Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

# Metal-free di- and tri-fluoromethylation of alkenes realized by visible-light-induced perylene photoredox catalysis

Naoki Noto, Takashi Koike\*, Munetaka Akita\*

Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology Yokohama 226-8503, Japan

## Contents

| Materials and methodsS2                                                       |
|-------------------------------------------------------------------------------|
| Reaction apparatusS2                                                          |
| Procedures for synthesis of 1S3                                               |
| Preparation of substratesS4                                                   |
| NMR experiments of the reaction of 2a with 1·····S6                           |
| General procedures for aminodifluoromethylation of aromatic alkenes           |
| Procedures for synthesis of 3,3-difluoro-1,1-diphenylpropene (4)S17           |
| Trifluoromethylation of alkenes with various trifluoromethylating reagentsS17 |
| Gram-scale synthesisS18                                                       |
| Deprotection of 3eS19                                                         |
| Electro- and photo-chemical studies                                           |
| Luminescence quenching experimentsS23                                         |
| Time profile for the reaction of <b>2a</b> with <b>1</b> S24                  |
| Radical clock experiments                                                     |
| Crystallographic data of 1 and 3c·····S27                                     |
| ReferencesS38                                                                 |
| NMR spectra·····S39                                                           |

#### Materials and methods

All the chemicals for synthesis of substrates were commercially available, and perylene was purchased from TCI. 2-(difluoromethylsulfonyl)benzo[d]thiazole (**D**), *N*-tosyl-*S*-difluoromethyl-*S*-phenylsulfoximine (**E**), and *S*-difluoromethyl-*S*-phenyl-2,3,4,5-tetramethylphenylsulfonium tetrafluoroborate (**G**) were prepared according to the procedures modified from the previously reported methods.<sup>1</sup> All the reactions were conducted using standard Schlenk techniques unless otherwise noted. Anhydrous  $CH_3CN$  was purchased from Kanto Chemical Co., Inc., and stored under N<sub>2</sub> atmosphere. Thin-layer chromatography was performed on TLC plate with 60  $F_{254}$  Merck. Purification of substrates and products was performed by flush column chromatography on silica gel (Aldrich silica gel 60 Å). The crystallographic data were deposited at the Cambridge Crystallographic Data Centre: **1** (CCDC 1533276), **3c** (CCDC 1533274). Experiments and measurements were performed with following apparatuses.

Visible light irradiation: Relyon LED lamp (3 W × 2:  $\lambda$  = 425 nm ± 15 nm). NMR spectra: Bruker AVANCE-400 (400 MHz) and Bruker AVANCE-500 (500 MHz) (Reference of <sup>1</sup>H NMR spectra: Residual protio impurities in the deuterated solvents. Reference of <sup>19</sup>F NMR spectra: Trifluoroacetic acid (-76.55 ppm). Reference of <sup>11</sup>B NMR spectra: BF<sub>3</sub>·OEt<sub>2</sub> (0.0 ppm). HRMS (ESI-TOF): Bruker micrOTOF II. GPC: Japan Analytical Industry Co., Ltd. (JAI) LC-9225. (Column: JAIGEL-1H-40 and JAIGEL-2H-40). UV-vis: JASCO V-670DS. Fluorescence: HITACHI F-7000. CV: Hokutodenkou HZ-5000. Excited-state lifetime: Hamamatsu Photonics C7700-ABS-N. Elemental analysis: J-SCIENCE JM10. Single-crystal X-ray measurement: Bruker SMART APEX II ULTRA.

#### **Reaction apparatus**

Visible light irradiation was performed with Relyon LED lamps (3 W × 2:  $\lambda$  = 425 ± 15 nm) in a water bath. (Normal preparative scale) (Gram scale)





#### Procedures for synthesis of 1

(Difluoromethyl)(2,5-dimethylphenyl)sulfane (S1)



**S1** was prepared by the modified procedures according to the reported literature.<sup>1c</sup> Sodium chlorodifluoroacetate (9.20 g, 60.3 mmol) and  $K_2CO_3$  (6.21 g, 44.9 mmol) were added to a 300 mL two-neck flask and dried *in vacuo*. Dry DMF (120 mL) and 2,5-dimethylbenzenthiol (4.31 g, 31.1 mmol) were added to the flask. After being stirred at 95 °C for 11 h, the mixture was cooled to room temperature. Water (100 mL) and pentane (100 mL) were added to the mixture and the organic phase was separated. The aqueous phase was extracted with pentane (50 mL × 3). The combined organic phase was dried over MgSO<sub>4</sub>, filtered and concentrated. **S1** was obtained as a pale yellow oil (4.08 g, 21.7 mmol, 72%) after purification through flash column chromatography on silica-gel (pentane). The obtained product was used in the next step without further purification.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.40 (s, 1H; *Ar*), 7.18 (d, *J* = 7.6 Hz, 1H; *Ar*), 7.13 (d, *J* = 8.0 Hz, 1H; *Ar*), 6.77 (t, *J* = 57.2 Hz, 1H; CF<sub>2</sub>*H*), 2.45 (s, 3H; *Me*), 2.32 (s, 3H; *Me*). <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, rt): δ -91.9 (d, *J* = 57.0 Hz, 2F).

