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Experimental section 
All manipulations were conducted in air unless otherwise noted. Solvents were of reagent grade or higher 
purity. All reagents were purchased from commercial vendors and used as received. Abbreviations used: 
MPenDA = 2-methyl-1,5-pentanediammonium, BA = n-butylammonium, ETA = ethanolammonium or 2-
ammonioethanol, PEA = phenethylammonium or 2-phenylethylammonium, ODA = octanediammonium 
or 1,8-diammoniooctane, BDA = butanediammonium or 1,4-diammoniobutane, GABA = γ-
ammoniobutyric acid or 3-carboxypropan-1-ammonium, HIS = histammonium or 4-(2-ammonioethyl)-
1H-imidazol-3-ium, AEA = ammonioethylanilinium or 3-(2-ammonioethyl)anilinium.  
 
Perovskite synthesis 
In a typical procedure, solid PbBr2 (1 mmol) and the amine (1 mmol for diamines, 2 mmol for 
monoamines) were combined in 2 mL of 9M HBr and sonicated. Acetone was then added to precipitate a 
colorless (for perovskites containing BA, BDA, GABA, MPenDA, ODA, PEA) or yellow (for perovskites 
containing HIS and ETA) crystalline solid. This suspension was further sonicated to homogenize the solid 
product. The solid was filtered, rinsed with acetone, and dried under reduced pressure. The dried powder 
was then suspended in toluene or 1,2-dichlorobenzene and ball-milled using a Fritsch Pulverisette 7 
planetary ball mill. 
Crystallization 
Crystals of the Pb–Br perovskites were prepared according to the following typical procedure. Solid 
PbBr2 (0.34 mmol) and the amine (0.35 mmol for diamines, 0.70 mmol for monoamines) were combined 
with 3 mL of 9M HBr in a 20 mL scintillation vial. The vial was heated to 100 ˚C for 2 h to dissolve the 
solid, and then slowly cooled to room temperature at a rate of −2 °C·hr−1 to afford crystals suitable for X-
ray diffraction or optical measurements. Single crystals were isolated from the mother liquor using 
Paratone-N oil. The mm-scale crystals used for optical measurements were rinsed with hexanes (3 × 4 
mL) to remove the oil and dried under reduced pressure or flowing N2. 
Film deposition 
Quartz substrates were cleaned by a 20 minute UV-ozone etch prior to film deposition. Thin films for 
optical absorption measurements were prepared by spincoating 0.1 M dimethylformamide (DMF) 
solutions of the corresponding perovskite crystals onto quartz substrates. The films were then annealed at 
75 °C for 1 h. 
 
Crystal structure determination 
Crystals were coated with Paratone-N® oil, mounted on a Kapton® loop, and transferred to a Bruker D8 
Venture diffractometer equipped with a Photon 100 CMOS detector or to the Bruker D85 diffractometer 
at the Advanced Light Source beamline 11.3.1 at the Lawrence Berkeley National Laboratory. Frames 
were collected using ω and φ scans and unit-cell parameters were refined against all data. The crystals did 
not show significant decay during data collection. Frames were integrated and corrected for Lorentz and 
polarization effects using SAINT 8.34a and were corrected for absorption effects using SADABS 
V2014.1 Space-group assignments were based upon systematic absences, E-statistics, agreement factors 
for equivalent reflections, and successful refinement of the structures. The structures were solved by 
direct methods, expanded through successive difference Fourier maps using SHELXS-97 or through the 
intrinsic phasing method implemented in APEX2.1,2 Solutions were refined against all data using the 
SHELXTL-20133 software package and OLEX2.2-5 Data for (AEA)PbBr4 were refined as a non-
merohedral twin determined using ROTAX. Hydrogen atoms were inserted at idealized positions and 
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refined using a riding model with an isotropic thermal parameter 1.2 times that of the attached carbon or 
nitrogen atom. Thermal parameters for all non-hydrogen atoms were refined anisotropically. In some 
instances, portions of the organic molecules were refined using a disorder model.  
 
Powder X-ray diffraction (PXRD) 
PXRD measurements were performed on a PANalytical X’Pert2 powder diffractometer with a Cu anode 
(Kα1 = 1.54060 Å, Kα2 = 1.54443 Å, Kα2/Kα1 = 0.50000), a programmable divergence slit with a nickel 
filter, and a PIXcel1D detector. Additional PXRD measurements were performed on a Bruker D8 Advance 
diffractometer equipped with a Cu anode, fixed divergence slits with a nickel filter, and a LYNXEYE 
detector. The instrument was operated in a Bragg-Brentano geometry with a step size of 0.01° or 0.02° 
(2θ). Simulated powder patterns were calculated using the crystallographic information files (CIFs) from 
single-crystal X-ray experiments.  
 
Optical measurements 
Variable-temperature static photoluminescence spectra were collected with a spectrograph (Acton 
Research SpectraPro 500i) equipped with a silicon CCD (Hamamatsu) detector, using excitation from a 
375-nm CW diode laser. Samples were cooled using either liquid nitrogen or liquid helium with a Janis 
ST-500 cryostat. Single-crystal samples were placed on the cold finger with the inorganic layers oriented 
perpendicular to the incident beam. Powder samples were prepared by mixing a suspension of the ball-
milled perovskites in toluene with a solution of poly(methyl methacrylate) (average Mw ≈ 120,000 by 
GPC) in toluene. This slurry was then allowed to dry at room temperature. For single crystals and 
powders, the excitation intensity was ca. 0.820 mW·cm−2 or 5.74 mW·cm−2, respectively, as measured by 
a Newport 918-UV-L photodiode. For power-dependence measurements on (HIS)PbBr4 single crystals, 
the spectrograph entrance slits were closed down to maximize spectral resolution (Figure S9). The 
multiple narrow emission PL peaks have been observed in other layered perovskites, and have been 
variously ascribed to free and bound excitonic emission6 or phononic sidebands7 of the free-excitonic 
emission. Room-temperature absorption measurements were taken using an Agilent Cary 6000i 
spectrometer in transmission mode. 
 
