1

Electronic Supplementary data

Metal exchange in lithiocuprates: implications for our

understanding of structure and reactivity

Andrew J. Peel, Ryan Ackroyd and Andrew E. H. Wheatley*

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK); Fax: (+) 44 1223 336362; e-mail: aehw2@cam.ac.uk

Synthesis and characterization of Ba(OCN) ₂ 6
Synthesis and characterization of CuOCN 7
Figure S1 Edge-on representation of the lithium-only component of 8_2 4
Additional characterisation for bulk product 8
Figure S2a ¹ H NMR spectrum4
Figure S2b ¹³ C NMR spectrum5
Figure S2c ⁷ Li NMR spectrum5
Figure S3 Molecular structure of pure 8a2
Additional characterization of pure (TMP) ₂ Cu(OCN)Li ₂ (THF) 8a
Figure S4a ¹ H NMR spectrum7
Figure S4b ¹³ C NMR spectrum7
Figure S4c ⁷ Li NMR spectrum8
Additional characterization of 9
Figure S5a ¹ H NMR spectrum8
Figure S5b ¹³ C NMR spectrum9
Figure S5c ⁷ Li NMR spectrum9
Additional characterization of TMP ₂ CuLi 9a10
Figure S6a ¹ H NMR spectrum10
Figure S6b ¹³ C NMR spectrum10
Figure S6c ⁷ Li NMR spectrum11
Synthesis and characterization of TMPLi 9b11
Figure S7a ¹ H NMR spectrum12
Figure S7b ¹³ C NMR spectrum12
Figure S7c ⁷ Li NMR spectrum 13

Synthesis and characterization of TMPCu 9c	14
Figure S8a ¹ H NMR spectrum	14
Figure S8b ¹³ C NMR spectrum	15
Synthesis and characterization of (TMPH ₂)OCN 10	15
Figure S9a ¹ H NMR spectrum	16
Figure S9b ¹³ C NMR spectrum	16
Additional characterization of (TMP) ₂ (OCN)Li ₃ (THF) ₂ 11	17
Figure S10a ¹ H NMR spectrum	17
Figure S10b ¹³ C NMR spectrum	17
Figure S10c ⁷ Li NMR spectrum	18
Figure S4 Molecular structure of pure 12b	
Additional characterization of (DA) ₂ CuBrLi ₂ (TMEDA) ₂ 12b	19
Figure S11a ¹ H NMR spectrum	19
Figure S11b ¹³ C NMR spectrum	19
Figure S11c ⁷ Li NMR spectrum	20
Additional characterization of (DA) ₂ Cu _{0.09} Li _{0.91} BrLi ₂ (TMEDA) ₂ 12	20
Figure S12a ¹ H NMR spectrum (sample 1)	20
Figure S12b ¹³ C NMR spectrum (sample 1)	21
Figure S12c ⁷ Li NMR spectrum (sample 1)	21
Figure S12d ¹ H NMR spectrum (sample 2)	22
Figure S12e ¹³ C NMR spectrum (sample 2)	22
Figure S12f ⁷ Li NMR spectrum (sample 2)	23
Additional characterization of (DA) ₄ Cu(OCN)Li ₄ (TMEDA) ₂ 13	23
Figure S13a ¹ H NMR spectrum	23
Figure S13b ¹³ C NMR spectrum	24
Figure S13c ⁷ Li NMR spectrum	24

Synthesis and characterization of $Ba(OCN)_2 6^1$

NaOCN (13 g, 0.2 mol) was dissolved in H₂O (115 mL). To the stirred solution Ba(ClO₄)₂ (0.5 g, 0.9 mmol) was added and after 15 min the precipitate was removed by filtration. Further Ba(ClO₄)₂ (33.4 g, 0.1 mol) was dissolved in methanol (115 mL) and added, with the resulting solution stirred for 1 h. The product was collected under suction, washed with methanol and dried in *vacuo* to give a white powder. Yield 11.08 g (50 %), melting point >300 °C. Elemental Analysis, BaC₂N₂O₂ requires (%) C 10.85, N 12.65; found (%) C 10.76, N 12.40. Selected IR spectroscopy (nujol) \overline{v} 2188 (s, CN), 2155 (s, CN), 1320 (s, CO), 1298 (s, CO), 1227 (s, CO), 1210 (s, CO) cm⁻¹. ¹³C NMR (125 MHz, D₂O) δ 128.7.

Synthesis and characterization of CuOCN 7¹

Cu(NO₃)₂(H₂O)₃ (2.4 g, 0.01 mol) was added to a solution of LiOAc(H₂O)₂ (3 g, 0.03 mol) in water (8 mL) to give a dark blue solution. To this was added a solution of filtered Li₂SO₄(H₂O) (1.28 g, 0.01 mol) and **6** (2.2 g, 0.01 mol) in H₂O (30 mL). Aqueous SO₂ (15 mL, 0.7 M) was added to the mixture until it became green. The resultant green solution was left for 30 mins, the precipitate collected by filtration, washed with deaerated water (2 mL) and dried *in vacuo*. Yield 0.54 g (51 %), melting point dec. >140 °C. Elemental Analysis, CuCNO requires (%) C 11.38, N 13.27; found (%) C 11.38, N 13.27. Selected IR spectroscopy (nujol) $\bar{\nu}$ 2116 (s) cm⁻¹. ¹³C NMR (125 MHz, CD₃CN) δ 126.3 (t, *J* = 23 Hz) ppm.