## 2-(S-(Difluoromethyl)sulfinyl)-1,4-dimethylbenzene (S2)



**S2** was prepared by the modified procedures according to the reported literature.<sup>1e</sup> To a  $CH_2CI_2$  (40 mL) solution of **S1** (4.08 g, 21.7 mmol) was added mCPBA (contains *ca.* 30% water, 5.61 g, 22.8 mmol) at 0 °C. After being stirred at room temperature for 13 h, the mixture was filtered with celite. The organic phase was washed with ice-cold NaOH aq (1 N, 30 mL), and the aqueous phase was extracted with  $CH_2CI_2$  (30 mL × 3). The combined organic phase was dried over  $Na_2SO_4$ , filtered and concentrated. **S2** was obtained as a pale yellow oil (4.13 g, 20.2 mmol, 92%) after purification through flash column chromatography on silica-gel (hexane/ethyl acetate = 5:1).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.72 (s, 1H; *Ar*), 7.29 (d, J = 7.6 Hz, 1H; *Ar*), 7.18 (d, J = 8.0 Hz, 1H; *Ar*), 6.05 (t, J = 55.6 Hz, 1H; CF<sub>2</sub>*H*), 2.412 (s, 3H; *Me*), 2.405 (s, 3H; *Me*).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, rt): δ 137.6, 135.1, 134.7, 133.6, 131.4, 125.3, 122.4 (apparent t, *J* = 289.1 Hz), 21.1, 18.1.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -118.3 (dd, J = 260.6 Hz, 55.6 Hz, 1F), -119.1 (dd, J = 260.2 Hz, 55.3 Hz,

**HRMS** (ESI-TOF) exact mass for  $[C_9H_{10}F_2OS+Na]^+$  calcd m/z 227.0313, found 227.0316.

## S-Difluoromethyl-S-di(p-xylyl)sulfonium tetrafluoroborate (1)



**1** was prepared by the modified procedures according to the reported literature.<sup>1e</sup> To a solution of **S2** (2.55 g, 12.5 mmol) in *p*-xylene (15 mL) and Et<sub>2</sub>O (25 mL) was slowly added Tf<sub>2</sub>O (3.53 g, 12.5 mmol) at 0 °C. After stirring the mixture at the same temperature for 1 h, the beige precipitation was separated by filtration, and washed with Et<sub>2</sub>O. The solid was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) and washed with NaBF<sub>4</sub> aq. (1 M, 20 mL × 5). The organic phase was dried over MgSO<sub>4</sub>, filtered and evaporated at 30 °C. Recrystallization with pentane and CH<sub>2</sub>Cl<sub>2</sub> afforded **1** as white crystals (1.86 g, 39%).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 8.37 (t, J = 52.8 Hz, 1H; CF<sub>2</sub>H), 7.65 (s, 2H; Ar), 7.51, (d, J = 8.0 Hz, 2H; Ar), 7.40 (d, J = 7.6 Hz, 2H; Ar), 2.59 (s, 6H; Me), 2.48 (s, 6H; Me).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 140.9, 139.2, 136.9, 133.1, 131.5, 119.5 (t, J = 296.6 Hz), 117.3, 21.2, 19.7. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -99.5 (d, J = 52.3 Hz, 2F; C $F_2$ H), -152.7 (s, 4F; B $F_4$ ).

**HRMS** (ESI-TOF) calcd m/z for  $[C_9H_{10}F_2OS+Na]^+$  293.1170 found 293.1170.

**EA**: calculated for C<sub>17</sub>H<sub>19</sub>BF<sub>6</sub>S: C, 53.71; H, 5.04, found: C, 53.44; H, 4.93.

#### **Preparation of substrates**

Styrene-type substrates except commercially available ones were prepared in the previous studies.<sup>2</sup> The aliphatic alkenes used for chlorotrifluoromethylation was prepared by the following method.

#### 5-Hexen-1-yl tosylcarbamate (2p)



To a solution of 5-hexen-1-ol (0.502 g, 5.02 mmol) in  $CH_2CI_2$  (40 mL) was added dropwise TsN=C=O (0.986 g, 5.00 mmol) at 0 °C. After stirring the mixture for 2 h at room temperature, the solvent was evaporated. **2p** was obtained as a colorless oil (1.41 g, 4.73 mmol, 95%) after purification through flash column chromatography on silica-gel (hexane/AcOEt = 4:1).

#### 1F).

3H; *Me*), 2.04-1.99 (m, 2H;  $CH_2=CHCH_2$ ), 1.62-1.54 (m, 2H;  $OCH_2CH_2$ ), 1.39-1.31 (m, 2H;  $CH_2CH_2CH_2$ ). <sup>13</sup>**C NMR** (125 MHz,  $CDCI_3$ , rt):  $\delta$  150.6, 145.2, 138.2, 135.7, 129.7, 128.5, 115.1, 67.1, 33.2, 28.0, 24.9, 21.8. **HRMS** (ESI-TOF) calcd m/z for  $[C_{14}H_{19}NO_4S+Na]^+$  320.0927 found 320.0927

#### NMR experiments of the reaction of 2a with 1



An NMR tube was charged with a CD<sub>3</sub>CN (0.5 mL; containing 0.0250 mmol of D<sub>2</sub>O) solution of styrene **2a** (2.6 mg, 0.0250 mmol), **1** (19.0 mg, 0.0500 mmol), perylene (0.6 mg, 2.50  $\mu$ mol) and tetraethylsilane as an internal standard under N<sub>2</sub> atmosphere. The mixture was degassed by three freeze-pump-thaw cycles. The NMR tube was placed at 2–3 cm away from blue LED lamps ( $\lambda = 425 \pm 15$  nm) in a water bath. The reaction was carried out under visible light irradiation for 3 h at room temperature.