Calculation of Pb–Br angles and their error 
The distortion values Dtilt, Dout, and D in were calculated using the Matlab script PbBrAngles_witherror.m, 
which is available as supporting information. The Matlab script contains all mathematical operations 
necessary for angle and error calculations and comments are included. Atoms were treated as vectors by 
using their Cartesian coordinates derived from single-crystal X-ray structures. In order to calculate the in- 
and out-of-plane components Din and Dout, planes were defined by three Pb atoms rather than 
crystallographic planes because in certain cases, the Pb atoms do not lie in the (001) plane. Calculating 
projected angles requires an arccosine function. The uncertainty δf in an arbitrary function f(x) is δf = 
|df/dx|·δx, hence δ(cos−1x) = |(1 – x2)−1/2|·δx. This results in higher error in D values when the θ values are 
closer to 180°. This does not represent lower precision in a particular X-ray structure, but is a necessary 
result of correct error propagation. 
 
Structural parameters 
In addition to Dout, D in, Dtilt, and the distance between terminal Br and Pb atoms, we tested many other 
structural parameters related to the inorganic lattice, which could have potentially yielded a correlation to 
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ln(IBE·INE
−1). Whenever possible, we calculated and tested largest, smallest, average, and distribution 

values for each parameter. In total we tested 52 structural parameters in the inorganic lattice. The 
parameters not shown in the manuscript are as follows (terminal Br atoms are denoted Brax and bridging 
Br atoms are denoted Breq): (1) the set of all unique cis intraoctahedral Br–Pb–Br angles including its 
subsets (2) cis Brax–Pb–Breq intraoctahedral angles and (3) cis Breq–Pb–Breq intraoctahedral angles; (4) 
the set of all unique trans intraoctahedral Br–Pb–Br angles, including its subsets (5) trans Brax–Pb–Brax 
intraoctahedral angles and (6) trans Breq–Pb–Breq intraoctahedral angles; (7) all unique intraoctahedral 
Pb–Br distances, including its subset (8) intraoctahedral distances between Breq and Pb; intraoctahedral 
distances between (9) Brax–Brax, (10) Brax–Breq, and (11) Breq–Breq; (12) a measure of octahedral 
compression (ratio of distance between Brax atoms to average of trans Breq–Breq distance), (13) SHAPE 
(see below), (14) octahedral elongation (λoct, see below) (15) octahedral angle variance (σ2

oct, see below); 
(16) the interoctahedral torsion angle between Brax atoms, and (17) the interoctahedral torsion angle 
between Breq atoms. 
 
Calculation of polyhedral distortion 
For each crystal structure, Cartesian coordinates were obtained for a lead atom and the six halides that 
comprise its octahedral coordination environment. These values were supplied to SHAPE,8 a program that 
calculates continuous shape measures for atomic positions relative to an idealized polyhedron based on 
minimal distortion paths,9 generalized interconversion coordinates,10 and the following algorithm:11 
 

𝑆 = 𝑚𝑚𝑚
∑ |𝑄𝑘 − 𝑃𝑘|2𝑁
𝑘=1

∑ |𝑄𝑘 − 𝑄0|2𝑁
𝑘=1

× 100 

 
Here, S is a dimensionless continuous symmetry measure obtained by assessing the root-mean-square 
(rms) deviation of N vertices from their idealized positions. Qk is a vector containing the coordinates of 
the N vertices and Pk is the vector for idealized positions. Q0 is the coordinate vector of the center of 
mass, and S is normalized by the rms distance from the center of mass to all vertices thus avoiding size 
effects. 
 
In addition to using S as a measure of polyhedral distortion, two other parameters were calculated, which 
also provide a measure of polyhedral distortion: octahedral elongation (λoct) and octahedral angle variance 
(σ2

oct). Here, λoct describes the deviation of an octahedron’s six Pb–Br bond distances away from the Pb–
Br bond distance of a regular octahedron with the same volume. Similarly, σ2

oct describes deviations of 
the twelve cis Br–Pb–Br angles within an octahedron away from 90°. These parameters are calculated as 
follows:12 

𝜆𝑜𝑜𝑜 =
1
6
��

𝑑𝑖
𝑑0
�
26

𝑖=1

 

 

𝜎2𝑜𝑜𝑜 =
1

11
�(𝛼𝑖 − 90)2
12

𝑖=1

 

Here, d i is the Pb–Br bond length, d0 is the Pb–Br bond length in a regular octahedron of the same 
volume, and α i is the Br–Pb–Br angle within the octahedron. Note that in calculating σ2

oct, Bessel’s 
correction was used to reduce error in population variance due to a finite sample count, hence a prefactor 
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of 1/(n – 1) was employed where n is the number of unique Br–Pb–Br angles. This gives a prefactor of 
1/11 instead of 1/12. 
 
 
Calculation of the Arrhenius relation and self-trapping depth.  
Following photoexcitation, we assume that the free-exciton (FE) 
and self-trapped-exciton (STE) states are related by the 
configuration coordinate diagram shown in the figure. We can use 
Arrhenius relations to relate the self-trapping depth 
(−Δ𝐺𝑠𝑠𝑠𝑠−𝑜𝑡𝑡𝑡; given by the difference in activation energies for 
trapping and detrapping so that Δ𝐺𝑠𝑠𝑠𝑠−𝑜𝑡𝑡𝑡 = 𝐸𝑡,𝑜𝑡𝑡𝑡 −
𝐸𝑡,𝑑𝑠𝑜𝑡𝑡𝑡 < 0) with the relative integrated intensity of the FE and 
STE emissions, as determined by the following derivation. 
 