^{1.} E. Söderbäck, Acta Chem. Scand., 1957, 11, 1622-1634.

Figure S1 Edge-on representation of the lithium-only component of 8₂ (*i.e.*8b₂), revealing the essentially planar character of the metallacyclic core and emphasizing the positions of the THF molecules.

Additional characterisation for bulk product 8

Figure S3 Molecular structure of pure **8a**₂ (30% probability and with H-atoms omitted). Selected bond lengths (Å) and angles (°): Cu1–N1 1.9120(17), Cu1–N2 1.9173(17), N1–Li2 2.013(4), N2–Li1 2.006(4), N3–Li1 2.020(5), N3–Li2 2.037(5), O2A–Li2 1.931(4), N3–C19 1.172(3), O2–C19 1.210(3), N1–Cu1–N2 171.47(7), Cu1–N1–Li2 86.61(14), Cu1–N2–Li1 87.43(14), Li1–N3–Li2 110.28(18).

Additional characterization of pure (TMP)₂Cu(OCN)Li₂(THF) 8a

8a crystallized as a two component non-merohedral twin. Orientation matrices for the two components were found using the program Cell Now and the two components were integrated with SAINT.² The exact twin law determined by the integration program was (-0.99994, 0.00004, 0.00042), (-0.00003, -1.00011, -0.00063), (0.32832, 0.36100, 1.00005). The data were corrected for absorption using Twinabs.² 6927 reflections (2275 unique) involved domain 1 only (mean $I/\sigma = 46.9$), 6872 reflections (2247 unique) involved domain 2 only (mean $I/\sigma = 15.6$) and 5721 reflections (2638 unique) involved two domains (mean $I/\sigma = 42.9$). The structure was solved with SHELXT³ using data from domain 1 only (HKLF 4) and for refinement, overlaps were also included (HKLF 5).

^{2.} APEX3, Bruker AXS Inc., Madison, Wisconsin, USA., 2016.

^{3.} G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2015, 71, 3-8.

4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0 Figure S5c ⁷Li NMR spectrum of bulk 9 in C₆D₆.

Additional characterization of TMP₂CuLi 9a

Figure S6c ⁷Li NMR spectrum of **9a** in C_6D_6 .

Synthesis and characterization of TMPLi 9b⁴

*n*BuLi (2.5 mL, 1.6 M in hexanes, 4 mmol) was added to a stirred solution of TMPH (0.68 mL, 4 mmol) in hexane (4 mL) at -78° C. The solution was returned to room temperature to give a pale yellow solution. Storage at -27° C for 12 hrs gave light yellow block like crystals. Yield 247 mg (42%), melting point 196°C. Elemental Analysis, C₉H₁₈LiN requires (%) C 73.44, H 12.33, N 9.52; found (%) C, 72.82; H, 12.41; N, 9.85. ¹H NMR (500 MHz, 298 K, C₆D₆) δ 1.77 (m, 2H, TMP-4-tet), 1.72 (m, 0.66H, TMP-4-tri), 1.53 (m, 0.25H, TMPH-4), 1.37 (m, 4H, TMP-3,5-tet), 1.36 (br, 1.35 (s, 12H, TMP-Me-tet), 1.30 (s, 4H, TMP-Me-tri), 1.29 (m, 1.33H, TMP-3,5-tri), 1.24 (m, 0.5H, TMPH-3,5), 1.06 (s, 1.5H, TMPH-Me). ¹³C NMR (125 MHz, 298 K, C₆D₆) δ 52.0 (TMP-2,6-tet), 51.9 (TMP-2,6-tri), 49.2 (TMPH-2,6), 42.7 (TMP-3,5-tri), 42.4 (TMP-3,5-tet), 38.2 (TMPH-3,5), 36.6 (TMP-Me-tri), 36.5 (TMP-

Me-tet), 31.6 (TMPH-Me), 19.7 (TMP-4-tet), 19.4 (TMP-4-tri), 18.4 (TMPH-4). ⁷Li NMR (194 MHz, 298 K, C₆D₆) δ 2.24 (s).

^{4.} E. Hevia, A. R. Kennedy, R. E. Mulvey, D. L. Ramsay, S. D. Robertson, *Chem. Eur. J.*, 2013, **19**, 14069-14075.