General procedures for aminodifluoromethylation of aromatic alkenes



A 20 mL Schlenk tube was charged with a CH<sub>3</sub>CN (5.00 mL) solution of an aromatic alkene **2** (0.250 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol) and H<sub>2</sub>O (4.5 mg, 0.250 mmol) under N<sub>2</sub> atmosphere. The mixture was degassed by three freeze-pump-thaw cycles. The Schlenk tube was placed at 2–3 cm away from blue LED lamps ( $\lambda = 425 \pm 15$  nm) in a water bath. The mixture was stirred for 6–12 h at room temperature under visible light irradiation. After the reaction, H<sub>2</sub>O (15 mL) was added and resulting suspension was extracted with CH<sub>2</sub>Cl<sub>2</sub> (15 mL × 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The appropriate purification afforded the desired products.

### N-(3,3-Difluoro-1-phenylpropyl)acetamide (3a)



According to the general procedures (reaction time = 6 h), styrene **2a** (26.2 mg, 0.252 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol),  $H_2O$  (4.5 mg, 0.250 mmol) and  $CH_3CN$  (5.00 mL) afforded **3a** as a white solid (40.7 mg, 76%) after purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and GPC.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.40-7.29 (5H; *Ar*), 5.84 (brs, 1H; N*H*), 5.77 (apparent tt, *J* = 56.0 Hz, 4.8 Hz, 1H; CF<sub>2</sub>*H*), 5.26 (apparent dt, *J* = 8.0 Hz, 6.0 Hz, 1H; C*H*CH<sub>2</sub>CF<sub>2</sub>H), 2.52-2.25 (m, 2H; CHC*H*<sub>2</sub>CF<sub>2</sub>H), 2.00 (s, 3H; NHCO*Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.6, 140.3, 129.2, 128.2, 126.5, 115.9 (apparent t, J = 239.3 Hz), 48.9 (apparent t, J = 6.4 Hz), 40.5 (apparent t, J = 21.2 Hz), 23.4.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -115.2 (dddd, *J* = 288.0 Hz, 56.0 Hz, 19.2 Hz, 13.2 Hz, 1F), -116.5 (dddd, *J* = 288.4 Hz, 56.0 Hz, 19.2 Hz, 12.8 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{11}H_{13}F_2NO+Na]^+$  236.0857 found 236.0854.

N-(3,3-Difluoro-1-(p-tolyl)propyl)acetamide (3b)



According to the general procedures (reaction time = 6 h), 4-methylstyrene **2b** (29.7 mg, 0.251 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol), H<sub>2</sub>O (4.5 mg, 0.250 mmol) and CH<sub>3</sub>CN (5.00 mL) afforded **3b** as a white solid (24.7 mg, 43%) after purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and GPC.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.17 (4H; *Ar*), 5.94 (brd, J = 7.2 Hz, 1H; N*H*), 5.75 (apparent tt, J = 56.4 Hz, 4.8 Hz, 1H; CF<sub>2</sub>*H*), 5.20 (apparent dt, J = 8.0 Hz, 6.4 Hz, 1H; C*H*CH<sub>2</sub>CF<sub>2</sub>H), 2.50-2.22 (m, 2H; CHCH<sub>2</sub>CF<sub>2</sub>H), 2.34 (s, 3H; *Me*), 1.98 (s, 3H; NHCO*Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.5, 138.0, 137.4, 129.9, 126.4, 116.0 (apparent t, J = 239.3 Hz), 48.6 (apparent t, J = 6.5 Hz), 40.5 (apparent t, J = 21.1 Hz), 23.5, 21.2.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -115.3 (dddd, *J* = 288.0 Hz, 56.4 Hz, 19.6 Hz, 13.2 Hz, 1F), -116.7 (dddd, *J* = 288.0 Hz, 56.4 Hz, 19.9 Hz, 13.2 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{12}H_{15}F_2NO+Na]^+$  250.1014 found 250.1010.

**EA**: calculated for C<sub>12</sub>H<sub>15</sub>F<sub>2</sub>NO: C, 63.42; H, 6.65; N, 6.16 found: C, 63.28; H, 6.88; N, 6.08.

## N-(3,3-Difluoro-1-(4-fluorophenyl)propyl)acetamide (3c)



According to the general procedures (reaction time = 12 h), 4-fluorostyrene **2c** (30.5 mg, 0.250 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol),  $H_2O$  (4.5 mg, 0.250 mmol) and  $CH_3CN$  (5.00 mL) afforded **3c** as a white solid (34.2 mg, 59%) after purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and GPC.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt):  $\delta$  7.29-7.24 (2H; *Ar*), 7.07-7.02 (2H; *Ar*), 6.08 (brd, *J* = 6.0 Hz, 1H; N*H*), 5.76 (apparent tt, *J* = 56.0 Hz, 4.8 Hz, 1H; CF<sub>2</sub>*H*), 5.22 (apparent dt, *J* = 8.0 Hz, 6.0 Hz, 1H; C*H*CH<sub>2</sub>CF<sub>2</sub>H), 2.48-2.22 (m, 2H; CHC*H*<sub>2</sub>CF<sub>2</sub>H), 1.99 (s, 3H; NHCO*Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.8, 162.4 (d, J = 247 Hz), 136.4, 128.2 (d, J = 8.2 Hz), 116.0 (d, J = 21.5 Hz), 115.8 (apparent t, J = 239.6 Hz), 48.3 (apparent t, J = 6.3 Hz), 40.4 (apparent t, J = 21.4 Hz), 23.3.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, r.t.): δ -114.9 (m, 1F; Ar*F*), -115.4 (dddd, *J* = 288.4 Hz, 56.0 Hz, 19.2 Hz, 13.5 Hz, 1F), -116.8 (dddd, *J* = 288.0 Hz, 56.4 Hz, 18.8 Hz, 13.2 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{11}H_{12}F_3NO+Na]^+$  254.0763 found 254.0760.