𝑑𝑑𝑠(𝑡)
𝑑𝑡

= −𝑑𝑠�𝑘𝑡,𝑠 + 𝑘𝑛𝑡,𝑠 + 𝑘𝑇� + 𝑘𝐷𝑑𝑠 = −𝑘𝑠𝑑𝑠 + 𝑘𝐷𝑑𝑠 

𝑑𝑑𝑠(𝑡)
𝑑𝑡

= −𝑑𝑠�𝑘𝑡,𝑠 + 𝑘𝑛𝑡,𝑠 + 𝑘𝐷� + 𝑘𝑇𝑑𝑠 = −𝑘𝑠𝑑𝑠 + 𝑘𝑇𝑑𝑠 

where 𝑑𝑠(𝑡) and 𝑑𝑠(𝑡) are the populations of the FE and STE 
states as a function of time, respectively, and 𝑘𝑡,𝑠, 𝑘𝑛𝑡,𝑠, 𝑘𝑡,𝑠, 
𝑘𝑛𝑡,𝑠, 𝑘𝑇, and 𝑘𝐷 are the rate constants associated with radiative emission from the FE state, non-radiative 
decay from the FE state, radiative emission from the STE state, non-radiative decay from the STE state, 
trapping from the FE to the STE state, and detrapping from the STE to FE state, respectively. We define 
𝑘𝑠 = 𝑘𝑡,𝑠 + 𝑘𝑛𝑡,𝑠 + 𝑘𝑇 and 𝑘𝑠 = 𝑘𝑡,𝑠 + 𝑘𝑛𝑡,𝑠 + 𝑘𝐷 for simplicity. 
 
Solving the system of equations yields: 

𝑑𝑠(𝑡) = 𝑑0𝑒
−𝑜2(𝑘𝑓+𝑘𝑠) �𝑐𝑐𝑐ℎ

𝑡
2�

𝛾 +
�𝑘𝑠 − 𝑘𝑠�

√𝛾
𝑐𝑚𝑚ℎ

𝑡
2�

𝛾� 

and 

𝑑𝑠(𝑡) = �
2𝑑0𝑘𝑇
√𝛾

� 𝑒−
𝑜
2(𝑘𝑓+𝑘𝑠) 𝑐𝑚𝑚ℎ

𝑡
2�

𝛾 

where 𝛾 = �𝑘𝑠 − 𝑘𝑠�
2 + 4𝑘𝐷𝑘𝑇 

 
For steady-state (continuous-wave, time-integrated) PL experiments, a general expression for PL 
intensity13 is: 

𝐼 ∝ 𝑘𝑡 � 𝑑(𝑡)𝑑𝑡
∞

0
 

Evaluating the intensities for the free and self-trapped states, we find: 

𝐼𝐹𝐹 ∝
𝑘𝑡,𝑠𝑑0𝑘𝑠

𝑘𝑠𝑘𝑠 − 𝑘𝐷𝑘𝑇
 

and 

𝐼𝑆𝑇𝐹 ∝
𝑘𝑡,𝑠𝑑0𝑘𝑇

𝑘𝑠𝑘𝑠 − 𝑘𝐷𝑘𝑇
 



S6 
 

We then obtain a general expression for the ratio of steady-state intensities for a two-state system: 
𝐼𝐹𝐹
𝐼𝑆𝑇𝐹

∝
𝑘𝑡,𝑠𝑘𝑠
𝑘𝑡,𝑠𝑘𝑇

=
𝑘𝑡,𝑠�𝑘𝑡,𝑠 + 𝑘𝑛𝑡,𝑠 + 𝑘𝐷�

𝑘𝑡,𝑠𝑘𝑇
 

 
Assuming that exciton trapping and detrapping are primarily thermally activated processes, the following 
Arrhenius relations hold for a given temperature: 

𝑘𝑇 = 𝐴𝑒−
𝐹𝑎,𝑡𝑡𝑎𝑡
𝑘𝐵𝑇  

  𝑘𝐷 = 𝐵𝑒−
𝐹𝑎,𝑑𝑑𝑡𝑡𝑎𝑡
𝑘𝐵𝑇  

where 𝐸𝑡,𝑜𝑡𝑡𝑡 and 𝐸𝑡,𝑑𝑠𝑜𝑡𝑡𝑡 are the activation energies for exciton trapping and detrapping, respectively, 
kB is Boltzmann’s constant, and 𝐴 and 𝐵 are exponential prefactors, which we assume are temperature-
independent over the range studied. 
Therefore, 

𝑘𝑇
𝑘𝐷

=
𝐴
𝐵
𝑒−

�𝐹𝑎,𝑡𝑡𝑎𝑡−𝐹𝑎,𝑑𝑑𝑡𝑡𝑎𝑡�
𝑘𝐵𝑇 =

𝐴
𝐵
𝑒−

�Δ𝐺𝑠𝑑𝑠𝑓−𝑡𝑡𝑎𝑡�
𝑘𝐵𝑇  

Substituting into the expression for the ratio of intensities, we obtain: 

𝐼𝐹𝐹
𝐼𝑆𝑇𝐹

∝
𝑘𝑡,𝑠 �𝑘𝑡,𝑠 + 𝑘𝑛𝑡,𝑠 + 𝐵

𝐴 𝑘𝑇𝑒
Δ𝐺𝑠𝑑𝑠𝑓−𝑡𝑡𝑎𝑡

𝑘𝐵𝑇 �

𝑘𝑡,𝑠𝑘𝑇
 

 
If we assume that trapping is much faster than radiative and non-radiative decays from the STE state, i.e., 
that 𝑘𝑡,𝑠 + 𝑘𝑛𝑡,𝑠 ≪ 𝑘𝑇, we can make the following approximation: 

𝐼𝐹𝐹
𝐼𝑆𝑇𝐹

∝
𝑘𝑡,𝑠

𝑘𝑡,𝑠
𝑒
Δ𝐺𝑠𝑑𝑠𝑓−𝑡𝑡𝑎𝑡

𝑘𝐵𝑇  

Or alternatively, 
𝐼𝑆𝑇𝐹
𝐼𝐹𝐹

∝
𝑘𝑡,𝑠

𝑘𝑡,𝑠
𝑒−

Δ𝐺𝑠𝑑𝑠𝑓−𝑡𝑡𝑎𝑡
𝑘𝐵𝑇  

Below 80 K, the approximation 𝑘𝑡,𝑠 + 𝑘𝑛𝑡,𝑠 ≪ 𝑘𝑇 may no longer hold, since carrier self-trapping may 
become decreasingly likely. 
 
Finally, we make the following approximation: 

𝐼𝑆𝑇𝐹
𝐼𝐹𝐹

≈  
𝐼𝐵𝐹
𝐼𝑁𝐹

 

where IBE and INE are the intensities for the broad and narrow emission processes. We attribute the narrow 
and broad emissions to free and self-trapped exciton states, respectively, however they may also have 
some contributions from material defects. 
 
