C17 C17 C17 C17 C17 C17 C32 C32 C12 C3 C11 C7 C27 C31 C20	1 3 m Angl C C32 C25 C18 C11 C7 C7 C2 C6 C6 C12 C12 C16 C33 C33 C14 C4 C10 C8 C28 C30 C21	C26 C32 es for ps D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C34 C15 C38 C34 C13 C5 C9 C9 C9 C29 C29 C22	120.8(3) 123.5(3) 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5) -154.4(3) 177.5(4) -178.6(5) 2.7(7) -0.5(7) 0.3(6) 0.2(6) 0.4(6)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 Forsio B P1 P1 N7 N7 N7 C1 C1 C1 C17 C17 C17 C17 C17 C17 C17 C	1 3 m Angl C C32 C25 C18 C11 C7 C7 C2 C6 C6 C12 C12 C16 C33 C33 C14 C4 C10 C8 C28 C30 C21 C25 C25 C25 C25 C18 C11 C7 C7 C2 C25 C25 C25 C25 C18 C11 C7 C7 C2 C25 C25 C25 C18 C11 C7 C7 C2 C25 C25 C25 C25 C25 C25 C25	C26 C32 es for ps D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C34 C15 C38 C34 C13 C5 C9 C9 C9 C9 C29 C29 C22 C22 C22 C22 C22	120.8(3) 123.5(3) 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5) -154.4(3) 177.5(4) -178.6(5) 2.7(7) -0.5(7) 0.3(6) 0.2(6) 0.4(6) -0.8(5)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 Forsio B P1 P1 P1 N7 N7 N7 C1 C1 C1 C1 C17 C17 C17 C17 C17 C32 C32 C15 C3 C11 C7 C27 C31 C20 C24 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	1 3 m Angl C C32 C25 C18 C11 C7 C7 C2 C6 C6 C12 C12 C16 C33 C33 C14 C4 C10 C8 C28 C30 C21 C25 C25 C25 C25 C18 C11 C7 C7 C2 C25 C18 C11 C7 C7 C2 C25 C18 C11 C7 C7 C2 C25 C18 C11 C7 C7 C2 C2 C25 C18 C11 C7 C7 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	C26 C32 es for ps D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C34 C15 C38 C34 C15 C38 C34 C13 C5 C11 C13 C25 C11 C12 C10 C6 C3 C25 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	120.8(3) 123.5(3) 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5) -154.4(3) 177.5(4) -178.6(5) 2.7(7) -0.5(7) 0.3(6) 0.2(6) 0.4(6) -0.8(5) 51.4(3) 56.2(2)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 Forsio B P1 P1 P1 N7 N7 N7 C1 C1 C1 C17 C17 C17 C17 C17 C17 C17 C	1 3 m Angl C C32 C25 C18 C11 C11 C7 C7 C2 C6 C12 C12 C16 C33 C33 C14 C4 C10 C8 C28 C30 C21 C25 C25 C25 C25 C25 C18 C11 C7 C7 C2 C25 C25 C25 C18 C11 C7 C7 C2 C25 C18 C11 C7 C7 C2 C25 C18 C11 C7 C7 C2 C25 C12 C12 C12 C12 C12 C12 C12 C12	C26 C32 es for ps: D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C34 C15 C38 C34 C15 C38 C34 C15 C38 C34 C15 C29 C29 C29 C29 C22 C22 C22 C22 C22 C22	120.8(3) 123.5(3) 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5) -154.4(3) 177.5(4) -178.6(5) 2.7(7) -0.5(7) 0.3(6) 0.2(6) 0.4(6) -0.8(5) 51.4(3) 56.3(3) 179.1(4)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 C3 Forsio B P1 P1 N7 N7 N7 N7 C1 C1 C1 C1 C17 C17 C17 C17 C17 C17 C32 C32 C15 C3 C11 C7 C27 C31 C20 C24 P1 P1 N7 N7 N7 N7 N7 N7 N7 N7 N7 N7 N7 N7 N7	1 3 m Angl C C22 C18 C11 C11 C7 C7 C2 C6 C12 C12 C16 C33 C33 C14 C4 C10 C8 C28 C30 C21 C25 C18 C11 C7 C7 C2 C2 C25 C25 C18 C11 C7 C7 C2 C25 C18 C11 C7 C7 C2 C2 C25 C18 C11 C7 C7 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	C26 C32 es for ps: D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C34 C15 C38 C34 C15 C38 C34 C15 C29 C29 C29 C29 C29 C22 C22 C22 C22 C22	120.8(3) 123.5(3) 33. Angle/ $^{\circ}$ -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5) -154.4(3) 177.5(4) -178.6(5) 2.7(7) -0.5(7) 0.3(6) 0.2(6) 0.4(6) -0.8(5) 51.4(3) 56.3(3) 179.1(4) 57.6(3)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 C3 Forsio B P1 P1 N7 N7 N7 N7 C1 C1 C1 C17 C17 C17 C17 C17 C17 C17 C	1 3 m Angl C C32 C25 C18 C11 C11 C7 C7 C2 C6 C12 C12 C16 C33 C33 C14 C10 C8 C28 C30 C21 C25 C18 C32 C25 C18 C11 C7 C7 C7 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	C26 C32 es for ps: D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C3 C7 C5 C11 C13 C15 C38 C34 C15 C38 C34 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C6 C19 C12 C10 C6 C7 C7 C2 C10 C6 C7 C7 C7 C5 C11 C12 C10 C6 C7 C7 C5 C11 C12 C12 C10 C6 C6 C7 C7 C5 C11 C12 C12 C12 C10 C6 C7 C7 C5 C11 C12 C12 C12 C10 C6 C5 C11 C12 C12 C12 C12 C12 C12 C12 C12 C12	120.8(3) 123.5(3) 33. Angle/ $^{\circ}$ -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5) -154.4(3) 177.5(4) -178.6(5) 2.7(7) -0.5(7) 0.3(6) 0.2(6) 0.4(6) -0.8(5) 51.4(3) 56.3(3) 179.1(4) 57.6(3) 162.5(2)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 C3 Forsio B P1 P1 P1 N7 N7 N7 C1 C1 C1 C17 C17 C17 C17 C17 C17 C17 C	1 3 m Angl C C32 C25 C18 C11 C7 C7 C2 C6 C6 C12 C12 C12 C16 C33 C14 C4 C10 C8 C28 C30 C25 C18 C11 C7 C7 C7 C12 C12 C12 C12 C12 C12 C12 C12	C26 C32 es for ps: D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C3 C7 C5 C11 C13 C15 C38 C3 C7 C5 C11 C13 C15 C38 C3 C29 C29 C29 C29 C29 C22 C22 C22 C22 C22	120.8(3) 123.5(3) 33. Angle/ $^{\circ}$ -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5) -154.4(3) 177.5(4) -178.6(5) 2.7(7) -0.5(7) 0.3(6) 0.2(6) 0.4(6) -0.8(5) 51.4(3) 56.3(3) 179.1(4) 57.6(3) 162.5(2) -177.3(3)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 C3 Foresion B P1 P1 N7 N7 N7 C1 C1 C17 C17 C17 C17 C17 C17 C17 C17	1 3 m Angl C C32 C25 C18 C11 C7 C7 C2 C6 C6 C12 C12 C16 C33 C14 C4 C10 C8 C28 C30 C21 C12 C16 C33 C14 C4 C10 C18 C12 C12 C12 C16 C32 C12 C12 C12 C12 C12 C12 C12 C1	C26 C32 es for ps: D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C3 C7 C5 C11 C13 C15 C38 C3 C7 C5 C11 C13 C15 C38 C3 C29 C29 C29 C29 C29 C22 C26 C19 C12 C10 C35 C33 C10 C12 C12 C10 C6 C6 C19 C12 C10 C6 C19 C12 C10 C6 C6 C19 C12 C12 C10 C6 C6 C19 C12 C12 C10 C6 C6 C19 C12 C12 C10 C6 C6 C19 C12 C12 C10 C6 C6 C19 C12 C12 C10 C6 C5 C11 C12 C12 C10 C6 C5 C11 C12 C12 C12 C10 C6 C5 C11 C12 C12 C12 C12 C12 C12 C12 C12 C12	120.8(3) 123.5(3) 33. Angle/ $^{\circ}$ -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5) -154.4(3) 177.5(4) -178.6(5) 2.7(7) -0.5(7) 0.3(6) 0.2(6) 0.4(6) -0.8(5) 51.4(3) 56.3(3) 179.1(4) 57.6(3) 162.5(2) -177.3(3) 177.1(3) 177.1(3)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 C3 Foresion B P1 P1 N7 N7 N7 C1 C1 C17 C17 C17 C17 C17 C17 C17 C17	1 3 m Angl C C32 C25 C18 C11 C7 C7 C2 C6 C6 C12 C12 C16 C33 C33 C14 C4 C10 C8 C28 C30 C21 C12 C16 C33 C12 C12 C16 C32 C12 C12 C12 C16 C33 C33 C14 C4 C10 C32 C25 C18 C12 C12 C12 C12 C12 C12 C12 C12	C26 C32 es for ps: D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C3 C7 C5 C11 C13 C15 C38 C3 C7 C5 C11 C13 C15 C38 C3 C29 C29 C29 C29 C29 C22 C26 C19 C12 C10 C6 C3 C7 C5 C11 C13 C15 C3 C3 C6 C19 C12 C12 C10 C6 C6 C19 C12 C12 C10 C6 C6 C19 C12 C12 C10 C6 C6 C19 C12 C12 C10 C6 C6 C19 C12 C12 C10 C6 C6 C19 C12 C12 C10 C6 C6 C3 C7 C5 C11 C12 C12 C10 C6 C5 C11 C13 C12 C10 C6 C5 C11 C12 C12 C12 C10 C6 C5 C11 C13 C12 C12 C10 C6 C5 C11 C13 C15 C5 C11 C13 C15 C5 C11 C13 C15 C5 C11 C13 C15 C3 C7 C5 C11 C13 C15 C3 C7 C5 C11 C13 C15 C3 C7 C5 C11 C13 C15 C3 C7 C5 C11 C13 C15 C5 C11 C13 C15 C5 C11 C13 C15 C5 C11 C13 C5 C7 C5 C9 C9 C29 C29 C29 C29 C22 C26 C19 C22 C26 C19 C29 C29 C29 C22 C26 C19 C22 C26 C19 C29 C29 C22 C26 C19 C22 C26 C19 C29 C29 C22 C26 C19 C29 C29 C29 C29 C29 C29 C22 C26 C19 C22 C26 C19 C29 C29 C29 C29 C22 C26 C19 C29 C29 C29 C29 C29 C29 C29 C29 C29 C2	120.8(3) 123.5(3) 33. Angle/° -63.9(3) -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5) -154.4(3) 177.5(4) -178.6(5) 2.7(7) -0.5(7) 0.3(6) 0.2(6) 0.4(6) -0.8(5) 51.4(3) 56.3(3) 179.1(4) 57.6(3) 162.5(2) -177.3(3) 177.1(3) 179.9(4) -0.6(2)
C30 C38 Table 6 A Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C3 C3 C3 Foresion B P1 P1 N7 N7 N7 C1 C17 C17 C17 C17 C17 C17 C17 C17 C17	1 3 m Angl C C32 C25 C18 C11 C7 C7 C2 C6 C6 C12 C12 C16 C33 C14 C4 C10 C8 C28 C30 C21 C12 C16 C33 C12 C16 C33 C12 C16 C32 C12 C12 C16 C33 C33 C14 C4 C10 C8 C23 C12 C16 C33 C33 C14 C4 C10 C33 C33 C14 C4 C10 C33 C33 C14 C4 C10 C33 C33 C14 C4 C10 C33 C33 C14 C4 C10 C33 C33 C14 C33 C33 C14 C33 C33 C14 C33 C33 C14 C33 C33 C14 C33 C33 C14 C33 C33 C14 C33 C33 C25 C18 C33 C14 C33 C33 C14 C33 C33 C25 C33 C33 C14 C33 C33 C33 C33 C33 C33 C33 C3	C26 C32 es for ps D C33 C26 C19 C12 C10 C6 C8 C3 C7 C5 C11 C13 C15 C38 C34 C13 C5 C9 C9 C9 C29 C29 C29 C29 C29 C29 C22 C22	120.8(3) 123.5(3) 33. Angle/ $-63.9(3)$ -177.2(2) -77.4(2) 8.3(4) -172.1(3) -9.6(5) 171.0(3) -178.3(4) 1.2(5) -179.9(4) -0.7(4) -179.2(3) 175.9(3) 24.6(5) -154.4(3) 177.5(4) -178.6(5) 2.7(7) -0.5(7) 0.3(6) 0.2(6) 0.4(6) -0.8(5) 51.4(3) 56.3(3) 179.1(4) 57.6(3) 162.5(2) -177.3(3) 177.1(3) 179.9(4) -0.6(8) 5.3(6)

	C 1 C 1 C 2 C 2 C 2 C 1 F1 F1 C 2 C 2 C 2 C 1 F1 F1 C 2 C 2 C 2 C 1 F1 F1 C 2 C 2 C 2 C 2 F1 F1 C 2 C 2 C 2 C 2 C 2 F1 F1 C 2 C 2 C 2 C 2 C 2 F1 F1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	7 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} C32\\ C12\\ C12\\ C12\\ C2\\ C21\\ C16\\ C15\\ C15\\ C15\\ C34\\ C30\\ C24\\ C6\\ C6\\ C6\\ C11\\ C11\\ C36\\ C7\\ C7\\ C22\\ C35\\ C23\\ C13\\ C3\\ C3\\ C3\\ C3\\ C3\\ C3\\ C3\\ C3\\ C10\\ C5\\ C9\\ C8\\ C14\\ C4\\ \end{array}$	C32 C11 C17 C11 C1 C20 C17 C16 C14 C16 C33 C29 C19 C7 C1 C7 C12 C35 C6 C8 C6 C21 C36 C24 C12 C36 C24 C12 C2 C4 C12 C2 C4 C12 C36 C24 C12 C36 C24 C12 C36 C24 C12 C36 C24 C12 C36 C24 C12 C36 C24 C12 C15 C12 C15 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C17 C16 C19 C7 C12 C10 C12 C12 C10 C12 C12 C12 C12 C12 C10 C12 C12 C10 C12 C12 C10 C12 C12 C10 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	117.0(3) 115.8(4) 122.3(5) 121.8(4) 120.6(5) 120.5(5) 122.0(4) 119.5(4) 119.5(4) 120.7(4) 120.3(3) 120.2(4) 116.3(4) 122.3(6) 121.4(5) 114.4(3) 118.1(5) 127.5(5) 119.9(4) 120.2(4) 123.5(4) 117.1(6) 129.3(5) 119.8(4) 120.2(4) 120.5(5) 121.6(5) 121.5(5) 119.2(6) 117.0(4) 118.3(5)
$\begin{array}{c} \mathbf{A} \\ \mathbf{C37} \\ \mathbf{C37} \\ \mathbf{C18} \\ \mathbf{C18} \\ \mathbf{C18} \\ \mathbf{C27} \\ \mathbf{C27} \\ \mathbf{C27} \\ \mathbf{C27} \\ \mathbf{C27} \\ \mathbf{C38} \\ \mathbf{C38} \\ \mathbf{C31} \\ \mathbf{C31} \\ \mathbf{C31} \\ \mathbf{C31} \\ \mathbf{C31} \\ \mathbf{C33} \\ \mathbf{C12} \\ \mathbf{C12} \\ \mathbf{C12} \\ \mathbf{C22} \\ \mathbf{C2} \\ \mathbf{C16} \\ \mathbf{C16} \\ \mathbf{C16} \\ \mathbf{C24} \\ \mathbf{C6} \\ \mathbf{C6} \\ \mathbf{C6} \\ \mathbf{C11} \\ \mathbf{C11} \\ \mathbf{C11} \\ \mathbf{C11} \end{array}$	B C38 C36 P1 P1 C19 C26 C26 C28 C29 C37 C33 C26 C26 C34 C17 C11 C13 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	$\begin{array}{c} {\rm C} \\ {\rm C} \\$	D C34 C34 C33 C26 C21 C23 P1 C30 C30 C30 C31 C35 C35 C15 C9 C15 C7 C5 C5 C5 C5 C24 C11 C13 C13 C13 C13 C13 C26 C15 C7 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5	Angle/° 0.6(6) -0.2(8) 167.4(3) -52.5(3) 178.6(3) -178.4(3) -93.4(4) -0.3(5) -0.5(6) 0.2(6) 0.2(6) 0.2(6) 0.1(6) 89.3(4) 0.1(5) -0.2(7) 0.6(5) -177.8(4) -0.1(7) -176.2(4) 2.7(6) 1.9(8) -0.8(6) 175.5(3) -2.9(6) -2.3(7) -2.0(5) -122.1(3) -1.6(7) -179.8(5) -0.8(8) -179.3(4) 1.3(6) -175.6(4) -2.0(8)	

Atom C38

C34

Atom C33

C33

Atom C34

C32

Angle/° 118.9(3)

117.6(3)

C1	C6	C5	C4	-1.5(7)			C36	C37	C38	C33	-1.0(6)
C17	C12	C11	N7	-4.8(5)			C7	N7	C11	C12	178.0(4)
C17	C12	C11	C10	175.7(4)			C7	N7	C11	C10	-2.4(6)
C17	C12	C13	C14	2.7(7)			C7	C6	C5	C4	177.3(5)
C17	C16	C15	F15	-177.8(4)			C13	C12	C11	N7	173.7(4)
C17	C16	C15	C14	2.0(7)			C13	C12	C11	C10	-5.9(7)
C20	C19	C18	P1	57.3(4)			C10	C9	C8	C7	0.9(8)
C20	C19	C24	C23	2.2(5)			C5	C6	C7	N7	-173.6(4
C20	C21	C22	C23	1.0(6)			C5	C6	C7	C8	5.7(7)
C37	C38	C33	C32	-178.4(3)							. ,
Tabla	7 Hydr	ogon At	om Cool	dinates (Å v104)	and Isotronic I	Jisnlacom	ont Por	amotors	(Ų√10³) for ne	33
Atom	/ Hyur	ogen Au	x	uniates (AxIV)	v v	Jispiacein		ameters	U(eq) IOI [ps.)	
H32A	68	351		3966	5	8457	~		43	V	
H32B	65	528		5286		7496			43		
H25A	69	980		4344		4617			43		
H25B	56	587		4518		5589			43		
H20	95	580		1753		7606			55		
H37	29	904		3589		8407			54		
H18A	94	103		3623		5498			43		
H18B	85	585		4946		5820			43		
H27	45	508		6521		6136			41		
H28	40	077		8674		5550			47		
H38	50	066		3182		7742			47		
H29	55	515		9519		4061			52		
H31	78	359		6027		3768			44		
H2	70	003		2150		9428			68		
H21	10	0531		1093		9202			68		
H16	89	992		3200		4083			51		
H34	46	538		6140		8822			57		
H30	74	416		8182		3176			53		
H24	93	307		5312		7154			57		
H36	16	527		5238		9315			66		
H22	10	0897		2521		9751			76		
H35	25	501		6517		9512			75		
H23	10	0270		4619		8742			70		
H13	89	908		-253		3364			75		
H10	80	075		-1552		4897			85		
H5	63	345		-1566		10103			86		
H9	71	197		-2728		6626			94		
H8	66	543		-2238		8459			92		
H14	98	304		1112		1791			80		
H4	59	988		-813		11710			90		

) 4)

4)) (4)

Refinement model description

would like to have additional features.

Number of restraints - 90, number of constraints - unknown. Details: 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups 2. Uiso/Uaniso restraints and constraints C2 \approx C3 \approx F3 \approx C4 \approx C5 \approx C6 \approx C7 \approx C8 \approx C9 \approx C10 \approx C11 \approx C12 \approx C13 \approx C14 \approx C15 \approx F15: within 1.7A with sigma of 0.004 and sigma for terminal atoms of 0.008 3.a Secondary CH2 refined with riding coordinates: C32(H32A,H32B), C25(H25A,H25B), C18(H18A,H18B) C32(H32A,H32B), C23(H32A,H23B), C16(H16A,H16B) 3.b Aromatic/amide H refined with riding coordinates: C20(H20), C37(H37), C27(H27), C28(H28), C38(H38), C29(H29), C31(H31), C2(H2), C21(H21), C16(H16), C34(H34), C30(H30), C24(H24), C36(H36), C22(H22), C35(H35), C23(H23), C13(H13), C10(H10), C5(H5), C9(H9), C8(H8), C14(H14), C4(H4) This report has been created with Olex2, compiled on 2016.02.19 svn.r3266 for OlexSys. Please <u>let us know</u> if there are any errors or if you would like to have additional features

Me-1 ps32

Figure SI2 solid state structure of the complex in ps32 with only key atoms labeled and thermal ellipsoids drawn at 50% probability level

Crystal structure determination of [ps32]

The asymmetric unit contains the complex and a lot of surrounding diffuse electron density. This was modeled as very disordered chloroform solvent. In one position, a molecule of chloroform was modeled over three very closely related positions. The occupancy was originally linked to free variables but the occupancy of the components was fixed at 80:10:10 based on thermal parameters. Only the major component was refined anisotropically.

The other electron density was also modeled a chloroform disordered over two closely related positions behind a PART -1 and PART -2 instruction as it straddled the 2 fold axis. Both these components were refined isotropically at 40% occupancy.

Many DFIX, SIMU and DELU restraints were used to give these disordered components reasonable bond lengths angles and thermal parameters.

The methyl substituent on the pyridine ligand was also disordered over two positions (as the ligand is symmetrical, it could end up on either of the 4-fluorophenyl rings). The occupancy of the two positions was linked to a free variable which refined to 77:23. The minor component was refined isotropically.

The Pt-P bond is rather bent compared to the rest of the Pt bonds. As a measure of this, the distance the phosphorus P1 lies out of a mean plane through the other atoms (C1, N7, C13 and Pt1) is shown below Least-squares planes (x,y,z in crystal coordinates) and deviations from them

Least squares planes (x,y,z in erystal coordinates) and deviations from

- (* indicates atom used to define plane)
- 14.2403 (0.0053) x + 0.7582 (0.0203) y + 2.0960 (0.0462) z = 10.2214 (0.0262)
- * 0.0825 (0.0016) Pt1
- * -0.0502 (0.0010) C1
- * 0.0176 (0.0004) N7
- * -0.0499 (0.0010) C17 0.5416 (0.0047) P1

Rms deviation of fitted atoms = 0.0550

Additionally, the bond angle to the trans N ligand is shown below N7 - Pt1 - P1 169.79 (0.08) degrees

Experimental

Single crystals of $C_{40,4}H_{33,2}Cl_{4,2}F_2$ NPPt [ps32] were grown from chloroform. A suitable crystal was selected and mounted on a glass fibre

with Fromblin oil and placed on an Xcalibur Gemini diffractometer with a Ruby CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

4 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

5 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

6 Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal Data for $C_{40.4}H_{33.2}CI_{4.2}F_2$ NPPt (M =945.63 g/mol): monoclinic, space group I2/a (no. 15), a = 14.61871(18) Å, b = 17.9381(3) Å, c = 28.6293(4) Å, $\beta = 98.6391(12)^\circ$, V = 7422.36(19) Å³, Z = 8, T = 150(2) K, μ (MoK α) = 4.167 mm⁻¹, Dcalc = 1.692 g/cm³, 113385 reflections measured (4.878° $\leq 2\Theta \leq 64.756^\circ$), 12768 unique ($R_{int} = 0.0573$, $R_{sigma} = 0.0396$) which were used in all calculations. The final R_1 was 0.0393 (I > 2 σ (I)) and wR_2 was 0.0958 (all data).

Table 1 Crystal data and structure refinement for ps32.

Identification code	ps32
Empirical formula	C _{40.4} H _{33.2} Cl _{4.2} F ₂ NPPt
Formula weight	945.63
Temperature/K	150(2)
Crystal system	monoclinic
Space group	I2/a
a/Å	14.61871(18)
b/Å	17.9381(3)
c/Å	28.6293(4)
α/°	90
β/°	98.6391(12)
γ/°	90
Volume/Å ³	7422.36(19)
Z	8
$\varrho_{calc}g/cm^3$	1.692
µ/mm ⁻¹	4.167
F(000)	3720.0
Crystal size/mm ³	$0.567 \times 0.107 \times 0.05$ yellow block
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.878 to 64.756
Index ranges	$-22 \le h \le 21, -26 \le k \le 26, -42 \le 1 \le 40$
Reflections collected	113385
Independent reflections	12768 [$R_{int} = 0.0573$, $R_{sigma} = 0.0396$]
Data/restraints/parameters	12768/22/503
Goodness-of-fit on F ²	1.041
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0393$, $wR_2 = 0.0870$
Final R indexes [all data]	$R_1 = 0.0646, wR_2 = 0.0958$
Largest diff. peak/hole / e Å ⁻³	1.70/-1.27

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for ps32. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{II} tensor.

1/5 01 01	the trace of the orthogonan	seu U _{IJ} tensor.		
Atom	x	у	z	U(eq)
Pt1	6047.6(2)	5582.2(2)	6052.3(2)	23.90(4)
P1	6256.7(6)	5525.3(5)	6843.1(3)	22.83(17)
C1	6035(2)	4455(2)	5910.1(13)	28.0(7)
C2	5878(2)	3846(2)	6195.7(13)	29.9(8)
C3	5879(2)	3136(2)	6021.8(14)	32.8(8)
F3	5754.9(17)	2553.3(14)	6316.1(9)	41.8(6)
C4	6018(2)	2964(2)	5568.2(15)	36.0(9)
C5	6141(2)	3547(2)	5266.4(14)	34.2(9)
C5A	6281(4)	3321(4)	4767(2)	45.8(17)
C6	6146(2)	4289(2)	5430.8(13)	30.8(8)
N7	6104.6(19)	5601.4(18)	5348.6(10)	27.4(6)
C7	6231(2)	4947(2)	5133.2(13)	31.7(8)
C8	6440(3)	4976(3)	4671.0(14)	44.1(11)
C9	6509(3)	5652(3)	4455.9(14)	45.6(12)
C10	6386(3)	6311(3)	4687.4(14)	40.1(10)
C11	6185(2)	6278(2)	5149.9(12)	30.9(8)
C12	6037(2)	6906(2)	5458.0(13)	32.1(8)
C13	5959(3)	7634(3)	5291.5(15)	41(1)
C13A	6127(16)	7963(9)	4822(9)	72(8)
C14	5715(3)	8205(3)	5579.5(16)	45.3(10)
F15	5296(2)	8567.5(15)	6304.8(10)	58.7(8)
C15	5558(3)	8018(3)	6027.5(15)	41.1(9)
C16	5646(3)	7300(2)	6201.9(14)	36.6(9)
C17	5913(2)	6717(2)	5928.2(13)	29.6(7)
C18	7133(2)	4823(2)	7068.6(13)	29.5(7)
C19	7267(3)	4621(2)	7585.2(13)	29.8(7)
C20	6649(3)	4147(2)	7764.9(15)	37.9(9)
C21	6811(4)	3917(3)	8230.1(18)	51.3(12)
C22	7593(5)	4150(4)	8526(2)	66.5(16)
C23	8199(4)	4631(3)	8356.3(19)	59.7(14)

C24	8040(3)	4867(3)	7886.6(16)	40.6(9)
C25	6692(2)	6336(2)	7200.3(12)	26.6(7)
C26	7675(2)	6560(2)	7160.1(12)	25.4(7)
C27	8317(2)	6658(2)	7567.6(13)	29.7(7)
C28	9223(3)	6850(2)	7537.5(14)	34.4(8)
C29	9511(3)	6953(2)	7102.6(14)	34.2(8)
C30	8877(3)	6863(3)	6696.0(14)	37.9(9)
C31	7968(3)	6673(2)	6725.0(13)	34.3(8)
C32	5204(2)	5304(2)	7093.6(12)	26.1(7)
C33	4473(2)	5898(2)	6982.1(13)	25.1(7)
C34	4273(2)	6391(2)	7327.1(15)	34.6(8)
C35	3584(3)	6928(2)	7219.0(19)	46.1(11)
C36	3096(3)	6977(2)	6771.0(19)	45.4(11)
C37	3296(3)	6491(3)	6424.1(17)	40.8(10)
C38	3978(2)	5962(2)	6530.2(14)	32.5(8)
C1E	7596(10)	4501(9)	10167(6)	99(5)
Cl1A	5944(2)	5560.2(18)	8496.9(10)	110.2(10)
C1F	7093(12)	3800(15)	10051(8)	114(6)
C1D	6500(20)	5628(19)	8781(12)	23(6)
Cl1B	5602(9)	6122(9)	8474(5)	58(3)
Cl1D	7852(8)	5096(6)	9743(4)	102(3)
C1B	5787(7)	6265(5)	8855(4)	91(3)
Cl1E	6882(8)	3245(7)	9567(4)	105(3)
C1C	6281(9)	5845(13)	8978(7)	49(11)
Cl1C	6050(15)	6415(12)	8505(8)	89(5)
Cl2A	6920.3(17)	6618.1(17)	9134.1(10)	101.6(8)
Cl2E	6285(10)	4416(8)	10185(5)	124(5)
Cl2B	7422(8)	6049(8)	9002(5)	57(3)
Cl2C	7375(16)	5765(13)	9240(9)	99(6)
Cl2D	8343(10)	3768(10)	10255(7)	138(7)
Cl3D	6498(10)	4163(10)	10041(7)	135(5)
C13B	5993(14)	5030(10)	9220(8)	100(6)
C13E	8229(13)	3994(18)	10236(12)	246(17)
Cl3C	5739(16)	5177(13)	8966(9)	97(6)
Cl3A	5218.9(17)	5945.2(18)	9333.5(8)	96.6(8)

Table 3 Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for ps32. The Anisotropic displacement factor exponent takes the form: - $2\pi^2[h^2a^{*2}U_{11}+2hka^{*b}U_{12}+...]$.