**EA**: calculated for C<sub>11</sub>H<sub>12</sub>F<sub>3</sub>NO: C, 57.14; H, 5.23; N, 6.06 found: C, 57.25; H, 5.22; N, 5.95.

#### N-(1-(4-Chlorophenyl)-3,3-difluoropropyl)acetamide (3d)



According to the general procedures (reaction time = 6 h), 4-chlorostyrene **2d** (34.6 mg, 0.250 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol),  $H_2O$  (4.5 mg, 0.250 mmol) and  $CH_3CN$  (5.00 mL) afforded **3d** as a pale yellow solid (37.9 mg, 61%) after purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and reprecipitation (hexane and Et<sub>2</sub>O).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.34 (d, J = 8.4 Hz, 2H; Ar), 7.24 (d, J = 8.8 Hz, 2H; Ar), 5.83 (brs, 1H; N*H*), 5.78 (apparent tt, J = 56.0 Hz, 4.8 Hz, 1H; CF<sub>2</sub>*H*), 5.23 (apparent dt, J = 8.0 Hz, 6.0 Hz, 1H; C*H*CH<sub>2</sub>CF<sub>2</sub>H), 2.48-2.23 (m, 2H; CHCH<sub>2</sub>CF<sub>2</sub>H), 2.00 (s, 3H; NHCO*Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.7, 139.0, 134.0, 129.3, 127.9, 115.7 (apparent t, J = 239.7 Hz), 48.3 (apparent t, J = 6.2 Hz), 40.2 (apparent t, J = 21.5 Hz), 23.4.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -115.1 (dddd, *J* = 288.8 Hz, 56.0 Hz, 19.2 Hz, 13.9 Hz, 1F), -116.6 (dddd, *J* = 288.8 Hz, 56.0 Hz, 18.0 Hz, 12.8 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{11}H_{12}CIF_2NO+Na]^+$  270.0468 found 270.0465.

**EA**: calculated for C<sub>11</sub>H<sub>12</sub>CIF<sub>2</sub>NO: C, 53.35; H, 4.88; N, 5.66 found: C, 53.32; H, 4.78; N, 5.58.

#### N-(1-(4-Bromophenyl)-3,3-difluoropropyl)acetamide (3e)



According to the general procedures (reaction time = 6 h), 4-bromostyrene **2e** (45.9 mg, 0.251 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol), H<sub>2</sub>O (4.5 mg, 0.250 mmol) and CH<sub>3</sub>CN (5.00 mL) afforded **3e** as a white solid (51.9 mg, 71%) after purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and reprecipitation (hexane and Et<sub>2</sub>O).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.49 (d, J = 8.4 Hz, 2H; *Ar*), 7.17 (d, J = 8.4 Hz, 2H; *Ar*), 6.00 (brd, J = 7.2 Hz, 1H; N*H*), 5.77 (apparent tt, J = 56.0 Hz, 4.8 Hz, 1H; CF<sub>2</sub>*H*), 5.21 (apparent dt, J = 8.0 Hz, 6.0 Hz, 1H; C*H*CH<sub>2</sub>CF<sub>2</sub>H), 2.47-2.22 (m, 2H; CHCH<sub>2</sub>CF<sub>2</sub>H), 1.99 (s, 3H; NHCO*Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.6, 139.5, 132.3, 128.2, 122.1, 115.7 (apparent t, J = 239.5 Hz), 48.4 (apparent t, J = 6.3 Hz), 40.2 (apparent t, J = 21.4 Hz), 23.4.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -115.2 (dddd, J = 288.8 Hz, 56.4 Hz, 19.6 Hz, 13.9 Hz, 1F), -116.7 (dddd, J = 288.8 Hz, 56.4 Hz, 19.6 Hz, 13.9 Hz, 1F), -116.7 (dddd, J = 288.8 Hz, 56.4 Hz, 19.6 Hz, 13.9 Hz, 1F), -116.7 (dddd, J = 288.8 Hz, 56.4 Hz, 19.6 Hz, 13.9 Hz, 1F), -116.7 (dddd, J = 288.8 Hz, 56.4 Hz, 19.6 Hz, 13.9 Hz, 1F), -116.7 (dddd, J = 288.8 Hz, 56.4 Hz, 19.6 Hz, 13.9 Hz, 1F), -116.7 (dddd, J = 288.8 Hz, 56.4 Hz, 19.6 Hz, 13.9 Hz, 1F), -116.7 (dddd, J = 288.8 Hz, 56.4 Hz, 19.6 Hz, 13.9 Hz, 1F), -116.7 (dddd, J = 288.8 Hz, 56.4 Hz, 19.6 Hz, 13.9 Hz, 1F), -116.7 (dddd, J = 288.8 Hz, 56.4 Hz, 19.6 Hz, 13.9 Hz, 1F), -116.7 (dddd, J = 288.8 Hz, 56.4 Hz, 19.6 Hz, 19.6 Hz, 19.6

= 288.8 Hz, 55.6 Hz, 18.8 Hz, 13.5 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{11}H_{12}BrF_2NO+Na]^+$  313.9963 found 313.9965.