Thus, 

𝐼𝐵𝐹(𝑇)
𝐼𝑁𝐹(𝑇)

∝
𝑘𝑡,𝑠

𝑘𝑡,𝑠
𝑒−

Δ𝐺𝑠𝑑𝑠𝑓−𝑡𝑡𝑎𝑡
𝑘𝐵𝑇  
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Table S1. Crystallographic dataa for (MPenDA)PbBr4, (BA)2PbBr4, and (ODA)PbBr4 

 (MPenDA)PbBr4 (BA)2PbBr4 (ODA)PbBr4 
Empirical Formula C6H18N2PbBr4 C8H24N2PbBr4 C8H22N2PbBr4 
Formula Weight, g∙mol−1 645.04 675.12 673.10 
Temperature, K 298(2) 298(2) 298(2) 
Crystal System Monoclinic Orthorhombic Monoclinic 
Space group C2/c Pbca P21/c 
a, Å 24.4632(15) 8.3343(3) 13.807(3) 
b, Å 8.0039(4) 8.2225(4) 7.9891(14) 
c, Å 8.1963(5) 27.6171(15) 8.2769(14) 

β , ° 99.745(2) 90 104.340(6) 

Volume, Å3 1581.69(16) 1892.57(15) 884.5(3) 
Z  4  4  2 
Density (calculated), g∙cm−3 2.705 2.369 2.527 

Absorption coefficient, mm−1 20.742 17.341 18.551 
F(000) 1156.0 1232.0 612.0 
Crystal size, mm3 0.01 × 0.01 × 0.1 0.1 × 0.1 × 0.01  0.05 × 0.03 × 0.01 
θ range, ° 2.682 to 26.422 2.855 to 27.576 2.970 to 30.49 

Index ranges 
–30 ≤ h ≤ 30 
–9 ≤ k ≤ 9 
–10 ≤ l ≤ 10 

–10 ≤ h ≤ 9 
–9 ≤ k ≤ 9 
–33 ≤ l ≤ 33 

–18 ≤ h ≤ 19 
–11 ≤ k ≤ 11 
–10 ≤ l ≤ 11 

Reflections collected/unique 33452/1548 28686/1717 12418/2706 
Completeness to θmax 0.996 1 1 
Max. and min. transmission 0.430, 0.240 0.383, 0.276 0.746, 0.363 
Data/restraints/parameters 1548/77/87 1717/24/72 2706/68/90 
Goodness-of-fit on F2 1.093 1.125 1.046 

Final R indices [I > 2σ(I)]b R1 = 0.0199 
wR2 = 0.0430 

R1 = 0.0276 
wR2 = 0.0602 

R1 = 0.0272 
wR2 = 0.0694 

R indices (all data)b R1 = 0.0239 
wR2 = 0.0446 

R1 = 0.0436 
wR2 = 0.0658 

R1 = 0.0373 
wR2 = 0.0732 

Largest diff. peak and hole, 
e∙Å−3 0.969, –0.724 0.855, –0.619 1.442, –0.754 
 

aObtained with monochromated Mo Kα (λ = 0.71073 Å) radiation  
bR1 = Σ||Fo| – |Fc||/Σ|Fo|, wR2 = [Σw(Fo

2 – Fc
2)2/Σ(Fo

2)2]1/2 
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Table S2. Crystallographic data for (GABA)2PbBr4
a, (AEA)PbBr4

b, and (BDA)PbBr4
a 

 (GABA)2PbBr4 (AEA)PbBr4 (BDA)PbBr4 
Empirical Formula C8H20O4N2PbBr4 C8H14N2PbBr4 C4N2H14PbBr4 
Formula Weight, g∙mol−1 2205.18 665.01 616.97 
Temperature, K 298(2) 298(2) 298(2) 
Crystal System Monoclinic Monoclinic Triclinic 
Space group P21/c P21/c P1 ¯  
a, Å 24.7721(12) 7.7688(3) 8.0135(4) 
b, Å 8.0709(4) 8.5108(4) 8.4270(4) 
c, Å 56.964(3) 24.6314(11) 10.7367(5) 

α, β, γ, ° 90, 97.137(2), 90 90, 95.197(2), 90 
78.957(2), 
69.565(2), 
89.542(1) 

Volume, Å3 11300.6(10) 1621.90(12) 665.47(6) 
Z  8  4 2 
Density (calculated), g∙cm−3 2.592 2.724 3.079 

Absorption coefficient, mm−1 17.452 24.973 24.642 
F(000) 8064.0 1192.0 548.0 
Crystal size, mm3 0.08 × 0.04 × 0.01 0.1 × 0.1 × 0.01 0.1 × 0.08 × 0.06 
θ range, ° 2.409 to 25.815 2.76 to 31.52 2.468 to 28.277 

Index ranges 
–30 ≤ h ≤ 30 
–9 ≤ k ≤ 9 
–70 ≤ l ≤ 70 

–9 ≤ h ≤ 9 
–10 ≤ k ≤ 10 
–29 ≤ l ≤ 29 

–10 ≤ h ≤ 10 
–11 ≤ k ≤ 11 
–14 ≤ l ≤ 14 

Reflections collected/unique 205643/22216 32430/3017 6236/6236 
Completeness to θmax 0.999 1.016 (twin) 1.887 (twin) 
Max. and min. transmission 0.4296, 0.2782 0.300, 0.092 0.431, 0.199 
Data/restraints/parameters 22216/0/1053 3017/83/140 6236/40/106 
Goodness-of-fit on F2 1.013 1.122 1.036 

Final R indices [I > 2σ(I)]c R1 = 0.0493 
wR2 = 0.0757 

R1 = 0.0710 
wR2 = 0.2032 

R1 = 0.0378 
wR2 = 0.0712 

R indices (all data)c R1 = 0.1251 
wR2 = 0.0928 

R1 = 0.0780 
wR2 = 0.2092 

R1 = 0.0638 
wR2 = 0.0790 

Largest diff. peak and hole, 
e∙Å−3 1.907, –1.615 4.194, –2.671 1.304, –1.236 

 

aObtained with monochromated Mo Kα (λ = 0.71073 Å) radiation 
bObtained with synchrotron (λ = 0.7749 Å) radiation 
cR1 = Σ||Fo| – |Fc||/Σ|Fo|, wR2 = [Σw(Fo