2n [n a	U_{11} +211Ka U U_{12} +	····]·				
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Pt1	18.05(6)	34.31(8)	19.45(6)	-2.63(6)	3.17(4)	-1.68(5)
P1	19.3(4)	28.9(5)	20.4(4)	-2.4(3)	3.7(3)	0.2(3)
C1	17.6(14)	40(2)	26.0(15)	-7.0(15)	2.0(12)	0.4(14)
C2	24.4(16)	37(2)	29.2(17)	-8.0(15)	5.8(13)	-2.1(14)
C3	19.9(15)	40(2)	39(2)	-4.3(17)	4.9(14)	-0.2(14)
F3	40.3(13)	35.9(13)	51.4(15)	-5.1(11)	14.2(11)	-2(1)
C4	24.5(16)	41(2)	42(2)	-17.4(18)	3.2(15)	0.0(15)
C5	22.8(16)	50(2)	29.0(18)	-12.6(17)	1.7(14)	-0.9(16)
C5A	41(3)	62(4)	36(3)	-22(3)	10(2)	-5(3)
C6	18.3(14)	47(2)	25.6(17)	-9.8(15)	0.2(12)	-0.7(14)
N7	17.0(12)	45.2(18)	20.1(13)	-3.8(13)	3.4(10)	-3.5(12)
C7	17.2(14)	52(2)	25.1(17)	-6.7(16)	0.8(12)	-0.8(15)
C8	31.0(19)	76(3)	25.4(19)	-11(2)	3.8(15)	5(2)
C9	33(2)	84(4)	20.1(17)	1(2)	6.3(15)	1(2)
C10	26.8(18)	69(3)	24.8(18)	3.9(19)	3.1(14)	-7.4(19)
C11	17.1(14)	51(2)	23.5(16)	2.9(16)	0.0(12)	-5.1(15)
C12	24.0(16)	44(2)	26.5(17)	4.3(16)	-1.2(13)	-6.8(15)
C13	39(2)	49(3)	34(2)	10.5(19)	4.2(17)	-5.7(19)
C14	47(2)	44(3)	42(2)	11(2)	0.7(19)	-4(2)
F15	90(2)	38.4(15)	47.9(16)	0.8(12)	11.0(15)	11.8(15)
C15	46(2)	39(2)	37(2)	-0.3(18)	3.6(18)	5.5(19)
C16	37(2)	42(2)	30.4(19)	2.7(17)	2.7(16)	0.0(17)
C17	25.2(16)	38(2)	24.6(16)	0.8(15)	-1.6(13)	-7.3(15)
C18	23.9(16)	34(2)	29.6(18)	-5.6(15)	2.4(13)	4.7(14)
C19	31.8(18)	26.4(18)	30.1(18)	-4.6(14)	0.7(14)	6.9(14)
C20	41(2)	30(2)	42(2)	-1.3(17)	3.4(18)	1.5(17)
C21	67(3)	37(2)	51(3)	12(2)	14(2)	9(2)
C22	96(5)	61(3)	40(3)	14(3)	0(3)	17(3)
C23	60(3)	66(3)	44(3)	-1(3)	-22(2)	13(3)
C24	36(2)	39(2)	43(2)	-3.8(18)	-7.5(17)	3.2(17)
C25	22.6(15)	34.3(19)	23.7(16)	-5.6(14)	5.4(12)	-0.7(14)
C26	24.2(15)	27.4(18)	24.4(16)	-4.5(13)	3.5(12)	-1.1(13)
C27	31.5(17)	31.4(19)	25.6(17)	-8.7(15)	2.5(14)	0.3(15)
C28	28.1(17)	38(2)	33.8(19)	-9.8(16)	-5.1(14)	-2.3(15)
C29	24.7(16)	37(2)	40(2)	-9.1(16)	2.9(15)	-4.2(15)
C30	29.6(18)	53(3)	31.2(19)	-1.6(18)	4.4(15)	-7.8(17)
C31	26.7(17)	49(2)	25.8(17)	-2.3(17)	-0.4(13)	-8.8(16)
C32	22.7(15)	32.6(18)	24.1(16)	1.5(14)	7.4(12)	-0.6(13)
C33	18.9(14)	27.6(17)	29.8(17)	-1.2(14)	6.7(12)	-3.2(13)

C34 C35 C36 C37 C38 C11A C1B C12A C13A	23.4(16 28.2(19 23.5(17 20.8(16 22.1(16 105(2) 109(7) 78.3(14 85.4(15) 38) 3) 3) 5) 5) 4 (1 6 9) 1 1) 1 4	8(2) 7(2) 1(2) 2(3) 6(2) 40(3) 9(6) 15(2) 41(2)	42(2) 74(3) 82(3) 49(2) 29.9(18) 81.7(16) 102(7) 108.6(19) 62.7(12)	-12. -25(4(2) 14(2 2.3(-50. -7(5 -27. -38.	0(17) 2)) 17) 2(16)) 3(16) 3(14)		5.5(15) 11(2) 3(2) 5.3(16) 5.2(14) 4.4(14) 40(6) 5.2(13) 3.1(11)	-4.9(15) -3.3(16) 0.6(15) 2.0(16) 1.9(15) 22.0(17) 29(5) -15.4(14) -15.8(15)
Table 4 E Atom Pt1 Pt1 Pt1 Pt1	Sond Lengths Atom P1 C1 N7	for ps32. Length/Å 2.2409(2.062(4 2.029(3)	9)))			Atom C20 C21 C22	Atom C21 C22 C23	Length/Å 1.380(6) 1.381(8) 1.376(9)	
Pt1 P1 P1 P1 C1	C17 C18 C25 C32 C2	2.071(4 1.842(4 1.835(4 1.837(3 1.405(6))))			C23 C25 C26 C26 C26 C27	C24 C26 C27 C31 C28	1.396(7) 1.514(5) 1.394(5) 1.391(5) 1.384(5)	
C1 C2 C3 C3 C4	C6 C3 F3 C4 C5	1.437(5 1.367(6 1.372(5 1.379(5 1.385(6))))			C28 C29 C30 C32 C33	C29 C30 C31 C33 C34	1.386(6) 1.384(5) 1.386(5) 1.508(5) 1.389(5)	
C5 C5 C6 N7 N7	C5A C6 C7 C7 C11 C8	1.529(6 1.411(6 1.472(6 1.351(5 1.353(5))))			C33 C34 C35 C36 C37 C1F	C38 C35 C36 C37 C38	1.389(5) 1.395(6) 1.373(7) 1.384(7) 1.377(6)	
C7 C8 C9 C10 C11 C12	C9 C10 C11 C12 C13	1.404(5 1.370(7 1.381(7 1.400(5 1.466(6 1.390(6))))			C1E C1E C1E C1A C1F C1F	CI2D CI3D C1B C1E CI2E	1.699(4) 1.702(4) 1.666(9) 1.698(4) 1.702(4)	
C12 C13 C13 C14 F15	C17 C13A C14 C15 C15	1.426(5 1.52(3) 1.395(7 1.378(6 1.357(5)))			C1F C1D C1D C1D C1D C1B	CI3E CI1C CI2C CI3C CI2C	1.701(4) 1.70(4) 1.71(4) 1.53(4) 1.699(4)	
C15 C16 C18 C19 C19	C16 C17 C19 C20 C24	1.379(6 1.397(6 1.506(5 1.394(6 1.387(6))))			C1B C1B C1C C1C C1C	Cl2A Cl3A Cl2B Cl3B	1.840(11) 1.799(10) 1.699(4) 1.696(4)	
Table 5 B	Bond Angles	for ps32.				• -			
Atom C1	Atom Pt1	Atom P1	Angle/ 98.67(11)			Ato F15	m Ato C1:	5 C16	Angle/ 119.1(4)
C1	Pt1	C17	158.79(15)			C15	C10	6 C17	120.9(4)
N7 N7	Pt1 Pt1	PI C1	109.79(8) 79.69(14)			C12 C16	C1 C1	7 Pt1 7 Pt1	111.9(3) 131.9(3)
N7	Pt1	C17	80.22(14)			C16	C1	7 C12	116.0(4)
C17	Pt1	P1	102.30(10)			C19	C1	8 P1	119.3(3)
C18 C25	PI D1	Pt1 Dr1	111.55(12) 120.67(12)			C20		P = C18	120.9(4)
C25	P1	C18	120.07(12) 100.49(17)			C24	C19	9 C20	120.5(4) 118.5(4)
C25	P1	C32	101.19(16)			C21	C20	C19	120.8(4)
C32	P1	Pt1	114.16(12)			C20	C2	1 C22	120.4(5)
C32	P1	C18	107.14(17)			C23	C22	2 C21	119.5(5)
C_2		Pt1 C6	130.2(3)			C22	C2.	5 C24	120.4(5) 120.4(5)
C2 C6	C1	Pt1	113.2(3)			C26	C2:	5 P1	120.4(3) 114.9(2)
C3	C2	C1	120.2(4)			C27	C20	6 C25	119.8(3)
C2	C3	F3	118.6(3)			C31	C20	6 C25	122.0(3)
C2 E2	C3 C2	C4	124.0(4)			C31	C20	5 C27	118.2(3)
гэ С3	C4	C5	118.0(4)			C28	C2	, C20 8 C29	120.0(3) 120.8(3)
C4	Č5	C5A	115.6(4)			C30	C22	9 C28	119.0(4)
C4	C5	C6	119.9(3)			C29	C30	C31	120.3(4)
C6	C5	C5A	124.5(4)			C30	C3	1 C26	121.1(3)
C1 C5	C6	C7	114.7(3)			C33	C32	2 P1	111.9(2)
C5	C6	C1 C7	121.2(4)			C34	C3.	3 C32	118 3/AN
C7	N7	Pt1	117.8(3)			C34	C3	3 C32	120.6(3)
C7	N7	C11	124.1(3)			C33	C34	4 C35	120.3(4)
C11	N7	Pt1	116.9(2)			C36	C3:	5 C34	120.5(4)

N7	C7	C6	113.8(3)		C35	C36	C37	119.6(4)
N7	C7	C8	117.5(4)		C38	C37	C36	120.0(4)
C8	C7	C6	128.7(4)		C37	C38	C33	121.4(4)
C9	C8	C7	119.9(4)		Cl1D	C1E	Cl2D	112.7(10)
C8	C9	C10	121.2(4)		Cl1D	C1E	C13D	111.9(9)
C9	C10	C11	118.6(4)		Cl2D	C1E	C13D	108.7(9)
N7	C11	C10	118.7(4)		Cl1E	C1F	Cl2E	121.1(10)
N7	C11	C12	113.9(3)		Cl1E	C1F	C13E	115.0(11)
C10	C11	C12	127.4(4)		C13E	C1F	Cl2E	118.4(11)
C13	C12	C11	121.8(4)		Cl1C	C1D	Cl2C	115(2)
C13	C12	C17	122.1(4)		C13C	C1D	Cl1C	111(2)
C17	C12	C11	115.9(4)		C13C	C1D	Cl2C	108(2)
C12	C13	C13A	130.6(7)		Cl1A	C1B	Cl2A	109.3(5)
C12	C13	C14	120.2(4)		Cl1A	C1B	C13A	110.4(6)
C14	C13	C13A	109.1(7)		C13A	C1B	Cl2A	105.6(6)
C15	C14	C13	117.6(4)		Cl1B	C1C	Cl2B	114.6(9)
C14	C15	C16	123.0(4)		C13B	C1C	Cl1B	116.7(11)
F15	C15	C14	117.9(4)		Cl3B	C1C	Cl2B	118.2(10)
Tabla 6 H	vdrogon At	m Coordin	atos (Å v104) and	Isotronic Displacement 1	Paramotors (Å ² ×1)	³) for ne	37	
A tom	yurogen Au	r Coorain	ates (AXIU) and	isotropic Displacement i	rameters (A XI)	o) tor ps (ea)	52.	
H2	5770	~	3927	6511	2 O(36	5		
H4	6029		2461	5466	43	}		
H5	6222		3447	4949	41			
H5AA	5817		3569	4536	69)		
H5AB	6215		2779	4732	69)		
H5AC	6902		3470	4713	69)		
H8	6534		4528	4508	53	3		
H9	6645		5667	4142	55	, ,		
H10	6436		6778	4536	48	, }		
H13	6072		7743	4980	40)		
H13A	6007		8500	4820	10	,) 8		
H13B	6771		7874	4779	10)8		
H13C	5712		7725	4564	10)8		
H14	5659		8706	5471	54			
H16	5523		7201	6512	44	ļ		
H18A	6980		4359	6886	35	5		
H18B	7736		4999	6994	35	5		
H20	6110		3980	7565	45	5		
H21	6381		3596	8348	62			
H22	7711		3980	8843	80)		
H23	8730		4803	8561	72	2		
H24	8464		5197	7773	49)		
H25A	6280		6765	7105	32			
H25B	6654		6226	7536	32	2		
H27	8131		6592	7869	36	5		
H28	9652		6913	7819	41			
H29	10135		7083	7084	41	L		
H30	9065		6933	6396	45	5		
H31	7538		6619	6443	41			
H32A	4953		4821	6965	31	L		
H32B	5361		5252	7441	31	L		
H34	4607		6362	7638	41	L		
H35	3450		7263	7457	55	5		
H36	2625		7341	6699	54	ł		
H37	2964		6524	6113	49)		
H38	4112		5633	6289	39)		
H1E	7644		4785	10470	11	9		
H1D	6745		5315	8540	28	3		
H1B	5420		6672	8676	10)9		
H1C	6098		6212	9209	59)		
Table 7 A	tomic Occup	pancy for pa	\$32.	0	• -		0	
Atom	Осси	pancy	Atom	Occupancy	Atom		Occupancy	
H5	0.231(11)	C5A	0.769(11)	H5AA		0.769(11)	
HOAB	0.769(11)	H5AC	U./69(11)	HI3		U./69(11)	
CI3A	0.231(11)	H13A	0.231(11)	H13B		0.231(11)	
HI3C	0.231(11)	CIE	0.2	HIE		0.2	
CIIA	0.8		CIF	0.2	CID		0.1	
HID	0.1		CIIB	0.1	CIID		0.2	
CIB	0.8		HIR	0.8	CILE		0.2	
CIC	0.1		HIC	0.1	CIIC		0.1	
CI2A CI2C	0.8		CI2E	0.2	CI2B		0.2	
CI2C	0.1		CI2D CI2E	0.2	CIED		0.2	
CISE	0.1		CISE	0.2	CISC		0.1	
CIJA	v.o							

Refinement model description

```
Number of restraints - 22, number of constraints - unknown.
Details:
1. Fixed Uiso
 At 1.2 times of:
  All C(H) groups, All C(H,H) groups
 At 1.5 times of:
 All C(H,H,H) groups
2. Restrained distances
 C1C-C11B = C1C-C12B = C1C-C13B
 1.7 with sigma of 0.004
 Cl1B-Cl2B = Cl2B-Cl3B = Cl3B-Cl1B
 2.9 with sigma of 0.02
 C1E-Cl1D = C1E-Cl2D = C1E-Cl3D
 1.7 with sigma of 0.004
 Cl1D-Cl2D = Cl2D-Cl3D = Cl3D-Cl1D
 2.9 with sigma of 0.02
 C1F-C11E = C1F-C12E = C1F-C13E
 1.7 with sigma of 0.004
 CllE-Cl2E = Cl2E-Cl3E = Cl3E-Cl1E
 2.9 with sigma of 0.02
 H10-H13B
 2.1 with sigma of 0.02
 H10-H13C
 2.1 with sigma of 0.02
3. Rigid bond restraints
 C1F, Cl1E, Cl2E, Cl3E
 with sigma for 1-2 distances of 0.002 and sigma for 1-3 distances of 0.002
4. Uiso/Uaniso restraints and constraints
ClE \approx Cl1D \approx Cl2D \approx Cl3D: within 1.7A with sigma of 0.002 and sigma
for terminal atoms of 0.004
C1F \approx Cl1E \approx Cl2E \approx Cl3E: within 1.7A with sigma of 0.003 and sigma
for terminal atoms of 0.006
5. Others
 Sof(H5)=Sof(C13A)=Sof(H13A)=Sof(H13B)=Sof(H13C)=1-FVAR(1)
 Sof(C5A)=Sof(H5AA)=Sof(H5AB)=Sof(H5AC)=Sof(H13)=FVAR(1)
 Fixed Sof: ClE(0.2) H1E(0.2) Cl1A(0.8) C1F(0.2) ClD(0.1) H1D(0.1) Cl1B(0.1) Cl1D(0.2) C1B(0.8) H1B(0.8) Cl1E(0.2) C1C(0.1) H1C(0.1) Cl1C(0.1) Cl2A(0.8)
 Cl2E(0.2) Cl2B(0.1) Cl2C(0.1) Cl2D(0.2) Cl3D(0.2) Cl3B(0.1) Cl3E(0.2)
 Cl3C(0.1) Cl3A(0.8)
6.a Ternary CH refined with riding coordinates:
 C1E(H1E), C1D(H1D), C1B(H1B), C1C(H1C)
6.b Secondary CH2 refined with riding coordinates:
 C18(H18A,H18B), C25(H25A,H25B), C32(H32A,H32B)
6.c Me refined with riding coordinates:
 C13A(H13A,H13B,H13C)
6.d Aromatic/amide H refined with riding coordinates:
 C2(H2), C4(H4), C5(H5), C8(H8), C9(H9), C10(H10), C13(H13), C14(H14), C16(H16), C20(H20), C21(H21), C22(H22), C23(H23), C24(H24), C27(H27), C28(H28),
 C29(H29), C30(H30), C31(H31), C34(H34), C35(H35), C36(H36), C37(H37), C38(H38)
6.e Idealised Me refined as rotating group:
 C5A(H5AA,H5AB,H5AC)
```

This report has been created with Olex2, compiled on 2016.02.19 svn.r3266 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

ps29new Complex 2(t)

Figure SI3 solid state structure of the complex in ps29new with thermal ellipsoids drawn at 50% probability level and only key atoms labeled.

Crystal structure determination of [ps29new]

The asymmetric unit contains the complex, there are two in the unit cell.

Shortest contacts are tabulated below

Specified	i nyarogen	i bonds (with	i esds exce	pt fixed and riding H)
D-H	HA	DA	<(DHA)	
0.95	2.95	3.780(4)	147.1	C29-H29Cl1_\$5
0.99	2.94	3.651(4)	129.4	C25-H25BCl1_\$4
0.95	2.56	3.266(4)	131.4	C36-H36F3 \$6

Lots of possible pi stacking characterized as atoms used to define mean planes through interacting pi systems, angle between interacting rings and closest atomic contact.

Pi stacking between the two non coordinated benzyl groups of the tribenzyl phosphine C19 C20 C21 C22 C23 C24 to C26 C27 C28 C29 C30 C31 Angle between mean planes 10.207 (0.105) degrees Closest atomic contact C19 - C26 3.1536 (0.0046) Angstroms

Pi stacking between one fluorophenyl ring and a symmetry related fluorophenyl ring across inversion centre C1 C2 C3 F3 C4 C5 C6 to C1_\$1 C2_\$1 C3_\$1 F3_\$1 C4_\$1 C5_\$1 C6_\$1 Angle between mean plane zero degrees (across inversion centre) Closest atomic contact C2 - C4_\$1 3.3412 (0.0052) Angstroms

Pi stacking between the fluorophenyl ring and a symmetry related fluorophenyl ring across an inversion centre C12 C13 C14 C15 C16 C17 to C12_\$2 C13_\$2 C14_\$2 C15_\$2 C16_\$2 C17_\$2 Angle between mean plane zero degrees (across inversion centre) Closest atomic contact C13 - C15_\$2 3.3731 (0.0050) Angstroms

One of the uncoordinated benzyls and a symmetry related benzyl group of another tris benzylphosphine C26 C27 C28 C29 C30 C31 to C26_\$3 C27_\$3 C28_\$3 C29_\$3 C30_\$3 C31_\$3 Angle between mean plane zero degrees (across inversion centre) Closest atomic contact C26 - C30_\$3 3.3699 (0.0050) Angstroms

To get some info of the coordinated benzyl, the angle between mean planes through di –fluorophenyl pyridine and the coordinated benzyl of tribenzyl phosphine C1 F3 C4 C6 N7 C9 C12 C14 F17 C17 to C19 C20 C21 C22 C23 C24 is 85.440 (0.092) degrees

Symmetry operators used to generate symmetry equivalent atoms discussed above were \$1 2-X,1-Y,-Z \$2 1-X,1-Y,1-Z \$3 1-X,-Y,1-Z

\$4 2-X,1-Y,1-Z \$5 -1+X,-1+Y,+Z \$6 2-X,-Y,-Z

Experimental

Single crystals of $C_{38}H_{29}ClF_2NPPt$ [ps29new] were grown from acetone in an nmr tube. A suitable crystal was selected and mounted on a Mitegen head with Fromblin oil and placed on an Xcalibur Gemini diffractometer with a Ruby CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

7 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

- 8 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 9 Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal Data for $C_{38}H_{29}ClF_2NPPt$ (*M* =799.13 g/mol): triclinic, space group P-1 (no. 2), a = 11.3911(3) Å, b = 11.7933(4) Å, c = 12.8630(3) Å, $\alpha = 100.845(2)^{\circ}$, $\beta = 97.595(2)^{\circ}$, $\gamma = 117.163(3)^{\circ}$, V = 1462.18(7) Å³, Z = 2, T = 150(2) K, $\mu(CuK\alpha) = 10.686$ mm⁻¹, *Dcalc* = 1.815 g/cm³, 27557 reflections measured (7.226° $\leq 2\Theta \leq 156.402^{\circ}$), 6188 unique ($R_{int} = 0.0564$, $R_{sigma} = 0.0440$) which were used in all calculations. The final R_1 was 0.0257 (I > 2 σ (I)) and wR_2 was 0.0619 (all data).

Table 1 Crystal data and structure refinement for ps29new.

Identification code	ps29new
Empirical formula	$C_{38}H_{29}ClF_2NPPt$
Formula weight	799.13
Temperature/K	150(2)
Crystal system	triclinic
Space group	P-1
a/Å	11.3911(3)
b/Å	11.7933(4)
c/Å	12.8630(3)
a/°	100.845(2)
β/°	97.595(2)
γ/°	117.163(3)
Volume/Å ³	1462.18(7)
Z	2
$\varrho_{calc}g/cm^3$	1.815
µ/mm ^{.1}	10.686
F(000)	784.0
Crystal size/mm ³	$0.185 \times 0.095 \times 0.03$ colourless block
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.226 to 156.402
Index ranges	$-14 \le h \le 14, -14 \le k \le 14, -16 \le l \le 16$
Reflections collected	27557
Independent reflections	$6188 [R_{int} = 0.0564, R_{sigma} = 0.0440]$
Data/restraints/parameters	6188/0/397
Goodness-of-fit on F ²	1.019
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0257, wR_2 = 0.0600$
Final R indexes [all data]	$R_1 = 0.0301, wR_2 = 0.0619$
Largest diff. peak/hole / e Å ⁻³	0.95/-0.58

Table 2 Fractional Atomic Coordinates (x10⁴) and Equivalent Isotropic Displacement Parameters (Å²x10³) for ps29new. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	v 1.5	z	U(eq)
Pt1	7562.0(2)	4188.0(2)	2610.0(2)	15.94(5)
Cl1	9907.6(8)	5955.2(8)	3462.1(7)	23.95(16)
P1	7848.1(8)	2515.5(8)	2974.8(6)	17.23(16)
C1	7970(3)	3984(4)	1056(3)	22.3(7)
C2	8571(4)	3318(4)	552(3)	25.3(7)
C3	8732(4)	3349(4)	-499(3)	29.9(8)
F3	9342(3)	2689(2)	-944(2)	37.9(6)
C4	8335(4)	4031(4)	-1084(3)	33.7(9)
C5	7764(4)	4725(4)	-590(3)	29.4(8)
C6	7586(3)	4721(4)	472(3)	23.1(7)
C7	7053(4)	5510(4)	1038(3)	24.6(7)
N7	7052(3)	5466(3)	2079(2)	20.0(5)
C8	6569(4)	6271(4)	621(3)	32.5(8)
C9	6061(4)	6908(4)	1272(4)	34.6(9)
C10	6046(4)	6825(4)	2332(3)	30.9(8)
C11	6575(3)	6093(3)	2744(3)	21.6(7)
C12	6659(3)	5872(3)	3828(3)	22.2(7)
C13	6407(4)	6605(4)	4670(3)	26.1(7)
C14	6557(4)	6429(4)	5710(3)	26.9(8)
C15	6962(4)	5534(4)	5861(3)	24.1(7)
C16	7248(3)	4808(3)	5058(3)	20.8(7)
C17	7082(3)	4948(3)	3999(3)	18.6(6)
F17	7125(3)	5355(2)	6884.1(18)	32.8(5)
C18	6679(3)	1153(3)	1770(3)	20.3(6)

C19	5456(3)	1344(3)	1556(3)	18.3(6)
C20	5622(3)	2628(3)	1890(2)	17.1(6)
C21	4489(3)	2794(3)	1745(3)	20.5(6)
C22	3184(4)	1689(4)	1291(3)	25.1(7)
C23	3020(4)	426(4)	965(3)	25.0(7)
C24	4149(4)	255(3)	1092(3)	22.2(7)
C25	7311(4)	1839(3)	4115(3)	22.5(7)
C26	5799(3)	892(3)	3892(3)	19.6(6)
C27	4851(4)	1325(3)	3914(3)	22.1(7)
C28	3460(4)	415(4)	3669(3)	24.9(7)
C29	3016(4)	-937(4)	3407(3)	26.6(7)
C30	3947(4)	-1385(4)	3402(3)	28.5(8)
C31	5333(4)	-465(4)	3644(3)	25.0(7)
C32	9595(3)	2800(4)	3143(3)	25.0(7)
C33	9670(3)	1536(4)	2908(3)	25.3(7)
C34	9902(5)	1027(5)	3748(4)	37.0(9)
C35	9928(6)	-160(6)	3533(4)	44.3(11)
C36	9736(4)	-860(4)	2479(4)	36.0(9)
C37	9536(4)	-347(5)	1638(4)	37.3(10)
C38	9517(4)	842(5)	1850(3)	32.5(8)

 $Table \ 3 \ Anisotropic \ Displacement \ Parameters \ (\mathring{A}^2 \times 10^3) \ for \ ps 29 new. \ The \ Anisotropic \ displacement \ factor \ exponent \ takes \ the \ form: -2\pi^2 [h^2 a^{*2} U_{11} + 2hka^* b^* U_{12} + \ldots].$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃		U ₁₃	U_{12}
Pt1	15.23(7)	14.85(7)	14.58(7)	2.63(5)		3.43(4)	5.53(5)
C11	18.0(3)	21.2(4)	23.3(4)	3.5(3)		3.3(3)	3.7(3)
P1	15.1(3)	16.6(3)	17.2(4)	2.3(3)		2.9(3)	6.7(3)
C1	19.4(15)	22.3(16)	15.6(14)	3.2(12)		5.2(12)	3.3(13)
C2	24.0(16)	20.5(16)	22.1(16)	0.7(13)		6.4(13)	5.4(13)
C3	26.5(17)	24.1(17)	26.8(18)	1.6(14)		12.9(14)	2.9(14)
F3	40.9(13)	32.3(12)	32.2(12)	0.3(10)		22.4(10)	11.4(10)
C4	33.4(19)	32(2)	18.2(16)	2.2(15)		9.1(14)	3.5(16)
C5	27.4(18)	28.7(18)	20.6(17)	9.4(14)		3.1(14)	4.4(15)
C6	20.1(15)	23.0(16)	15.2(15)	4.1(13)		1.7(12)	3.0(13)
C7	22.3(16)	20.2(16)	23.3(17)	8.8(13)		0.1(13)	4.6(13)
N7	19.3(13)	18.3(13)	18.1(13)	7.1(11)		2.2(10)	5.9(11)
C8	36(2)	28.4(19)	26.8(18)	11.5(15)	0.9(15)	11.5(17)
C9	35(2)	26.8(19)	39(2)	12.9(17)	-1.2(17)	14.3(16)
C10	32.2(19)	21.8(17)	36(2)	4.7(15)		1.8(16)	14.2(15)
C11	20.1(15)	13.1(14)	28.0(17)	4.3(13)		3.0(13)	6.9(12)
C12	20.3(15)	18.4(15)	26.6(17)	2.8(13)		5.3(13)	9.9(13)
C13	26.4(17)	19.0(16)	31.4(19)	4.9(14)		7.3(14)	11.0(14)
C14	23.5(16)	22.9(17)	30.5(18)	0.6(14)		8.8(14)	10.4(14)
C15	22.3(15)	28.2(17)	16.3(15)	2.8(13)		4.8(12)	9.2(14)
C16	18.3(14)	18.8(15)	21.9(16)	4.1(13)		5.2(12)	6.9(13)
C17	17.3(14)	15.9(14)	17.0(14)	-2.7(12)	6.7(11)	5.9(12)
F17	40.9(12)	40.8(13)	19.6(10)	6.6(9)		11.9(9)	22.1(11)
C18	19.9(15)	18.1(15)	18.7(15)	1.1(12)		3.0(12)	7.9(12)
C19	19.0(15)	17.4(15)	13.4(13)	1.8(11)		4.2(11)	5.8(12)
C20	16.2(14)	16.2(14)	11.5(13)	0.4(11)		2.1(11)	3.7(12)
C21	20.3(15)	20.7(16)	19.8(15)	6.3(13)		3.3(12)	9.9(13)
C22	20.0(16)	29.1(18)	24.8(17)	10.5(14)	4.4(13)	10.3(14)
C23	19.2(15)	21.3(16)	24.0(17)	3.7(13)		2.0(13)	3.6(13)
C24	22.6(16)	18.2(15)	18.7(15)	2.2(12)		3.8(12)	5.9(13)
C25	22.7(16)	20.2(15)	22.2(16)	5.1(13)		4.0(13)	9.2(13)
C26	21.3(15)	18.5(15)	13.7(14)	4.3(12)		3.2(11)	5.9(13)
C27	25.8(16)	20.4(15)	17.7(15)	2.8(12)		4.0(12)	10.9(14)
C28	24.3(17)	27.0(17)	21.2(16)	6.2(14)		6.7(13)	10.9(14)
C29	22.4(16)	26.3(18)	21.5(16)	6.2(14)		1.9(13)	5.4(14)
C30	31.5(19)	17.3(16)	27.7(18)	6.2(14)		2.8(14)	5.9(14)
C31	30.5(18)	21.5(16)	24.4(17)	6.1(13)		5.2(14)	14.6(15)
C32	15.4(14)	24.5(17)	30.2(18)	2.4(14)		3.5(13)	8.4(13)
C33	16.5(15)	27.8(18)	30.8(18)	4.8(15)		3.9(13)	12.1(14)
C34	47(2)	46(2)	32(2)	9.6(18)		8.5(18)	35(2)
C35	59(3)	54(3)	47(3)	25(2)		24(2)	43(3)
C36	31.7(19)	28.1(19)	52(3)	5.2(18)		12.5(18)	20.0(17)
C37	35(2)	43(2)	33(2)	-3.7(18)	3.8(16)	24.8(19)
C38	31.0(19)	42(2)	29.8(19)	6.2(17)		7.8(15)	23.9(17)
Table 4	Bond Lengths	s for ps29new.					
Atom	Atom	Length/Å			Atom	Atom	Length/Å
Pt1	Cl1	2.4425(8)			C13	C14	1.393(6)
Pt1	P1	2.2609(9)			C14	C15	1.364(6)
Pt1	C1	2.106(3)			C15	C16	1.384(5)

Pt1

Pt1

Pt1

P1

N7

C17

C20

C18

2.039(3) 2.097(3)

2.057(3)

1.823(3)

F17

C17

C19

C20

C15

C16

C18

C19

1.374(4) 1.402(5)

1.508(5)

1.409(5)

P1 P1 C1 C2 C3 C3 C4 C5 C6 C7 C7 C7 N7 C8 C9 C10 C11 C12 C12 C12	C25 C32 C2 C6 C3 F3 C4 C5 C6 C7 N7 C8 C11 C9 C10 C11 C12 C13 C17	1.842(1.836(1.387(1.419(1.393(1.359(1.374(1.378(1.408(1.408(1.408(1.350(1.351(1.374(1.387(1.387(1.396(1.351(1.398(1.428(1.499(1.418(<pre>(4) (3) (5) (6) (5) (5) (7) (6) (5) (5) (5) (5) (6) (5) (7) (6) (5) (5) (5) (5) (5) (5)</pre>			C19 C20 C21 C22 C23 C25 C26 C26 C27 C28 C29 C30 C32 C33 C34 C35 C36 C37		C24 C21 C22 C23 C24 C26 C27 C31 C28 C29 C30 C31 C33 C34 C35 C36 C37 C38		. 398(5) . 385(5) . 402(5) . 384(5) . 384(5) . 513(5) . 391(5) . 391(5) . 396(5) . 388(6) . 385(6) . 395(6) . 393(5) . 382(6) . 393(5) . 389(7) . 379(7) . 379(7) . 389(6)	
Atom	Atom	Atom	Angle/°				Atom		Atom	Atom	Angle/°
P1	Pt1	Cl1	96.45(3)				N7		C11	C12	113.5(3)
CI	Pt1	CII	91.42(9)				C10		CII	C12	128.2(3)
N7	Pt1	Cl1	91.88(8)				C13		C12 C12	C17	120.9(3)
N7	Pt1	P1	170.83(8)				C17		C12 C12	C17	117.1(3)
N7	Pt1	C1	79.61(14)				C14		C13	C12	120.1(4
N7	Pt1	C17	79.78(13)				C15		C14	C13	117.3(3)
N7	Pt1	C20	90.93(13)				C14		C15	C16	124.6(4)
C17	Pt1	D1	86.02(9)				C14 E17		C15	F17 C16	118.1(3) 117.3(3)
C17	Pt1	C1	159.13(15)				C15		C15	C17	119.4(3)
C20	Pt1	Cl1	176.97(10)				C12		C17	Pt1	111.4(2)
C20	Pt1	P1	80.68(10)				C16		C17	Pt1	131.4(3)
C20	Pt1	C1	87.96(12)				C16		C17	C12	116.7(3)
C20	Pti P1	CI/ Pt1	95.61(12) 100 67(12)				C19 C20		C18	PI C18	104.4(2)
C18	P1	C25	103.21(16)				C24		C19	C18	120.9(3)
C18	P1	C32	111.99(16)				C24		C19	C20	119.4(3
C25	P1	Pt1	122.20(12)				C19		C20	Pt1	117.8(2)
C32	PI D1	Pt1 C25	114.93(13)				C21		C20	PtI C10	122.6(2)
C32 C2	C1	C25 Pt1	103.29(17) 131.6(3)				C21 C20		C20 C21	C22	120.2(3)
C2	C1	C6	117.1(3)				C23		C22	C21	120.3(3)
C6	C1	Pt1	111.2(2)				C24		C23	C22	119.8(3
C1	C2	C3	120.2(4)				C23		C24	C19	120.7(3)
F3	C3	C2	117.4(4)				C26		C25	P1 C25	114.6(2)
гз С4	C3	C4 C2	123.3(4)				C27		C26	C25	122.0(3) 119.0(3)
C3	C4	C5	117.5(3)				C31		C26	C27	118.5(3)
C4	C5	C6	120.8(4)				C26		C27	C28	120.7(3
C1	C6	C7	117.1(3)				C29		C28	C27	119.8(3)
C5	C6 C6	C1 C7	121.0(4) 121.9(4)				C30		C29 C30	C28	119 3(4)
N7	C7	C6	113.7(3)				C26		C31	C30	121.4(3)
N7	C7	C8	118.9(4)				C33		C32	P1	113.5(2)
C8	C7	C6	127.4(4)				C34		C33	C32	120.6(4)
C7	N7	Pt1 C11	117.9(3)				C34		C33	C38	117.6(4)
C11	N7	Pt1	123.8(3) 117.8(2)				C33		C34	C35	121.8(4)
C9	C8	C7	118.8(4)				C36		C35	C34	121.2(5)
C8	C9	C10	121.2(4)				C37		C36	C35	118.5(4)
C9	C10	C11	119.0(4)				C36		C37	C38	120.5(4)
N7	C11	C10	118.2(4)				C37		C38	C33	121.3(4)
Table 6	Hydrogen I	Bonds for p	s29new.								
D	Н	$\mathbf{A} \qquad \mathbf{d}(\mathbf{I})$	D-Н)/Å	d(H-A)/Å		d(I	D-A)/Å			D-H-A/°	
C25	H25B	$Cl1^1$ 0.	99	2.94		3.	651(4	1)		129.4	
C29	H29 H36	$CH^2 = 0.$	95 95	2.95		3.	180(4	±) 1)		147.1	
¹ 2-X 1-	1130 Y.1-Z ^{. 2} -1+X	1.5 U.	95 2-X -Y -7	2.00		5.	200(4	±)		131.4	
	_,, _1.A	, . , . . , .	, -, 2								
Table 7	Torsion An	gles for ps2	9new.						_		
A Dt1	B C	D (10	Angle/°		A C ¹¹	B	2 (2	\mathbf{D}	Angle/°	
Pt1	P1 C25	C19	-39.7(2) 78.5(3)		C11	C1	$\frac{2}{2}$ (213 217	Pt1	-1/0.0(3) 2.4(4)	
Pt1	P1 C32	C33	-155.5(2)		C11	C1	2 0	217	C16	175.8(3)	