## 4-(1-Acetamido-3,3-difluoropropyl)phenyl acetate (3f)



According to the general procedures (reaction time = 6 h), 4-acetoxystyrene **2f** (40.7 mg, 0.251 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol),  $H_2O$  (4.5 mg, 0.250 mmol) and  $CH_3CN$  (5.00 mL) afforded **3f** as a pale yellow solid (40.7 mg, 60%) after purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and reprecipitation (hexane and Et<sub>2</sub>O).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.30 (d, J = 8.4 Hz, 2H; Ar), 7.08 (d, J = 8.4 Hz, 2H; Ar), 6.04 (brs, 1H; N*H*), 5.78 (apparent tt, J = 56.0 Hz, 4.8 Hz, 1H; CF<sub>2</sub>*H*), 5.25 (apparent dt, J = 8.0 Hz, 6.0 Hz, 1H; C*H*CH<sub>2</sub>CF<sub>2</sub>H), 2.49-2.23 (m, 2H; CHCH<sub>2</sub>CF<sub>2</sub>H), 2.30 (s, 3H; OCO*Me*), 1.98 (s, 3H; NHCO*Me*).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, rt): δ 169.8, 169.7, 150.3, 138.1, 127.7, 122.2, 115.8 (apparent t, *J* = 239.2 Hz),
48.2 (apparent t, *J* = 6.3 Hz), 40.3 (apparent t, *J* = 21.4 Hz), 23.2, 21.2.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -115.3 (dddd, *J* = 288.4 Hz, 56.0 Hz, 19.2 Hz, 13.9 Hz, 1F), -116.8 (dddd, *J* = 288.0 Hz, 56.0 Hz, 18.4 Hz, 13.2 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{13}H_{15}F_2NO_3+Na]^+$  294.0912 found 294.0915.

#### N-(3,3-Difluoro-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propyl)acetamide (3g)



According to the general procedures (reaction time = 6 h), 4,4,5,5-tetramethyl-2-(4-vinylphenyl)-1,3,2dioxaborolane **2g** (57.5 mg, 0.250 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol), H<sub>2</sub>O (4.5 mg, 0.250 mmol) and CH<sub>3</sub>CN (5.00 mL) afforded **3g** as a pale yellow oil (25.3 mg, 30%) after purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and GPC.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.81 (d, J = 8.0 Hz, 2H; *Ar*), 7.29 (d, J = 8.0 Hz, 2H; *Ar*), 6.06 (brd, J = 7.6 Hz, 1H; N*H*), 5.74 (apparent tt, J = 56.4 Hz, 4.8 Hz, 1H; CF<sub>2</sub>*H*), 5.25 (apparent dt, J = 8.0 Hz, 6.0 Hz, 1H; C*H*CH<sub>2</sub>CF<sub>2</sub>H), 2.49-2.22 (m, 2H; CHC*H*<sub>2</sub>CF<sub>2</sub>H), 1.98 (s, 3H; NHCO*Me*), 1.33 (s, 12H; BOC*Me*<sub>2</sub>).

<sup>11</sup>**B NMR** (128 MHz, CDCl<sub>3</sub>, rt): δ 30.4.

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.6, 143.3, 135.7, 125.8, 115.9 (apparent t, J = 239.5 Hz), 84.1, 48.9

(apparent t, J = 6.4 Hz), 40.3 (apparent t, J = 21.3 Hz), 25.0, 23.4.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -114.3 (dddd, *J* = 288.0 Hz, 56.0 Hz, 19.6 Hz, 13.2 Hz, 1F), -115.7 (dddd, *J* = 288.0 Hz, 55.6 Hz, 18.8 Hz, 12.4 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{17}H_{24}BF_2NO_3+Na]^+$  362.1713 found 362.1709.

## N-(3,3-Difluoro-1-(3-formylphenyl)propyl)acetamide (3h)



According to the general procedures (reaction time = 12 h), 3-vinylbenzaldehyde **2h** (33.1 mg, 0.250 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol), H<sub>2</sub>O (4.5 mg, 0.250 mmol) and CH<sub>3</sub>CN (5.00 mL) afforded **3h** as a pale yellow oil (24.8 mg, 41%) after purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and GPC.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 9.99 (s, 1H; C*H*O), 7.83 (s, 1H; *Ar*), 7.78 (d, J = 7.6 Hz, 1H; *Ar*), 7.58 (d, J = 8.0 Hz, 1H; *Ar*), 7.52 (dd, J = 7.6 Hz, 7.6 Hz, *Ar*), 6.59 (brd, J = 7.2 Hz, 1H; N*H*), 5.80 (apparent tt, J = 56.0 Hz, 4.8 Hz, 1H; CF<sub>2</sub>*H*), 5.32 (apparent dt, J = 8.0 Hz, 5.6 Hz, 1H; C*H*CH<sub>2</sub>CF<sub>2</sub>H), 2.45-2.25 (m, 2H; CHCH<sub>2</sub>CF<sub>2</sub>H), 2.00 (s, 3H; NHCO*Me*).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, rt): δ 192.2, 169.9, 142.2, 137.0, 133.0, 130.2, 129.9, 126.4, 115.6 (apparent t, J = 239.7 Hz), 48.5 (apparent t, J = 5.8 Hz), 40.3 (apparent t, J = 21.6 Hz), 23.3.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -115.4 (dddd, *J* = 288.0 Hz, 56.0 Hz, 19.6 Hz, 14.7 Hz, 1F), -116.8 (dddd, *J* = 288.0 Hz, 55.6 Hz, 17.3 Hz, 13.2 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{12}H_{13}F_2NO_2+Na]^+$  264.0807 found 264.0808.