Synthesis and characterization of TMPCu 9c

*n*BuLi (2.5 mL, 1.6 M in hexanes, 4 mmol) was added to a solution of TMPH (0.68 mL, 4 mmol) in hexane/THF (1:1, 6 mL) at -78 °C. The solution was warmed to room temperature and transferred to a suspension of CuCl (0.40 g, 4 mmol) in hexane/THF (1:1, 6 mL), at -78 °C. The dark suspension was warmed to room temperature and heated to reflux, whereupon it was filtered to give a yellow suspension. The solid was dissolved with gentle warming and allowed to crystallize at room temperature. Yield 147 mg (18%), melting point 236°C. Elemental Analysis, C₉H₁₈CuN requires (%) C 53.04, H 8.90, N 6.87; found (%) C, 52.78; H, 8.78; N, 6.76. ¹H NMR (500 MHz, C₆D₆): δ 1.70 (s, 12H, TMP-Me), 1.60 (m, 2H, TMP-4), 1.40 (m, 4H, TMP-3,5). ¹³C NMR (125 MHz, C₆D₆): δ 56.5 (TMP-2,6), 41.8 (TMP-3,5), 37.9 (TMP-Me), 18.6 (TMP-4).

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 3.5 ppm Figure S8a ¹H NMR spectrum of 9c in C_6D_6 .

Synthesis and characterization of (TMPH₂)OCN 10

Conc. sulfuric acid (0.26 mL, 5 mmol) was added dropwise to a solution of TMPH (1.68 mL, 10 mmol) in ethanol (absolute, 50 mL). The solution was concentrated *in vacuo* and Et₂O added until precipitation occurred. These white microcrystals of (TMPH₂)₂SO₄ were collected by filtration and washed with Et₂O (3 x 5 mL). A solution of (TMPH₂)₂SO₄ (0.76 g, 2 mmol) in water (10 mL) was added to **6** (0.44 g, 2 mmol) in water (10 mL), whereupon a white precipitate formed immediately. The suspension was stirred for 10 minutes and filtered twice. The solvent was removed *in vacuo* and the product extracted in ethanol (absolute, 20 mL). The solution was concentrated and Et₂O slowly added until crystallization initiated. The crystalline product was collected by filtration and washed with Et₂O (3 x 5 mL) to give (TMPH₂)OCN **10**. Yield 0.34 g (46 %), melting point >300 °C. Elemental Analysis, C₁₀H₂₀N₂O requires (%) C 65.18, H 10.94, N 15.20; found (%) C 64.26, H 10.99, N 14.54. ¹H NMR spectroscopy (500 MHz, CD₃OD) δ 1.80 (m, 2H, TMP-4), 1.66 (m, 4H, TMP-3,5), 1.43

(s, 12H, TMP-Me). ¹³C NMR spectroscopy (125 MHz, CD₃OD) δ 130.3 (OCN), 57.8 (TMP-2,6), 36.2 (TMP-3,5), 27.8 (TMP-Me), 17.3 (TMP-4). Selected IR spectroscopy (nujol) $\bar{\nu}$ 3020-2350(w, br, NH), 2134(s, CN), 1601(m, CO) cm⁻¹.

Additional characterization of (TMP)₂(OCN)Li₃(THF)₂ 11

^{74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10} **Figure S10b** 13 C NMR spectrum of **11** in C₆D₆.

Figure S4 Molecular structure of pure 12b (30% probability and with H-atoms omitted). Selected bond lengths (Å) and angles (°):N1–Li1 1.977(5), N2–Li1 2.024(5), Br1–Li1 2.601(5), N1–Li2 2.038(5), N2–Li3 2.019(5), Br1–Li2 2.650(4), Br1–Li3 2.708(5), N1–Li2–Br1 100.07(19), N2–Li3–Br1 101.05(18), Li2–Br1–Li3 126.46(14).

Additional characterization of (DA)₂CuBrLi₂(TMEDA)₂ 12b

Figure S11b 13 C NMR spectrum of 12b in C₆D₆.

Figure S11c ⁷Li NMR spectrum of 12b in C₆D₆.

Additional characterization of (DA)₂Cu_{0.09}Li_{0.91}BrLi₂(TMEDA)₂ 12

Figure S12a ¹H NMR spectrum of 12 (representative sample 1) in C_6D_6 .

 $\begin{array}{c} {}_{60\ 59\ 58\ 57\ 56\ 55\ 54\ 53\ 52\ 51\ 50\ 49\ 48\ 47\ 46\ 45\ 44\ 43\ 42\ 41\ 40\ 39\ 38\ 37\ 36\ 35\ 34\ 33\ 32\ 31\ 30\ 29\ 28\ 27\ 26\ 25\ 24\ 23\ 22\ 21\ 20\ 1} \\ \hline {\bf Figure\ S12e\ ^{13}C\ NMR\ spectrum\ of\ 12\ (representative\ sample\ 2)\ in\ C_6D_6. \end{array} }$

6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 -5.5 -6.0 **Figure S13c** ⁷Li NMR spectrum of **13** in C_6D_6 .