Pt1	C1	C2	C3	-179.5(3)			C12	C13	C14	C15	0.5(5)
Pt1	C1	C6	C5	-179.8(3)			C13	C12	C17	Pt1	-173.9(3)
Pt1	C1	C6	C7	2.6(4)			C13	C12	C17	C16	-0.5(5)
Pt1	N7	C11	C10	-171.3(3)			C13	C14	C15	C16	0.8(5)
Pt1	N7	C11	C12	7.3(4)			C13	C14	C15	F17	179.5(3)
Pt1	C20	C21	C22	-177.3(3)			C14	C15	C16	C17	-2.0(5)
P1	C18	C19	C20	27.4(4)			C15	C16	C17	Pt1	173.6(3)
P1	C18	C19	C24	-148.6(3)			C15	C16	C17	C12	1.7(5)
P1	C25	C26	C27	-76.6(4)			C17	C12	C13	C14	-0.6(5)
P1	C25	C26	C31	102.7(3)			F17	C15	C16	C17	179.3(3)
P1	C32	C33	C34	-96.2(4)			C18	P1	C25	C26	-33.4(3)
P1	C32	C33	C38	84.2(4)			C18	P1	C32	C33	-41.4(3)
C1	C2	C3	F3	179.3(3)			C18	C19	C20	Pt1	2.1(4)
C1	C2	C3	C4	0.7(6)			C18	C19	C20	C21	-176.7(3)
C1	C6	C7	N7	2.5(4)			C18	C19	C24	C23	175.6(3)
Cl	C6	C7	C8	-177.5(3)			C19	C20	C21	C22	1.4(5)
C2	CI	C6	C5	2.4(5)			C20	C19	C24	C23	-0.4(5)
C2	CI	C6	C7	-1/5.2(3)			C20	C21	C22	C23	-1.3(5)
C2	C3	C4	CS	0.7(6)			C21	C22	C23	C24	0.3(6)
C3 E2	C4 C2	C5	C6 C5	-0.0(0)			C22	C23	C24 C20	D+1	0.5(5)
F3 C4		C4	C5	-1/7.8(3)			C24	C19	C20	COL	1/8.2(2)
C4	C5	C6		-1.0(5)			C24	D1	C20	C21 C10	-0.0(5)
C4 C5	C5 C6	C0 C7	U7	175 1(3)			C25	Г I D1	C10 C22	C19 C22	69 0 (3)
C5	C0 C6	C7		-175.1(5)			C25	C26	C32	C33	177 9(3)
C5 C6	C_1	C^{2}	C3	-2 2(5)			C25	C26	C21	C20	-178 2(3)
C6	C7	N7	Pt1	-6.8(4)			C25	C20	C28	C20	-170.2(3)
C6	C7	N7	C11	-178 - 3(3)			C20	C26	C20	C30	1 1(5)
C6	C7	C8	C9	177 7(4)			C27	C28	C29	C30	0.9(6)
C7	N7	C11	C10	0.3(5)			C28	C29	C30	C31	-1.2(6)
C7	N7	C11	C12	178.8(3)			C29	C30	C31	C26	0.2(6)
C7	C8	C9	C10	1,2(6)			C31	C26	C27	C28	-1.4(5)
N7	C7	C8	C9	-2.4(5)			C32	P1	C18	C19	-162.3(2)
N7	C11	C12	C13	170.1(3)			C32	P1	C25	C26	-150.2(3)
N7	C11	C12	C17	-6.3(4)			C32	C33	C34	C35	177.9(4)
C8	C7	N7	Pt1	173.3(3)			C32	C33	C38	C37	-177.5(4)
~~	07		~	1 7 (5) (C22	C24	C35	C36	0.6(8)
C8	U/	N7	C11	1./(5)			CSS	C34	C35	0.50	0.0(0)
C8 C8	C7 C9	N7 C10	C11 C11	1./(5) 0.8(6)			C34	C34 C33	C38	C37	2.8(6)
C8 C8 C9	C7 C9 C10	N7 C10 C11	C11 C11 N7	1.7(5) 0.8(6) -1.5(5)			C34 C34	C34 C33 C35	C38 C36	C37 C37	2.8(6) 1.0(7)
C8 C8 C9 C9	C9 C10 C10	N7 C10 C11 C11	C11 C11 N7 C12	1.7(5) 0.8(6) -1.5(5) -179.9(4)			C34 C34 C35	C34 C33 C35 C36	C38 C36 C37	C37 C37 C38	2.8(6) 1.0(7) -0.6(7)
C8 C8 C9 C9 C10	C9 C10 C10 C11	N7 C10 C11 C11 C12	C11 C11 N7 C12 C13	1.7(5) 0.8(6) -1.5(5) -179.9(4) -11.5(6)			C33 C34 C34 C35 C36	C34 C33 C35 C36 C37	C38 C36 C37 C38	C37 C37 C38 C33	2.8(6) 1.0(7) -0.6(7) -1.3(6)
C8 C8 C9 C9 C10 C10	C9 C10 C10 C11 C11	N7 C10 C11 C11 C12 C12	C11 C11 N7 C12 C13 C17	$\begin{array}{c} 1.7(5) \\ 0.8(6) \\ -1.5(5) \\ -179.9(4) \\ -11.5(6) \\ 172.1(3) \end{array}$			C34 C34 C35 C36 C38	C34 C33 C35 C36 C37 C33	C38 C36 C37 C38 C34	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6)
C8 C8 C9 C9 C10 C10	C7 C9 C10 C10 C11 C11	N7 C10 C11 C11 C12 C12	C11 C11 N7 C12 C13 C17	$\begin{array}{c} 1.7(5) \\ 0.8(6) \\ -1.5(5) \\ -179.9(4) \\ -11.5(6) \\ 172.1(3) \end{array}$			C34 C34 C35 C36 C38	C34 C33 C35 C36 C37 C33	C38 C36 C37 C38 C34	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6)
C8 C9 C9 C10 C10 Table	C7 C9 C10 C10 C11 C11 8 Hydro	N7 C10 C11 C11 C12 C12 C12	C11 C11 N7 C12 C13 C17	$\begin{array}{c} 1.7(5) \\ 0.8(6) \\ -1.5(5) \\ -179.9(4) \\ -11.5(6) \\ 172.1(3) \end{array}$	and Isotropic I	Displaceme	C34 C34 C35 C36 C38	C34 C33 C35 C36 C37 C33 ameters	C38 C36 C37 C38 C34 (Å ² ×10 ³	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C9 C9 C10 C10 Table 3 Atom H2	C7 C9 C10 C10 C11 C11 8 Hydro	N7 C10 C11 C11 C12 C12 Ogen Ato	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	$\begin{array}{c} 1.7(5) \\ 0.8(6) \\ -1.5(5) \\ -179.9(4) \\ -11.5(6) \\ 172.1(3) \end{array}$ dinates (Å×10 ⁴)	and Isotropic I y	Displacemo	C33 C34 C35 C36 C38 ent Para	C34 C33 C35 C36 C37 C33 ameters	C35 C38 C36 C37 C38 C34 $(Å^2 \times 10^3)$ U(eq) 30	C37 C37 C38 C33 C35 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C9 C9 C10 C10 Table Atom H2 H4	C7 C9 C10 C10 C11 C11 8 Hydro 88 84	N7 C10 C11 C11 C12 C12 Ogen Ato	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	$\begin{array}{c} 1.7(5) \\ 0.8(6) \\ -1.5(5) \\ -179.9(4) \\ -11.5(6) \\ 172.1(3) \\ \end{array}$ dinates (Å×10 ⁴) 2839 4023	and Isotropic I y	Displacem 924 –1803	C33 C34 C35 C36 C38 ent Par: z	C34 C33 C35 C36 C37 C33 ameters	C35 C38 C36 C37 C38 C34 (Å ² ×10 ³ U(eq 30 40	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C10 C10 Table Atom H2 H4 H5	C7 C9 C10 C10 C11 C11 8 Hydrc 88 84 74	N7 C10 C11 C11 C12 C12 Ogen Ato 873 850 87	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	$\begin{array}{c} 1.7(5)\\ 0.8(6)\\ -1.5(5)\\ -179.9(4)\\ -11.5(6)\\ 172.1(3)\\ \end{array}$ edinates (Å×10 ⁴) 2839 4023 5214	and Isotropic I y	Displacemo 924 –1803 –971	C33 C34 C35 C36 C38 ent Para z	C34 C33 C35 C36 C37 C33 ameters	C33 C38 C36 C37 C38 C34 $(Å^2 \times 10^3$ U(eq) 30 40 35	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C10 C10 Table : Atom H2 H4 H5 H8	C7 C9 C10 C10 C11 C11 8 Hydro 88 84 74 65	N7 C10 C11 C12 C12 C12 Ogen Ato 873 850 887 691	C11 C11 N7 C12 C13 C17 cm Coor <i>x</i>	$\begin{array}{c} 1.7(5)\\ 0.8(6)\\ -1.5(5)\\ -179.9(4)\\ -11.5(6)\\ 172.1(3)\\ \end{array}$ dinates (Å×10 ⁴) 2839 4023 5214 6346	and Isotropic I y	Displacem 924 –1803 –971 –99	C33 C34 C35 C36 C38 ent Para z	C34 C33 C35 C36 C37 C33 ameters	C_{38} C_{36} C_{37} C_{38} C_{34} $U(eq_{30}$ 40 35 39	C37 C37 C38 C33 C35 () for ps2	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C10 C10 Table 4 Atom H2 H4 H5 H8 H9	C7 C9 C10 C10 C11 C11 8 Hydro 88 84 74 65 57	N7 C10 C11 C11 C12 C12 Ogen Ato 873 850 887 691 215	C11 C11 N7 C12 C13 C17 om Coor x	$\begin{array}{c} 1.7(5)\\ 0.8(6)\\ -1.5(5)\\ -179.9(4)\\ -11.5(6)\\ 172.1(3)\\ \end{array}$ edinates (Å×10 ⁴) 2839 4023 5214 6346 7414\\ \end{array}	and Isotropic I y	Displacemo 924 –1803 –971 –99 990	C33 C34 C35 C36 C38 ent Para z	C34 C33 C35 C36 C37 C33 ameters	C38 C36 C37 C38 C34 (Å ² ×10 ³ U(eq 30 40 35 39 42	C37 C37 C38 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C10 C10 Table 4 Atom H2 H4 H5 H8 H9 H10	C7 C9 C10 C11 C11 8 Hydro 88 84 74 65 57 56	N/ C10 C11 C11 C12 C12 Ogen Ato 373 550 87 591 715 582	C11 C11 N7 C12 C13 C17 om Coor x	$\begin{array}{c} 1.7(5)\\ 0.8(6)\\ -1.5(5)\\ -179.9(4)\\ -11.5(6)\\ 172.1(3)\\ \end{array}$ edinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261\\ \end{array}	and Isotropic I y	Displacemo 924 –1803 –971 –99 990 2771	C33 C34 C35 C36 C36 C38 ent Par: z	C34 C33 C35 C36 C37 C33 ameters	C38 C36 C37 C38 C34 (Å ² ×10 ³ U(eq 30 40 35 39 42 37	C37 C37 C38 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C10 C10 Table Atom H2 H4 H5 H8 H9 H10 H13	C7 C9 C10 C11 C11 8 Hydro 8 8 84 74 65 57 56 61	N/ C10 C11 C11 C12 C12 Ogen Ato 373 550 87 591 715 582 .33	C11 C11 N7 C12 C13 C17 om Coor x	$\begin{array}{c} 1.7(5)\\ 0.8(6)\\ -1.5(5)\\ -179.9(4)\\ -11.5(6)\\ 172.1(3)\\ \end{array}$ edinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223\\ \end{array}	and Isotropic I y	Displacemo 924 –1803 –971 –99 990 2771 4531	C33 C34 C35 C36 C38 ent Par: z	C34 C35 C35 C36 C37 C33 ameters	$\begin{array}{c} C38\\ C38\\ C36\\ C37\\ C38\\ C34\\ \hline (Å^2 \times 10^3\\ U(eq\\ 30\\ 40\\ 35\\ 39\\ 42\\ 37\\ 31\\ \end{array}$	C37 C37 C38 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C10 C10 Table 1 Atom H2 H4 H5 H8 H9 H10 H13 H14	C7 C9 C10 C11 C11 8 Hydro 8 84 74 65 57 56 61 63	N/ C10 C11 C11 C12 C12 Ogen Ato 373 50 87 59 1 715 58 2 33 883	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	$\begin{array}{c} 1.7(5)\\ 0.8(6)\\ -1.5(5)\\ -179.9(4)\\ -11.5(6)\\ 172.1(3)\\ \end{array}$ edinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911\\ \end{array}	and Isotropic I y	Displacemo 924 –1803 –971 –99 990 2771 4531 6291	C34 C34 C35 C36 C38 ent Para z	C34 C33 C35 C36 C37 C33 ameters	$\begin{array}{c} C_{38} \\ C_{36} \\ C_{37} \\ C_{38} \\ C_{34} \\ \hline \\ U(eq \\ 30 \\ 40 \\ 35 \\ 39 \\ 42 \\ 37 \\ 31 \\ 32 \end{array}$	C37 C37 C38 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6)
C8 C8 C9 C9 C10 C10 Table 1 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16	C7 C9 C10 C11 C11 8 Hydro 8 8 84 74 65 57 56 61 63 75	N/ C10 C11 C11 C12 C12 Ogen Ato 373 550 873 550 875 591 715 582 .333 883 554	C11 C11 N7 C12 C13 C17 om Coor x	$\begin{array}{c} 1.7(5)\\ 0.8(6)\\ -1.5(5)\\ -179.9(4)\\ -11.5(6)\\ 172.1(3)\\ \end{array}$ edinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221\\ \end{array}	and Isotropic I y	Displacemo 924 –1803 –971 –99 990 2771 4531 6291 5224	C34 C34 C35 C36 C38 ent Para z	C34 C33 C35 C36 C37 C33 ameters	$(Å^2 \times 10^3)$ $(Å^2 \times 10^3)$ U(eq) 30 40 35 39 42 37 31 32 25	C37 C37 C38 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6)
C8 C9 C9 C10 C10 Table 4 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A	C7 C9 C10 C11 C11 8 Hydro 8 8 84 74 65 57 56 61 63 75 70	N/ C10 C11 C11 C12 C12 Ogen Ato 373 550 873 550 873 550 875 582 .333 554 95	C11 C11 N7 C12 C13 C17 om Coor x	$\begin{array}{c} 1.7(5)\\ 0.8(6)\\ -1.5(5)\\ -179.9(4)\\ -11.5(6)\\ 172.1(3)\\ \end{array}$ edinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201\\ \end{array}	and Isotropic I y	Displacemo 924 –1803 –971 –99 990 2771 4531 6291 5224 1139	C34 C34 C35 C36 C38 ent Para z	C34 C33 C35 C36 C37 C33 ameters	$(Å^2 \times 10^3)$ $(Å^2 \times 10^3)$ U(eq) 30 40 35 39 42 37 31 32 25 24	C37 C37 C38 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C10 C10 Table 1 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B	C7 C9 C10 C11 C11 8 Hydro 8 8 84 74 65 57 56 61 63 75 70 64	N/ C10 C11 C11 C12 C12 Ogen Ato 373 550 87 591 715 582 .33 883 554 995 422	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	$\begin{array}{c} 1.7(5)\\ 0.8(6)\\ -1.5(5)\\ -179.9(4)\\ -11.5(6)\\ 172.1(3)\\ \end{array}$ edinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284\\ \end{array}	and Isotropic I y	Displacemo 924 –1803 –971 –99 990 2771 4531 6291 5224 1139 1912	C34 C34 C35 C36 C38 ent Para z	C34 C33 C35 C36 C37 C33 ameters	C_{38} C_{36} C_{37} C_{38} C_{34} U(eq) 30 40 35 39 42 37 31 32 25 24 24	C37 C37 C38 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6)
C8 C8 C9 C9 C10 C10 Table 1 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H21	C7 C9 C10 C11 C11 8 Hydro 8 8 84 74 65 57 56 61 63 75 70 64 45	N/ C10 C11 C11 C12 C12 Ogen Ato 373 50 87 59 59 1 715 582 .33 883 554 995 422 597	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	$\begin{array}{c} 1.7(5)\\ 0.8(6)\\ -1.5(5)\\ -179.9(4)\\ -11.5(6)\\ 172.1(3)\\ \end{array}$ edinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7223 6911 4221 1201 284 3659\\ \end{array}	and Isotropic I y	Displacemo 924 –1803 –971 –99 990 2771 4531 6291 5224 1139 1912 1953	C34 C34 C35 C36 C38 ent Para z	C34 C33 C35 C36 C37 C33 ameters	$(Å^2 \times 10^3)$ $(Å^2 \times 10^3)$ U(eq) 30 40 35 39 42 37 31 32 25 24 24 25	C37 C37 C38 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C10 C10 Table 1 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H21 H22	C7 C9 C10 C11 C11 8 Hydro 8 88 84 74 65 57 56 61 63 755 70 64 45 24	N/ C10 C11 C11 C12 C12 C12 ogen Ato 373 550 887 991 715 582 .33 883 554 995 422 597 409	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	$\begin{array}{c} 1.7(5)\\ 0.8(6)\\ -1.5(5)\\ -179.9(4)\\ -11.5(6)\\ 172.1(3)\\ \end{array}$ edinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7223 6911 4221 1201 284 3659 1806\\ \end{array}	and Isotropic I y	Displacemo 924 –1803 –971 –99 990 2771 4531 6291 5224 1139 1912 1953 1207	C34 C34 C35 C36 C38 ent Para z	C34 C33 C35 C36 C37 C33 ameters	C38 C38 C36 C37 C38 C34 (Å ² ×10 ³ U(eq 30 40 35 39 42 37 31 32 25 24 24 25 30	C37 C37 C38 C33 C35 () for ps2	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C10 C10 Table 4 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H21 H22 H23	C7 C9 C10 C11 C11 8 Hydro 8 88 84 74 65 57 56 61 63 755 70 64 45 24 21	N/ C10 C11 C11 C12 C12 ogen Ato 373 550 887 991 715 582 .33 883 554 995 422 554 995 422 597 409 .34	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	$\begin{array}{c} 1.7(5)\\ 0.8(6)\\ -1.5(5)\\ -179.9(4)\\ -11.5(6)\\ 172.1(3)\\ \end{array}$ edinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7223 6911 4221 1201 284 3659 1806 -320\\ \end{array}	and Isotropic I y	Displacemo 924 –1803 –971 –99 990 2771 4531 6291 5224 1139 1912 1953 1207 654	C34 C34 C35 C36 C38 ent Para z	C34 C33 C35 C36 C37 C33 ameters	C38 C38 C36 C37 C38 C34 (Å ² ×10 ³ U(eq 30 40 30 40 35 39 42 37 31 32 25 24 24 24 25 30 30	C37 C37 C38 C33 C35 () for ps2	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C10 C10 Table 4 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H21 H22 H23 H24	C7 C9 C10 C10 C11 C11 8 Hydro 8 88 8 44 7 4 6 5 5 7 5 6 6 1 6 3 7 5 6 4 4 5 2 4 2 1 4 0 2 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	N/ C10 C11 C11 C12 C12 C12 ogen Ato 373 350 887 351 887 391 715 582 333 883 554 995 322 597 409 34	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	$\begin{array}{c} 1.7(5)\\ 0.8(6)\\ -1.5(5)\\ -179.9(4)\\ -11.5(6)\\ 172.1(3)\\ \end{array}$ edinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284 3659 1806 -320 -611\\ \end{array}	and Isotropic I y	Displaceme 924 -1803 -971 -99 990 2771 4531 6291 5224 1139 1912 1953 1207 654 862	C34 C34 C35 C36 C38 ent Para z	C34 C35 C36 C37 C33 ameters	C38 C38 C36 C37 C38 C34 (Å ² ×10 ³ U(eq 30 40 30 40 35 39 42 37 31 32 25 24 24 25 30 30 27	C37 C37 C38 C33 C35 () for ps2	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C9 C10 C10 Table 1 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18A H18A H18A H21 H22 H23 H24 H25A	C7 C9 C10 C11 C11 8 Hydro 8 88 8 44 7 4 6 5 5 7 5 6 6 1 6 3 7 5 7 0 6 4 4 4 5 2 4 4 2 1 4 0 7 8	N/ C10 C11 C11 C12 C12 C12 C12 Sogen Ato Sogen Sogen S	C11 C11 N7 C12 C13 C17 om Coor x	1. $7(5)$ 0.8(6) -1.5(5) -179.9(4) -11.5(6) 172.1(3) Pdinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284 3659 1806 -320 -611 1371	and Isotropic I y	Displaceme 924 -1803 -971 -99 990 2771 4531 6291 5224 1139 1912 1953 1207 654 862 4295	C34 C34 C35 C36 C38 ent Par: z	C34 C35 C36 C37 C33 ameters	$\begin{array}{c} C38\\ C36\\ C37\\ C38\\ C34\\ \hline \\ (\AA^2 \times 10^2\\ U(eq\\ 30\\ 40\\ 35\\ 39\\ 42\\ 37\\ 31\\ 32\\ 25\\ 24\\ 25\\ 30\\ 30\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27\\ 27$	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C9 C10 C10 Table 1 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H21 H22 H23 H24 H25A H25B	C7 C9 C10 C11 C11 8 Hydro 8 88 8 44 7 4 6 5 5 7 5 6 6 1 6 3 7 5 6 4 4 5 2 4 4 2 1 4 0 7 8 7 5 7 1 6 4 7 5 7 1 6 4 7 5 7 1 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	N/ C10 C11 C11 C12 C12 C12 C12 Spen Ato 373 550 887 591 15 582 .33 883 554 995 522 597 609 .34 809 580	C11 C11 N7 C12 C13 C17 om Coor x	1. 7 (5) 0.8 (6) -1.5 (5) -179.9 (4) -11.5 (6) 172.1 (3) Pdinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284 3659 1806 -320 -611 1371 2588	and Isotropic I y	Displaceme 924 -1803 -971 -99 990 2771 4531 6291 5224 1139 1912 1953 1207 654 862 4295 4765	C34 C34 C35 C36 C38 ent Para z	C34 C35 C36 C37 C33 ameters	C38 C38 C36 C37 C38 C34 (Å ² ×10 ² U(eq 30 40 35 39 42 37 31 32 25 24 24 25 30 30 27 27 27 27	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C9 C10 C10 Table 1 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H21 H22 H23 H24 H25A H25B H27	C7 C9 C10 C11 C11 8 Hydro 8 88 8 44 7 4 6 5 5 7 5 6 6 1 6 3 7 5 6 4 4 5 2 4 4 2 1 4 0 7 8 7 5 7 1 6 4 4 5 2 1 4 0 7 8 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	N/ C10 C11 C11 C12 C12 C12 ogen Ato 373 450 487 591 15 582 .33 883 554 995 522 597 609 .34 809 580 552 522 597	C11 C11 N7 C12 C13 C17 om Coor x	1. $7(5)$ 0.8(6) -1.5(5) -179.9(4) -11.5(6) 172.1(3) Pdinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284 3659 1806 -320 -611 1371 2588 2249 722	and Isotropic I y	Displaceme 924 -1803 -971 -99 990 2771 4531 6291 5224 1139 1912 1953 1207 654 862 4295 4765 4099 2000	C34 C34 C35 C36 C38 ent Para z	C34 C35 C36 C37 C33 ameters	C38 C38 C36 C37 C38 C34 (Å ² ×10 ² U(eq 30 40 35 39 42 37 31 32 25 24 24 25 30 30 27 27 27 27 26	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C9 C10 C10 Table 4 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H21 H22 H23 H24 H25A H25B H27 H28 H27 H28 H27 H28 H27	C7 C9 C10 C11 C11 8 Hydro 8 88 8 44 7 44 6 5 5 7 5 66 6 1 6 3 7 5 5 66 6 1 6 3 7 5 5 70 6 4 4 5 2 4 2 1 4 00 7 8 5 7 5 1 6 2 6 2 7 1 6 2 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	N/ C10 C11 C11 C12 C12 C12 C12 Spen Ato Spen Ato	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	1. $7(5)$ 0.8(6) -1.5(5) -179.9(4) -11.5(6) 172.1(3) Pdinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284 3659 1806 -320 -611 1371 2588 2249 720	and Isotropic I y	Displaceme 924 -1803 -971 -99 990 2771 4531 6291 5224 1139 1912 1953 1207 654 862 4295 4765 4099 3681	C34 C34 C35 C36 C38 ent Para z	C34 C35 C36 C37 C33 ameters	$\begin{array}{c} C.38\\ C.38\\ C.36\\ C.37\\ C.38\\ C.34\\\\\hline\\ U(eq\\ 30\\ 40\\ 35\\ 39\\ 42\\ 37\\ 31\\ 32\\ 25\\ 24\\ 24\\ 25\\ 30\\ 30\\ 27\\ 27\\ 26\\ 30\\ 27\\ 27\\ 26\\ 30\\ 27\\ 27\\ 26\\ 30\\ 27\\ 27\\ 26\\ 30\\ 27\\ 27\\ 26\\ 30\\ 27\\ 27\\ 26\\ 30\\ 27\\ 27\\ 26\\ 30\\ 27\\ 27\\ 26\\ 30\\ 27\\ 27\\ 26\\ 30\\ 27\\ 27\\ 26\\ 30\\ 27\\ 27\\ 26\\ 30\\ 27\\ 27\\ 26\\ 30\\ 27\\ 27\\ 26\\ 30\\ 20\\ 27\\ 27\\ 26\\ 30\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 2$	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C9 C10 C10 Table 4 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H21 H22 H23 H24 H25A H25B H27 H28 H27 H28 H29 H20	C7 C9 C10 C11 C11 8 Hydro 8 88 84 74 65 57 56 61 63 75 56 61 63 75 70 64 45 24 20 78 75 51 28 20 20 20 20 20 20 20 20 20 20	N/ C10 C11 C11 C12 C12 C12 C12 Spen Ato Spen Ato	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	1. $7(5)$ 0.8(6) -1.5(5) -179.9(4) -11.5(6) 172.1(3) Pdinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284 3659 1806 -320 -611 1371 2588 2249 720 -1557 2200	and Isotropic I y	Displaceme 924 -1803 -971 -99 990 2771 4531 6291 5224 1139 1912 1953 1207 654 862 4295 4765 4099 3681 3229	C34 C34 C35 C36 C38 ent Par: z	C34 C35 C36 C37 C33 ameters	C38 C38 C36 C37 C38 C34 (Å ² ×10 ² U(eq 30 40 35 39 42 37 31 32 25 24 24 25 30 30 27 27 27 26 30 32	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C9 C10 C10 Table 4 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H21 H22 H23 H24 H25A H25B H27 H28 H29 H30 H31	C7 C9 C10 C11 C11 8 Hydro 8 88 84 74 65 57 56 61 63 75 56 61 63 75 70 64 45 24 21 40 78 75 51 28 20 65 51 56 65 57 57 56 65 57 56 65 57 56 65 57 56 65 57 56 65 57 56 65 57 56 65 57 57 56 65 57 56 65 57 56 65 57 56 65 57 56 65 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 55 57 55 57 55 57 55 57 55 57 55 57 55 57 55 55	N/ C10 C11 C11 C12 C12 C12 C12 Sgen Ato Sgen	C11 C11 N7 C12 C13 C17 om Coor x	1. $7(5)$ 0.8(6) -1.5(5) -179.9(4) -11.5(6) 172.1(3) Pdinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284 3659 1806 -320 -611 1371 2588 2249 720 -1557 -2309 772	and Isotropic I y	Displacemo 924 -1803 -971 -99 990 2771 4531 6291 5224 1139 1912 1953 1207 654 862 4295 4765 4099 3681 3229 3236 362	C34 C34 C35 C36 C38 ent Par: z	C34 C35 C36 C37 C33 ameters	C38 C36 C37 C38 C34 (Å ² ×10 ² U(eq 30 40 35 39 42 37 31 32 25 24 24 25 30 30 27 27 27 26 30 32 34	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C9 C10 C10 Table 4 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H21 H22 H23 H24 H25A H25B H27 H28 H29 H30 H31 H32 4	C7 C9 C10 C11 C11 8 Hydro 8 8 84 74 65 57 56 61 63 75 56 61 63 75 56 61 63 75 56 61 63 75 56 61 63 75 56 61 63 75 56 61 63 75 56 61 63 75 56 61 63 75 56 61 63 75 56 61 63 75 56 64 45 57 56 64 65 57 56 64 65 57 56 64 65 57 56 65 61 63 75 56 64 57 56 65 57 57 56 65 57 56 65 57 56 65 57 56 65 57 57 56 65 57 56 65 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 56 65 57 57 55 57 55 55 57 55 55 5	N/ C10 C11 C11 C12 C12 C12 C12 C12 C12 C12 C12	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	1. $7(5)$ 0.8(6) -1.5(5) -179.9(4) -11.5(6) 172.1(3) Pdinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284 3659 1806 -320 -611 1371 2588 2249 720 -1557 -2309 -773 319	and Isotropic I y	Displacemo 924 -1803 -971 -99 990 2771 4531 6291 5224 1139 1912 1953 1207 654 862 4295 4765 4099 3681 3229 3236 3639 2648	C34 C34 C35 C36 C38 ent Par: z	C34 C33 C35 C36 C37 C33 ameters	$ \begin{array}{c} C.38\\ C.38\\ C.36\\ C.37\\ C.38\\ C.34\\ \hline U(eq\\ 30\\ 40\\ 35\\ 39\\ 42\\ 37\\ 31\\ 32\\ 25\\ 24\\ 24\\ 25\\ 30\\ 30\\ 27\\ 27\\ 26\\ 30\\ 32\\ 34\\ 30\\ 30\\ \end{array} $	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C9 C10 C10 Table 4 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H21 H22 H23 H24 H25A H25B H27 H28 H29 H30 H31 H32A H32B	C7 C9 C10 C11 C11 8 Hydro 8 88 84 74 65 57 56 61 63 75 70 64 45 24 21 40 78 75 51 28 20 36 59 10 10 10 10 10 10 10 10 10 10	N/ C10 C11 C11 C12 C12 C12 C12 C12 C12 C12 C12	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	1. $7(5)$ 0.8(6) -1.5(5) -179.9(4) -11.5(6) 172.1(3) Primates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284 3659 1806 -320 -611 1371 2588 2249 720 -1557 -2309 -773 3319 3337	and Isotropic I y	Displacemo 924 -1803 -971 -99 990 2771 4531 6291 5224 1139 1912 1953 1207 654 862 4295 4765 4099 3681 3229 3236 3639 2648 3902	C34 C34 C35 C36 C38 ent Par: z	C34 C33 C35 C36 C37 C33 ameters		C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C9 C10 C10 Table 4 Atom H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H21 H22 H23 H24 H25A H25B H27 H28 H27 H28 H29 H30 H31 H32A H32A H32A	C7 C9 C10 C11 C11 8 Hydro 8 88 84 74 65 57 56 61 63 75 70 64 45 24 21 40 78 75 51 28 20 36 59 10 10 11 11 11 11 11 11 11 11	N/ C10 C11 C11 C12 C12 C12 C12 C12 C12 C12 C12	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	1. $7(5)$ 0.8(6) -1.5(5) -179.9(4) -11.5(6) 172.1(3) dinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284 3659 1806 -320 -611 1371 2588 2249 720 -1557 -2309 -773 3319 3337 1495	and Isotropic I y	Displacemo 924 -1803 -971 -99 990 2771 4531 6291 5224 1139 1912 1953 1207 654 862 4295 4765 4099 3681 3229 3236 3639 2648 3902 4482	C34 C34 C35 C36 C38 ent Par: z	C34 C33 C35 C36 C37 C33 ameters	$ \begin{array}{c} C.38\\ C.38\\ C.36\\ C.37\\ C.38\\ C.34\\ \hline U(eq\\ 30\\ 40\\ 35\\ 39\\ 42\\ 37\\ 31\\ 32\\ 25\\ 24\\ 24\\ 25\\ 30\\ 30\\ 27\\ 27\\ 27\\ 26\\ 30\\ 32\\ 34\\ 30\\ 30\\ 30\\ 30\\ 44\\ \end{array} $	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C9 C10 C10 Table 4 H2 H4 H5 H8 H9 H10 H13 H14 H16 H18A H18B H21 H22 H23 H24 H25A H25B H27 H28 H29 H30 H31 H32A H32B H34 H35	C7 C9 C10 C11 C11 8 Hydro 8 88 84 74 65 57 56 61 63 75 70 64 45 24 21 40 78 75 51 28 20 36 59 10 10 10 10 10 10 10 10 10 10	N/ C10 C11 C11 C12 C12 C12 C12 C12 C12 C12 C12	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	1. $7(5)$ 0.8(6) -1.5(5) -179.9(4) -11.5(6) 172.1(3) dinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284 3659 1806 -320 -611 1371 2588 2249 720 -1557 -2309 -773 3319 3337 1495 -495	and Isotropic I y	Displacemo 924 -1803 -971 -99 990 2771 4531 6291 5224 1139 1912 1953 1207 654 862 4295 4765 4099 3681 3229 3236 3639 2648 3902 4482 4122	C34 C34 C35 C36 C38 ent Par: z	C34 C33 C35 C36 C37 C33 ameters	$ \begin{array}{c} C.38\\ C.38\\ C.36\\ C.37\\ C.38\\ C.34\\ \hline U(eq\\ 30\\ 40\\ 35\\ 39\\ 42\\ 37\\ 31\\ 32\\ 25\\ 24\\ 24\\ 25\\ 30\\ 30\\ 27\\ 27\\ 27\\ 27\\ 26\\ 30\\ 32\\ 34\\ 30\\ 30\\ 30\\ 30\\ 44\\ 53\\ \end{array} $	C37 C37 C38 C33 C35	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C9 C10 C10 Table 4 H4 H5 H2 H4 H5 H3 H10 H13 H14 H16 H18A H18B H21 H22 H23 H24 H25A H25B H27 H28 H27 H28 H29 H30 H31 H32A H32B H34 H35 H36	C7 C9 C10 C11 C11 8 Hydro 8 88 84 74 65 57 56 61 63 75 70 64 45 24 21 40 78 75 51 28 20 36 59 10 10 10 10 10 10 10 11 11 11	N/ C10 C11 C11 C12 C12 C12 ogen Ato 373 50 87 59 1 5 6 87 5 6 87 715 682 333 883 554 995 322 997 334 365 373 554 995 322 397 309 334 309 522 309 334 309 522 309 546 552 320 699 546 715 552 320 699 546 715 552 320 715 554 333 388 355 369 344 309 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 369 552 320 364 371 368 369 369 369 366 371 369 369 369 369 369 369 369 369 369 369 360 369 364 371 300 369 364 300 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301 301301 	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	1. $7(5)$ 0.8(6) -1.5(5) -179.9(4) -11.5(6) 172.1(3) dinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284 3659 1806 -320 -611 1371 2588 2249 720 -1557 -2309 -773 3319 3337 1495 -495 -1678	and Isotropic I y	Displacemo 924 -1803 -971 -99 990 2771 4531 6291 5224 1139 1912 1953 1207 654 862 4295 4765 4099 3681 3229 3236 3639 2648 3902 4482 4422 2337	C34 C34 C35 C36 C38 ent Par: z	C34 C33 C35 C36 C37 C33 ameters	C38 C38 C36 C37 C38 C34 (Å ² ×10 ³ U(eq 30 40 35 39 42 37 31 32 25 24 24 25 30 30 27 27 27 27 27 26 30 30 32 34 30 30 44 30 30 44 30 30 44 30 30 44 30 30 27 27 27 27 26 30 30 27 27 27 27 27 27 27 27 30 27 27 27 27 27 27 27 27 27 27 27 27 27	C37 C37 C38 C33 C35 () for ps2	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.
C8 C8 C9 C9 C9 C10 C10 Table 4 Atom H2 H4 H5 H3 H10 H13 H14 H16 H18A H18B H21 H22 H23 H24 H25A H25A H25A H27 H28 H27 H28 H27 H28 H29 H30 H31 H32A H32B H32 H35 H36 H37	C7 C9 C10 C11 C11 8 Hydro 8 88 84 74 65 57 56 61 63 75 70 64 45 24 21 40 75 51 28 20 36 59 10 10 10 10 11 28 20 10 11 11 11 11 11 11 11 11 1	N/ C10 C11 C11 C12 C12 C12 ogen Ato 373 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 87 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 95 52 52 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 88 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	C11 C11 N7 C12 C13 C17 om Coor <i>x</i>	1. $7(5)$ 0.8(6) -1.5(5) -179.9(4) -11.5(6) 172.1(3) dinates (Å×10 ⁴) 2839 4023 5214 6346 7414 7261 7223 6911 4221 1201 284 3659 1806 -320 -611 1371 2588 2249 720 -1557 -2309 -773 3319 3337 1495 -495 -1678 -810	and Isotropic I y	Displacemo 924 -1803 -971 -99 990 2771 4531 6291 5224 1139 1912 1953 1207 654 862 4295 4765 4765 4765 4099 3681 3229 3236 3639 2648 3902 4482 4122 2337 908	C34 C34 C35 C36 C38 ent Para z	C34 C33 C35 C36 C37 C33 ameters	C38 C38 C36 C37 C38 C34 (Å ² ×10 ³ U(eq 30 40 35 39 42 37 31 32 25 24 24 24 25 30 30 27 27 27 27 27 27 27 27 30 30 30 30 44 30 30 30 44 30 30 44 30 30 44 30 30 30 44 30 30 30 30 30 30 30 30 30 30 30 30 30	C37 C37 C38 C33 C35 () for ps2	2.8(6) 1.0(7) -0.6(7) -1.3(6) -2.4(6) 29new.