2 – Fc
2)2/Σ(Fo

2)2]1/2 
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Table S3. Crystallographic dataa for (HIS)PbBr4 at 100 and 298 K 

 100 K 298 K 
Empirical Formula C5H11N3PbBr4 C5H11N3PbBr4 
Formula Weight, g∙mol−1 639.97 639.97 
Temperature, K 100(2) 298(2) 
Crystal System Monoclinic Monoclinic 
Space group P21/c P21/c 
a, Å 10.5412(13) 10.6055(13) 
b, Å 11.5023(14) 11.6091(14) 
c, Å 11.9250(14) 11.9312(14) 

β, ° 109.996(3) 110.061(3) 

Volume, Å3 1358.7(3) 1379.8(3) 
Z 4 4 
Density (calculated), g∙cm−3 3.129 3.081 

Absorption coefficient, mm−1 24.147 23.777 
F(000) 1136.0 1136.0 
Crystal size, mm3 0.13 × 0.1 × 0.02 0.13 × 0.1 × 0.02 
θ range, ° 2.538 to 35.091 2.526 to 32.760 

Index ranges 
–16 ≤ h ≤ 16 
–17 ≤ k ≤ 17 
–18 ≤ l ≤ 18 

–15 ≤ h ≤ 15 
–16 ≤ k ≤ 16 
–17 ≤ l ≤ 17 

Reflections collected/unique 44328/5184 31826/4219 
Completeness to θmax 0.999 1 
Max. and min. transmission 0.343, 0.136 0.340, 0.137 
Data/restraints/parameters 5184/0/119 4219/0/119 
Goodness-of-fit on F2 1.067 1.065 

Final R indices [I > 2σ(I)]b R1 = 0.0177 
wR2 = 0.0394 

R1 = 0.0230 
wR2 = 0.0540 

R indices (all data)b R1 = 0.0222 
wR2 = 0.0407 

R1 = 0.0292 
wR2 = 0.0562 

Largest diff. peak and hole, 
e∙Å−3 1.610, –1.231 1.390, –1.561 

 

aObtained with monochromated Mo Kα (λ = 0.71073 Å) radiation 
bR1 = Σ||Fo| – |Fc||/Σ|Fo|, wR2 = [Σw(Fo

2 – Fc
2)2/Σ(Fo

2)2]1/2 
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Table S4. Continuous symmetry measures (S) associated with distortions in the lead-bromide octahedra 
for the (001) perovskites. Higher S values denote greater distortion from ideal octahedral geometry. For 
perovskites with multiple unique Pb–Br octahedra, average S values are given with standard deviations. 
The overall average value is 0.187 with a standard deviation of 0.173. 

Perovskite S (dimensionless) 
(MPenDA)PbBr4 0.036 
(BA)2PbBr4 0.133 
(ETA)2PbBr4 0.088 
(PEA)2PbBr4 0.148(1) 
(ODA)PbBr4 0.050 
(BDA)PbBr4 0.106(3) 
(GABA)2PbBr4 0.09(2) 
(HIS)PbBr4 0.645 
(AEA)PbBr4 0.329 

 

 
 
 

Table S5. Excitonic absorption energies for the perovskites measured at room temperature 

Perovskite Energy (eV) 
(BA)2PbBr4 3.07 
(ETA)2PbBr4 2.97 
(PEA)2PbBr4 3.08 
(ODA)PbBr4 3.12 
(BDA)PbBr4 3.17 
(GABA)2PbBr4 3.21 
(HIS)PbBr4 3.04 
(AEA)PbBr4 3.24 
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Table S6. Bond angles in the inorganic lattices of the 4 Pb–Br perovskites with multiple unique values.  
Here, Dtilt = 180˚ − θtilt, Dout = 180˚ − θout, and Din = 180˚ − θin. 

Perovskite Din (°) Dout (°) Dtilt (°) 

(GABA)2PbBr4 

18.9(5) 
19.9(5) 
23.5(4) 
22.1(3) 
21.2(5) 
26.2(3) 
28.7(3) 
30.8(3) 
28.2(3) 
23.1(4) 
26.9(4) 
30.1(3) 

15(1) 
16(1) 
16(1) 
17.8(8) 
20(1) 
19.8(8) 
20.6(8) 
21.6(9) 
22.1(9) 
22.7(8) 
23.3(9) 
23.9(9) 

23.8(5) 
25.4(6) 
28.3(6) 
28.1(4) 
28.6(5) 
32.4(4) 
34.8(4) 
37.1(4) 
35.3(4) 
32.0(4) 
35.1(4) 
37.8(4) 

(BDA)PbBr4 
23.7(3) 
24.4(3) 

19.2(7) 
20.7(2) 

30.2(3) 
31.6(3) 

(HIS)PbBr4 
3(2) 
13.0(3) 

4(1) 
22.8(2) 

5.1(9) 
26.1(2) 

(PEA)2PbBr4 

27.8(2) 
27.9(2) 
27.4(2) 
27.5(2) 

1(6) 
1(5) 
10.4(5) 
10.4(5) 

28(7) 
28(6) 
29.1(5) 
29.2(5) 
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Figure S1. Powder XRD pattern of (BA)2PbBr4. 

 
 

Figure S2. Powder XRD pattern of (BDA)PbBr4. 
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Figure S3. Powder XRD pattern of (ETA)2PbBr4. 

 
 

Figure S4. Powder XRD pattern of (GABA)2PbBr4. 
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Figure S5. Powder XRD pattern of (HIS)PbBr4. 

 
 

Figure S6. Powder XRD pattern of (MPenDA)PbBr4. 
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Figure S7. Powder XRD pattern of (ODA)PbBr4. 

 
 

Figure S8. Powder XRD pattern of (PEA)2PbBr4. 
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Figure S9. Relationship between excitation and emission intensities for (HIS)PbBr4, showing linear 
dependence for the broad emission (BE) (y = y0 + axb; where a = 4.5(9) × 10−5, b = 0.96(5), y0 = 1(2) × 
10−5) at 20.0 K. 