*N*-(3,3-Difluoro-1-((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclope nta[a]phenanthren-3-yl)propyl)acetamide (3i)



According to the general procedures (reaction time = 6 h), (8R,9S,13S,14S)-13-methyl-3-vinyl-6,7,8,9,11, 12,13,14,15,16-decahydro-17*H*-cyclopenta[a]phenanthren-17-one **2i** (70.1 mg, 0.250 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol), H<sub>2</sub>O (4.5 mg, 0.250 mmol) and CH<sub>3</sub>CN (5.00 mL) afforded **3i** as a white solid (37.4 mg, 38%) after purification through flash column chromatography on silica gel

(hexane/ethyl acetate = 4 : 1 - 1 : 3) and GPC.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.29 (d, J = 8.0 Hz, 1H; *Ar*), 7.07 (d, J = 8.0 Hz, 1H; *Ar*), 7.02 (s, 1H; *Ar*), 5.88 (brs, 1H; N*H*CHCH<sub>2</sub>), 5.77 (apparent tt, J = 56.0 Hz, 4.8 Hz, 1H; CF<sub>2</sub>*H*), 5.19 (apparent dt, J = 8.0 Hz, 6.4 Hz, 1H; NHC*H*CH<sub>2</sub>), 2.91 (dd, J = 8.8 Hz, 4.0 Hz, 2H; steroidal CH<sub>2</sub>), 2.54-1.95 (9H; steroidal protons, CHCH<sub>2</sub>CF<sub>2</sub>H), 1.99 (s, 3H; NHCO*M*e), 1.68-1.39 (6H; steroidal protons), 0.91 (s, 3H; steroidal *Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 220.9, 169.6, 139.8, 137.8, 137.4, 127.3 (apparent d, J = 7.5 Hz), 126.2, 123.7 (apparent d, J = 4.9 Hz), 116.0 (apparent t, J = 239.1 Hz), 50.6, 48.6 (apparent d, J = 5.0 Hz), 48.1, 44.4, 40.4 (apparent t, J = 18.7 Hz), 38.1, 35.9, 31.7, 29.5 (apparent d, J = 1.9 Hz), 26.5, 25.8, 23.4, 21.7, 13.9.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ from -114.8 to -117.3 (m, 2F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{23}H_{29}F_2NO_2+Na]^+$  412.2059 found 412.2059.

## N-(3,3-Difluoro-1-mesitylpropyl)acetamide (3j)



According to the general procedures (reaction time = 6 h), 2,4,6-trimethylstyrene **2j** (36.6 mg, 0.250 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol), H<sub>2</sub>O (4.5 mg, 0.250 mmol) and CH<sub>3</sub>CN (5.00 mL) afforded **3j** as a white solid (33.0 mg, 52%) after purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and GPC.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 6.85 (s, 2H; *Ar*), 6.07 (brs, 1H; N*H*), 5.85 (apparent tt, *J* = 56.4 Hz, 4.8 Hz, 1H; CF<sub>2</sub>*H*), 5.62 (apparent dt, *J* = 7.2 Hz, 7.2 Hz, 1H; C*H*CH<sub>2</sub>CF<sub>2</sub>H), 2.63-2.21 (m, 2H; CHCH<sub>2</sub>CF<sub>2</sub>H), 2.41 (s, 6H; Ar*Me*), 2.25 (s, 3H; Ar*Me*), 1.96 (s, 3H; NHCO*Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.7, 137.5, 135.9, 133.7, 130.6, 116.2 (apparent t, J = 239.6 Hz), 44.9 (apparent t, J = 6.5 Hz), 39.4 (apparent t, J = 20.9 Hz), 23.2, 21.0, 20.8.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -115.7 (dddd, *J* = 285.0 Hz, 56.0 Hz, 18.0 Hz, 15.0 Hz, 1F), -116.6 (dddd, *J* = 285.4 Hz, 56.4 Hz, 16.2 Hz, 16.2 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{14}H_{19}F_2NO+Na]^+$  278.1327 found 278.1328.

#### N-(3,3-difluoro-2-methyl-1-phenylpropyl)acetamide (31)



According to the general procedures (reaction time = 6 h), *trans*- $\beta$ -methylstyrene **2I** (29.7 mg, 0.251 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol), H<sub>2</sub>O (4.5 mg, 0.500 mmol) and CH<sub>3</sub>CN (5.00 mL) gave crude products (dr 71:29; determined by <sup>1</sup>H NMR), and purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and GPC afforded **3I** as a white solid (25.8 mg, 45%, a mixture of isomers, 74:26; determined by <sup>1</sup>H NMR).

**Major isomer:** <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt):  $\delta$  7.38-7.24 (5H; *Ar*), 6.07 (brs, 1H; N*H*CHCH<sub>2</sub>), 5.71 (apparent td, J = 56.0 Hz, 3.2 Hz, 1H; CF<sub>2</sub>H), 5.12 (dd, J = 4.2 Hz, 4.2 Hz, 1H; NHC*H*CH), 2.50-2.32 (m, 1H; CHC*H*CF<sub>2</sub>H), 2.01 (s, 3H; NHCO*Me*), 0.98 (d, J = 6.8 Hz, 3H; CHCH*Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.8, 139.7, 129.1, 128.0, 126.9, 117.5 (t, *J* = 239.5 Hz), 54.2 (dd, *J* = 6.9 Hz, 1.3 Hz), 42.1 (t, *J* = 19.4 Hz), 23.4, 8.8 (t, *J* = 4.8 Hz).

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -121.7 (ddd, *J* = 285.4 Hz, 55.3 Hz, 8.6 Hz, 1F), -126.5 (ddd, *J* = 285.8 Hz, 56.8 Hz, 22.9 Hz, 1F).