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details:

 Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups
 Secondary CH2 refined with riding coordinates: C18(H18A,H18B), C25(H25A,H25B), C32(H32A,H32B)
 b Aromatic/amide H refined with riding coordinates: C2(H2), C4(H4), C5(H5), C8(H8), C9(H9), C10(H10), C13(H13), C14(H14), C16(H16), C21(H21), C22(H22), C23(H23), C24(H24), C27(H27), C28(H28), C29(H29), C30(H30), C31(H31), C34(H34), C35(H35), C36(H36), C37(H37), C38(H38)
 This report has been created with Olex2, compiled on 2016.02.16 svn.r3265 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

Figure SI4 Two views of pss34 with only key atoms labeled and thermal ellipsoids drawn at 50% probability level

Crystal structure determination of [ps34]

The asymmetric unit contains the complex, twice this in the unit cell.

The chelated pyridine and fluorophenyl ring are at a rather jaunty angle to the plane of the atoms chelated to the Pt. This is described as the angle between mean planes between either the aromatic ring of interest or the atoms chelated to Pt.

Angles in the bis fluorophenylpyridine ligand

Angle between coordinated phenyl C1 C2 C3 C4 C5 C6 to pyridine N7 C7 C8 C9 C10 C11 is 28.885 (0.079) degrees

Angle between pyridine N7 C7 C8 C9 C10 C11 and non coordinated fluorophenyl C12 C13 C14 C15 C16 C17 is 32.453 (0.077) degrees

Angles between the plane of the atoms coordinated to Pt and the chelated aromatics

Angle between pyridine ring N7 C7 C8 C9 C10 C11 and a plane described by atoms coordinated to Pt1, Pt1 C1 N7 Cl1 P1 is 38.080 (0.055) degrees

Angle between a plane described by atoms coordinated to Pt1, Pt1 C1 N7 Cl1 P1 and coordinated fluorphenyl ring C1 C2 C3 C4 C5 C6 is 29.756 (0.047) degrees

There is possible pi stacking between the bis fluorophenylpyridine and a symmetry related ligand (see Mercury) Angle between mean planes through interacting pi systems is zero because its across an inversion centre. Closest atomic contact C8 - C17_\$1 3.2996 (0.0025) Angstroms

Symmetry operator used to generate symmetry related atom in above contact \$1 1-X,1-Y,1-Z

More info on pi stacking from Olex2

Plane #2 C12 C17 C16 C15 C14 C13 Plane #6 N7 C11 C10 C9 C8 C7

Considering plane #6 $\,$ plane #6 has interaction with plane #2 $\,$ #6@2_666 (1-X,1-Y,1-Z) $\,$

angle: 0.000, centroid-centroid distance: 3.820 Angstroms, off set shift distance of the two centroids 0.535 Angstroms

Experimental

Single crystals of $C_{38}H_{31}ClF_2NPPt$ [**ps34**] were grown from chloroform. A suitable crystal was selected and mounted on a glass fibre with Fromblin oil and placed on an Xcalibur Gemini diffractometer with a Ruby CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

10 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

11 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

12 Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal Data for $C_{38}H_{31}CIF_2NPPt$ (*M* =801.15 g/mol): triclinic, space group P-1 (no. 2), a = 8.51403(11) Å, b = 10.31938(18) Å, c = 18.7511(3) Å, $\alpha = 83.1662(13)^\circ$, $\beta = 79.6553(12)^\circ$, $\gamma = 76.3618(13)^\circ$, V = 1569.92(4) Å³, Z = 2, T = 150(2) K, $\mu(MoK\alpha) = 4.646$ mm⁻¹, *Dcalc* = 1.695 g/cm³, 54759 reflections measured (4.792° $\leq 2\Theta \leq 67.348^\circ$), 11737 unique ($R_{int} = 0.0370$, $R_{sigma} = 0.0305$) which were used in all calculations. The final R_1 was 0.0210 (I > 2 σ (I)) and wR_2 was 0.0435 (all data).

Table 1 Crystal data and structure refinement for ps34.					
ps34					
$C_{38}H_{31}ClF_2NPPt$					
801.15					
150(2)					
triclinic					
P-1					
8.51403(11)					
10.31938(18)					
18.7511(3)					
83.1662(13)					
79.6553(12)					
76.3618(13)					
1569.92(4)					
2					
1.695					
4.646					
788.0					
$0.24 \times 0.2 \times 0.06$ yellow block					
MoKα (λ = 0.71073)					
4.792 to 67.348					
$-12 \le h \le 13, -15 \le k \le 16, -29 \le l \le 29$					
54759					
11737 [$R_{int} = 0.0370, R_{sigma} = 0.0305$]					
11737/0/397					
1.017					
$R_1 = 0.0210, wR_2 = 0.0422$					
$R_1 = 0.0250, wR_2 = 0.0435$					
0.87/-0.95					

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for ps34. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
Pt1	3031.1(2)	6894.2(2)	6862.5(2)	14.37(2)
Cl1	3581.5(6)	9084.7(4)	6686.6(2)	22.87(8)
C1	2481.8(19)	5114.3(16)	6879.8(9)	16.3(3)
P1	2209.2(5)	7285.4(4)	8034.8(2)	16.92(8)
C2	2476(2)	4055.6(17)	7417.3(9)	19.8(3)
C3	1960(2)	2942.7(17)	7294.6(10)	22.0(3)
F3	1975.5(15)	1929.6(11)	7833.9(6)	30.0(3)
C4	1423(2)	2787.2(18)	6667.8(10)	22.4(3)
C5	1498(2)	3799.8(18)	6110.6(10)	20.3(3)
C6	2052.4(19)	4927.7(17)	6206.1(9)	17.1(3)
C7	2534.5(19)	5845.5(17)	5587.9(9)	17.8(3)
N7	3559.6(16)	6579.3(14)	5735.6(7)	15.5(3)
C8	2161(2)	5905.5(18)	4892.6(10)	21.4(3)
C9	2924(2)	6661(2)	4333.9(10)	25.6(4)
C10	4108(2)	7263.0(19)	4471.3(10)	23.0(3)
C11	4432.8(19)	7199.5(17)	5181.3(9)	17.4(3)
C12	5858(2)	7658.8(17)	5323.0(9)	17.5(3)
C13	6418(2)	8692.6(17)	4879.3(9)	20.4(3)
C14	7833(2)	9056.1(18)	4972.5(10)	23.6(4)
C15	8677(2)	8351.8(19)	5505.8(11)	23.7(4)
F15	10068.6(14)	8691.2(13)	5601.9(7)	33.9(3)
C16	8187(2)	7313.0(18)	5953.6(10)	22.2(3)
C17	6758(2)	6969.3(17)	5861.0(9)	19.5(3)
C18	1044(2)	8979.6(17)	8228.3(10)	21.8(3)
C19	-662(2)	9421.1(18)	8039.4(12)	27.0(4)
C20	-1971(3)	9837(2)	8585.6(15)	42.5(6)
C21	-3557(3)	10263(3)	8420(2)	58.8(8)
C22	-3834(3)	10307(3)	7728(2)	62.2(9)
C23	-2545(3)	9921(3)	7175.0(19)	63.7(10)
C24	-957(3)	9470(3)	7336.0(14)	44.1(6)
C25	1051(2)	6130.4(19)	8602.7(10)	24.5(4)
C26	-80(2)	6621.2(18)	9285.2(10)	23.5(4)
C27	498(3)	6778(2)	9906.2(11)	32.1(5)
C28	-570(3)	7227(2)	10522.6(11)	36.9(5)
C29	-2237(3)	7511(2)	10531.2(11)	35.5(5)
C30	-2826(3)	7316(3)	9923.6(13)	40.8(6)
C31	-1751(3)	6882(2)	9306.3(11)	34.9(5)
C32	3969(2)	7234.6(19)	8487.6(10)	23.2(4)
C33	5276(2)	5977(2)	8372.8(10)	23.3(4)
C34	6493(2)	5932(2)	7763.9(11)	27.3(4)
C35	7660(2)	4761(2)	7628.0(12)	34.1(5)
C36	7619(3)	3621(2)	8093.4(13)	38.1(5)

C37	6438(3)	3662(2)	8706.6(13)	37.5(5)
C38	5277(2)	4836(2)	8848.3(11)	30.5(4)

Table 3 Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for ps34. The Anisotropic displacement factor exponent takes the form: - $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

	2.0 [n a U ₁₁ +2.	IIKa D'O ₁₂ +].					
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}		U_{12}
Pt1	15.25(3)	13.47(3)	13.85(3)	-0.04(2)	-0.45(2))	-3.97(2)
C11	30 3(2)	16 55(18)	21 06(19)	-0.51(15)	2 97(16)		-9.62(15)
CI	14.0(7)	10.00(10)	10.0(7)	2.51(13)	2.57(10)	,	$2 - \frac{1}{2}$
CI	14.0(/)	10.0(/)	18.0(/)	-3.0(0)	-0.2(6)		-3.5(5)
P1	20.11(19)	15.19(19)	14.92(18)	-1.02(15)	-0.44(15)	5)	-4.66(15)
C2	22.8(8)	17.3(8)	17.7(8)	-2.3(6)	1.0(6)		-3.9(6)
C2	25 0 (0)	14 3(7)	22 7 (0)	0 1 (6)	E E (7)		1 2 (6)
CS	25.0(8)	14.3(7)	22.7(8)	0.1(0)	5.5(7)		-4.3(0)
F3	46.3(7)	17.6(5)	23.8(6)	2.0(4)	2.5(5)		-10.2(5)
C4	21.7(8)	18.8(8)	26.8(9)	-5.0(7)	4.0(7)		-9.2(6)
C5	10 2(7)	21 5(9)	21.6(9)	5 1(7)	0 6 (6)		6 3 (6)
05	10.2(7)	21.3(8)	21.0(0)	-3.1(7)	0.0(0)		-0.5(0)
C6	13.3(7)	17.0(7)	19.7(7)	-1.8(6)	0.3(6)		-2.8(6)
C7	14.6(7)	18.1(7)	19.5(8)	-2.6(6)	-1.0(6)		-2.1(6)
N7	15.7(6)	16.2(6)	14.3(6)	-0.9(5)	-1.3(5)		-4.2(5)
C0	10.7(0)	24 5 (0)	21.1(0)	(3, 5)	1.0(5)		1.2 (3)
C8	20.2(8)	24.5(9)	21.1(8)	-3.5(7)	-4.8(0)		-5.9(0)
C9	28.9(9)	30.4(10)	17.4(8)	0.1(7)	-6.5(7)		-5.3(8)
C10	24.7(8)	26.1(9)	16.1(8)	2.0(7)	-0.9(6)		-5.3(7)
C11	16 1(7)	17 2(7)	165(7)	-0.2(6)	0 1 (6)		-1 8(6)
	10.1(7)	17.2(7)	10.5(7)	-0.2(0)	0.1(0)		-1.0(0)
C12	16.2(7)	17.7(7)	17.2(7)	-2.1(6)	1.7(6)		-4.1(6)
C13	21.7(8)	18.1(8)	18.7(8)	-0.1(6)	1.6(6)		-3.2(6)
C14	25 1(8)	18 4 (8)	25 5(9)	15(7)	3 6 7		-8.6(7)
015	10 0(0)	22 2(0)	20.0(9)	4 2 (7)	0.0(7)		
C15	18.0(8)	23.3(9)	30.0(9)	-4.2(/)	0.8(7)		-8.0(0)
F15	25.2(6)	34.8(7)	46.1(7)	2.1(6)	-5.9(5)		-17.7(5)
C16	18,6(8)	23.8(9)	24.2(8)	0.1(7)	-2.6(6)		-6.2(6)
C17	18 8(7)	19 6(8)	19 0(8)	1 4(6)	1 0 (6)		-6 2(6)
C1/	10.0(/)	10.0(0)	10.0(0)	1.1 T	1.0(0)		-0.2(0)
C18	26.8(8)	10.7(8)	20.9(8)	-3.9(6)	1.2(7)		-5.3(6)
C19	23.4(8)	16.6(8)	39.0(11)	-4.8(8)	0.9(8)		-3.7(7)
C20	32.6(11)	38.7(13)	49.4(14)	-9.2(11)	8.6(10)		-2.8(9)
C21	22.0(11)						
C21	2/./(12)	46.0(15)	94(2)	-19./(16)	11.5(14))	-0.8(11)
C22	29.1(12)	39.3(14)	123(3)	-31.6(17)	-24.0(15	5)	4.9(10)
C23	48.8(15)	57.0(18)	88(2)	-36.3(17)	-38.1(16)	5)	19.2(13)
C24	26.2(12)	45 2(14)	40 E (14)	20.0(12)	15(1)	- /	10 4(10)
C24	30.2(12)	45.3(14)	48.5(14)	-20.8(12)	-15(1)		10.4(10)
C25	34.5(10)	20.4(8)	18.2(8)	-2.0(7)	1.2(7)		-8.9(7)
C26	29.3(9)	21.3(8)	18.9(8)	2.5(7)	1.0(7)		-9.4(7)
C27	27 2 (0)	44 9(12)	10 9 (0)	0 3 (9)	0 6 (7)		3 1(0)
C27	27.3(9)	44.9(12)	19.0(9)	-0.3(8)	-0.0(7)		-3.1(9)
C28	3/.0(11)	51.4(14)	19.3(9)	-5.0(9)	-2.1(8)		-4.5(10)
C29	34.3(11)	41.2(12)	23.3(9)	0.0(9)	5.7(8)		-1.8(9)
C30	25.4(10)	60.8(16)	32.1(11)	3.3(11)	2.4(8)		-9.9(10)
C21	22 2 (10)	$E_{2} = 1(14)$	22 2 (0)	2 4 (0)	1 ((0)		10 1(10)
031	32.2(10)	53.1(14)	23.3(9)	-3.4(9)	-1.0(8)		-19.1(10)
C32	25.9(8)	25.1(9)	20.3(8)	-3.5(7)	-5.1(7)		-7.1(7)
C33	21.3(8)	29.8(9)	20.3(8)	-1.1(7)	-6.8(6)		-6.4(7)
C24	22 4 (0)	25 5(11)	225(0)	1 0 / 9 \	1 9 (7)		7 1 (9)
C34 637	23.4())	55.5(11)	22.5(5)	1.7(0)	-4.0(7)		-/.1(0)
C35	24.0(9)	43.2(12)	30.1(10)	-0.6(9)	-1.2(8)		-0.8(8)
C36	27.6(10)	38.8(12)	40.5(12)	1(1)	-4.9(9)		4.6(9)
C37	32.4(10)	35.0(11)	38.6(12)	10.9(9)	-4.6(9)		-2.2(9)
C20	35.0(0)	27.4(11)	25.7(0)	2 5 (0)	2 = (7)		E 2(0)
C38	25.9(9)	37.4(11)	25./(9)	3.5(8)	-3.5(7)		-5.3(8)
	Table 4 Bond I	engths for ps34.					
	Atom Ato	m Length/Å			Atom	Aton	1 Length/Å
	Dt1 C11	2 2004(4)			C14	C15	1 272/21
	ru cu	2.3004(4)			014	C15	1.372(3)
	Pt1 C1	1.9947(17)			C15	F15	1.359(2)
	Pt1 P1	2.2384(4)			C15	C16	1.378(3)
	Pt1 N7	2,1274(13)			C16	C17	1,390(2)
		$2 \cdot 12 / 1 (13)$			C10	C10	1 500(2)
	CI C2	1.390(2)			018	019	1.209(3)
	C1 C6	1.423(2)			C19	C20	1.394(3)
	P1 C18	1.8374(17)			C19	C24	1.379(3)
	P1 C25	1.844(2)			C20	C21	1.397(1)
	D1 C23				C20	C21	1 252 (4)
	РІ С32	1.8382(19)			C21	C22	1.353(5)
	C2 C3	1.379(3)			C22	C23	1.386(4)
	C3 F3	1.365(2)			C23	C24	1.397(3)
	C^2 C^4	1 274/2)			C25	C24	1 = 17/2
		1 201 (2)			C25	C20	1.01/(2)
	C4 C5	1.391(3)			C26	C27	1.383(3)
	C5 C6	1.396(2)			C26	C31	1.379(3)
	C6 C7	1,470(2)			C27	C28	1.389(3)
	C7 N7	1 264(2)			C20	C20	1 277/2
	C/ N/	1.304(2)			C28	C29	1.3//(3)
	C7 C8	1.388(2)			C29	C30	1.378(3)
	N7 C11	1.353(2)			C30	C31	1.388(3)
	C8 C0	1 388(3)			C32	C33	1 506(2)
		1 277 (2)			C32	C33	1 204(2)
	C9 C10	1.377(3)			C33	C34	1.394(3)
	C10 C11	1.399(2)			C33	C38	1.389(3)
	C11 C12	1.478(2)			C34	C35	1.389(3)
	C12 C13	1,394(2)			C35	C36	1,382/31
	C12 C13				C26	C27	1 202(3)
	C12 C17	1.400(2)			0.50	C3/	1.383(3)
	C13 C14	1.388(3)			C37	C38	1.391(3)

Table 5 Bo	ond Angles	for ps34.						
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°
C1	Pt1	C11	172.43(5)		C13	C12	C17	119.10(16)
C1	Pt1	P1	99.70(5)		C17	C12	C11	119,96(15)
C1	Pt1	N7	79.14(6)		C14	C13	C12	120.93(17)
P1	Pt1	Cl1	86 424(16)		C15	C14	C12	117 95(17)
N7	Dt1	Cll	94 32(4)		C13	C15	C16	$123 \ A7(17)$
N7	Dt1	D1	174 22(4)		E15	C15	C10	123.47(17) 110.69(17)
N7 C2		Г I D+1	1/4.23(4)		F15 F15	C15	C14	110.00(17)
C2			131./9(13)		F13		C10 C17	11/.84(1/)
C2	CI	C6	116.64(16)			C16	C17	118.04(1/)
C6	CI	PtI	111.56(12)		C16	C17	C12	120.49(16)
C18	PI	PtI	116./6(6)		C19	C18	PI	118.39(13)
C18	P1	C25	105.94(8)		C20	C19	C18	119.2(2)
C18	P1	C32	98.86(9)		C24	C19	C18	121.80(18)
C25	P1	Pt1	116.91(6)		C24	C19	C20	119.0(2)
C32	P1	Pt1	110.78(6)		C19	C20	C21	120.0(3)
C32	P1	C25	105.59(9)		C22	C21	C20	120.6(3)
C3	C2	C1	119.66(17)		C21	C22	C23	120.3(2)
F3	C3	C2	117.77(17)		C22	C23	C24	119.7(3)
F3	C3	C4	117.77(16)		C19	C24	C23	120.4(2)
C4	C3	C2	124.46(17)		C26	C25	P1	118,44(13)
C3	C4	C5	116 81(17)		C27	C26	C25	12250(18)
C4	C5	C6	120.45(17)		C31	C26	C25	122.50(10) 119.66(18)
C4	C5	C0	120.45(17)		C31	C20	C23	117.00(10)
	C0	C/	113.43(15)		C31	C20	C27	121 1(2)
CS	6		121.0/(10)		C26	C27	C28	121.1(2)
CS	C6	C/	121.81(16)		C29	C28	C27	120.5(2)
N7	C7	C6	113.15(15)		C28	C29	C30	118.86(19)
N7	C7	C8	120.89(16)		C29	C30	C31	120.3(2)
C8	C7	C6	125.65(17)		C26	C31	C30	121.4(2)
C7	N7	Pt1	108.80(10)		C33	C32	P1	112.57(13)
C11	N7	Pt1	129.91(12)		C34	C33	C32	119.64(18)
C11	N7	C7	119.60(14)		C38	C33	C32	121.64(17)
C7	C8	C9	119.13(17)		C38	C33	C34	118.69(18)
C10	C9	C8	119.34(17)		C35	C34	C33	120.6(2)
C9	C10	C11	119.78(17)		C36	C35	C34	120.2(2)
N7	C11	C10	120, 27(16)		C35	C36	C37	1197(2)
N7	C11	C12	118 88(15)		C36	C37	C38	120 3(2)
C10	C11	C12 C12	120.43(16)		C30	C38	C37	120.5(2)
C10 C12	C11 C12	C12 C11	120.43(10)		035	0.50	037	120.30(19)
C15	CIZ	CII	120.04(10)					
Table 6 H	vduogon Ad	am Caardin	atas (Å v104) and Isatuania	Dianla com out Donom	atoma (Å 2.1)	03) fan ma24		
Table o H	yarogen At	om Coorair	lates (A×10 ⁺) and isotropic	Displacement Param	ieters (A-XI)) for ps54.		
Atom		x	у	Z	U(e	eq)		
H2	2825		4101	/865	24			
H4	1021		2025	6617	27			
H5	1170		3723	5662	24			
H8	1393		5436	4800	26			
H9	2631		6761	3861	31			
H10	4702		7720	4085	28			
H13	5823		9155	4508	25			
H14	8206		9770	4676	28			
H16	8809		6846	6315	27			
H17	6389		6261	6165	23			
H18A	966		9062	8755	26			
H18B	1691		9621	7966	26			
H20	_1784		9832	9071	51			
H20 H21	-1/04		1052	9706	71			
1121	-4440		10524	7621	71			
H22	-4910		10804	/021	75			
H23	-2/41		9963	6689	/6			
H24	- / 5		9194	6958	53			
H25A	386		5847	8293	29			
H25B	1851		5322	8749	29			
H27	1644		6575	9911	38			
H28	-148		7338	10942	44			
H29	-2968		7836	10949	43			
H30	-3973		7479	9927	49			
H31	-2176		6763	8889	42			
H32A	4445		8019	8298	28			
H32B	3588		7298	9016	28			
H34	6524		6710	7439	33			
H35	8490		4743	7214	41			
H36	8399		2813	7992	46			
1127	6410		2885	9032	45			
H N <i>i</i>	n 4 · S		2	JUJ2	40			
H38	419		4859	9274	27			

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details:

 Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups
 a Secondary CH2 refined with riding coordinates: C18(H18A,H18B), C25(H25A,H25B), C32(H32A,H32B)
 b Aromatic/amide H refined with riding coordinates: C2(H2), C4(H4), C5(H5), C8(H8), C9(H9), C10(H10), C13(H13), C14(H14), C16(H16), C17(H17), C20(H20), C21(H21), C22(H22), C23(H23), C24(H24), C27(H27), C28(H28), C29(H29), C30(H30), C31(H31), C34(H34), C35(H35), C36(H36), C37(H37), C38(H38)

This report has been created with Olex2, compiled on 2016.02.19 svn.r3266 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

ps38 complex 5

Figure SI5 three different views of ps38 with only key atoms labeled and thermal ellipsoids drawn at 50% probability level

Crystal structure determination of [ps38]

The asymmetric unit contains the complex, there are two in the unit cell. Coordination at Pt is substantially distorted away from square planar, but is not tetrahedral.

As an example, see the mean plane through the coordinated atoms C1 N7 Cl1 P1 Pt1 Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

0.7440 (0.0056) x + 10.3496 (0.0021) y - 6.0824 (0.0080) z = 0.5798 (0.0057)

* 0.4432 (0.0009) C1

- * -0.4646 (0.0009) N7
- * 0.3526 (0.0009) Cl1
- * -0.3666 (0.0009) P1
- * 0.0354 (0.0006) Pt1

The coordinated atoms are far out of a mean plane

Some steric parameters describing the angle between pi systems defined by atoms used to define a mean plane and angle between this mean plane.

Mean plane C1 C2 C3 C4 C5 C6 (coordinated fluorophenyl ring) to mean plane N7 C7 C8 C9 C10 C11 (coordinated pyridine) is 8.229 (0.078) degrees

Mean plane N7 C7 C8 C9 C10 C11 (coordinated pyridine) to mean plane C12 C13 C14 C15 C16 C17 (non coordinated fluorophenyl ring) is 47.642 (0.072) degrees

Mean plane C12 C13 C14 C15 C16 C17 (non coordinated fluorophenyl ring) to mean plane C18 C19 C20 C21 C22 C23 (bonded C17-C18 to benzyl of phosphine) is 55.812 (0.072) dgrees

There is probably pi stacking between the coordinated pyridine and fluorophenyl rings related by an inversion centre

Mean plane C1 C3 C5 N7 C8 C10 to mean plane C1_ $1 C3_{1} C5_{1} C5_{1} C3_{1} C8_{1} C10_{1} is zero degrees (as related by an inversion centre) Closest atomic contact C5 - C7_{1} 3.3005 (0.0032) Agstroms$

H bond between chloroform and chloride ligand

Specified hydrogen bonds (with esds except fixed and riding H) D-H H...A D...A <(DHA)

			· · · · · · · · · · · · · · · · · · ·	/
1.00	2.44	3.412(3)	164.4	C39-H39Cl1

Experimental

Single crystals of $C_{39}H_{30}Cl_4F_2NPPt$ [**ps38**] were grown from chloroform/petrol. A suitable crystal was selected and mounted on a glass fibre with Fromblin oil and placed on a Rigaku Oxford Diffraction SuperNova diffractometer with a Duel source (Cu at zero) equipped with an AtlasS2 CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

13 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

14 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

15 Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal Data for C₃₉H₃₀Cl₄F₂NPPt (*M* =918.50 g/mol): triclinic, space group P-1 (no. 2), a = 10.06885(9) Å, b = 10.97968(11) Å, c = 17.46056(18) Å, $\alpha = 107.6381(9)^{\circ}$, $\beta = 97.2289(9)^{\circ}$, $\gamma = 105.2604(8)^{\circ}$, V = 1729.76(3) Å³, Z = 2, T = 150(2) K, μ (CuK α) = 11.208 mm⁻¹, *Dcalc* = 1.763 g/cm³, 59546 reflections measured (8.664° $\leq 2\Theta \leq 147.208^{\circ}$), 6645 unique ($R_{int} = 0.0543$, $R_{sigma} = 0.0224$) which were used in all calculations. The final R_1 was 0.0198 (I > 2 σ (I)) and wR_2 was 0.0489 (all data).

ps38

Table 1 Crystal data and structure refinement for ps38.