 
 

Figure S10. Emission profiles at varying excitation intensities for a crystal of (HIS)PbBr4 at 20.0 K. 
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Figure S11. Photoluminescence (PL) from a single crystal and ball-milled powder of (HIS)PbBr4. Ball-
milled powder has a particle size of ca. 1 µm and the single crystal has dimensions of 100 × 100 × 25 
µm. The peaks in the single-crystal spectrum at 750 and 850 nm are from higher harmonics of the laser 
excitation source. 
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Figure S12. Values of ln(IBE·INE

−1) for the series of (001) Pb–Br perovskites plotted as a function of (A) 
largest measured Dout value and (B) average measured Dout value. Importantly, the horizontal error bars in 
(B) correspond to standard deviations in Dout values for the four perovskites with multiple unique values 
(Table S6). Note that the correlation is much stronger when considering the largest values of Dout, which 
is consistent with self-trapping being related to local distortions in the inorganic layers. 

 
 
Figure S13. Values of ln(IBE·INE

−1) plotted as a function of (A) the distance between Pb and terminal Br 
atoms and (B) the torsion angle between terminal Br atoms of adjacent Pb–Br octahedra. Both show 
weak correlation, although the Pb–Br distance in (A) shows significant outliers and the torsion angle in 
(B) is not independent of Dout, as discussed in the main text. 
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Figure S14. Values of ln(IBE·INE

−1) plotted as a function of (A) the smallest distance between Pb and 
equatorial Br atoms (within the inorganic layer), (B) the smallest distance between terminal Br and 
equatorial Br atoms, and (C) octahedral distortion (S). These are representative examples of structural 
parameters that do not show clear correlation with the broad emission. 

 
 
Figure S15. Values of ln(IBE·INE

−1) plotted as a function of (A) λoct, a measure of octahedral elongation, 
(B) σ2

oct, the variance of Br–Pb–Br angles within an octahedron, and (C) octahedral distortion (S). Each 
parameter represents a different way to measure octahedral distortion, though S takes both λoct and σ2

oct 
into account and is thus more comprehensive. In each case, no correlation is observed and these three 
parameters yield very similar plots. 
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PbBrAngles_witherror.m Script for Calculating Pb–Br angles 

%This program calculates the angle between three atoms (Pb1-Br-Pb2) 
%and the associated error in that value. It then realizes a plane defined 
%by Pb1, Pb2, and Pb3 and calculates the in-plane and out-of-plane 
%components of the angle (Pb1-Br-Pb2). Input each atom's Cartesian 
%coordinates and the values' associated errors as follows: 
%PbBrAngles_witherror(Pb1x,Pb1xe,Pb1y,Pb1ye,Pb1z,Pb1ze,...,Pb3z,Pb3ze), 
%where Pb1x is the x-coordinate (in Angstroms) of Pb1 and Pb1xe is the 
%associated error in that value. Output will be a csv file containing 
%D_tilt (i.e., 180-theta), D_in (in-plane component), D_out (out-of-plane) 
%and their associated errors. It should be noted that errors will be higher 
%if one considers an inherent error in defining the plane from the three 
%lead atoms. To remove this error and define all other errors in reference 
%to the plane of Pb atoms itself, comment out lines 38-40 and 88-90. 
%Written by Adam Jaffe 2/2/16 with the help of Matt Smith 
  
%% 
function [] = 
PbBrAngles_witherror(Pb1x,Pb1xe,Pb1y,Pb1ye,Pb1z,Pb1ze,Pb2x,Pb2xe,Pb2y,Pb2ye,Pb2z,Pb2ze,Brx,Brxe,B
ry,Brye,Brz,Brze,Pb3x,Pb3xe,Pb3y,Pb3ye,Pb3z,Pb3ze) 
Pb1 = [Pb1x;Pb1y;Pb1z];  %Pb1 "point" (vector) 
Pb1e = [Pb1xe;Pb1ye;Pb1ze];  %Pb1 error "point" (vector) 
  
Pb2 = [Pb2x;Pb2y;Pb2z];  %Pb2 "point" (vector) 
Pb2e = [Pb2xe;Pb2ye;Pb2ze];  %Pb2 error "point" (vector) 
  
Pb3 = [Pb3x;Pb3y;Pb3z];  %Pb3 "point" (vector) 
Pb3e = [Pb3xe;Pb3ye;Pb3ze];  %Pb3 error "point" (vector) 
  
Br = [Brx;Bry;Brz];  %Br "point" (vector) 
Bre = [Brxe;Brye;Brze];  %Br "point" (vector) 
  
Pb1_Pb2 = Pb1 - Pb2;  %vector between Pb1 and Pb2 
Ae = Pb1e + Pb2e;  %error vector between Pb1 and Pb2 
  
Pb2_Pb3 = Pb3 - Pb2;  %vector between Pb2 and Pb3 
Be = Pb3e + Pb2e;  %error vector between Pb2 and Pb3 
  
PbPlane = cross(Pb1_Pb2,Pb2_Pb3);  %vector normal to Pb plane 
PbPlanee = zeros(3,1);  %error vector normal to Pb plane initialized with zeroes 
PbPlanee(1) = Ae(2)*abs(Pb2_Pb3(3)) + Be(3)*abs(Pb1_Pb2(2)) + Ae(3)*abs(Pb2_Pb3(2)) + 
Be(2)*abs(Pb1_Pb2(3));  %entry 1 for that cross product error 
PbPlanee(2) = Ae(1)*abs(Pb2_Pb3(3)) + Be(3)*abs(Pb1_Pb2(1)) + Ae(3)*abs(Pb2_Pb3(1)) + 
Be(1)*abs(Pb1_Pb2(3));  %entry 2 for that cross product error 
PbPlanee(3) = Ae(1)*abs(Pb2_Pb3(2)) + Be(2)*abs(Pb1_Pb2(1)) + Ae(2)*abs(Pb2_Pb3(1)) + 
Be(1)*abs(Pb1_Pb2(2));  %entry 3 for that cross product error 
  