**Minor isomer:** <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt):  $\delta$  7.38-7.24 (5H; *Ar*), 6.05 (brs, 1H; N*H*CHCH<sub>2</sub>), 5.51 (apparent td, *J* = 56.0 Hz, 4.0 Hz, 1H; CF<sub>2</sub>*H*), 5.17 (dd, *J* = 7.2 Hz, 4.8 Hz, 1H; NHC*H*CH), 2.50-2.32 (m, 1H; CHC*H*CF<sub>2</sub>H), 2.02 (s, 3H; NHCO*Me*), 1.07 (d, *J* = 7.2 Hz, 3H; CHCH*Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.7, 139.2, 129.0, 128.0, 126.9, 117.6 (t, *J* = 239.5 Hz), 53.6 (dd, *J* = 5.9 Hz, 4.0 Hz), 42.8 (t, *J* = 19.5 Hz), 23.4, 9.6 (t, *J* = 4.8 Hz).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>, r.t.): δ -120.1 (ddd, J = 284.3 Hz, 56.0 Hz, 9.0 Hz, 1F), -128.5 (ddd, J = 284.3 Hz, 56.0 Hz, 19.2 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{12}H_{15}F_2NO+Na]^+$  250.1014 found 250.1013.

#### N-(3,3-Difluoro-1,2-diphenylpropyl)acetamide (3m)



According to the general procedures (reaction time = 6 h), *trans*-stilbene **2m** (45.0 mg, 0.251 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol), H<sub>2</sub>O (4.5 mg, 0.500 mmol) and CH<sub>3</sub>CN (5.00 mL) gave crude products (dr 83:17; determined by <sup>19</sup>F NMR), and purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and GPC afforded **3m** as a colorless oil (46.5 mg, 64%, a

mixture of isomers, 85:15; determined by <sup>19</sup>F NMR).

**Major isomer:** <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.36-7.04 (10H; *Ar*), 6.09 (apparent td, *J* = 55.6 Hz, 4.8 Hz, 1H; CF<sub>2</sub>*H*), 6.08 (brs, 1H; N*H*CHCH), 5.59 (t, *J* = 9.2 Hz, 1H; NHC*H*CH), 3.60-3.49 (m, 1H; CHC*H*CF<sub>2</sub>H), 2.00 (s, 3H; NHCO*Me*).

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, rt): δ 169.6, 139.1, 133.8 (t, J = 3.3 Hz), 129.7, 128.6, 128.5, 127.9, 127.8, 127.5, 116.8 (t, J = 243.7 Hz), 54.5 (t, J = 19.6 Hz), 53.8 (t, J = 3.5 Hz), 23.5.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -118.2 (ddd, *J* = 285.0 Hz, 56.0 Hz, 16.2 Hz, 1F), -120.3 (ddd, *J* = 284.6 Hz, 54.9 Hz, 12.4 Hz, 1F).

**Minor isomer:** <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt):  $\delta$  7.36-7.04 (10H; *Ar*), 5.84 (brd, *J* = 8.0 Hz, 1H; N*H*CHCH), 5.81 (apparent td, *J* = 55.6 Hz, 4.0 Hz, 1H; CF<sub>2</sub>*H*), 5.56 (t, *J* = 8.8 Hz, 1H; NHC*H*CH), 3.47-3.39 (m, 1H; CHC*H*CF<sub>2</sub>H), 1.81 (s, 3H; NHCO*Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.4, 139.8, 133.0, 129.9, 129.0, 128.7, 128.3, 128.2, 127.2, 115.8 (t, *J* = 243.4 Hz), 55.1 (t, *J* = 19.7 Hz), 52.8 (t, *J* = 2.8 Hz), 23.2.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -120.9 (ddd, *J* = 285.4 Hz, 55.6 Hz, 9.8 Hz, 1F), -124.6 (ddd, *J* = 285.0 Hz, 55.6 Hz, 20.7 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{17}H_{17}F_2NO+Na]^+$  312.1170 found 312.1167.

## N-(2-(Difluoromethyl)-1,2,3,4-tetrahydronaphthalen-1-yl)acetamide (3n)



According to the general procedures (reaction time = 6 h), 1,2-dihydronaphthalene **2n** (32.4 mg, 0.249 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol), H<sub>2</sub>O (4.5 mg, 0.500 mmol) and CH<sub>3</sub>CN (5.00 mL) gave crude products (dr 57:43; determined by <sup>1</sup>H NMR), and purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and GPC afforded **3n** as a white solid (26.3 mg, 44%, a mixture of isomers, 53:47; determined by <sup>1</sup>H NMR).

**Major isomer:** <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt):  $\delta$  7.27-7.09 (4H; *Ar*), 5.87 (apparent td, *J* = 56.0 Hz, 3.2 Hz, 1H; CF<sub>2</sub>*H*), 5.85 (brs, 1H; N*H*CHCH), 5.26 (t, *J* = 8.8 Hz, 8.8 Hz, 1H; NHC*H*CH), 2.98-2.78 (m, 2H; ArC*H*<sub>2</sub>CH<sub>2</sub>), 2.38-2.26 (m, 1H, CHC*H*CF<sub>2</sub>H), 2.22-1.69 (m, 2H, ArC*H*<sub>2</sub>CH<sub>2</sub>), 2.05 (s, 3H; NHCO*Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 170.2, 117.0 (t, *J* = 242.0 Hz), 47.6 (dd, *J* = 6.2 Hz, 3.5 Hz), 45.2 (t, *J* = 20.1 Hz), 28.0, 23.4, 20.0 (t, *J* = 4.5 Hz).

Aromatic signals of major and minor diastereomers were overlapped around (136.9, 136.1, 135.6, 135.5, 129.9, 129.2, 129.0, 128.2, 128.1, 127.6, 126.9, 126.8).

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -123.5 (ddd, *J* = 283.5 Hz, 56.0 Hz, 10.2 Hz, 1F), -126.5 (ddd, *J* = 283.1 Hz, 56.4 Hz, 18.8 Hz, 1F).