Identification code	ps38
Empirical formula	$C_{39}H_{30}Cl_4F_2NPPt$
Formula weight	918.50
Temperature/K	150(2)
Crystal system	triclinic
Space group	P-1
a/Å	10.06885(9)
b/Å	10.97968(11)
c/Å	17.46056(18)
α/°	107.6381(9)
β/°	97.2289(9)
γ/°	105.2604(8)
Volume/Å ³	1729.76(3)
Z	2
$\varrho_{calc}g/cm^3$	1.763
µ/mm ⁻¹	11.208
F(000)	900.0
Crystal size/mm ³	$0.18 \times 0.08 \times 0.04$ yellow block
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.664 to 147.208
Index ranges	$-12 \le h \le 12, -13 \le k \le 13, -21 \le l \le 20$
Reflections collected	59546
Independent reflections	6645 [$R_{int} = 0.0543$, $R_{sigma} = 0.0224$]
Data/restraints/parameters	6645/0/433
Goodness-of-fit on F ²	1.041
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0198$, $wR_2 = 0.0488$
Final R indexes [all data]	$R_1 = 0.0200, wR_2 = 0.0489$
Largest diff. peak/hole / e Å ⁻³	0.70/-1.03

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for ps38. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
C1	5978(2)	4120(2)	6060.2(15)	14.5(5)
C11	2606.5(6)	4948.3(6)	7205.6(4)	19.05(12)
P1	5448.8(6)	4490.5(6)	7956.6(4)	14.61(12)
Pt1	4444.5(2)	4194.3(2)	6669.1(2)	12.23(4)
C2	7438(3)	4679(2)	6369.8(17)	18.3(5)
C3	8321(3)	4814(3)	5837.9(18)	21.1(5)
F3	9732.3(15)	5387.8(17)	6172.4(11)	29.8(4)
C4	7867(3)	4422(3)	4995.0(18)	21.3(5)
C5	6418(3)	3859(2)	4676.9(17)	19.1(5)
C6	5486(2)	3715(2)	5192.9(16)	16.1(5)
C7	3958(2)	3124(2)	4878.8(16)	15.3(5)
N7	3220(2)	3095.5(19)	5471.5(13)	13.7(4)
C8	3261(3)	2565(2)	4047.9(17)	19.8(5)
C9	1825(3)	1906(3)	3839.6(17)	21.7(5)
C10	1120(3)	1751(3)	4450.7(17)	20.6(5)
C11	1836(2)	2346(2)	5274.6(16)	15.8(5)
C12	1093(2)	2109(2)	5924.9(16)	15.8(5)
C13	-227(3)	2304(2)	5902.6(17)	19.6(5)
C14	-1003(3)	2105(3)	6480.3(18)	22.5(5)
C15	-436(3)	1703(3)	7080.8(17)	21.0(5)
F15	-1184.4(16)	1488.0(17)	7652.4(11)	30.1(4)
C16	851(3)	1474(2)	7124.2(16)	18.5(5)

C17	1639(2)	1672(2)	6542.6(16)	15.4(5)
C18	2946(2)	1260(2)	6545.1(16)	16.0(5)
C19	2977(3)	279(2)	5822.3(17)	18.6(5)
C20	4080(3)	-257(3)	5771.5(18)	23.6(6)
C21	5163(3)	176(3)	6460(2)	26.5(6)
C22	5152(3)	1150(3)	7177.6(18)	22.2(5)
C23	4071(2)	1738(2)	7239.9(16)	17.0(5)
C24	4247(2)	2932(2)	8014.9(16)	17.2(5)
C25	7266(3)	4477(3)	8276.9(17)	20.3(5)
C26	7680(3)	4530(3)	9154.3(18)	23.7(6)
C27	7308(3)	3399(4)	9378(2)	33.7(7)
C28	7686(3)	3488(5)	10192(2)	46.1(9)
C29	8455(3)	4716(5)	10795(2)	48.3(10)
C30	8859(4)	5837(4)	10576(2)	45.2(9)
C31	8486(3)	5750(3)	9763(2)	33.4(7)
C32	5300(3)	5877(3)	8810.6(16)	20.1(5)
C33	6211(3)	7255(3)	8863.1(17)	20.9(5)
C34	7123(3)	8155(3)	9603(2)	32.1(7)
C35	7966(4)	9415(3)	9654(2)	41.1(8)
C36	7904(3)	9807(3)	8972(2)	37.7(7)
C37	6989(3)	8933(3)	8240(2)	33.8(7)
C38	6149(3)	7673(3)	8186.4(19)	27.5(6)
C39	1940(4)	7945(3)	7837(2)	36.6(7)
Cl2	2012.5(9)	8342.5(8)	6942.3(5)	43.49(19)
C13	3366(1)	9076.1(16)	8636.5(7)	73.4(4)
Cl4	328.5(9)	7956.2(10)	8129.2(6)	48.1(2)

Table 3 Anisotropic Displacement	Parameters (Å ² ×10 ³) for ps38.	The Anisotropic displaceme	ent factor exponent takes the fe	orm: -
$2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+].$				

Atom	Ü ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C1	21.3(11)	12.3(10)	13.7(13)	5.4(9)	8.9(10)	8.3(9)
C11	17.2(2)	19.2(3)	19.4(3)	1.7(2)	6.4(2)	8.6(2)
P1	14.8(3)	16.9(3)	11.1(3)	3.4(2)	3.6(2)	4.8(2)
Pt1	13.31(6)	12.24(6)	10.89(6)	2.94(4)	4.56(4)	4.13(4)
C2	18.7(11)	20.4(12)	16.5(14)	6.4(10)	6.6(10)	6.2(9)
C3	17.2(11)	19.7(12)	28.0(16)	9.0(11)	8.6(11)	6.2(10)
F3	14.4(7)	41.3(9)	29.6(10)	9.9(8)	8.2(7)	3.7(6)
C4	23.9(12)	20.9(12)	24.3(15)	8.5(11)	15.7(11)	10.2(10)
C5	23.6(12)	19.6(12)	17.7(14)	7.7(10)	9.4(10)	9.1(10)
C6	19.7(11)	11.3(10)	17.4(13)	4.4(9)	4.3(10)	6.2(9)
C7	21.8(12)	12.5(10)	14.5(13)	5.7(9)	7.3(10)	7.4(9)
N7	17.2(9)	11.4(9)	12.0(11)	3.0(8)	3.4(8)	4.8(7)
C8	25.8(12)	19.8(12)	14.8(13)	5.5(10)	7.6(10)	8.5(10)
C9	26.4(13)	22.1(12)	12.4(13)	3.3(10)	0(1)	6.1(10)
C10	19.8(12)	19.0(12)	19.6(14)	6.1(10)	1.3(10)	3(1)
C11	17.0(11)	12(1)	18.4(13)	5.1(9)	3.1(10)	5.2(9)
C12	16.3(11)	11.8(10)	14.6(13)	1.1(9)	3.0(9)	1.1(9)
C13	17.7(11)	17.8(11)	20.1(14)	4.1(10)	1.2(10)	4.8(9)
C14	15.6(11)	21.1(12)	27.2(16)	3.3(11)	5.1(11)	6(1)
C15	20.0(12)	19.7(12)	20.0(14)	3.4(10)	10.5(10)	2.1(10)
F15	24.2(8)	40.6(9)	27.4(10)	12.0(8)	16.1(7)	8.5(7)
C16	20.1(11)	16.9(11)	16.7(13)	4.6(10)	6(1)	3.9(9)
C17	15.9(11)	12.7(10)	15.1(13)	2.7(9)	4.5(9)	2.5(9)
C18	19.2(11)	12.9(10)	18.5(13)	7.9(10)	7.9(10)	5.1(9)
C19	22.3(12)	14.3(11)	19.6(14)	6.4(10)	7.2(10)	4.6(9)
C20	32.0(14)	16.5(12)	25.7(16)	6.3(11)	15.8(12)	10.2(10)
C21	23.8(13)	22.9(13)	39.1(18)	12.4(12)	12.2(12)	13.2(11)
C22	21.0(12)	21.0(12)	27.2(15)	11.3(11)	4.9(11)	7.8(10)
C23	18.9(11)	14.4(11)	19.7(14)	8(1)	7.5(10)	5.0(9)
C24	17.6(11)	20.2(12)	15.6(13)	8.5(10)	5.3(10)	5.8(9)
C25	17.6(11)	26.0(13)	18.2(14)	7.1(11)	6.7(10)	7.7(10)
C26	16.1(11)	39.6(15)	17.5(15)	9.1(12)	6.3(10)	12.4(11)
C27	24.5(14)	50.7(19)	29.4(18)	20.2(15)	5.2(12)	10.7(13)
C28	32.2(16)	85(3)	39(2)	42(2)	13.2(15)	21.0(18)
C29	31.8(16)	103(3)	21.8(18)	27(2)	11.4(14)	31.3(19)
C30	32.7(16)	70(2)	21.8(18)	-2.2(16)	-0.6(14)	23.2(17)
C31	25.5(14)	44.5(17)	24.3(17)	3.2(13)	1.3(12)	13.9(13)
C32	22.1(12)	22.6(12)	13.3(13)	2(1)	5.9(10)	7.3(10)
C33	20.7(12)	20.1(12)	17.3(14)	-1.3(10)	6(1)	7.6(10)
C34	36.3(15)	30.1(15)	19.0(16)	-2.0(12)	1.9(13)	7.5(12)
C35	38.3(17)	29.3(16)	32.2(19)	-8.7(14)	0.9(15)	-1.2(13)
C36	38.4(17)	22.8(14)	41(2)	1.5(13)	14.6(15)	1.1(12)
C37	45.8(17)	22.6(14)	30.7(18)	5.9(12)	15.2(14)	8.0(13)
C38	34.5(15)	20.8(13)	20.2(15)	0.5(11)	5.1(12)	5.8(11)
C39	57(2)	34.6(16)	35.3(19)	17.6(14)	24.5(16)	28.9(15)
Cl2	58.5(5)	35.7(4)	31.9(4)	17.3(3)	11.6(4)	1.0(3)
C13	42.4(5)	141.4(11)	39.8(6)	30.2(7)	9.4(4)	36.7(6)

Atom

Atom Length/Å

Table 4 Bo	nd Longths	for ne38		
A tom	Atom	Length/Å		
C1	Pt1	1.987(2)		
C1	C2	1.398(3)		
C1	C6	1.423(4)		
Cl1	Pt1	2.4001(6	5)	
P1	Pt1	2.2346(6	5)	
P1	C24	1.857(2))	
P1	C25	1.850(2)	1	
P1	C32	1.834(3))	
Pt1	N7	2.095(2)		
C2	C3	1.377(4)		
C3	F3	1.362(3)		
C3	C4	1.380(4)		
C4	C5	1.390(4)		
C5 C6	C0 C7	1.392(4)		
C7	N7	1 351(3)		
C7	C8	1.397(4)		
N7	C11	1.357(3)		
C8	C9	1.380(4)		
C9	C10	1.381(4)		
C10	C11	1.392(4)		
C11	C12	1.485(4)	1	
C12	C13	1.398(3)	1	
C12	C17	1.413(3)	1	
C13	C14	1.385(4))	
C14	C15	1.372(4))	
C15	F15	1.363(3)	1	
Table 5 Bo	nd Angles i	or ps38.	A I /°	
Atom C2	Atom C1	Atom Dt1	Angle/	
C^2	C1	C6	120.52(1)	
C6	C1	Pt1	110.9(2) 112.89(17)	
C24	P1	Pt1	96.81(8)	
C25	P1	Pt1	124.07(9)	
C25	P1	C24	106.25(11)	
C32	P1	Pt1	118.76(9)	
C32	P1	C24	105.32(12)	
C32	P1	C25	103.28(12)	
C1	Pt1	Cl1	158.48(6)	
C1	Pt1	P1	104.44(7)	
C1	Pt1	N7	80.56(9)	
P1	Pt1	Cl1	87.97(2)	
N7	Pt1	Cl1	95.35(6)	
N7	Pt1	P1	155.83(5)	
C3	C2	C1	119.7(2)	
C2	C3	C4	124.3(2)	
F3	C3	C2	117.4(2)	
F3	C3	C4	118.2(2)	
C3	C4	CS CC	116.7(2)	
C4	C5 C6	C0 C7	120.9(2)	
C5	C6	C1	110.2(2) 121.5(2)	
C5	C6	C7	$121 \cdot 3(2)$ $122 \cdot 4(2)$	
N7	C7	C6	114.0(2)	
N7	C7	C8	120.3(2)	
C8	C7	C6	125.6(2)	
C7	N7	Pt1	113.59(15)	
C7	N7	C11	120.7(2)	
C11	N7	Pt1	125.57(17)	
C9	C8	C7	119.1(2)	
C8	C9	C10	119.5(2)	
C9	C10	C11	120.0(2)	
N7	C11	C10	119.5(2)	
N7	C11	C12	120.8(2)	
C10 C12	CII CI2	C12	119.7(2)	
C13	C12	C11 C17	11/.3(2)	
C13	C12	C1/	123 2(2)	
C14	C12 C13	C12	123.3(2) 121.7(2)	
	015	012	/	
Table 6 Hy D H	drogen Boi A	nds for ps38 d(D-H)/Å		d(H-A)/Å

C39 H39 Cl1 1.00

C17 C18 C18 C19 C20 C21 C22 C23 C25 C26 C26 C27 C28 C29 C30 C32 C33 C33 C33 C33 C34 C35 C36 C37 C39 C39 C39 C39 C39 C39 C39 C39 C39 C39	C18 C19 C23 C20 C21 C22 C23 C24 C26 C27 C31 C28 C29 C30 C31 C33 C34 C35 C36 C37 C38 C12 C13 C14 tom 15 15	Atom C14 C15 C15 C15 C15	1.499(3) 1.400(4) 1.410(4) 1.387(4) 1.383(4) 1.383(4) 1.516(4) 1.386(4) 1.389(4) 1.391(4) 1.391(4) 1.392(4) 1.391(4) 1.392(4) 1.392(4) 1.391(4) 1.392(4) 1.392(4) 1.391(4) 1.392(4) 1.391(4) 1.392(4) 1.392(4) 1.392(4) 1.392(4) 1.392(4) 1.392(4) 1.392(4) 1.392(4) 1.392(4) 1.392(4) 1.392(4) 1.392(4) 1.392(3) 1.516(3) 1.750(3) 1.763(3) Atom C13 C16 C14 C16 C17	Angle ^e 117.7(2) 123.0(3) 118.9(2) 118.0(2) 119.5(2)
	15 12 16 17 16 19 19 23 20 21 22 21 22 23 20 21 22 23 26 27 31 26 27 31 26 29 30 29 26 33 34 38 38 37 36 37 36 37 36 37 32	C16 C17 C17 C17 C18 C18 C18 C19 C20 C21 C22 C23 C23 C23 C23 C23 C23 C23 C23 C23	C17 C18 C12 C18 C17 C23 C17 C18 C19 C20 C23 C24 C18 C24 P1 P1 C25 C31 C25 C28 C27 C28 C31 C30 P1 C32 C32 C34 C33 C34 C33 C34 C35 C38 C33 C34 C35 C38 C33 C14	119.5(2) 122.8(2) 118.8(2) 118.1(2) 116.5(2) 123.8(2) 121.8(2) 123.8(2) 121.8(2) 122.4(3) 123.9(2) 117.3(2) 118.5(2) 109.74(17) 115.50(18) 122.7(3) 118.0(3) 119.3(3) 120.1(3) 119.2(3) 120.8(4) 120.5(3) 121.7(2) 117.8(3) 120.5(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 121.2(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 120.5(3) 121.2(3) 121.2(3) 120.5(3) 121.2(3) 12

D-H-A/°

2.44

d(D-A)/Å

d(D-A)/Å D-H-A/^c 3.412(3) 164.4

Table '	7 Torsio	on Angle	s for ps3	38.						
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°
C1	C2	C3	F3	178.8(2)		C12	C17	C18	C23	131.0(3)
C1	C2	C3	C4	-0.3(4)		C13	C12	C17	C16	-1.2(4)
C1	C6	C7	N7	2.5(3)		C13	C12	C17	C18	171.5(2)
C1	C6	C7	C8	-174.7(2)		C13	C14	C15	F15	-179.4(2)
P1	C25	C26	C27	81.2(3)		C13	C14	C15	C16	-0.9(4)
P1	C25	C26	C31	-100.0(3)		C14	C15	C16	C17	0.9(4)
P1	C32	C33	C34	-128 7(2)		C15	C16	C17	C12	0.2(4)
D1	C32	C33	C29	-120.7(2)		C15	C10	C17	C12	172 0(2)
PI D(1	C32	C35	C30	52.0(3)		C15 E15	C10	C1/	C10	-1/2.9(2)
PtI	CI	C2	C3	-163.91(19)		FID	C15	C16	CI/	1/9.4(2)
PtI	CI	C6	C5	166.94(18)		C16	CI/	C18	C19	119./(3)
Pt1	Cl	C6	C7	-14.0(2)		C16	C17	C18	C23	-56.2(3)
Pt1	P1	C24	C23	47.00(16)		C17	C12	C13	C14	1.2(4)
Pt1	P1	C25	C26	-172.99(16)		C17	C18	C19	C20	-175.1(2)
Pt1	P1	C32	C33	-72.74(19)		C17	C18	C23	C22	173.0(2)
Pt1	N7	C11	C10	174.94(16)		C17	C18	C23	C24	-12.9(4)
Pt1	N7	C11	C12	-7.4(3)		C18	C19	C20	C21	1.2(4)
C2	C1	C6	C5	0.5(3)		C18	C23	C24	P1	-95.4(2)
C2	C1	C6	C7	179.6(2)		C19	C18	C23	C22	-2.7(3)
C^2	C3	C_{4}	C5	0 1(4)		C19	C18	C23	C24	171 4(2)
C_{3}	C4	C5	C6	0.5(4)		C19	C20	C21	C^{22}	-1 5(4)
E2	C7 C2	C1	C5	170 0(2)		C20	C20	C21	C22	-1.3(4)
Г3 С4	C5	C4	CS C1	-1/9.0(2)		C20	C21	C22	C25	-0.3(4)
C4	05	C6		-0.8(4)		C21	C22	C23	C18	2.4(4)
C4	C5	C6	C7	-1/9.8(2)		C21	C22	C23	C24	-1/2.0(2)
C5	C6	C7	N7	-178.5(2)		C22	C23	C24	P1	78.6(2)
C5	C6	C7	C8	4.3(4)		C23	C18	C19	C20	1.0(4)
C6	C1	C2	C3	0.0(3)		C24	P1	C25	C26	-62.7(2)
C6	C7	N7	Pt1	9.8(2)		C24	P1	C32	C33	-179.64(18)
C6	C7	N7	C11	-166.77(19)		C25	P1	C24	C23	-81.50(18)
C6	C7	C8	C9	172.7(2)		C25	P1	C32	C33	69.1(2)
C7	N7	C11	C10	-9.0(3)		C25	C26	C27	C28	-179.0(3)
C7	N7	C11	C12	168.7(2)		C25	C26	C31	C30	178.7(3)
C7	C8		C12	-3 3(4)		C25	C20	C28	C20	-0.4(5)
N7	C3	C9		-3.3(4)		C20	C26	C20	C29	-0.4(3)
IN /	C11	C0	C9 C12	-4.3(3)		C27	C20	C31	C30	-2.4(4)
IN /	CII	C12	C15	132.7(2)		C27	C28	C29	C30	-1.1(5)
N/	CII	C12	CI/	-48.8(3)		C28	C29	C30	C31	0.9(5)
C8	C7	N7	Pt1	-172.95(17)		C29	C30	C31	C26	0.9(5)
C8	C7	N7	C11	10.5(3)		C31	C26	C27	C28	2.2(4)
C8	C9	C10	C11	4.8(4)		C32	P1	C24	C23	169.35(16)
C9	C10	C11	N7	1.2(4)		C32	P1	C25	C26	47.9(2)
C9	C10	C11	C12	-176.4(2)		C32	C33	C34	C35	179.6(3)
C10	C11	C12	C13	-49.7(3)		C32	C33	C38	C37	-179.8(3)
C10	C11	C12	C17	128.8(3)		C33	C34	C35	C36	0.8(5)
C11	C12	C13	C14	179.8(2)		C34	C33	C38	C37	1.4(4)
C11	C12	C17	C16	-179.7(2)		C34	C35	C36	C37	0.3(5)
C11	C12	C17	C18	-6.9(4)		C35	C36	C37	C38	-0.4(5)
C12	C12	C17	C15	-0.2(4)		C36	C30	C28	C30	-0.4(5)
C12	C13 C17	C14 C18	C13	-0.2(4)		C30	C37	C30	C35	-0.4(3)
C12	CI/	C10	C19	-53.1(3)		0.50	C33	C34	C35	-1.0(4)
Table	Q Uudna	an Ato	m Coor	dinatas (Å v104) and	l Icotronio Diculocomor	t Donoma	tong (Å ²	v10 ³) for	n nc 38	
	5 Hyur 0	gen Ato	r Coore		,	<i>7</i>		~10)10. [](ea)	r ps50.	
H2	78	20	A	4965	6945	4		22		
112 114	05	12		4532	1619			26		
114 U5	60	50		4004	4047			22		
п <i>)</i> 110	00	23		2009	4099			23		
Hð	3/	69		2637	3632			24		
H9	13	25		1560	3280			26		
H10	14	6		1240	4309			25		
H13	-6	00		2581	5481		:	24		
H14	-1	898		2243	6461		:	27		
H16	11	99		1183	7546		:	22		
H19	22	22		-28	5353		:	22		
H20	40	91		-910	5272		:	28		
H21	59	15		-197	6441			32		
H22	59	03		1432	7645			27		
H244	46	41		2763	8507			21		
H24R	33	14		3044	8067			21		
H25 V		75		3650	7000			 2 4		
112JA 1125D	13	25		2020	0000					
112JD 1127	19	55		J∠J8	0209			4.0		
П2/ Ц20	67	00 10		2549	8969			±U = =		
H28	74	10		2/02	10335		-	22		
H29	87	01		4784	11353			58		
H30	93	99		6682	10985		!	54		
H31	87	86		6533	9621			40		
H32A	43	02		5853	8743		:	24		
H32B	55	76		5741	9335		:	24		
H34	71	69		7904	10078			39		

H35	8591	10013	10162	49
H36	8484	10667	9007	45
H37	6934	9194	7769	41
H38	5519	7085	7678	33
H39	2011	7018	7722	44

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups, All C(H,H) groups

2.a Ternary CH refined with riding coordinates:

C39(H39)

2.b Secondary CH2 refined with riding coordinates:

C24(H24A,H24B), C25(H25A,H25B), C32(H32A,H32B) 2.c Aromatic/amide H refined with riding coordinates:

C2 (H2), C4 (H4), C5 (H5), C8 (H8), C9 (H9), C10 (H10), C13 (H13), C14 (H14), C16 (H16), C19 (H19), C20 (H20), C21 (H21), C22 (H22), C27 (H27), C28 (H28), C29 (H29), C30 (H30), C31 (H31), C34 (H34), C35 (H35), C36 (H36), C37 (H37), C38 (H38) This report has been created with Olex2, compiled on 2016.02.16 svn.r3265 for OlexSys. Please <u>let us know</u> if there are any errors or if you would like to have additional features.

Figure SI6 Three different views of ps39 with only selected atoms labeled and thermal ellipsoids drawn at 50% probability level Crystal structure determination of [ps39]

The asymmetric unit contains the complex and a molecule of chloroform, there are four times this in the unit cell.

No intra or inter molecular pi stacking. The CH of the chloroform has some reasonably short contacts with the chloro ligands of the complex tabulated below.

Specified hydrogen bonds (with esds except fixed and riding H)

D-H	HA	DA	<(DHA)	
1.00	2.94	3.729(3)	136.5	C39-H39Cl1
1.00	3.04	3.800(3)	133.8	C39-H39Cl2
1.00	2.69	3.544(3)	143.2	C39-H39Cl3

Interesting things

The coordination environment Mean plane through the Pt bound atoms Cl1 Cl2 Pt1 Cl N7 * -0.0666 (0.0007) Cl1

* 0.0357 (0.0007) Cl2

* 0.0493 (0.0006) Pt1

* 0.0528 (0.0009) C1

* -0.0712 (0.0007) N7

Rms deviation of fitted atoms = 0.0566

The RMS deviation is much larger than for one of the flat aromatic rings so most atoms a bit out of mean plane?

Not sure how this compares the atoms in a Pt chelated plane that don't have all these steric clashes?

Angle between the mean plane of the coordinated atoms Cl1 Cl2 Pt1 Cl N7 to a mean plane through the pyridine ring C7 N7 C8 C9 Cl0 Cl1 is 16.530 (0.074) degrees as measure of the tilt of the coordinated pyridine to the chelate plane.

Angles in the ligand

Angle between mean plane through the coordinated fluorophenyl ring C1 C2 C3 C4 C5 C6 to the coordinated pyridine ring C7 N7 C8 C9 C10 C11 is 10.769 (0.097) degrees

Angle between coordinated pyridine C7 N7 C8 C9 C10 C11 and free fluorophenyl ring C12 C13 C14 C15 C16 C17 is 84.126 (0.069) degrees

Angle between free fluorophenyl ring C12 C13 C14 C15 C16 C17 and benzyl aromatic C18 C19 C20 C21 C22 C23 of tribenzylphosphine joined by C17- C18 bond is 88.849 (0.059) degrees

Experimental

Single crystals of C₃₉H₃₀Cl₆F₂NPPt **[ps39]** were grown from chloroform. A suitable crystal was selected and mounted on a glass fibre with Fromblin oil and placed on a Rigaku Oxford Diffraction SuperNova diffractometer with a duel source (Cu at zero) equipped with an AtlasS2 CCD area detector. The crystal was kept at 150(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation. 16 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341. 17 Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

18 Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal Data for $C_{39}H_{30}Cl_6F_2NPPt$ (M = 989.40 g/mol): monoclinic, space group $P2_1/n$ (no. 14), a = 11.49295(19) Å, b = 22.2749(4) Å, c = 14.2990(2) Å, $\beta = 91.1028(14)^\circ$, V = 3659.93(10) Å³, Z = 4, T = 150(2) K, $\mu(MoK\alpha) = 4.357$ mm⁻¹, Dcalc = 1.796 g/cm³, 104681 reflections measured ($4.504^\circ \le 2\Theta \le 63.73^\circ$), 11956 unique ($R_{int} = 0.0546$, $R_{sigma} = 0.0334$) which were used in all calculations. The final R_1 was 0.0255 (I > $2\sigma(I)$) and wR_2 was 0.0519 (all data).

Table 1 Crystal data and structure refinement for ps39.

Identification code	ps39
Empirical formula	$C_{39}H_{30}Cl_6F_2NPPt$
Formula weight	989.40
Temperature/K	150(2)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	11.49295(19)
b/Å	22.2749(4)
c/Å	14.2990(2)
α/°	90
β/°	91.1028(14)
γ/°	90
Volume/Å ³	3659.93(10)
Ζ	4
$\varrho_{calc}g/cm^3$	1.796
µ/mm ^{.1}	4.357
F(000)	1936.0
Crystal size/mm ³	$0.2 \times 0.1 \times 0.06$ colourless block
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.504 to 63.73
Index ranges	$-17 \le h \le 16, -32 \le k \le 31, -20 \le l \le 20$
Reflections collected	104681
Independent reflections	11956 $[R_{int} = 0.0546, R_{sigma} = 0.0334]$
Data/restraints/parameters	11956/0/451
Goodness-of-fit on F ²	1.049
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0255, wR_2 = 0.0490$
Final R indexes [all data]	$R_1 = 0.0352, wR_2 = 0.0519$
Largest diff. peak/hole / e Å ⁻³	1.46/-0.92

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for ps39. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{II} tensor.

Atom	x	у	z	U(eq)
Pt1	7372.0(2)	7713.3(2)	8952.2(2)	13.39(2)
Cl1	6044.5(5)	7196.5(2)	9834.2(4)	21.06(11)
P1	7304.1(5)	8466.6(2)	10066.4(4)	13.5(1)
C13	7475.5(5)	6884.6(2)	7898.8(4)	24.27(11)
C12	8826.6(5)	7272.4(3)	9984.9(4)	22.41(11)
Cl4	6892.0(7)	5641.3(3)	10692.4(5)	40.55(16)
C15	6795.5(8)	5285.5(4)	8749.6(6)	51.1(2)
C16	9003.0(6)	5501.7(4)	9662.0(6)	49.8(2)
N7	8386.0(15)	8147.8(8)	7943.7(11)	14.9(3)
F15	13037.9(14)	7755.8(7)	10556.4(11)	38.3(4)
F3	2973.2(12)	8196.8(7)	7745.1(10)	33.5(3)
C1	6070.0(18)	8054.5(9)	8132.5(13)	14.8(4)
C7	7719.7(19)	8370.7(10)	7222.5(14)	16.3(4)
C6	6463.7(19)	8352.9(10)	7340.7(14)	17.1(4)
C11	9559.0(18)	8117.5(10)	7846.6(14)	17.0(4)

C2	4882.4(19)	7994.6(10)	8267.7(15)	19.5(4)
C8	8224(2)	8575.4(10)	6402.5(15)	21.0(4)
C25	7058.5(19)	8146.9(10)	11241.3(13)	16.9(4)
C32	6117.6(19)	8994.3(10)	9805.4(15)	19.7(4)
C24	8641.4(18)	8896.7(10)	10231.2(14)	16.3(4)
C12	10379.4(18)	7985.2(10)	8638.4(14)	16.9(4)
C39	7538(2)	5720.2(12)	9588.4(17)	29.0(5)
C17	10714.6(18)	8462.2(10)	9214.6(15)	17.7(4)
C28	9299(2)	8597.1(11)	13103.4(16)	27.2(5)
C13	10952(2)	7433.9(11)	8708.0(16)	21.7(5)
C26	7627.2(19)	8462.6(10)	12067.8(14)	17.3(4)
C3	4135.5(19)	8246.2(11)	7612.9(16)	21.8(5)
C22	8704(2)	9816.6(10)	9188.9(15)	19.5(4)
C31	7008(2)	8857.6(10)	12627.0(14)	20.1(4)
C23	9164.6(18)	9259.2(9)	9448.2(14)	15.3(4)
C5	5671(2)	8597.4(11)	6695.0(15)	22.0(5)
C30	7527(2)	9121.6(11)	13411.7(15)	26.1(5)
C18	10197.7(18)	9068.5(9)	9036.8(14)	16.2(4)
C29	8674(2)	8993.7(11)	13646.5(16)	28.1(5)
C27	8777(2)	8331.5(10)	12322.5(15)	21.2(5)
C4	4488(2)	8545.6(11)	6833.2(16)	23.7(5)
C10	10063(2)	8280.9(11)	7010.1(15)	21.2(5)
C21	9248(2)	10177.4(10)	8538.0(16)	22.8(5)
C34	6135(2)	9850.1(10)	10979.1(15)	21.9(5)
C15	12140(2)	7826.4(12)	9934.1(17)	25.6(5)
C33	5626.9(19)	9328.1(10)	10622.2(15)	18.5(4)
C14	11845(2)	7354.6(11)	9361.2(17)	25.5(5)
C16	11603(2)	8379.7(11)	9886.4(16)	22.4(5)
C35	5650(2)	10147.1(11)	11726.2(17)	30.2(6)
C9	9396(2)	8515.4(11)	6285.4(15)	23.7(5)
C20	10281(2)	9992.1(11)	8146.9(16)	23.8(5)
C19	10747(2)	9443.2(10)	8395.4(15)	21.3(5)
C38	4618(2)	9115.4(11)	11035.0(17)	25.5(5)
C36	4646(2)	9930.0(12)	12130.9(18)	33.3(6)
C37	4131(2)	9414.9(13)	11787.1(19)	33.2(6)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for ps39. The Anisotropic displacement factor exponent takes the form: - $2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	I	T	T	I	T	T
Pt1	0_{11} 15.45(4)	0_{22} 11.92(4)	12.86(4)	0_{23}	1,52(3)	-0.51(3)
Cll	24 8(3)	20 1(3)	12.00(1) 18.4(2)	1 15(19)	3 5(2)	-7.5(2)
P1	15 1(2)	12 6(2)	10.4(2) 12.8(2)	0.53(18)	1 20(18)	-7.3(2)
C13	35 3(3)	12.0(2) 16.5(2)	21 1(2)	-4 4(2)	5.4(2)	-1 0(2)
C12	22 2(3)	23 3(3)	21.8(2)	6 9(2)	1 0(2)	5 3(2)
C12	43.7(4)	37.3(4)	41.0(4)	6.0(3)	9.9(3)	6.4(3)
C15	54.4(5)	49.9(5)	48.1(4)	-7.1(4)	-17.9(4)	-5.2(4)
Cl6	31.8(4)	66 5(5)	51 0(4)	-16 6(4)	-2, 2(3)	16 9(4)
N7	17 0(8)	13 0(8)	1/1 8(8)	-0.8(6)	-2.2(3)	-0.9(7)
F15	345(9)	38 2(10)	41.4(9)	-0.0(0)	-18 4(7)	11 4(7)
F3	14.5(7)	47.6(10)	38 2(8)	2 1(7)	-2.7(6)	0.0(7)
C1	17.3(10)	$\frac{1}{13}$ 5(10)	13 6(9)	-1 8(7)	-2.7(0)	-0.9(8)
C7	18.7(10)	15.7(10)	13.0(9)	-1.6(8)	-0.2(7)	-0.5(8)
C6	10.7(10) 19 4(10)	15.7(10)	14.4(5) 16 1(9)	-1.4(8)	-0.4(8)	-0.3(0)
C11	17.5(10)	15.7(10)	10.1(9)	-3.4(8)	-0.4(0) 1 3(8)	0.3(8)
C^2	17.5(10) 18 1(10)	19.3(10)	20.9(10)	-3.4(0)	1.3(0)	-25(9)
C2 C8	26 9(12)	21 0(11)	15 2(0)	-2.7(0)	1 4(9)	-2.3(3)
C25	20.9(12)	17 4(10)	13.2(9)	$2 \cdot 7(8)$	1.4(0)	-0.9(8)
C23	20.4(10)	17.4(10) 10 0(11)	13.0(9)	$1 \cdot 1(0)$	3 0 (0)	-0.9(0)
C32	20.1(11) 18 1(10)	10.9(11) 15 3(10)	15.9(10)	-2.4(0)	-5.0(8)	-28(8)
C12	13 3(9)	13.3(10) 18 5(11)	19.1(10)	1 2(8)	1 (8)	-2.0(0)
C12 C39	13.3(9)	10.3(11)	19.1(10)	$1 \cdot 2(0)$	$4 \cdot 1(0)$	4 9(11)
C17	15 A(10)	20.0(13)	29.0(12)	1.3(10)	-3.1(10)	$4 \cdot 3(11)$ 1 7(9)
C17	13.4(10)	19.1(11) 20 5(12)	10.0(10)	12(1)	5.0(8)	1.7(0)
C28	27.3(12)	10.5(11)	25.5(11)	21(0)	-0.5(10)	2 5 (9)
C15	19.0(11) 21.1(11)	19.5(11) 16.3(10)	23.0(11)	$-2 \cdot 1(9)$	4.0(9)	1 2 (9)
C20	$21 \cdot 1(11)$	24.9(12)	14.0(9)	7 0(0)	1 7 (9)	-1.2(0)
C_{22}	$14 \cdot 9(10)$ 21 7(11)	$17 \Lambda(11)$	23.3(11)	-7.9(9)	-1.7(0)	-1.0(9)
C22	$21 \cdot 7(11)$ 25 $4(11)$	1/.4(11) 10 1/11)	19.4(10)	-0.3(8)	2.3(0) 3.1(0)	0.0(9)
C31 C23	23.4(11)	13.1(11)	10.9(10)	2.0(8)	1 6(7)	-0.0(9)
C23	1/(1)	13.4(10)	15.4(5)	0.0(7)	-1.0(7)	-3.0(8)
C30	24.0(11)	20.3(12)	15.0(10) 17.9(10)	-0.2(9)	-1.5(0)	2.4(9)
C30	40.0(14)	20.0(12)	17.0(10)	-1.2(9)	3.4(10)	-3.4(10)
C10	17.9(10)	14.0(10)	15.9(9)	0.1(0)	-1.4(0)	-0.0(0)
C29	40.4(15)	20.0(13)	1/(1)	4.0(9)	-9(1)	-11.0(11)
C27	∠J.J(II)	17.4(11) 26.2(12)	20.8(10) 22.0(11)	/•4(ð) 5 2(0)	6 9 (9)	1.7(9)
C4	21•/(11)	20.2(12)	23.U(II)	-5.2(9)	-0.9(9)	4.3(1U)
C10 C21	10(1) 20 0(12)	20.U(12)	19.8(10)	-2.0(9)	4•/(δ)	0.7(9)
C21	28.9(12)	12./(11)	23./(11)	4.8(9)	-U.I(9)	-0.3(9)