PbPlanenorm = PbPlane/norm(PbPlane);  %normalized normal vector tp Pb plane 
Je = 2*abs(PbPlane(1))*PbPlanee(1) + 2*abs(PbPlane(2))*PbPlanee(2) + 
2*abs(PbPlane(3))*PbPlanee(3);  %error on PbPlane dotted with itself; NOT A VECTOR 
Ke = vpa(0.5,20)*(Je/abs(norm(PbPlane)));  %error on normalization of Pb plane (CONSTANT) 
Le = zeros(3,1);  %error vector for PbPlanenorm 
Le(1) = abs(1/norm(PbPlane))*(PbPlanee(1) + ((abs(PbPlane(1))*Ke)/(abs(norm(PbPlane))))); 
Le(2) = abs(1/norm(PbPlane))*(PbPlanee(2) + ((abs(PbPlane(2))*Ke)/(abs(norm(PbPlane))))); 
Le(3) = abs(1/norm(PbPlane))*(PbPlanee(3) + ((abs(PbPlane(3))*Ke)/(abs(norm(PbPlane))))); 
  
Pb1_Br = Br - Pb1;  %vector between Pb1 and Br 
Ce = Bre + Pb1e;  %error vector between Pb1 and Br 
  
Pb2_Br = Br - Pb2;  %vector between Pb2 and Br 
De = Bre + Pb2e;  %vector between Pb2 and Br 
  
%% 
dot1 = dot(Pb1_Br,PbPlanenorm); 
BrProj = Br - PbPlanenorm*dot1;  %projection of Br onto Pb plane 
dot1e = abs(PbPlanenorm(1))*Ce(1) + abs(Pb1_Br(1))*Le(1) + abs(PbPlanenorm(2))*Ce(2) + 
abs(Pb1_Br(2))*Le(2) + abs(PbPlanenorm(3))*Ce(3) + abs(Pb1_Br(3))*Le(3);  %error on dot product 
BrProje = zeros(3,1);    %error vector on BrProj 
BrProje(1) = Bre(1) + abs(dot1)*Le(1) + abs(PbPlanenorm(1))*dot1e; 
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BrProje(2) = Bre(2) + abs(dot1)*Le(2) + abs(PbPlanenorm(2))*dot1e; 
BrProje(3) = Bre(3) + abs(dot1)*Le(3) + abs(PbPlanenorm(3))*dot1e; 
  
Pb1_BrProj = BrProj - Pb1;  %vector between Pb1 and projection of Br onto Pb plane 
Ee = BrProje + Pb1e;  %error vector between Pb1 and projection of Br onto Pb plane 
  
Pb2_BrProj = BrProj - Pb2;  %vector between Pb2 and projection of Br onto Pb plane 
Fe = BrProje + Pb2e;  %error vector between Pb2 and projection of Br onto Pb plane 
  
dot4 = abs(dot(Pb1_BrProj,Pb2_BrProj)); 
alpha = dot4/(norm(Pb1_BrProj)*norm(Pb2_BrProj));  %taking the angle between the vectors 
D_in = (180/pi)*acos(alpha);  %find D_in 
dot2e = 2*abs(Pb1_BrProj(1))*Ee(1) + 2*abs(Pb1_BrProj(2))*Ee(2) + 2*abs(Pb1_BrProj(3))*Ee(3);  
%error on Pb1_BrProj dotted with itself; NOT A VECTOR 
Me = vpa(0.5,20)*(dot2e/abs(norm(Pb1_BrProj)));  %error on normalization of Pb1_BrProj (CONSTANT) 
  
dot3e = 2*abs(Pb2_BrProj(1))*Fe(1) + 2*abs(Pb2_BrProj(2))*Fe(2) + 2*abs(Pb2_BrProj(3))*Fe(3);  
%error on Pb2_BrProj dotted with itself; NOT A VECTOR 
Ne = vpa(0.5,20)*(dot3e/abs(norm(Pb2_BrProj)));  %error on normalization of Pb2_BrProj (CONSTANT) 
  
dot4e = ((Ee(1)*abs(Pb2_BrProj(1))) + (Fe(1)*abs(Pb1_BrProj(1)))) + ((Ee(2)*abs(Pb2_BrProj(2))) + 
(Fe(2)*abs(Pb1_BrProj(2)))) + ((Ee(3)*abs(Pb2_BrProj(3))) + (Fe(3)*abs(Pb1_BrProj(3))));  %error 
on dot product of Pb1_BrProj and Pb2_BrProj CONSTANT 
     
Oe = abs(alpha)*((dot4e/abs(dot4)) + (Me/abs(norm(Pb1_BrProj))) + (Ne/abs(norm(Pb2_BrProj))));  
%error on alpha 
D_ine = (180/pi)*abs(-(1/sqrt(1 - alpha^2)))*Oe; 
  
%% 
NormPlane = cross(Pb1_Pb2,PbPlane);  %vector normal to orthogonal plane 
NormPlanee = zeros(3,1);  %error vector normal to orthogonal plane initialized with zeroes 
NormPlanee(1) = Ae(2)*abs(PbPlane(3)) + PbPlanee(3)*abs(Pb1_Pb2(2)) + Ae(3)*abs(PbPlane(2)) + 
PbPlanee(2)*abs(Pb1_Pb2(3));  %entry 1 for that cross product error 
NormPlanee(2) = Ae(1)*abs(PbPlane(3)) + PbPlanee(3)*abs(Pb1_Pb2(1)) + Ae(3)*abs(PbPlane(1)) + 
PbPlanee(1)*abs(Pb1_Pb2(3));  %entry 2 for that cross product error 
NormPlanee(3) = Ae(1)*abs(PbPlane(2)) + PbPlanee(2)*abs(Pb1_Pb2(1)) + Ae(2)*abs(PbPlane(1)) + 
PbPlanee(1)*abs(Pb1_Pb2(2));  %entry 3 for that cross product error 
  