C34	26.2(12)	17.7(11)	21.9(10)	2.4(9)	3.4(9)	1.8(9)
C15	19 9/11	,)	32 0(14)	24.6(11)	3 4(10)	_4 Å(ý 9)	6 5(10)
C15 C22	17.5(11	,	32.0(14)	24.0(11)	5.4(10)) + + + - (2)	0.9(10)
C33	1/.6(10) .	18.0(11)	19./(10)	0.5(8)	-2.3(8)	6.2(8)
C14	24.2(12) :	21.3(12)	30.9(12)	3.6(9)	1.2(1	0)	8.7(9)
C16	22.4(11)	, ,	23.4(12)	21.3(10)	-0.2(9)	-2.0(9)	1.3(9)
C25	47 0(16	,	17 0(12)	2 = 7 (12)	2 - (2)	2 2 4 1		4 5 (11)
C35	4/.0(10) .	17.8(12)	25./(12)	-3.0(9)	2.3(1	1)	4.5(11)
C9	27.3(12) 2	27.7(12)	16.4(10)	0.2(9)	8.4(9)	-0.9(10)
C20	30.0(13) :	21.3(12)	20.3(10)	3.9(9)	4.0(9)	-7.1(10)
C10	20 0/11	, . ·	227(12)	20.4(10)	0 5 (9)	1 5 (9	, ,	2 2 (0)
C19	20.9(11)	22.7(12)	20.4(10)	-0.3(9)	4.5(0)	-3.3(9)
C38	18.5(11) 2	24.5(12)	33.6(13)	-0.9(10)	0.8(9)	2.4(9)
C36	42.8(16) .	31.2(14)	26.4(12)	0.7(10)	11.7(11)	17.9(12)
C37	24 8/13	,	37 6(15)	37 7(14)	65(12)	11 1	11)	7 9(11)
CST	24.0(15	, .	57.0(15)	5/./(14)	0.5(12)	11.1(11)	/•)(11)
Table 4 B	ond Lengths	s for ps39.						
Atom	Atom	Length/Å			Atom	Atom	Length/Å	
D+1	C11	2 30600	5)		C12	C17	1 30//31	
D 1	DI	2.3000(.	5)		C12 C12	C17	1.554(5)	
PtI	PI	2.3162(5)		C12	C13	1.396(3)	
Pt1	C13	2.3870(5)		C17	C18	1.495(3)	
Pt1	C12	2.4175(5)		C17	C16	1.401(3)	
D+1	N7	2 1070(16)		C19	C20	1 206(4)	
	N/	2.1070(10)		C20	C29	1.500(4)	
PtI	CI	2.031(2)		C28	C27	1.390(3)	
P1	C25	1.851(2)		C13	C14	1.385(3)	
P1	C32	1.833(2)		C26	C31	1.394(3)	
D1	C24	1 0 2 2 (2) \		C26	C27	1 205(2)	
F I	C24	1.023(2)		C20	C27	1.395(3)	
Cl4	C39	1.766(3)		C3	C4	1.367(3)	
C15	C39	1.751(3)		C22	C23	1.397(3)	
C16	C39	1.753/3)		C22	C21	1.388(3)	
N7	C7	1 26612	/ \		C21	C20	1 201 (2)	
IN /	C/	1.366(3)		C31	C30	T.3AT(3)	
N7	C11	1.360(3)		C23	C18	1.401(3)	
F15	C15	1.358(3)		C5	C4	1.383(3)	
F3	C3	1 257/2	, ,		C30	C20	1 20/(/)	
F3	0.5	1.357(3)		C30	C29	1.304(4)	
CI	C6	1.396(3)		C18	C19	1.400(3)	
C1	C2	1.389(3)		C10	C9	1.379(3)	
C7	C6	1.457(3)		C21	C20	1.386(3)	
C7	C	1 205 (2	,		C24	C20	1 202(2)	
C/	0	1.395(3)		C34	035	1.393(3)	
C6	C5	1.395(3)		C34	C35	1.383(3)	
C11	C12	1.489(3)		C15	C14	1.371(4)	
C11	C10	1 388/3)		C15	C16	1 379(3)	
C11	C10	1 277(2) \		C15	C10	1 204(2)	
C2	03	1.3//(3)		C33	C38	1.394(3)	
C8	C9	1.367(3)		C35	C36	1.388(4)	
C25	C26	1.513(3))		C20	C19	1.378(3)	
C32	C33	1 502/2	, ,		C38	C37	1 202(2)	
C32	0.55	1.303(3)		0.50	037	1.392(3)	
C24	C23	1.514(3)		C36	C37	1.377(4)	
Table 5 Be	ond Angles f	for ns39.						
Atom	Atom	Atom	Angle		Atom	Atom	Atom	Angle/°
Atom	Atom	Atom	Aligie		Atom	Atom	Atom	Aligie/
CII	PtI	PI	87.370(19)		CIS	C39	Cl6	110.03(14)
Cl1	Pt1	C13	90.032(19)		C16	C39	Cl4	109.78(14)
C11	Pt1	C12	85,42(2)		C12	C17	C18	118,92(19)
D1	Dt1	C12	175 622(10)		C12	C17	C16	110 7(2)
1 I D1	111		1/5.022(19)		012	C17	C10	119.7(2)
PI	PtI	Cl2	84.619(19)		C16	CI7	C18	121.1(2)
C13	Pt1	Cl2	91.66(2)		C29	C28	C27	120.1(2)
N7	Pt1	C11	169.78(5)		C14	C13	C12	120.2(2)
N7	Dt1	D1	99.46(5)		C21	C26	C25	121 6(2)
IN /	FU	F I	33.40(3)		C51 624	C20	C25	121.0(2)
N /	PtI	CI3	83.59(5)		C31	C26	C27	118.3(2)
N7	Pt1	Cl2	102.69(5)		C27	000	C25	120.0(2)
C1	Pt1	C14	00 00 (C)		C27	C26		110 2/01
C1		CH	90.83(6)		F3	C26 C3	C2	118.3(2)
	Dt1	CII D1	90.83(6)		F3 F3	C26 C3 C3	C2 C4	118.3(2) 117.5(2)
CI	Pt1	CII P1	90.83(6) 95.26(6)		F3 F3	C26 C3 C3	C2 C4	118.3(2)
-	Pt1 Pt1	CII P1 Cl3	90.83(6) 95.26(6) 88.30(6)		F3 F3 C4	C26 C3 C3 C3	C2 C4 C2	118.3(2) 117.5(2) 124.2(2)
C1	Pt1 Pt1 Pt1	C11 P1 C13 C12	90.83(6) 95.26(6) 88.30(6) 176.26(6)		F3 F3 C4 C21	C26 C3 C3 C3 C22	C2 C4 C2 C23	118.3(2) 117.5(2) 124.2(2) 121.3(2)
C1 C1	Pt1 Pt1 Pt1 Pt1	CII P1 CI3 CI2 N7	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7)		F3 F3 C4 C21 C30	C26 C3 C3 C3 C22 C31	C2 C4 C2 C23 C26	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2)
C1 C1 C25	Pt1 Pt1 Pt1 Pt1 P1	CII P1 CI3 CI2 N7 Pt1	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7)		F3 F3 C4 C21 C30 C22	C26 C3 C3 C3 C22 C31 C23	C2 C4 C2 C23 C26 C24	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2)
C1 C1 C25	Pt1 Pt1 Pt1 Pt1 P1	CII P1 CI3 CI2 N7 Pt1	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7)		F3 F3 C4 C21 C30 C22	C26 C3 C3 C3 C22 C31 C23	C2 C4 C2 C23 C26 C24	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19)
C1 C1 C25 C32	Pt1 Pt1 Pt1 Pt1 P1 P1	C11 P1 C13 C12 N7 Pt1 Pt1	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7)		F3 F3 C4 C21 C30 C22 C22	C26 C3 C3 C22 C31 C23 C23 C23	C2 C4 C2 C23 C26 C24 C18	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19)
C1 C1 C25 C32 C32	Pt1 Pt1 Pt1 P1 P1 P1 P1	C11 P1 C13 C12 N7 Pt1 Pt1 C25	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10)		F3 F3 C4 C21 C30 C22 C22 C18	C26 C3 C3 C22 C31 C23 C23 C23 C23	C2 C4 C2 C23 C26 C24 C18 C24	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.03(19)
C1 C1 C25 C32 C32 C32 C24	Pt1 Pt1 Pt1 Pt1 P1 P1 P1 P1	C11 P1 C13 C12 N7 Pt1 Pt1 C25 Pt1	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7)		F3 F3 C4 C21 C30 C22 C22 C18 C4	C26 C3 C3 C22 C31 C23 C23 C23 C23 C23 C23 C23	C2 C4 C2 C23 C26 C24 C18 C24 C6	118.3(2) $117.5(2)$ $124.2(2)$ $121.3(2)$ $120.9(2)$ $121.07(19)$ $118.56(19)$ $120.03(19)$ $120.3(2)$
C1 C1 C25 C32 C32 C32 C24 C24	Pt1 Pt1 Pt1 Pt1 P1 P1 P1 P1 P1	C11 P1 C13 C12 N7 Pt1 Pt1 C25 Pt1 C25	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10)		F3 F3 C4 C21 C30 C22 C22 C18 C4	C26 C3 C3 C3 C22 C31 C23 C23 C23 C23 C23 C5 C5	$\begin{array}{c} C2 \\ C4 \\ C2 \\ C23 \\ C26 \\ C24 \\ C18 \\ C24 \\ C6 \\ C21 \end{array}$	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.03(19) 120.03(2) 120.04(2)
C1 C1 C25 C32 C32 C24 C24	Pt1 Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1 P1	CII P1 CI3 CI2 N7 P1 P1 P1 C25 P1 C25	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10)		F3 F3 C4 C21 C30 C22 C22 C18 C4 C2	C26 C3 C3 C22 C31 C23 C23 C23 C23 C23 C5 C30	C2 C4 C2 C23 C26 C24 C18 C24 C6 C31	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.03(19) 120.3(2) 120.0(2)
C1 C1 C25 C32 C32 C32 C24 C24 C24 C24	Pt1 Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1	CII P1 CI3 CI2 N7 Pt1 Pt1 C25 Pt1 C25 C32	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10)		F3 F3 C4 C21 C30 C22 C22 C18 C4 C29 C23	C26 C3 C3 C22 C31 C23 C23 C23 C23 C23 C23 C23 C23 C23 C23	C2 C4 C2 C23 C26 C24 C18 C24 C6 C31 C17	118.3(2) $117.5(2)$ $124.2(2)$ $121.3(2)$ $120.9(2)$ $121.07(19)$ $118.56(19)$ $120.03(19)$ $120.3(2)$ $120.0(2)$ $122.66(18)$
C1 C1 C25 C32 C32 C24 C24 C24 C24 C7	Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1 P1 P1 N7	CII P1 CI3 CI2 N7 Pt1 Pt1 C25 Pt1 C25 C32 Pt1	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10) 111.98(13)		F3 F3 C4 C21 C30 C22 C22 C18 C4 C29 C23 C19	C26 C3 C3 C3 C22 C31 C23 C23 C23 C23 C5 C30 C18 C18	C2 C4 C2 C23 C26 C24 C18 C24 C6 C31 C17 C17	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.03(19) 120.3(2) 120.0(2) 122.66(18) 117.85(19)
C1 C25 C32 C32 C24 C24 C24 C24 C7 C11	Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1 P1 N7 N7	CII P1 CI3 CI2 N7 Pt1 Pt1 C25 Pt1 C25 C32 Pt1 Pt1	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10) 111.98(13) 127.57(14)		F3 F3 C4 C21 C30 C22 C22 C18 C4 C29 C23 C19	C26 C3 C3 C22 C31 C23 C23 C23 C23 C5 C30 C18 C18	C2 C4 C2 C23 C26 C24 C18 C24 C6 C31 C17 C17	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.03(19) 120.3(2) 120.0(2) 122.66(18) 117.85(19) 119.4(2)
C1 C1 C25 C32 C32 C24 C24 C24 C24 C7 C11	Pt1 Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 N7 N7	CII P1 CI3 CI2 N7 Pt1 Pt1 C25 Pt1 C25 C32 Pt1 Pt1 Pt1 C25 C32 Pt1 Pt1 C25 C32 Pt1 Pt1 C25 C32 Pt1 Pt1 C25 C32 Pt1 Pt1 C25 C32 C32 C32 C32 C32 C32 C32 C33 C32 C32	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10) 111.98(13) 127.57(14)		F3 F3 C4 C21 C30 C22 C22 C18 C4 C29 C23 C19 C19	C26 C3 C3 C22 C31 C23 C23 C23 C23 C23 C5 C30 C18 C18 C18 C18	C2 C4 C2 C23 C26 C24 C18 C24 C6 C31 C17 C17 C17 C23	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.3(2) 120.0(2) 122.66(18) 117.85(19) 119.4(2)
C1 C1 C25 C32 C32 C24 C24 C24 C24 C7 C7 C11 C11	Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1 P1 N7 N7 N7	CII P1 CI3 CI2 N7 Pt1 Pt1 C25 Pt1 C25 C32 Pt1 Pt1 C7	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10) 111.98(13) 127.57(14) 118.92(17)		F3 F3 C4 C21 C30 C22 C22 C18 C4 C29 C23 C19 C19 C30	C26 C3 C3 C22 C31 C23 C23 C23 C23 C23 C5 C30 C18 C18 C18 C18 C29	C2 C4 C2 C23 C26 C24 C18 C24 C6 C31 C17 C17 C17 C23 C28	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.03(19) 120.3(2) 120.0(2) 122.66(18) 117.85(19) 119.4(2) 119.8(2)
C1 C1 C25 C32 C32 C24 C24 C24 C7 C11 C11 C6	Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1 N7 N7 N7 N7 C1	CII P1 CI3 CI2 N7 Pt1 Pt1 C25 Pt1 C25 C32 Pt1 Pt1 C7 Pt1	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10) 111.98(13) 127.57(14) 118.92(17) 113.56(15)		F3 F3 C4 C21 C30 C22 C12 C18 C4 C29 C23 C19 C30 C28	C26 C3 C3 C22 C31 C23 C23 C23 C23 C5 C30 C18 C18 C18 C29 C27	$\begin{array}{c} C2 \\ C4 \\ C2 \\ C23 \\ C26 \\ C24 \\ C18 \\ C24 \\ C6 \\ C31 \\ C17 \\ C17 \\ C17 \\ C23 \\ C28 \\ C26 \end{array}$	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.03(19) 120.3(2) 120.0(2) 122.66(18) 117.85(19) 119.4(2) 120.9(2)
C1 C1 C25 C32 C32 C24 C24 C24 C24 C7 C11 C11 C6 C2	Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1 N7 N7 N7 C1 C1	CII P1 CI3 CI2 N7 Pt1 Pt1 C25 Pt1 C25 C32 Pt1 Pt1 C7 Pt1 Pt1	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10) 111.98(13) 127.57(14) 118.92(17) 113.56(15) 126.81(16)		F3 F3 C4 C21 C30 C22 C18 C4 C29 C23 C19 C19 C30 C28 C3	C26 C3 C3 C22 C31 C23 C23 C23 C23 C5 C30 C18 C18 C18 C18 C18 C29 C27 C4	$\begin{array}{c} C2 \\ C4 \\ C2 \\ C23 \\ C26 \\ C24 \\ C18 \\ C24 \\ C6 \\ C31 \\ C17 \\ C17 \\ C17 \\ C23 \\ C28 \\ C26 \\ C5 \end{array}$	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.03(19) 120.3(2) 120.0(2) 122.66(18) 117.85(19) 119.4(2) 119.8(2) 120.9(2) 117.7(2)
C1 C1 C25 C32 C32 C24 C24 C24 C24 C7 C11 C11 C6 C2 C2 C2 C2 C2 C2 C2 C1 C1 C2 C3 C3 C2 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	Pt1 Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1 N7 N7 N7 C1 C1 C1	CII P1 CI3 CI2 N7 Pt1 Pt1 C25 Pt1 C25 C32 Pt1 Pt1 C7 Pt1 Pt1 C7 Pt1 Pt1 C7	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10) 111.98(13) 127.57(14) 118.92(17) 113.56(15) 126.81(16) 119.6(2)		F3 F3 C4 C21 C30 C22 C12 C18 C4 C29 C23 C19 C19 C30 C28 C3 C28 C3	C26 C3 C3 C22 C31 C23 C23 C23 C23 C23 C23 C5 C30 C18 C18 C18 C18 C29 C27 C4	$\begin{array}{c} C2\\ C4\\ C2\\ C23\\ C26\\ C24\\ C18\\ C24\\ C6\\ C31\\ C17\\ C17\\ C23\\ C28\\ C26\\ C5\\ C11\end{array}$	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.3(2) 120.0(2) 122.66(18) 117.85(19) 119.4(2) 119.8(2) 120.9(2) 117.7(2) 120.2(2)
C1 C1 C25 C32 C32 C24 C24 C24 C24 C7 C11 C11 C6 C2 C2 C2 C2 C2	Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1 P1 P1 N7 N7 N7 N7 C1 C1 C1 C1	C11 P1 C13 C12 N7 Pt1 Pt1 C25 Pt1 C25 Pt1 C25 C32 Pt1 Pt1 C7 Pt1 Pt1 C7 Pt1 Pt1 C7 Pt1 Pt1 C7 Pt1 Pt1 C32 C32 Pt1 Pt1 C33 C32 C32 C33 C32 C33 C32 C33 C33 C32 C33 C32 C33 C32 C33 C32 C33 C32 C33 C32 C33 C32 C33 C32 C33 C32 C32	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10) 111.98(13) 127.57(14) 118.92(17) 113.56(15) 126.81(16) 119.6(2)		F3 F3 C4 C21 C30 C22 C12 C18 C4 C29 C23 C19 C19 C30 C28 C3 C9	C26 C3 C3 C22 C31 C23 C23 C23 C23 C5 C30 C18 C18 C18 C18 C18 C18 C29 C27 C4 C10	$\begin{array}{c} C2\\ C4\\ C2\\ C23\\ C26\\ C24\\ C18\\ C24\\ C6\\ C31\\ C17\\ C17\\ C17\\ C23\\ C28\\ C26\\ C5\\ C11\\ \end{array}$	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.03(19) 120.0(2) 122.66(18) 117.85(19) 119.4(2) 119.8(2) 120.9(2) 117.7(2) 120.8(2)
C1 C1 C25 C32 C32 C24 C24 C24 C24 C7 C11 C11 C6 C2 C2 N7	Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1 P1 N7 N7 N7 N7 C1 C1 C1 C1 C7	CII P1 CI3 CI2 N7 Pt1 Pt1 C25 Pt1 C25 C32 Pt1 Pt1 C7 Pt1 Pt1 C7 Pt1 Pt1 C6 C6 C6	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10) 111.98(13) 127.57(14) 118.92(17) 113.56(15) 126.81(16) 119.6(2) 116.41(18)		F3 F3 C4 C21 C30 C22 C18 C4 C29 C23 C19 C19 C30 C28 C3 C9 C20	C26 C3 C3 C22 C31 C23 C23 C23 C23 C5 C30 C18 C18 C18 C18 C29 C27 C4 C10 C21	$\begin{array}{c} C2 \\ C4 \\ C2 \\ C23 \\ C26 \\ C24 \\ C18 \\ C24 \\ C6 \\ C31 \\ C17 \\ C17 \\ C17 \\ C23 \\ C28 \\ C26 \\ C5 \\ C11 \\ C22 \end{array}$	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.03(19) 120.3(2) 120.0(2) 122.66(18) 117.85(19) 119.8(2) 120.9(2) 117.7(2) 120.8(2) 119.9(2)
C1 C1 C25 C32 C32 C24 C24 C24 C24 C7 C11 C11 C6 C2 C2 C2 N7 N7	Pt1 Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1 N7 N7 N7 C1 C1 C1 C1 C7 C7	CII P1 CI3 CI2 N7 P1 P1 C25 P1 C25 C32 P1 P1 C7 P1 P1 C7 P1 P1 C7 P1 P1 C6 C6 C6 C8	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10) 111.98(13) 127.57(14) 118.92(17) 113.56(15) 126.81(16) 119.6(2) 116.41(18) 121.1(2)		F3 F3 C4 C21 C30 C22 C22 C18 C4 C29 C23 C19 C19 C30 C28 C3 C9 C20 C35	C26 C3 C3 C22 C31 C23 C23 C23 C23 C23 C5 C30 C18 C18 C18 C18 C29 C27 C4 C10 C21 C34	$\begin{array}{c} C2 \\ C4 \\ C2 \\ C23 \\ C26 \\ C24 \\ C18 \\ C24 \\ C6 \\ C31 \\ C17 \\ C17 \\ C17 \\ C23 \\ C28 \\ C26 \\ C5 \\ C11 \\ C22 \\ C33 \end{array}$	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.3(2) 120.0(2) 122.66(18) 117.85(19) 119.4(2) 119.8(2) 120.9(2) 117.7(2) 120.8(2) 119.9(2) 120.7(2)
C1 C1 C25 C32 C32 C32 C24 C24 C24 C24 C7 C11 C11 C6 C2 C2 C2 N7 N7 C8	Pt1 Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1 P1 N7 N7 N7 C1 C1 C1 C1 C7 C7 C7	CII P1 CI3 CI2 N7 Pt1 Pt1 C25 Pt1 C25 C32 Pt1 Pt1 C7 Pt1 Pt1 C7 Pt1 Pt1 C7 Pt1 Pt1 C7 Pt1 Pt1 C7 Pt1 Pt1 C32 C25 C25 C32 Pt1 Pt1 C25 C32 C32 C32 C32 C32 C32 C32 C32 C32 C32	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10) 111.98(13) 127.57(14) 118.92(17) 113.56(15) 126.81(16) 119.6(2) 116.41(18) 121.1(2)		F3 F3 C4 C21 C30 C22 C22 C18 C4 C29 C23 C19 C19 C30 C28 C3 C9 C20 C20 C28 C3 F15	C26 C3 C3 C22 C31 C23 C23 C23 C23 C5 C30 C18 C18 C18 C18 C29 C27 C4 C10 C21 C34 C15	$\begin{array}{c} C2\\ C4\\ C2\\ C23\\ C26\\ C24\\ C18\\ C24\\ C6\\ C31\\ C17\\ C17\\ C23\\ C28\\ C26\\ C5\\ C11\\ C22\\ C33\\ C14\\ \end{array}$	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.03(19) 120.3(2) 122.66(18) 117.85(19) 119.4(2) 119.8(2) 120.9(2) 117.7(2) 120.8(2) 119.9(2) 120.7(2) 118.6(2)
C1 C1 C25 C32 C32 C24 C24 C24 C7 C11 C11 C6 C2 C2 N7 N7 C8 C1	Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1 P1 P1 N7 N7 N7 C1 C1 C1 C1 C7 C7 C7 C7	CII P1 CI3 CI2 N7 Pt1 Pt1 C25 Pt1 C25 C32 Pt1 Pt1 C7 Pt1 Pt1 C7 Pt1 Pt1 C6 C6 C6 C8 C6 C7	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10) 111.98(13) 127.57(14) 118.92(17) 113.56(15) 126.81(16) 119.6(2) 116.41(18) 121.1(2) 122.4(2)		F3 F3 C4 C21 C30 C22 C12 C18 C4 C29 C23 C19 C30 C28 C3 C9 C20 C35 F15	$\begin{array}{c} C26\\ C3\\ C3\\ C3\\ C22\\ C31\\ C23\\ C23\\ C23\\ C5\\ C30\\ C18\\ C18\\ C18\\ C18\\ C29\\ C27\\ C4\\ C10\\ C21\\ C34\\ C15\\ C34\\ C15\\ C15\\ C15\\ C15\\ C15\\ C15\\ C15\\ C15$	$\begin{array}{c} C2 \\ C4 \\ C2 \\ C23 \\ C26 \\ C24 \\ C18 \\ C24 \\ C6 \\ C31 \\ C17 \\ C17 \\ C17 \\ C23 \\ C28 \\ C26 \\ C5 \\ C11 \\ C22 \\ C33 \\ C14 $	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.03(19) 120.3(2) 120.0(2) 122.66(18) 117.85(19) 119.4(2) 119.8(2) 120.9(2) 117.7(2) 120.8(2) 119.9(2) 120.7(2) 118.6(2)
C1 C1 C25 C32 C32 C24 C24 C24 C24 C7 C11 C11 C6 C2 C2 N7 N7 C8 C1 C3 C2 C2 C2 C2 C2 C2 C2 C2 C2 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3 C3	Pt1 Pt1 Pt1 Pt1 P1 P1 P1 P1 P1 P1 P1 N7 N7 C1 C1 C1 C1 C7 C7 C7 C7 C6	CII P1 CI3 CI2 N7 Pt1 Pt1 C25 Pt1 C25 C32 Pt1 Pt1 C7 Pt1 Pt1 C7 Pt1 Pt1 C7 Pt1 Pt1 C6 C6 C6 C6 C6 C7	90.83(6) 95.26(6) 88.30(6) 176.26(6) 81.03(7) 110.69(7) 111.06(7) 107.79(10) 115.49(7) 103.16(10) 108.14(10) 111.98(13) 127.57(14) 118.92(17) 113.56(15) 126.81(16) 119.6(2) 116.41(18) 121.1(2) 122.4(2) 116.38(19)		F3 F3 C4 C21 C30 C22 C18 C4 C29 C23 C19 C19 C30 C28 C3 C9 C20 C35 F15 F15	$\begin{array}{c} C26\\ C3\\ C3\\ C22\\ C31\\ C23\\ C23\\ C23\\ C23\\ C5\\ C30\\ C18\\ C18\\ C18\\ C18\\ C18\\ C18\\ C18\\ C19\\ C27\\ C4\\ C10\\ C21\\ C34\\ C15\\ C15\\ C15\\ C15\\ C15\\ C15\\ C15\\ C15$	$\begin{array}{c} C2\\ C4\\ C2\\ C23\\ C26\\ C24\\ C18\\ C24\\ C6\\ C31\\ C17\\ C17\\ C23\\ C28\\ C26\\ C5\\ C11\\ C22\\ C33\\ C14\\ C16\\ C16\\ C16\\ C16\\ C16\\ C16\\ C16\\ C16$	118.3(2) 117.5(2) 124.2(2) 121.3(2) 120.9(2) 121.07(19) 118.56(19) 120.03(19) 120.3(2) 120.0(2) 122.66(18) 117.85(19) 119.4(2) 119.8(2) 120.9(2) 117.7(2) 120.8(2) 119.9(2) 120.7(2) 118.6(2) 118.0(2)

C5	C6		C7	123.24(19)			C34	C3	3	C32	122.4(2)
N7	C1	1	C12	123.15(18)			C34	C3	3	C38	118.3(2)
N7	C1	1	C10	120.4(2)			C38	C3	3	C32	119.2(2)
C10	C1	1	C12	116.02(19)			C15	C1	4	C13	118.5(2)
C3	C2		C1	117.9(2)			C15	C1	6	C17	118.1(2)
C9	C8		C7	119.9(2)			C34	C3	5	C36	120.4(2)
C26	C2	5	P1	117.32(15)			C8	C9		C10	118.6(2)
C33	C3	2	P1	116.59(15)			C19	C2	0	C21	119.5(2)
C23	C2	4	P1	122.04(15)			C20	C1	9	C18	121.3(2)
C17	C1	2	C11	117.54(19)			C37	C3	8	C33	120.9(2)
C17	C1	2	C13	120.2(2)			C37	C3	6	C35	119.8(2)
C13	C1	2	C11	121.3(2)			C36	C3	7	C38	119.9(2)
Cl5	C3	9	Cl4	110.45(15)							
		-		••							
Table	6 Hydro	ogen Bo	nds for p	s39.					БИ	A 10	
D C20	H 1120	A C ¹¹	d(D-H))/A	d(H-A)/A	d(D-A)/A		D-H-	·A/°	
C39	H39	CI	1.00		2.94	3.725	9(3) 1(2)		142	.5	
C39	H39	CIS	1.00		2.69	3.544	±(3)		143	• 2	
C39	H39	CI2	1.00		3.04	3.800)(3)		133	• 8	
Table	7 Torsia	n Angl	es for ns	30							
	R	C C	D	Angle/°		٨	в	C	D	∆ngle/°	
Pt1	P1	C25	C26	146.38(15)		C25	P1	C24	C23	-178.0	0(17)
Pt1	P1	C32	C33	153.97(15)		C25	C26	C31	C30	176.8(2)
Pt1	P1	C24	C23	61, 12(19)		C25	C26	C27	C28	-177.2	(2)
Pt1	N7	C7	C6	8,9(2)		C32	P1	C25	C26	-91.98	(18)
Pt1	N7	C7	C8	-168.04(17)		C32	P1	C24	C23	-63.99	(19)
Pt1	N7	C11	C12	-26.4(3)		C32	C33	C38	C37	-179.4	(2)
Pt1	N7	C11	C10	161.29(16)		C24	P1	C25	C26	22.28(19)
Pt1	C1	C6	C7	0.3(2)		C24	P1	C32	C33	-78.34	(19)
Pt1	C1	C6	C5	178.20(17)		C24	C23	C18	C17	11.1(3)
Pt1	C1	C2	C3	-178.10(16)		C24	C23	C18	C19	-172.2	, 8(19)
P1	C25	C26	C31	99.6(2)		C12	C11	C10	C9	-168.3	(2)
P1	C25	C26	C27	-84.6(2)		C12	C17	C18	C23	89.3(3)
P1	C32	C33	C34	83.6(2)		C12	C17	C18	C19	-87.4(3)
P1	C32	C33	C38	-97.3(2)		C12	C17	C16	C15	1.8(3)	
P1	C24	C23	C22	77.6(2)		C12	C13	C14	C15	0.4(3)	
P1	C24	C23	C18	-109.1(2)		C17	C12	C13	C14	1.1(3)	
N7	C7	C6	C1	-6.4(3)		C17	C18	C19	C20	175.6(2)
N7	C7	C6	C5	175.8(2)		C13	C12	C17	C18	171.78	(19)
N7	C7	C8	C9	4.6(3)		C13	C12	C17	C16	-2.2(3)
N7	C11	C12	C17	-83.2(3)		C26	C31	C30	C29	0.0(3)	
N7	C11	C12	C13	107.9(2)		C22	C23	C18	C17	-175.5	(2)
N7	C11	C10	C9	4.5(3)		C22	C23	C18	C19	1.2(3)	
F15	C15	C14	C13	-178.1(2)		C22	C21	C20	C19	1.4(4)	
F15	CIS	C16	CI7	177.0(2)		C31	C26	C27	C28	-1.3(3)
F3	C3	C4	CS	180.0(2)		C31	C30	C29	C28	-0./(3)
CI	C6	C5	C4 E2	-0.1(3)		C23	C22	C21	C20	-1.4(4)
	C_2	C_{2}	F3 C4	-1/9.16(19)		C23	C18	C19	C20	-1.2(3)
	CZ N7	C3	C4 C12	0.7(3)		C18	C17	C10 C27	C15 C26	-1/2.0	(2)
C7	N7	C11	C12 C10	-3 4(3)		C29	C28	C20	C20	0.0(3)	
C7	C6	C5	C10	177 6(2)		C27	C26	C23	C30	0.9(3)	
C7		C9	C10	-3 5(3)		C10	C11	C12	C17	89 4/2)
C6	C1	C^2	C3	-1.2(3)		C10	C11	C12	C13	-79.5(7 3)
C6	C7	C8	C9	-172.1(2)		C21	C22	C23	C24	173.5(2)
C6	C5	C4	C3	-0.4(3)		C21	C22	C23	C18	0.1(3)	-)
C11	N7	C7	C6	175.81(18)		C21	C20	C19	C18	-0.1(4))
C11	N7	C7	C8	-1.1(3)		C34	C33	C38	C37	-0.3(3)
C11	C12	C17	C18	2.7(3)		C34	C35	C36	C37	0.1(4)	,
C11	C12	C17	C16	-171.21(19)		C33	C34	C35	C36	-0.2(4)
C11	C12	C13	C14	169.7(2)		C33	C38	C37	C36	0.2(4)	
C11	C10	C9	C8	-1.0(4)		C14	C15	C16	C17	-0.3(4)
C2	C1	C6	C7	-176.93(19)		C16	C17	C18	C23	-96.8(3)
C2	C1	C6	C5	0.9(3)		C16	C17	C18	C19	86.5(3)
C2	C3	C4	C5	0.1(4)		C16	C15	C14	C13	-0.8(4)
C8	C7	C6	C1	170.5(2)		C35	C34	C33	C32	179.4(2)
C8	C7	C6	C5	-7.3(3)		C35	C34	C33	C38	0.2(3)	
C25	P1	C32	C33	32.6(2)		C35	C36	C37	C38	-0.2(4)
an 1 -	0.17 -		~	1				103 5	•		
Table	8 Hydro	ogen Ato	om Coor	dinates (A×10*) ar	d Isotropic Displace	ement Param	eters (A ²	×10°) fo	r ps39.		
Atom			x		у	z		u(eq)			

Atom		x	у	z	U(
H2	4594	7787	8795		23
H8	7755	8756	5926		25
H25A	6209	8137	11342		20
H25B	7334	7726	11240		20
H32A	6401	9293	9351		24
H32B	5476	8769	9495		24

H24A	8509	9178	10754	20
H24B	9248	8611	10450	20
H39	7497	6151	9396	35
H28	10085	8507	13265	33
H13	10729	7112	8307	26
H22	8004	9951	9464	23
H31	6220	8948	12470	24
H5	5946	8800	6158	26
H30	7094	9390	13787	31
H29	9032	9177	14178	34
H27	9209	8057	11957	25
H4	3939	8712	6401	28
H10	10877	8231	6936	25
H21	8912	10551	8361	27
H34	6821	10004	10707	26
H14	12243	6982	9411	31
H16	11829	8696	10297	27
H35	6006	10502	11964	36
H9	9745	8633	5717	28
H20	10666	10241	7711	29
H19	11455	9317	8126	26
H38	4257	8761	10800	31
H36	4315	10136	12643	40
H37	3445	9264	12063	40

Refinement model description

Number of restraints - 0, number of constraints - unknown. Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups, All C(H,H) groups 2.a Ternary CH refined with riding coordinates:

С39(Н39)

2.b Secondary CH2 refined with riding coordinates:

C25(H25A,H25B), C32(H32A,H32B), C24(H24A,H24B)

2.c Aromatic/amide H refined with riding coordinates: C2(H2), C8(H8), C28(H28), C13(H13), C22(H22), C31(H31), C5(H5), C30(H30),

C29(H29), C27(H27), C4(H4), C10(H10), C21(H21), C34(H34), C14(H14), C16(H16), C35(H35), C9(H9), C20(H20), C19(H19), C38(H38), C36(H36), C37(H37) This report has been created with Olex2, compiled on 2016.02.19 svn.r3266 for OlexSys. Please <u>let us know</u> if there are any errors or if you would like to have additional features.

ps40 Complex 10

Figure SI7 Solid state structure of the asymmetric unit of ps40. The complex sits on an inversion centre between the platinum chloro dimer shown below in Figure SI8

Figure SI8 Solid state structure of ps40.

Crystal structure determination of [ps40]

The crystals were optically almost perfect (could have easily proposed to Liz Taylor with one) but were incredibly sensitive to solvent loss. The data was recorded at 100K and enough reflections were recorded before decompositions.

The asymmetric unit contains a Pt, a chloride and a biphenylpyridine ligand which has formed a C-C bond to one of the benzyls of the tribenzyl phosphine, and oxidized to the P=O oxide There are also three molecules of chloroform.

One of the benzene rings of a benzyl of the phosphine was modeled as disordered over two positions. The occupancy was linked to a free variable which refined to 77:23. The minor component was refined isotropically. Both rings were refined with an AFIX 66 restraint. Two of

the chloroforms were modeled as disordered about the carbon. The occupancy of the disordered components were fixed at 75:25. The minor components were refined isotropically. Several SIMU and DFIX restraints were used in the refinement of the disordered solvent.

Experimental

Single crystals of C₄₂H₃₄Cl₁₀F₂NOPPt **[ps40]** were grown from chloroform. A suitable crystal was selected and mounted on a glass fibre with Fromblin oil and placed on a Rigaku Oxford Diffraction SuperNova diffractometer with a duel source (Cu at zero) equipped with an AtlasS2 CCD area detector.. The crystal was kept at 100(2) K during data collection. Using Olex2 [1], the structure was solved with the ShelXS [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation. 19 Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341. 20 Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

21 Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal Data for $C_{42}H_{34}Cl_{10}F_2NOPPt$ (M = 1187.26 g/mol): monoclinic, space group I2/a (no. 15), a = 23.6952(4) Å, b = 14.2502(3) Å, c = 27.6824(5) Å, $\beta = 103.1991(19)^\circ$, V = 9100.3(3) Å³, Z = 8, T = 100(2) K, $\mu(MoK\alpha) = 3.749$ mm⁻¹, Dcalc = 1.733 g/cm³, 41772 reflections measured ($5.036^\circ \le 2\Theta \le 61.916^\circ$), 12881 unique ($R_{int} = 0.0299$, $R_{sigma} = 0.0351$) which were used in all calculations. The final R_1 was 0.0404 (I > $2\sigma(I)$) and wR_2 was 0.1033 (all data).

Table 1 Crystal data and structure refinement for ps40.	
Identification code	ps40
Empirical formula	$C_{42}H_{34}Cl_{10}F_2NOPPt$
Formula weight	1187.26
Temperature/K	100(2)
Crystal system	monoclinic
Space group	I2/a
a/Å	23.6952(4)
b/Å	14.2502(3)
c/Å	27.6824(5)
α/°	90
β/°	103.1991(19)
γ/°	90
Volume/Å ³	9100.3(3)
Z	8
$Q_{calc}g/cm^3$	1.733
µ/mm ¹	3.749
F(000)	4656.0
Crystal size/mm ³	$0.423 \times 0.22 \times 0.094$ colourless block
Radiation	MoK α ($\lambda = 0.71073$)
2O range for data collection/°	5.036 to 61.916
Index ranges	$-34 \le h \le 31, -20 \le k \le 18, -38 \le l \le 39$
Reflections collected	41772
Independent reflections	12881 [$R_{int} = 0.0299, R_{sigma} = 0.0351$]
Data/restraints/parameters	12881/72/557
Goodness-of-fit on F ²	1.039
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0404, wR_2 = 0.0951$
Final R indexes [all data]	$R_1 = 0.0513$, $wR_2 = 0.1033$
Largest diff. peak/hole / e Å-3	2.09/-1.60

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for ps40. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
C40	6178(4)	5840(8)	5095(3)	95(3)
C15	5569.9(14)	6651(2)	4859.1(11)	79.9(9)
C16	5879.8(14)	4708(2)	4915.4(11)	93.2(11)
C17	6768.3(16)	6097(4)	4930.7(16)	126.5(16)
Cl5A	6596(12)	6936(15)	5028(10)	214(8)
Cl6A	6649(4)	5171(7)	4693(4)	87(3)
Cl7A	5591(5)	6078(10)	4683(5)	110(3)
Cl0A	3906(3)	147(4)	5629(2)	45.9(12)
C1	6185.5(17)	1647(3)	6782.3(15)	21.5(8)
01	6053.6(13)	5458(2)	8131.2(11)	25.2(6)
Pt1	6800.9(2)	1886.7(2)	7379.3(2)	15.12(5)
P1	6469.1(4)	4701.4(8)	8077.5(4)	18.91(19)
C2	6181.9(19)	1929(3)	6294.8(16)	27.4(9)
C19	5886.9(18)	2542(3)	9246.2(15)	23.8(8)
C26	6321.4(17)	5003(3)	7048.7(15)	23.3(8)
C13	3488.8(15)	3041.2(18)	7231.6(8)	110.0(11)
F3	5682.3(13)	2107(3)	5467.6(10)	48.7(9)
C12	3934.1(8)	3067.4(10)	6353.0(6)	53.4(4)
C18	6154.0(16)	2685(3)	8850.4(14)	19.4(7)
Cl1	7401.5(4)	2586.0(7)	6940.7(3)	18.78(17)
C4	5192(2)	1385(4)	6011.4(18)	36.0(11)
Cl4	4707.3(12)	2814.3(14)	7313.0(11)	115.8(12)
C24	6157.8(17)	3533(3)	8036.7(14)	19.9(7)
C5	5189.0(18)	1093(4)	6486.3(17)	29.2(10)

34.4(11)
29.8(9)
34(10)
34(7)
37(7)
42(8)
51(14)
50(3)
59(4)
δ4(4)
45 (3)
36.2(19)
22.8(8)
21.0(8)
18.8(6)
25.4(9)
187(3)
28.4(10)
122(7)
28.5(9)
28.1(9)
24.7(8)
58.4(5)
19.0(7)
23.3(8)
54.4(17)
24.8(8)
33.5(10)
48.1(5)
41.6(13)
44.1(14)
19.3(7)
41.1(13)
31(1)
19.8(7)
25.3(8)
22.1(8)
31.8(10)
25.9(9)
26.2(9)
36.7(7)
48.4(14)
23.8(8)
140(6)
19.0(7)
3(1) 14 19

Table 3 Anisotropic Displacement Parameters (Å	² ×10 ³) for ps40. The Anisot	ropic displacement factor	exponent takes the form: -
$2\pi^2 [h^2 a^{*2} I] \pm 2hk a^{*} b^{*} I] \pm 1$			

].				
Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C40	91(6)	135(8)	58(5)	25(5)	12(4)	28(6)
C15	89(2)	85.8(19)	70.2(16)	25.7(15)	29.3(15)	44.2(16)
Cl6	91(2)	95(2)	69.6(16)	-38.8(15)	-30.8(15)	46.0(17)
Cl7	77(2)	199(5)	110(3)	45(3)	35(2)	26(3)
C1	15.4(17)	30(2)	18.9(18)	-6.4(16)	2.8(14)	-4.4(15)
01	19.8(14)	27.2(15)	28.6(15)	-3.6(12)	5.7(12)	5.1(12)
Pt1	10.39(7)	21.69(8)	13.39(7)	-2.32(5)	2.93(5)	-2.09(5)
P1	14.5(4)	23.3(5)	18.2(4)	-0.7(4)	2.3(4)	2.8(4)
C2	18.7(19)	44(3)	17.9(18)	-3.0(18)	1.1(15)	-8.1(18)
C19	19.7(18)	36(2)	15.1(17)	2.3(16)	2.1(14)	2.1(17)
C26	15.7(17)	37(2)	17.5(17)	0.7(17)	3.7(14)	2.9(16)
C13	179(3)	105.3(18)	60.8(12)	38.0(12)	58.4(16)	91.0(19)
F3	31.6(15)	94(3)	15.8(13)	3.4(15)	-4.0(11)	-14.5(16)
Cl2	70.1(11)	39.1(7)	50.8(8)	3.1(6)	13.7(8)	-8.1(7)
C18	14.6(16)	28(2)	15.4(16)	-2.8(15)	2.5(13)	-0.3(15)
C11	12.3(4)	29.6(5)	14.4(4)	-0.1(3)	2.9(3)	-2.9(3)
C4	23(2)	54(3)	26(2)	-10(2)	-4.5(17)	-11(2)
Cl4	111.8(19)	40.6(9)	143(2)	-16.9(12)	-77.9(17)	6.3(11)
C24	16.9(17)	26(2)	16.2(17)	-1.4(15)	2.8(14)	2.0(15)
C5	18.5(19)	41(3)	26(2)	-9.0(19)	2.2(16)	-13.0(18)
C3	25(2)	61(3)	14.3(18)	-2(2)	0.2(16)	-7(2)
C33A	20.6(19)	37(2)	28(2)	-0.3(19)	-2.2(17)	-3.3(18)
C38A	33(4)	34(4)	78(6)	-26(4)	3(4)	-10(3)
C37A	41(5)	47(5)	117(10)	-38(5)	13(6)	-12(4)
C36A	38(5)	48(5)	97(9)	-11(6)	-5(5)	-15(4)
C35A	26(3)	54(7)	51(5)	6(5)	-2(3)	-13(4)
C34A	20(3)	53(6)	33(4)	5(3)	-1(2)	-7(3)
C6	19.8(18)	29(2)	19.5(18)	-7.0(16)	3.3(15)	-6.7(16)
C7	16.2(17)	25.0(19)	21.8(18)	-5.8(16)	4.3(14)	-4.0(15)

N7	14.3(14)	24.7(17)	18.3(15)	-0.1(13)	5.5(12)	-5.0(13)
C8	20.0(19)	28(2)	29(2)	-4.7(17)	6.5(16)	-7.9(16)
C18	137(4)	275(7)	188(5)	-178(5)	118(4)	-106(4)
C20	20 2(19)	18(3)	18 2(18)	-0.4(18)	7 3(15)	1 4(19)
C20	20.2(19)	48(3)	10.2(10)	-0.4(10)	7.3(13)	1.4(19)
C21	10.1(18)	44(3)	25(2)	-3.1(19)	5.3(10)	3.2(18)
C9	21.8(19)	30(2)	37(2)	-3.7(19)	15.9(18)	-9.0(17)
C22	16.7(17)	34(2)	21.9(19)	1.2(17)	1.7(15)	5.0(17)
C19	51.3(11)	61.8(13)	59.7(13)	14.7(11)	7.6(10)	-16(1)
C23	15,4(17)	26(2)	14.7(16)	-3.6(15)	2.1(13)	-0.5(15)
C25	17 8(18)	30(2)	22 A(10)	2 6(17)	5 6(15)	0 9(16)
C25	17.0(10)	30(2)	22.4(19)	2.0(17)	11 7(10)	0.9(10)
C10	26(2)	28(2)	23.8(19)	0.6(1/)	11./(10)	-5.5(1/)
C27	28(2)	38(3)	32(2)	10(2)	1.1(19)	3(2)
C110	40.9(11)	68.1(15)	37.6(10)	-1.8(10)	13.5(9)	-12.7(11)
C28	30(2)	55(3)	38(3)	24(3)	5(2)	7(2)
C29	27(2)	82(4)	22(2)	12(3)	1.9(18)	5(3)
C11	16 1(17)	22 9(19)	20 8(18)	-0.8(15)	7 9(14)	0.7(15)
C20	27(2)	60(4)	20.0(10)	15(2)	0 6 (1 9)	6(2)
C30	27(2)	09(4)	25(2)	-15(2)	-0.0(10)	0(2)
C31	22(2)	44(3)	25(2)	-4(2)	2.0(1/)	/.2(19)
C12	16.6(17)	24(2)	19.4(17)	3.2(15)	5.9(14)	-0.4(15)
C32	22.5(19)	30(2)	20.4(19)	-2.6(17)	-1.4(15)	0.2(17)
C13	17.9(17)	26(2)	24.0(19)	5.1(16)	7.9(15)	2.9(15)
C13A	26(2)	29(2)	42(3)	-1(2)	11,9(19)	3.3(18)
C14	17 2(10)	27(2)	24(2)	0 0 (1 9)	4 7(15)	5.0(17)
C14 C15	17.2(10)	37(2)	24(2)	9.0(10)	4.7(13)	3.0(17)
	1/.4(18)	45(3)	14.3(1/)	3.9(1/)	-0.6(14)	1.5(18)
F15	20.5(12)	66(2)	18.1(12)	-2.6(13)	-6.6(10)	4.8(13)
C39	60(4)	38(3)	38(3)	-1(2)	-7(3)	8(3)
C16	18.8(18)	37(2)	15.2(17)	-0.7(16)	2.1(14)	0.8(17)
C41	60(5)	233(14)	143(9)	-146(10)	60(6)	-84(7)
C17	15 7(16)	273(19)	145(16)	2 4(15)	4 6(13)	2 4(15)
CIT	13.7(10)	27.3(1)	14.5(10)	2.1(13)	4.0(15)	2.4(15)
T-11. 4 D		£ 40				
Table 4 D		101 ps40.				T
Atom	Atom	Length/A		Atom	Atom	Length/A
C40	CI5	1.846(9)		C33A	C32	1.496(6)
C40	C16	1.785(12)		C34	C35	1.3900
C40	C17	1.610(10)		C35	C36	1.3900
C40	Cl5A	1.883(17)		C36	C37	1.3900
C40	C16A	1 991(12)		C37	C38	1 3900
C40	CITA	$1 \in 10(12)$		C29 A	C27A	1 205(12)
C40	CI/A C11	1.019(13)		CSOA	CSTA	1.305(13)
CIOA	C41	2.0/5(12)		C3/A	C36A	1.3//(14)
C1	Pt1	1.968(4)		C36A	C35A	1.365(14)
C1	C2	1.406(6)		C35A	C34A	1.406(14)
C1	C6	1.401(5)		C6	C7	1.456(6)
01	P1	1,490(3)		C7	N7	1,381(5)
Dt1	$C11^{1}$	2 4607(9)			C8	1.301(5)
De1	Cl1	2.2007(5)		C7 N7	C0	1.351(5)
PU		2.2982(9)		N/	CII	1.304(5)
PtI	N7	2.052(3)		C8	C9	1.371(6)
P1	C24	1.814(4)		C18	C41	1.665(9)
P1	C25	1.811(4)		C20	C21	1.381(7)
P1	C32	1.818(4)		C18A	C41	1.520(14)
C2	C3	1,372(6)		C21	C22	1.392(6)
C10	C18	1 400(5)		C0	C10	1 201(6)
C19 C10	C10	1.400(5)		C9 C90	C10 C22	1.301(0)
C19	C20	1.392(6)		C22	C23	1.398(5)
C26	C25	1.512(6)		C19	C41	1.630(10)
C26	C27	1.389(7)		C19A	C41	1.620(9)
C26	C31	1.382(7)		C10	C11	1.388(5)
C13	C39	1.748(7)		C27	C28	1.391(7)
F3	C3	1 358(5)		C110	C41	1 730(8)
C12	C20	1.350(5)		C110	C70	1.750(0)
	C39	1.752(6)		C28	C29	1.3/4(9)
C18	C23	1.404(6)		C29	C30	1.385(9)
C18	C17	1.500(5)		C11	C12	1.477(6)
Cl1	$Pt1^1$	2.4606(9)		C30	C31	1.391(6)
C4	C5	1.380(7)		C12	C13	1.404(5)
C4	C3	1.373(7)		C12	C17	1.412(6)
C14	C30	1,755(7)		C12	C12A	1 502(6)
C1+	C39	1 505(7)		013	CISA	1 - 20E(0)
C24	025	1.303(3)		013	C14	1.395(0)
C5	C6	1.404(6)		C14	C15	1.369(7)
C33A	C34	1.3900		C15	F15	1.357(5)
C33A	C38	1.3900		C15	C16	1.377(6)
C33A	C38A	1.391(9)		C16	C17	1.395(6)
C22 A		、 /		0.10		(- <i>)</i>
C3.5A	C34A	1.389(8)				
¹ 3/2 ₋ X 1/2	C34A 2-Y 3/2-7	1.389(8)				

Table 5 Bond Angles for ps40.						
Atom	Atom	Atom	Angle/°			
Cl6	C40	C15	103.9(5)			
Cl7	C40	C15	114.5(6)			
Cl7	C40	C16	116.1(6)			
Cl5A	C40	Cl6A	88.1(10)			

Atom	Atom	Atom	Angle/°
C1	C6	C5	121.5(4)
C1	C6	C7	115.2(4)
C5	C6	C7	123.3(4)
N7	C7	C6	114.6(3)