NormPlanenorm = NormPlane/norm(NormPlane);  %normalized vector normal to orthogonal plane to Pb 
atoms 
Pe = 2*abs(NormPlane(1))*NormPlanee(1) + 2*abs(NormPlane(2))*NormPlanee(2) + 
2*abs(NormPlane(3))*NormPlanee(3);  %error on NormPlane dotted with itself; NOT A VECTOR 
Qe = vpa(0.5,20)*(Pe/abs(norm(NormPlane)));  %error on normalization of Norm plane (CONSTANT) 
Re = zeros(3,1);  %error vector for NormPlanenorm 
Re(1) = abs(1/norm(NormPlane))*(NormPlanee(1) + ((abs(NormPlane(1))*Qe)/(abs(norm(NormPlane))))); 
Re(2) = abs(1/norm(NormPlane))*(NormPlanee(2) + ((abs(NormPlane(2))*Qe)/(abs(norm(NormPlane))))); 
Re(3) = abs(1/norm(NormPlane))*(NormPlanee(3) + ((abs(NormPlane(3))*Qe)/(abs(norm(NormPlane))))); 
  
dot5 = dot(Pb1_Br,NormPlanenorm); 
BrProj2 = Br - NormPlanenorm*dot5;  %projection of Br onto orthogonal plane 
dot5e = abs(NormPlanenorm(1))*Ce(1) + abs(Pb1_Br(1))*Re(1) + abs(NormPlanenorm(2))*Ce(2) + 
abs(Pb1_Br(2))*Re(2) + abs(NormPlanenorm(3))*Ce(3) + abs(Pb1_Br(3))*Re(3);  %error on dot product 
  
BrProj2e = zeros(3,1);    %error vector on BrProj 
BrProj2e(1) = Bre(1) + abs(dot5)*Re(1) + abs(NormPlanenorm(1))*dot5e; 
BrProj2e(2) = Bre(2) + abs(dot5)*Re(2) + abs(NormPlanenorm(2))*dot5e; 
BrProj2e(3) = Bre(3) + abs(dot5)*Re(3) + abs(NormPlanenorm(3))*dot5e; 
  
Pb1_BrProj2 = BrProj2 - Pb1;  %vector between Pb1 and projection of Br onto norm plane 
Se = BrProj2e + Pb1e; 
  
Pb2_BrProj2 = BrProj2 - Pb2;  %vector between Pb2 and projection of Br onto norm plane 
Te = BrProj2e + Pb2e; 
  
dot8 = abs(dot(Pb1_BrProj2,Pb2_BrProj2)); 
beta = dot8/(norm(Pb1_BrProj2)*norm(Pb2_BrProj2)); 
D_out = (180/pi)*acos(beta); 
dot6e = 2*abs(Pb1_BrProj2(1))*Se(1) + 2*abs(Pb1_BrProj2(2))*Se(2) + 2*abs(Pb1_BrProj2(3))*Se(3);  
%error on Pb1_BrProj2 dotted with itself; NOT A VECTOR 
Ue = vpa(0.5,20)*(dot6e/abs(norm(Pb1_BrProj2)));  %error on normalization of Pb1_BrProj2 
(CONSTANT) 
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dot7e = 2*abs(Pb2_BrProj2(1))*Te(1) + 2*abs(Pb2_BrProj2(2))*Te(2) + 2*abs(Pb2_BrProj2(3))*Te(3);  
%error on Pb2_BrProj2 dotted with itself; NOT A VECTOR 
Ve = vpa(0.5,20)*(dot7e/abs(norm(Pb2_BrProj2)));  %error on normalization of Pb2_BrProj2 
(CONSTANT) 
  
dot8e = ((Se(1)*abs(Pb2_BrProj2(1))) + (Te(1)*abs(Pb1_BrProj2(1)))) + 
((Se(2)*abs(Pb2_BrProj2(2))) + (Te(2)*abs(Pb1_BrProj2(2)))) + ((Se(3)*abs(Pb2_BrProj2(3))) + 
(Te(3)*abs(Pb1_BrProj2(3))));  %error on dot product of Pb1_BrProj2 and Pb2_BrProj2 CONSTANT 
  
We = abs(beta)*((dot8e/abs(dot8)) + (Ue/abs(norm(Pb1_BrProj2))) + (Ve/abs(norm(Pb2_BrProj2))));  
%error on beta 
D_oute = (180/pi)*abs(-(1/sqrt(1 - beta^2)))*We; 
%% 
dot11 = abs(dot(Pb1_Br,Pb2_Br)); 
gamma = dot11/(norm(Pb1_Br)*norm(Pb2_Br)); 
D_tilt = vpa(180,20) - (180/pi)*acos(dot(Pb1_Br,Pb2_Br)/(norm(Pb1_Br)*norm(Pb2_Br))); 
  
dot9e = 2*abs(Pb1_Br(1))*Ce(1) + 2*abs(Pb1_Br(2))*Ce(2) + 2*abs(Pb1_Br(3))*Ce(3);  %error on 
Pb1_Br dotted with itself; NOT A VECTOR 
Xe = vpa(0.5,20)*(dot9e/abs(norm(Pb1_Br)));  %error on normalization of Pb1_Br (CONSTANT) 
  
dot10e = 2*abs(Pb2_Br(1))*De(1) + 2*abs(Pb2_Br(2))*De(2) + 2*abs(Pb2_Br(3))*De(3);  %error on 
Pb2_Br dotted with itself; NOT A VECTOR 
Ye = vpa(0.5,20)*(dot10e/abs(norm(Pb2_Br)));  %error on normalization of Pb2_Br (CONSTANT) 
  
dot11e = ((Ce(1)*abs(Pb2_Br(1))) + (De(1)*abs(Pb1_Br(1)))) + ((Ce(2)*abs(Pb2_Br(2))) + 
(De(2)*abs(Pb1_Br(2)))) + ((Ce(3)*abs(Pb2_Br(3))) + (De(3)*abs(Pb1_Br(3))));  %error on dot 
product of Pb1_Br and Pb2_Br CONSTANT 
  
Ze = abs(gamma)*((dot11e/abs(dot11)) + (Xe/abs(norm(Pb1_Br))) + (Ye/abs(norm(Pb2_Br))));  %error 
on gamma 
D_tilte = (180/pi)*abs(-(1/sqrt(1 - beta^2)))*Ze; 
%% 
filename = 'PbBrAngles_witherror.csv';  %export condensed full data 
fid = fopen(filename, 'w');  %open a new csv in write mode 
fprintf(fid, '%s,%s,%s,%s,%s,%s\n', 'D_in','D_in error','D_out','D_out error','D_tilt','D_tilt 
error'); 
fprintf(fid, '%d,%d,%d,%d,%d,%d\n', 
double(D_in),double(D_ine),double(D_out),double(D_oute),double(D_tilt),double(D_tilte)); 
fclose(fid);  %close file 
  
end 
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