CI7A CI7A	C40 C40	Cl5A Cl6A	98.2(11)		N7 C8	C7	C8 C6	121.4(4) 124.0(4)
C1/A C2	C40 C1	Pt1	126.7(3)		C3 C7	N7	Pt1	124.0(4) 113.5(3)
C6	C1	Pt1	115.1(3)		C11	N7	Pt1	128.6(3)
C6	C1	C2	118.0(4)		C11	N7	C7	117.9(3)
C1	Pt1	Cl1	93.50(1	2)		C9	C8	C7	120.3(4)
Cl	Pt1	CI1 ¹	171.00(13)		C21 C20	C20	C19	119.8(4)
CI	PU Pt1	N / Cl1 ¹	81.59(1 79 15/3	5)		C20 C8	C21 C9	C22 C10	119.2(4) 118.3(4)
N7	Pt1		105.73(9)		C21	C22	C23	121.9(4)
N7	Pt1	Cl1	175.09(9)		C18	C23	C24	123.1(3)
01	P1	C24	113.70(18)		C22	C23	C18	118.6(4)
01	P1	C25	113.17(19)		C22	C23	C24	118.2(4)
01	P1	C32	113.50(19)		C26	C25	P1	116.0(3)
C24 C25	PI D1	C32 C24	105.4(2)		C9 C26	C10 C27	C11 C28	120.9(4) 120.6(5)
C25	P1	C24 C32	103.0(2)		C20	C28	C28 C27	120.0(5) 120.3(5)
C3	C2	C1	118.6(4)		C28	C29	C30	119.5(5)
C20	C19	C18	121.4(4)		N7	C11	C10	121.1(4)
C27	C26	C25	120.4(4)		N7	C11	C12	121.2(3)
C31	C26	C25	120.9(4)		C10	C11	C12	117.7(4)
C31 C10	C26	C27	118.7(4)		C29	C30 C21	C31 C20	120.2(5)
C19 C19	C18	C25 C17	119.0(4)		C20 C13	C31 C12	C30 C11	120.0(5) 119.8(4)
C23	C18	C17	124.9(3)		C13	C12	C17	120.3(4)
Pt1	Cl1	Pt1 ¹	100.85(3)		C17	C12	C11	119.4(3)
C3	C4	C5	118.1(4)		C33A	C32	P1	112.3(3)
C23	C24	P1	114.3(3)		C12	C13	C13A	120.7(4)
C4	C5	C6	119.7(4)		C14	C13	C12	119.6(4)
C2 E2	C3 C3	C4 C2	124.2(4)		C14 C15	C13 C14	C13A C12	119.7(4)
F3	C_3	C2 C4	117.9(4)		C13	C14 C15	C15 C16	123.7(4)
C34	C33A	C38	120.0	,		F15	C15	C14	118.3(4)
C34	C33A	C32	109.6(8)		F15	C15	C16	118.0(4)
C38	C33A	C32	130.2(8)		C13	C39	Cl2	109.9(3)
C38A	C33A	C32	118.7(7)		C13	C39	Cl4	109.6(4)
C34A	C33A	C38A	116.7(9)		Cl2	C39	Cl4 C17	110.7(4)
C34A C33A	C33A C34	C32 C35	124.0(8)		C15 C18	C10 C41	C17 C110	118.7(4) 112.5(4)
C36	C35	C34	120.0			Cl8A	C41	ClOA	107.2(9)
C35	C36	C37	120.0			C18A	C41	Cl9A	157.0(10)
C38	C37	C36	120.0			C19	C41	C18	123.4(6)
	C38	C22 A	120 0			C10	0.4.1	0140	
C37	0.50	CSSA	120.0			019	C41	CHO	116.5(6)
C37 C37A	C38A	C33A C33A	122.9(1	1)		Cl9A	C41 C41	CII0 Cl0A	116.5(6) 93.9(6)
C37 C37A C36A C35A	C38A C37A C36A	C33A C33A C38A C37A	122.9(1 118.5(1 121.2(8	1) 0)		C19 C19A C12 C16	C41 C41 C17 C17	C110 C10A C18 C18	116.5(6) 93.9(6) 122.5(3) 117.9(4)
C37 C37A C36A C35A C36A	C38A C37A C36A C35A	C33A C33A C38A C37A C34A	122.9(1 118.5(1 121.2(8 119.4(8	1) 0))		C19 C19A C12 C16 C16	C41 C41 C17 C17 C17	C110 C10A C18 C18 C12	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4)
C37 C37A C36A C35A C36A C36A C33A	C38A C37A C36A C35A C34A	C33A C33A C38A C37A C34A C35A	122.9(1 118.5(1 121.2(8 119.4(8 121.3(1	1) 0)))		C19A C12 C16 C16	C41 C41 C17 C17 C17	C110 C10A C18 C18 C12	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4)
C37 C37A C36A C35A C36A C33A ¹ 3/2-X,1/2-	C38A C37A C36A C35A C35A C34A -Y,3/2-Z	C33A C33A C38A C37A C34A C35A	122.9(1 118.5(1 121.2(8 119.4(8 121.3(1	1) 0))) 0)		C19A C12 C16 C16	C41 C41 C17 C17 C17	C110 C10A C18 C18 C12	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4)
C37 C37A C36A C35A C36A C36A C33A ¹ 3/2-X,1/2- Table 6 To	C38A C37A C36A C35A C35A C34A -Y,3/2-Z	C33A C33A C38A C37A C34A C35A	122.9(1 118.5(1 121.2(8 119.4(8 121.3(1	1) 0))) 0)		Cl9A Cl2 Cl6 Cl6	C41 C41 C17 C17 C17	CII0 CI0A C18 C18 C12	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4)
C37 C37A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 T c A	C38A C37A C36A C35A C35A C34A -Y,3/2-Z prsion Angl B	C33A C33A C38A C37A C34A C35A es for ps40. C	122.9(1 118.5(1 121.2(8 119.4(8 121.3(1	1) 0))) 0) Angle/°	A	C19A C12 C16 C16 C16	C41 C41 C17 C17 C17 C	C110 C10A C18 C18 C12 D	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle/°
C37 C37A C36A C35A C36A C33A '3/2-X,1/2- Table 6 T c A C1	C38A C37A C36A C35A C35A C34A -Y,3/2-Z prsion Angl B C2	C33A C33A C38A C37A C34A C35A es for ps40. C C3	122.9(1) 118.5(1) 121.2(8) 119.4(8) 121.3(1) D F3	1) 0))) 0) Angle/° 177.5(5)	A C7	C19A C12 C16 C16 C16	C41 C41 C17 C17 C17 C17 C17	C110 C10A C18 C18 C12 D C10	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle/° 2.7(7)
C37 C37A C36A C35A C36A C33A '3/2-X,1/2- Table 6 T c A C1 C1	C38A C37A C36A C35A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C2	C33A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C3	D D D F 3 C4	1) 0)) 0) Angle/° 177.5(5) -1.7(8)	A C7 N7	C19A C12 C16 C16 C16 B C8 C7	C41 C41 C17 C17 C17 C17 C17	C110 C10A C18 C18 C12 D C10 C9	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle/° 2.7(7) -0.8(7)
C37 C37A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 To A C1 C1 C1 C1 C1	C38 C37A C36A C35A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C2 C2 C2 C2	C33A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C3 C3 C3 C7	122.9 (1 118.5 (1 121.2 (8 119.4 (8 121.3 (1 D F3 C4 N7	1) 0)) 0) Angle/° 177.5(5) -1.7(8) 3.0(6)	A C7 N7 N7	B C19A C12 C16 C16 C16 C16 C16	C41 C41 C17 C17 C17 C17 C17 C17 C17 C17 C17 C1	C110 C10A C18 C18 C12 D C10 C9 C13 C13	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ^o 2.7(7) -0.8(7) -83.0(5)
C37 C37A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 To A C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C38A C37A C36A C35A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C2 C2 C6 C6 C6	C33A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C3 C7 C7 C7 C7	122.9(1) 118.5(1) 121.2(8) 119.4(8) 121.3(1) D F3 C4 N7 C8 C22	1) 0)) 0) Angle/° 177.5(5) -1.7(8) 3.0(6) -177.0(4) 55.0(2)	A C7 N7 N7 C8	B C19A C12 C16 C16 C16 C16 C16 C16 C16 C11 C11 C11	C41 C41 C17 C17 C17 C17 C17 C17 C17 C17 C12 C8 C12 C12 C12 N7	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ^o 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(2)
C37 C37A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 To A C1 C1 C1 C1 C1 C1 C1 O1 O1	C38A C37A C36A C35A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C2 C6 C6 P1 P1	C33A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C3 C7 C7 C7 C24 C25	D F3 C4 N7 C8 C23 C26	1) 0)) 0) Angle/° 177.5(5) -1.7(8) 3.0(6) -177.0(4) -55.0(3) -49.6(4)	A C7 N7 N7 C8 C8	B C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C11 C11 C7 C7	C41 C41 C17 C17 C17 C17 C17 C17 C17 C17 C12 C9 C8 C12 C12 N7 N7	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ^o 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6)
C37 C37A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 To A C1 C1 C1 C1 C1 C1 O1 O1	C38A C37A C36A C35A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C2 C6 C6 P1 P1 P1 P1	C33A C33A C37A C37A C34A C35A es for ps40. C C3 C3 C7 C7 C7 C7 C24 C25 C32	122.9 (1 118.5 (1 121.2 (8 119.4 (8 121.3 (1 P F3 C4 N7 C8 C23 C26 C23 C26 C33A	1) 0)) 0) Angle/ ^e 177.5(5) -1.7(8) 3.0(6) -177.0(4) -55.0(3) -49.6(4) -64.0(4)	A C7 N7 N7 C8 C8 C8 C8	B C19A C12 C16 C16 C16 C16 C16 C16 C11 C11 C11 C7 C7 C9	C41 C41 C17 C17 C17 C17 C17 C17 C17 C17 C12 N7 C10	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ^o 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7)
C37 C37A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 To A C1 C1 C1 C1 C1 C1 O1 O1 O1 Pt1	C38A C37A C36A C35A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C2 C6 C6 C6 P1 P1 P1 P1 C1	C33A C33A C37A C37A C34A C35A es for ps40. C C3 C3 C7 C7 C7 C7 C24 C25 C32 C2 C2	122.9 (1 118.5 (1 121.2 (8 119.4 (8 121.3 (1 P F3 C4 N7 C8 C23 C26 C23 C26 C33A C3	1) 0)) 0) Angle/ 177.5(5) -1.7(8) 3.0(6) -177.0(4) -55.0(3) -49.6(4) -64.0(4) -172.3(4)	A C7 N7 N7 C8 C8 C8 C8 C20	B C19A C12 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C9 C19	C41 C41 C17 C17 C17 C17 C17 C17 C17 C17 C12 N7 N7 C10 C18	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C23	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle/° 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6)
C37 C37A C36A C35A C35A C33A ¹ 3/2-X,1/2- Table 6 Tc A C1 C1 C1 C1 C1 C1 O1 O1 O1 Pt1 Pt1	C38A C37A C36A C35A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C2 C6 C6 C6 P1 P1 P1 P1 C1 C1	C33A C33A C37A C37A C34A C35A es for ps40. C C3 C3 C7 C7 C7 C24 C25 C32 C2 C2 C2 C2 C2 C2 C2	122.9 (1 118.5 (1 121.2 (8 119.4 (8 121.3 (1 P F3 C4 N7 C8 C23 C26 C33A C3 C5	1) 0)) 177.5(5) -1.7(8) 3.0(6) -177.0(4) -55.0(3) -49.6(4) -64.0(4) -172.3(4) 173.8(4)	A C7 N7 N7 C8 C8 C8 C8 C20 C20	B C19A C12 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C7 C9 C19 C19 C19	C41 C41 C17 C17 C17 C17 C17 C17 C17 C17 C12 N7 N7 C10 C18 C18 C18	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C23 C17	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle/° 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4)
C37 C37A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 To A C1 C1 C1 C1 C1 C1 O1 O1 O1 Pt1 Pt1 Pt1	C38A C37A C36A C35A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C6 C6 C6 P1 P1 P1 C1 C1 C1 C1	C35A C33A C37A C37A C37A C35A es for ps40. C C3 C3 C7 C7 C7 C7 C24 C25 C32 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	122.9(1) 122.9(1) 118.5(1) 121.2(8) 119.4(8) 121.3(1) P F3 C4 N7 C8 C23 C26 C33A C3 C5 C7 C7	1) 0))) 0) Angle C 177.5(5) -1.7(8) 3.0(6) -177.0(4) -55.0(3) -49.6(4) -64.0(4) -172.3(4) 173.8(4) -3.1(5)	A C7 N7 N7 C8 C8 C8 C8 C20 C20 C20	B C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C7 C9 C19 C19 C19 C21	C41 C41 C17 C17 C17 C17 C17 C17 C17 C17 C12 C12 C12 C12 C12 N7 N7 C10 C18 C18 C18 C22 C22	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C23 C17 C23 C17 C23	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle/° 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7)
C37 C37A C36A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 Tc A C1 C1 C1 C1 C1 C1 C1 O1 O1 O1 Pt1 Pt1 Pt1 Pt1 Pt1	C38A C37A C36A C35A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C6 C6 C6 P1 P1 P1 C1 C1 C1 C1 C1 C1 C1 N7	C35A C33A C38A C37A C34A C35A c c C3 C7 C7 C7 C24 C25 C32 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	D F3 C4 N7 C8 C23 C26 C33A C3 C5 C7 C10 C10 C12 C12 C12 C12 C12 C12 C12 C12	1) 0))) 0) Angle C 177.5(5) -1.7(8) 3.0(6) -177.0(4) -55.0(3) -49.6(4) -64.0(4) -172.3(4) 173.8(4) -3.1(5) -177.2(3)	A C7 N7 N7 C8 C8 C8 C20 C20 C20 C20 C20 C21	B C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C7 C9 C19 C19 C19 C21 C22 C22	C41 C41 C17 C17 C17 C17 C17 C17 C17 C17 C17 C1	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C23 C17 C23 C18 C18	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle/° 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7)
C37 C37A C36A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 Tc A C1 C1 C1 C1 C1 C1 C1 O1 O1 O1 O1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1	C38 C38A C37A C36A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C6 C6 C6 P1 P1 P1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C35A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C7 C7 C7 C7 C24 C25 C32 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	D F3 C4 N7 C8 C23 C26 C33A C3 C5 C7 C10 C12 C18	1) 0))) 0) Angle C 177.5(5) -1.7(8) 3.0(6) -177.0(4) -55.0(3) -49.6(4) -64.0(4) -172.3(4) 173.8(4) -3.1(5) -177.2(3) 2.4(6) 102.2(4)	A C7 N7 N7 C8 C8 C8 C20 C20 C20 C20 C21 C21 C21	B C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C9 C19 C19 C19 C19 C21 C22 C22 C10	C (17) C17 C17 C17 C17 C17 C17 C17 C17 C17 C17	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C23 C17 C23 C17 C23 C18 C24 N7	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ⁶ 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7) -176.2(4) 2.2(7)
C37 C37A C36A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 Tc A C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C38 C38A C37A C36A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C6 C6 P1 P1 P1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C35A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C7 C7 C7 C7 C7 C24 C25 C32 C2 C2 C2 C2 C6 C6 C11 C11 C23 C23	D F3 C4 N7 C8 C23 C26 C33A C3 C5 C7 C10 C12 C18 C22	1) 0)))) 0) Angle (° 177.5(5) -1.7(8) 3.0(6) -177.0(4) -55.0(3) -49.6(4) -64.0(4) -172.3(4) 173.8(4) -3.1(5) -177.2(3) 2.4(6) -103.3(4) 74.6(4)	A C7 N7 N7 C8 C8 C8 C20 C20 C20 C20 C21 C21 C9 C9	B C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C7 C9 C19 C19 C19 C21 C22 C22 C10 C10	C41 C41 C17 C17 C17 C17 C17 C17 C17 C17 C17 C1	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C23 C17 C23 C17 C23 C18 C24 N7 C12	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ⁶ 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7) -176.2(4) -2.2(7) 178.1(4)
C37 C37A C36A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 To A C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C38 C38A C37A C36A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C6 C6 P1 P1 P1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C35A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C7 C7 C7 C7 C7 C24 C25 C32 C2 C2 C2 C6 C6 C11 C11 C23 C23 C2 C6 C6	D F3 C4 N7 C8 C23 C26 C33A C3 C5 C7 C10 C12 C18 C22 C5	1) 0))))))))))))))	A C7 N7 N7 C8 C8 C8 C20 C20 C20 C21 C21 C9 C9 C9 C23	B C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C9 C19 C19 C19 C19 C21 C22 C22 C10 C10 C10 C18	C41 C41 C17 C17 C17 C17 C17 C17 C17 C10 C18 C18 C18 C18 C18 C22 C23 C11 C11 C11 C17	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C23 C17 C23 C17 C23 C18 C24 N7 C12 C12 C12	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ⁶ 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7) -176.2(4) -2.2(7) 178.1(4) -73.8(6)
C37 C37A C36A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 To A C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C38A C37A C36A C35A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C2 C6 C6 P1 P1 P1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C35A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C3 C7 C7 C24 C25 C32 C2 C2 C6 C6 C6 C11 C11 C23 C23 C2 C2 C6 C6 C6 C6 C6 C6	D D F 3 C 4 N 7 C 8 C 23 C 26 C 33A C 3 C 5 C 7 C 10 C 12 C 18 C 22 C 5 C 7	1) 0))))))))))))))	A C7 N7 N7 C8 C8 C8 C20 C20 C20 C20 C21 C21 C9 C9 C23 C23	B C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C9 C19 C19 C19 C21 C22 C22 C10 C10 C10 C18 C18 C18 C12 C16 C12 C16 C12 C16 C16 C16 C16 C16 C16 C16 C16 C16 C16	C41 C41 C17 C17 C17 C17 C17 C17 C10 C18 C18 C18 C18 C18 C22 C23 C11 C11 C11 C17 C17	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C13 C17 Pt1 C11 C11 C23 C17 C23 C17 C23 C18 C24 N7 C12 C12 C12 C12	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ⁶ 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7) -176.2(4) -2.2(7) 178.1(4) -73.8(6) 114.3(5)
C37 C37A C36A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 To A C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C38 C38A C37A C36A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C2 C6 C6 P1 P1 P1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C35A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C3 C7 C7 C24 C25 C32 C2 C2 C6 C6 C11 C11 C23 C23 C2 C6 C6 C6 C6 C6 C23	D D F 3 C 4 N 7 C 8 C 23 C 26 C 33A C 3 C 5 C 7 C 10 C 12 C 18 C 22 C 5 C 7 C 24 C 7 C 7	1) 0))))))))))))))	A C7 N7 N7 C8 C8 C8 C20 C20 C20 C20 C21 C21 C9 C9 C9 C23 C23 C25	C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C9 C19 C19 C19 C21 C22 C22 C10 C10 C18 C18 P1	C41 C41 C17 C17 C17 C17 C17 C17 C12 C12 N7 N7 C10 C18 C18 C12 C12 N7 N7 C10 C18 C18 C22 C23 C11 C11 C17 C17 C17 C17 C17 C17 C17 C17	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C13 C17 Pt1 C11 C11 C23 C17 C23 C17 C23 C18 C24 N7 C12 C12 C12 C12	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ⁶ 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7) -176.2(4) -2.2(7) 178.1(4) -73.8(6) 114.3(5) -179.8(3)
C37 C37A C36A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 To A C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C38 C38A C37A C36A C35A C34A -Y,3/2-Z orsion Angl B C2 C2 C2 C6 C6 P1 P1 P1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C35A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C7 C7 C24 C25 C32 C2 C2 C6 C6 C11 C11 C23 C23 C2 C6 C6 C6 C6 C23 C23 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	D D F 3 C 4 N 7 C 8 C 23 C 26 C 33A C 3 C 5 C 7 C 10 C 12 C 18 C 22 C 5 C 7 C 24 C 22 C 5 C 7 C 7 C 7 C 24 C 22 C 5 C 7 C 7 C 24 C 22 C 5 C 7 C 7	1) 0))))))))))))))	A C7 N7 N7 C8 C8 C8 C20 C20 C20 C20 C20 C20 C21 C21 C9 C9 C23 C23 C25 C25 C25	C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C9 C19 C19 C21 C22 C22 C10 C10 C18 C18 P1 P1 P1	C41 C41 C17 C17 C17 C17 C17 C17 C12 N7 N7 C10 C18 C18 C12 C12 N7 N7 C10 C18 C18 C22 C23 C11 C11 C17 C17 C17 C17 C17 C17 C17 C17	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C13 C17 Pt1 C11 C11 C23 C17 C23 C18 C24 N7 C12 C12 C12 C16 C23 C33A	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ⁶ 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7) -176.2(4) -2.2(7) 178.1(4) -73.8(6) 114.3(5) -179.8(3) 59.7(4)
C37 C37A C36A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 Te A C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C38 C38A C37A C36A C35A C34A -Y,3/2-Z prsion Angl B C2 C2 C2 C2 C6 C6 C6 P1 P1 P1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C33A C33A C33A C37A C34A C35A es for ps40. C C3 C3 C3 C7 C7 C24 C25 C32 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	D D F 3 C 4 N 7 C 8 C 23 C 26 C 33A C 3 C 5 C 7 C 10 C 12 C 18 C 22 C 5 C 7 C 24 C 22 C 25 C 7 C 24 C 22 C 22 C 212 C 216 C 212 C 212 C 212 C 216 C 214 C 212 C 212 C 216 C 212 C 212 C 216 C 212 C 216 C 212 C 216 C 216	1) 0))))))))))))))	A C7 N7 N7 C8 C8 C8 C20 C20 C20 C20 C20 C21 C21 C9 C9 C23 C23 C25 C25 C25 C25	C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C9 C19 C19 C19 C19 C21 C22 C22 C10 C10 C18 C18 P1 P1 C26 C26 C26 C16 C16 C16 C12 C16 C12 C16 C12 C16 C16 C16 C16 C16 C16 C16 C16 C16 C16	C41 C41 C17 C17 C17 C17 C17 C17 C12 C12 N7 N7 C10 C18 C18 C12 C22 C23 C11 C11 C17 C17 C17 C17 C17 C17 C17 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C11 C11 C23 C17 C23 C18 C24 N7 C12 C12 C12 C16 C23 C33A C28 C29	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ⁶ 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7) -176.2(4) -2.2(7) 178.1(4) -73.8(6) 114.3(5) -179.8(3) 59.7(4) 176.9(4)
C37 C37A C36A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 Te A C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C38 C38A C37A C36A C35A C34A -Y,3/2-Z prsion Angl B C2 C2 C2 C2 C2 C6 C6 C6 P1 P1 P1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C35A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C3 C7 C7 C24 C25 C32 C2 C2 C6 C6 C11 C11 C23 C23 C2 C6 C6 C6 C23 C23 C23 C2 C2 C2 C2 C6 C11 C11 C23 C23 C23 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	D D F 3 C 4 N 7 C 8 C 23 C 26 C 33A C 3 C 5 C 7 C 10 C 12 C 18 C 22 C 5 C 7 C 24 C 22 C 18 C 22 C 5 C 7 C 24 C 22 C 12 C 18 C 22 C 22 C 12 C 12 C 18 C 22 C 12 C 14 C 12 C 12 C 12 C 12 C 14 C 12 C 14 C 12 C 12 C 12 C 14 C 12 C 14 C 12 C 14 C 12 C 14 C 12 C 12 C 14 C 12 C 14 C 12 C 14 C 12 C 12 C 14 C	1) 0))))))))))))) $\frac{49.6(4)}{-55.0(3)}$ -49.6(4) -64.0(4) -172.3(4) 173.8(4) -3.1(5) -177.2(3) 2.4(6) -103.3(4) 74.6(4) -0.8(7) -177.7(4) 175.6(4) -2.3(6) 106.6(5) -65.3(5) -1.1(7)	A C7 N7 N7 C8 C8 C8 C20 C20 C20 C20 C21 C21 C21 C9 C9 C23 C23 C25 C25 C25 C25 C25 C25 C25 C25	C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C9 C19 C19 C19 C19 C21 C22 C22 C10 C10 C18 C18 P1 P1 C26 C26 C18 C18 C12 C12 C16 C12 C16 C12 C16 C12 C16 C16 C16 C16 C16 C16 C16 C16 C16 C16	C41 C41 C17 C17 C17 C17 C17 C17 C12 N7 N7 C10 C18 C18 C12 C22 C23 C11 C11 C17 C17 C24 C32 C27 C31 C12	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C11 C13 C17 C23 C17 C23 C18 C24 N7 C12 C12 C12 C16 C23 C33A C28 C33A C13	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ⁶ 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7) -176.2(4) -2.2(7) 178.1(4) -73.8(6) 114.3(5) -179.8(3) 59.7(4) 176.9(4) -176.7(4) 96.6(5)
C37 C37A C36A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 Te A C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C38 C38A C37A C36A C35A C34A -Y,3/2-Z prsion Angl B C2 C2 C2 C2 C2 C6 C6 C6 P1 P1 P1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C35A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C3 C7 C7 C24 C25 C32 C2 C2 C6 C6 C11 C11 C23 C23 C2 C6 C6 C6 C11 C11 C23 C23 C2 C2 C2 C6 C11 C11 C23 C23 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	D D F 3 C 4 N 7 C 8 C 23 C 26 C 33A C 3 C 5 C 7 C 10 C 12 C 18 C 22 C 5 C 7 C 24 C 22 C 18 C 22 C 12 C 18 C 22 C 5 C 7 C 24 C 22 C 12 C 18 C 22 C 5 C 7 C 24 C 22 C 22 C 12 C 16 C 22 C 29 C 17 C 16 C 22 C 29 C 16 C 22 C 29 C 17 C 16 C 22 C 29 C 16 C 22 C 29 C 16 C 22 C 29 C 29 C 16 C 22 C 29 C 17 C 24 C 22 C 29 C 16 C 22 C 29 C 17 C 24 C 22 C 29 C 17 C 24 C 22 C 29 C 16 C 22 C 29 C 17 C 24 C 22 C 29 C 16 C 22 C 29 C 17 C 24 C 22 C 29 C 17 C 16 C 22 C 29 C 17 C 16 C 22 C 29 C 17 C 16 C 22 C 29 C 17 C 17 C 16 C 22 C 29 C 17 C 17 C 16 C 22 C 29 C 17 C 1	1) 0))))))))))))))	A C7 N7 N7 C8 C8 C8 C20 C20 C20 C20 C20 C21 C21 C21 C9 C9 C23 C23 C25 C25 C25 C25 C25 C10 C10	C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C9 C19 C19 C19 C19 C19 C19 C19 C19 C19	C41 C41 C17 C17 C17 C17 C17 C17 C12 C12 N7 N7 C10 C18 C18 C12 C22 C23 C11 C11 C17 C17 C17 C24 C32 C27 C31 C12 C12 C12	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C13 C17 C23 C17 C23 C18 C24 N7 C12 C12 C12 C16 C23 C33A C28 C33A C13 C17	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ⁶ 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7) -176.2(4) -2.2(7) 178.1(4) -73.8(6) 114.3(5) -179.8(3) 59.7(4) 176.9(4) -75.6(5)
C37 C37A C36A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 Te A C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C38 C38A C37A C36A C35A C34A -Y,3/2-Z prsion Angl B C2 C2 C2 C2 C2 C6 C6 C6 P1 P1 P1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C33A C33A C33A C37A C34A C35A es for ps40. C C3 C3 C3 C7 C7 C24 C25 C32 C2 C6 C6 C11 C11 C23 C23 C2 C6 C6 C6 C11 C11 C23 C23 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	122.9 (1) 122.9 (1) 118.5 (1) 121.2 (8) 119.4 (8) 121.3 (1) D F3 C4 N7 C8 C23 C26 C33A C3 C5 C7 C10 C12 C18 C22 C5 C7 C12 C18 C22 C12 C16 C22 C29 C21	1) 0))))))))))))))	A C7 N7 N7 C8 C8 C8 C20 C20 C20 C20 C21 C21 C9 C9 C23 C23 C25 C25 C25 C25 C25 C25 C25 C10 C10 C27	C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C9 C19 C19 C19 C19 C19 C19 C19 C19 C19	C41 C41 C17 C17 C17 C17 C17 C17 C12 C12 N7 N7 C10 C18 C18 C12 C23 C23 C11 C11 C17 C17 C17 C24 C32 C27 C31 C12 C12 C12 C12 C25	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C13 C17 Pt1 C11 C13 C17 C23 C18 C24 N7 C12 C12 C12 C16 C23 C33A C28 C33A C17 P1	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ⁶ 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7) -176.2(4) -2.2(7) 178.1(4) -73.8(6) 114.3(5) -179.8(3) 59.7(4) 176.9(4) -176.7(4) 96.6(5) -75.6(5) 86.1(5)
C37 C37A C36A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 Te A C1 C1 C1 C1 C1 C1 C1 C1 C1 O1 O1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt	C38 C38A C37A C36A C35A C34A -Y,3/2-Z prsion Angl B C2 C2 C2 C2 C6 C6 C6 P1 P1 P1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C35A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C3 C7 C7 C24 C25 C32 C2 C6 C6 C11 C11 C23 C23 C2 C6 C6 C6 C11 C11 C23 C23 C2 C2 C2 C6 C6 C11 C11 C23 C23 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	122.9 (1) 112.2 (9) 118.5 (1) 121.2 (8) 119.4 (8) 121.3 (1) D F3 C4 N7 C8 C23 C26 C33A C3 C5 C7 C10 C12 C18 C22 C5 C7 C14 C22 C5 C7 C12 C18 C22 C5 C7 C12 C18 C22 C12 C16 C22 C21 C1	1) 0)))))))))))) Angle f''''''''''''''''''''''''''''''''''''	A C7 N7 N7 C8 C8 C8 C20 C20 C20 C20 C21 C21 C9 C9 C23 C25 C25 C25 C25 C25 C25 C25 C25 C10 C10 C27 C27	C19A C12 C16 C16 C16 C16 C16 C16 C16 C17 C7 C7 C7 C7 C9 C19 C19 C19 C19 C19 C19 C19 C19 C19	C41 C41 C17 C17 C17 C17 C17 C17 C12 C12 N7 N7 C10 C18 C18 C12 C23 C23 C11 C11 C17 C17 C17 C24 C32 C27 C31 C12 C12 C25 C31	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C13 C17 Pt1 C11 C13 C17 C23 C18 C24 N7 C12 C12 C12 C16 C23 C33A C28 C30 C13 C17 P1 C30	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ⁶ 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7) -176.2(4) -2.2(7) 178.1(4) -73.8(6) 114.3(5) -179.8(3) 59.7(4) 176.9(4) -176.7(4) 96.6(5) -75.6(5) 86.1(5) 1.6(7)
C37 C37A C36A C36A C35A C36A C33A ¹ 3/2-X,1/2- Table 6 To A C1 C1 C1 C1 C1 C1 C1 C1 O1 O1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt1 Pt	C38 C38A C37A C36A C35A C34A -Y,3/2-Z prsion Angl B C2 C2 C2 C2 C6 C6 C6 P1 P1 P1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C35A C33A C38A C37A C34A C35A es for ps40. C C3 C3 C3 C7 C7 C24 C25 C32 C2 C6 C6 C11 C11 C23 C23 C2 C2 C6 C6 C6 C11 C11 C23 C23 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	122.9 (1) 112.9 (1) 118.5 (1) 121.2 (8) 119.4 (8) 121.3 (1) D F3 C4 N7 C8 C23 C26 C33A C3 C5 C7 C10 C12 C18 C22 C5 C7 C10 C12 C18 C22 C5 C7 C10 C12 C18 C22 C12 C14 C25 C7 C14 C22 C21 C1 C7 C12 C12 C12 C12 C23 C24 C25 C12 C13 C24 C25 <td>1) 0)))))))))))) Angle f''''''''''''''''''''''''''''''''''''</td> <td>A C7 N7 N7 C8 C8 C8 C20 C20 C20 C20 C21 C21 C9 C9 C9 C23 C25 C25 C25 C25 C25 C25 C25 C25 C25 C25</td> <td>C19A C12 C16 C17 C7 C9 C19 C19 C19 C10 C10 C18 C18 P1 C26 C21 C26 C21 C26 C26 C27 C28</td> <td>C41 C41 C17 C17 C17 C17 C17 C17 C12 C12 N7 N7 C10 C18 C18 C12 C23 C23 C11 C11 C17 C17 C17 C17 C17 C17 C12 C23 C23 C23 C11 C17 C17 C17 C17 C17 C17 C17 C17 C17</td> <td>C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C13 C17 Pt1 C11 C12 C12 C12 C12 C12 C12 C12 C12 C1</td> <td>116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle^o 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7) -176.2(4) -2.2(7) 178.1(4) -73.8(6) 114.3(5) -179.8(3) 59.7(4) 176.9(4) -176.7(4) 96.6(5) -75.6(5) 86.1(5) 1.6(7) 0.5(8)</td>	1) 0)))))))))))) Angle f''''''''''''''''''''''''''''''''''''	A C7 N7 N7 C8 C8 C8 C20 C20 C20 C20 C21 C21 C9 C9 C9 C23 C25 C25 C25 C25 C25 C25 C25 C25 C25 C25	C19A C12 C16 C17 C7 C9 C19 C19 C19 C10 C10 C18 C18 P1 C26 C21 C26 C21 C26 C26 C27 C28	C41 C41 C17 C17 C17 C17 C17 C17 C12 C12 N7 N7 C10 C18 C18 C12 C23 C23 C11 C11 C17 C17 C17 C17 C17 C17 C12 C23 C23 C23 C11 C17 C17 C17 C17 C17 C17 C17 C17 C17	C110 C10A C18 C18 C12 D C10 C9 C13 C17 Pt1 C11 C11 C11 C13 C17 Pt1 C11 C12 C12 C12 C12 C12 C12 C12 C12 C1	116.5(6) 93.9(6) 122.5(3) 117.9(4) 119.1(4) Angle ^o 2.7(7) -0.8(7) -83.0(5) 104.7(4) 178.5(3) -2.6(6) -1.3(7) 1.1(6) -179.3(4) -0.1(7) 1.8(7) -176.2(4) -2.2(7) 178.1(4) -73.8(6) 114.3(5) -179.8(3) 59.7(4) 176.9(4) -176.7(4) 96.6(5) -75.6(5) 86.1(5) 1.6(7) 0.5(8)

C24	P1	C32	C33A	171.0(3)		C29	C30	C31	C26	-0.8(7)
C5	C4	C3	C2	0.9(9)		C11	C12	C13	C13A	4.1(6)
C5	C4 C6	C3	F3 N7	-178.3(5)		CII	C12 C12	C13 C17	C14 C18	-175.1(4)
C5	C6	C7	N /	-1/3.8(4) 6 1(7)		C11	C12	C17	C16	3.7(0) 175 5(4)
C3	C4	C5	C6	0.0(8)		C31	C26	C25	P1	-95.6(4)
C33A	C34	C35	C36	0.0		C31	C26	C27	C28	-1.4(7)
C33A	C38A	C37A	C36A	1.9(18)		C12	C13	C14	C15	0.3(6)
C34	C33A	C38	C37	0.0		C32	P1	C24	C23	70.0(3)
C34	C33A	C32	P1	-105.6(9)		C32	P1	C25	C26	-173.6(3)
C34	C35	C36	C37	0.0		C32	C33	A C34	C35	175.4(6)
C35	C36 C27	C37	C38	0.0		C32	C33	A C38	C37	-1/4.4(8)
C38	C33A	C34	C35	0.0		C32	C33	$\Delta C34\Delta$	C35A	179.1(9) 179.4(6)
C38	C33A	C32	P1	69.2(12)		C13	C12	C17	C18	-168.5(4)
C38A	C33A	C34A	C35A	0.7(10)		C13	C12	C17	C16	3.3(6)
C38A	C33A	C32	P1	77.8(8)		C13	C14	C15	F15	-178.3(4)
C38A	C37A	C36A	C35A	-0.1(17)		C13	C14	C15	C16	1.9(7)
C37A	C36A	C35A	C34A	-1.3(14)		C13A	C13	C14	C15	-178.8(4)
C36A	C35A C33A	C34A	C33A C37A	0.9(11)		C14 C15	C15 C16	C16 C17	C17 C18	-1.5(7)
C34A	C33A	C30A	C5/A P1	-2.1(14)		C15	C10	C17	C18 C12	-1 1(6)
C6	C1	C2	C3	1.6(7)		F15	C10	C16	C12 C17	178.7(4)
C6	C7	N7	Pt1	-1.6(5)		C17	C18	C23	C24	-3.9(6)
C6	C7	N7	C11	177.4(4)		C17	C18	C23	C22	178.2(4)
C6	C7	C8	C9	179.2(4)		C17	C12	C13	C13A	176.3(4)
C7	N7	C11	C10	4.0(6)		C17	C12	C13	C14	-2.9(6)
C7	N7	C11	C12	-176.3(4)						
Table 7 l	Hydrogen A	tom Coord	inates (Å×10'	⁴) and Isotropic 1	Displacem	ent Paran	neters (Å	A ² ×10 ³) for ps40		
Atom		x		у	-	z		U(eq)		
H40	6261		5867		5458			114		
H40A Ц2	6509		2199		5424 6220			114		
п2 H19	6066		2155		9508			29		
H4	4868		1304		5752			43		
H24A	5865		3484		7729			24		
H24B	6459		3080		8023			24		
H5	4861		810		6552			35		
H34	8040		4720		8366			40		
H35 H36	8682		5920		8306			41		
H37	7663		7758		8808			51		
H38	7022		6558		8868			61		
H38A	6942		6302		8936			60		
H37A	7470		7676		9032			83		
H36A	8311		7749		8745			77		
H35A	8624		6475		8375			54		
Н34А Ц8	1030 8101		50/1 354		8309			43		
H20	5191		2864		9524			34		
H21	4732		3803		8868			34		
H9	5043		-23		8146			34		
H22	5167		4061		8212			30		
H25A	7031		5357		7585			28		
H25B	6978		4274		7494			28		
H10 H27	58/1		4/5		8/05			30		
H28	5626		6677		6365			50		
H29	5298		5446		5835			53		
H30	5599		3931		6067			49		
H31	6230		3657		6825			37		
H32A	6981		4570		8897			30		
H32B	7338		4113		8546			30		
HI3A HI3B	7046		-483		8456 8489			48 48		
H13C	7229		126		8046			48		
H14	8077		757		9143			31		
H39	3961		1900		6914			58		
H16	7168		2959		9459			29		
H41	3383		658		4586			168		
H41A	3477		950		4894			108		
Table 8	Atomic Occ	upancy for	ps40.							
Atom	Осси	upancy	Atom	Оссира	incy	Aton	n	Occupancy		
H40 C16	0.75		H40A	0.25		Cl5		0.75		
	0.25		C17 Δ	0.25		CISA	1	0.25		
C10/1			CITA				-			

C34	0.23(3)	H34	0.23(3)	C35	0.23(3)
H35	0.23(3)	C36	0.23(3)	H36	0.23(3)
C37	0.23(3)	H37	0.23(3)	C38	0.23(3)
H38	0.23(3)	C38A	0.77(3)	H38A	0.77(3)
C37A	0.77(3)	H37A	0.77(3)	C36A	0.77(3)
H36A	0.77(3)	C35A	0.77(3)	H35A	0.77(3)
C34A	0.77(3)	H34A	0.77(3)	C18	0.75
Cl8A	0.25	C19	0.75	Cl9A	0.25
C110	0.75	H41	0.75	H41A	0.25

Refinement model description

Number of restraints - 72, number of constraints - unknown. Details: 1. Fixed Uiso

At 1.2 times of: All C(H) groups, All C(H,H) groups At 1.5 times of: All C(H,H,H) groups 2. Restrained distances C40-C15A 1.75 with sigma of 0.02 C40-C16A 1.75 with sigma of 0.02 C40-C17A 1.75 with sigma of 0.02 C41-C10A 1.75 with sigma of 0.02 C41-C18A 1.75 with sigma of 0.02 C41-C19A 1.75 with sigma of 0.02 3. Uiso/Uaniso restraints and constraints Cl5 \approx Cl5A \approx Cl7 \approx Cl6A \approx Cl6 \approx Cl7A \approx C40: within 1.7A with sigma of 0.01 and sigma for terminal atoms of 0.02 $\,$ C33A \approx C38A \approx C37A \approx C36A \approx C35A \approx C34A: within 1.7A with sigma of 0.04 and sigma for terminal atoms of 0.08 4. Others Sof(C38A)=Sof(H38A)=Sof(C37A)=Sof(H37A)=Sof(C36A)=Sof(H36A)=Sof(C35A)=Sof(H35A) = Sof(C34A) = Sof(H34A) = 1 - FVAR(1)Sof(C34)=Sof(H34)=Sof(C35)=Sof(H35)=Sof(C36)=Sof(H36)=Sof(C37)=Sof(H37)= Sof(C38) = Sof(H38) = FVAR(1)Fixed Sof: H40(0.75) H40A(0.25) C15(0.75) C16(0.75) C17(0.75) C15A(0.25) C16A(0.25) C17A(0.25) C10A(0.25) C18(0.75) C18A(0.25) C19(0.75) C19A(0.25) Cl10(0.75) H41(0.75) H41A(0.25) 5.a Ternary CH refined with riding coordinates: C40(H40), C40(H40A), C39(H39), C41(H41), C41(H41A) 5.b Secondary CH2 refined with riding coordinates: C24(H24A,H24B), C25(H25A,H25B), C32(H32A,H32B) 5.c Aromatic/amide H refined with riding coordinates: C2(H2), C19(H19), C4(H4), C5(H5), C34(H34), C35(H35), C36(H36), C37(H37), C38(H38), C38A(H38A), C37A(H37A), C36A(H36A), C35A(H35A), C34A(H34A), C8(H8), C20(H20), C21(H21), C9(H9), C22(H22), C10(H10), C27(H27), C28(H28), C29(H29), C30(H30), C31(H31), C14(H14), C16(H16) 5.d Fitted hexagon refined as free rotating group: C33A(C34,C35,C36,C37,C38) 5.e Idealised Me refined as rotating group: C13A(H13A,H13B,H13C)

This report has been created with Olex2, compiled on 2016.09.09 svn.r3337 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

Variable temperature ¹H NMR spectra of 7 (600 MHz)

Fig SI9 The benzyl region of the 1H NMR spectrum of 7 (600 MHz)

At 208K five resonances are seen, though the one at 3.1ppm has relative integral 2 and appears to be a composite of two signals. At 328K the relative integrals are 1:1:2:2 for the signals labeled X, X, Bn, Bn'. We can extrapolate and suggest that the two X signals will have coalesced at about 358K.

Taking the two "X" peaks as being about 370 Hz apart at 208K, with a coalescence temperature at about 358K, we can calculate a barrier to coalescence to be 68 kJmol⁻¹. Taking the two "Bn" peaks as being about 240 Hz apart at 208K, with a coalescence temperature at about 310K, we can calculate a barrier to coalescence to be 57 kJmol⁻¹. Given the uncertainties associated with finding the low temperature limits, the coalescence temperatures, and that the two values above are for the same process, we suggest that a realistic value is 62 ± 8 kJmol⁻¹.

Fig SI10 *The aromatic region of the 1H NMR spectrum of 7 (600 MHz)* Some of the resonances move quite dramatically, but they are all individual, and cannot coalesce.

A comparison of the NMR spectra of **5** with that of **7**

Fig SI1 *The aromatic region of the 1H NMR spectrum of 7(top two traces) and 5 (bottom trace) (600 MHz)*

The NMR spectrum of the aromatic region on the non-fluxional **5** (bottom) more closely resembles that of the fluxional **7** (upper traces) at the lower temperature (-55°C, middle) rather than the higher temperature (25°C), in keeping with the idea that, when the motion in **7** is frozen out, its structure resembles that of **5**.

Kinetic analysis of the isomerization of a-Me7 to b-Me7

A sample of a mixture of **a-Me7** to **b-Me7**was generated in acetone from **Me-2(t)**, filtered and then sealed into an NMR tube. NMR spectra were recorded at hourly intervals for the first 24 hours, then less frequently, as recorded in the table below, for a total of 170 hours. The normalized integrals for the methyl group resonances of **a-Me7** to **b-Me7** in the ¹H NMR are given columns 2 and 3 in the table below. Fig S112 plots these values versus time (hours).

The final column was generated by applying a linear adjustment to the amount of **a-Me7**, in order to give the best fit to values (i.e. such that the value at $t = \infty$ is zero), see Fig SI13. In practice the value subtracted was 0.12, which gave a 99.6% fit to a first order decay. This means an equilibrium concentration of 12% **a-Me7**, 88% **b-Me7** would be the end result, i.e. K = 7.33. The rate constant, taken from the graph fit line is 0.01653 h⁻¹; but this is actually the composite of k_1 and k_{-1} . (J W Moore and R G Pearson, "Kinetics and Mechanism" Third Ed, John Wiley and Sons, p 304)

Using K = k_1/k_{-1} = 7.33 and $(k_1 + k_{-1})$ = 0.01653, we can establish that k_1 = 0.01454 this in turn gives a half-life of 47.7 hours.

hours	a-Me-7	b-Me-7	Amount of a-Me7 adjusted for a zero end point
0	0.781	0.219	0.661
1	0.775	0.225	0.655
2	0.765	0.235	0.645
3	0.752	0.248	0.632
4	0.738	0.262	0.618
5	0.732	0.268	0.612
6	0.717	0.283	0.597
7	0.703	0.297	0.583
8	0.701	0.299	0.581
9	0.690	0.310	0.570
10	0.685	0.315	0.565
11	0.670	0.330	0.550
12	0.662	0.338	0.542
13	0.656	0.344	0.536
14	0.644	0.356	0.524
15	0.641	0.359	0.521
16	0.622	0.378	0.502
17	0.618	0.382	0.498
18	0.623	0.377	0.503
19	0.609	0.391	0.489
20	0.595	0.405	0.475

21	0.583	0.417	0.463
22	0.584	0.416	0.464
23	0.575	0.425	0.455
24	0.565	0.435	0.445
26	0.558	0.442	0.438
28	0.552	0.448	0.432
30	0.532	0.468	0.412
32	0.516	0.484	0.396
34	0.504	0.496	0.384
36	0.491	0.509	0.371
38	0.469	0.531	0.349
40	0.459	0.541	0.339
42	0.453	0.547	0.333
44	0.435	0.565	0.315
46	0.426	0.574	0.306
48	0.415	0.585	0.295
50	0.407	0.593	0.287
52	0.405	0.595	0.285
54	0.386	0.614	0.266
56	0.382	0.618	0.262
58	0.370	0.630	0.250
60	0.366	0.634	0.246
62	0.363	0.637	0.243
64	0.350	0.650	0.230
75	0.323	0.677	0.203
77	0.311	0.689	0.191
79	0.307	0.693	0.187
81	0.305	0.695	0.185
83	0.296	0.704	0.176
85	0.286	0.714	0.166
87	0.283	0.717	0.163
88	0.282	0.718	0.162
93	0.259	0.741	0.139
95	0.257	0.743	0.137
97	0.245	0.755	0.125
99	0.243	0.757	0.123
101	0.240	0.760	0.120
103	0.236	0.764	0.116
105	0.227	0.773	0.107
107	0.230	0.770	0.110
110	0.223	0.777	0.103
116	0.212	0.788	0.092
133	0.200	0.800	0.080
159	0.162	0.838	0.042
170	0.168	0.832	0.048

Fig SI8 The normalized quantities of a-Me7 and b-Me7 as a function of time

Fig SI8 The quantity of a-Me7 as a function of time