**Minor isomer:** <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt):  $\delta$  7.27-7.09 (4H; *Ar*), 5.96 (apparent td, *J* = 56.0 Hz, 3.6 Hz, 1H; CF<sub>2</sub>*H*), 5.84 (brd, *J* = 8.4 Hz, 1H; N*H*CHCH), 5.47 (dd, *J* = 9.2 Hz, 4.0 Hz, 1H; NHC*H*CH), 2.87-2.83 (m, 2H; ArC*H*<sub>2</sub>CH<sub>2</sub>), 2.22-1.69 (m, 3H, ArC*H*<sub>2</sub>CH<sub>2</sub>, CHC*H*CF<sub>2</sub>H), 1.97 (s, 3H; NHCO*Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.6, 117.3 (t, *J* = 240.2 Hz), 46.0 (dd, *J* = 6.7 Hz, 3.5 Hz), 43.3 (t, *J* = 20.1 Hz), 27.7, 23.4, 17.1 (t, *J* = 4.7 Hz).

Aromatic signals of major and minor diastereomers were overlapped around (136.9, 136.1, 135.6, 135.5, 129.9, 129.2, 129.0, 128.2, 128.1, 127.6, 126.9, 126.8).

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -118.4 (ddd, *J* = 285.8 Hz, 55.6 Hz, 11.7 Hz, 1F), -127.0 (ddd, *J* = 285.8 Hz, 56.0 Hz, 17.3 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{13}H_{15}F_2NO+Na]^+$  262.1014 found 262.1009.

## Methyl 3-acetamido-2-(difluoromethyl)-3-phenylpropanoate (30)



According to the general procedures (reaction time = 12 h), methyl cinnamate **2o** (40.6 mg, 0.250 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol), H<sub>2</sub>O (4.5 mg, 0.500 mmol) and CH<sub>3</sub>CN (5.00 mL) gave crude products (dr 73:27; determined by <sup>1</sup>H NMR), and purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and GPC afforded **3o** as a pale yellow oil (40.9 mg, 60%, a mixture of isomers, 73:27; determined by <sup>1</sup>H NMR).

**Major isomer:** <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt):  $\delta$  7.36-7.21 (5H; *Ar*), 7.04 (brd, *J* = 9.2 Hz, 1H; N*H*), 6.03 (apparent td, *J* = 55.6 Hz, 6.4 Hz, 1H; CF<sub>2</sub>*H*), 5.61 (dd, *J* = 9.6 Hz, 4.0 Hz, 1H; C*H*CHCF<sub>2</sub>H), 3.63 (s, 3H; COO*Me*), 3.39-3.31 (m, 1H; CHC*H*CF<sub>2</sub>H), 2.09 (s, 3H; NHCO*Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.6, 169.5, 138.5, 129.0, 128.2, 126.1, 114.7 (t, *J* = 245.5 Hz), 54.7 (t, *J* = 22.4 Hz), 52.7, 50.0 (dd, *J* = 5.9 Hz, 3.4 Hz), 23.5.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -120.5 (ddd, *J* = 289.5 Hz, 55.6 Hz, 10.9 Hz, 1F), -121.7 (ddd, *J* = 289.5 Hz, 55.3 Hz, 12.0 Hz, 1F).

**Minor isomer:** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, rt):  $\delta$  7.36-7.21 (5H; *Ar*), 6.43 (brd, *J* = 8.4 Hz, 1H; N*H*), 5.92 (apparent td, *J* = 55.2 Hz, 6.4 Hz, 1H; CF<sub>2</sub>*H*), 5.57 (dd, *J* = 8.0 Hz, 8.0 Hz, 1H; C*H*CHCF<sub>2</sub>H), 3.61 (s, 3H; COO*Me*), 3.39-3.31 (m, 1H; CHC*H*CF<sub>2</sub>H), 2.02 (s, 3H; NHCO*Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ168.2, 168.1, 137.8, 129.0, 128.6, 127.0, 114.9 (t, *J* = 243.6 Hz), 55.0 (t, *J* = 21.3 Hz), 52.5, 51.2 (dd, *J* = 6.8 Hz, 2.5 Hz), 23.3.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -119.1 (ddd, *J* = 291.0 Hz, 54.5 Hz, 12.0 Hz, 1F), -121.7 (ddd, *J* = 291.4 Hz, 55.3 Hz, 10.2 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{13}H_{15}F_2NO_3+Na]^+$  294.0912 found 294.0916.

#### Procedures for synthesis of 3,3-difluoro-1,1-diphenylpropene (4)



20 mL Schlenk tube was charged with a CH<sub>3</sub>CN (5.00 mL) solution of 1,1-diphenylethylene **2k** (0.250 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol) and H<sub>2</sub>O (4.5 mg, 0.500 mmol) under N<sub>2</sub> atmosphere. The mixture was degassed by three freeze-pump-thaw cycles. The Schlenk tube was placed at 2-3 cm away from blue LED lamps ( $\lambda$  = 425 ± 15 nm) in the water bath. The mixture was stirred for 2 h at room temperature under visible light irradiation. After the reaction, H<sub>2</sub>O (15 mL) was added and resulting mixture was extracted with Et<sub>2</sub>O (15 mL × 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. Purification through flash column chromatography on silica gel (pentane) and GPC afforded **4** as a colorless oil (31.3 mg, 55%).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.42-7.22 (10H; *Ar*), 6.21-6.15 (m, 1H; CF<sub>2</sub>HC*H*=C), 6.02 (td, *J* = 55.6 Hz, 7.6 Hz, 1H; CF<sub>2</sub>*H*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 150.8 (t, *J* = 13.1 Hz), 140.2, 137.4, 129.9, 129.2, 128.8, 128.60, 128.56, 128.2, 120.2 (t, *J* = 26.5 Hz), 113.9 (t, *J* = 229.4 Hz).

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -107.8 (dd, *J* = 54.6 Hz, 7.9 Hz, 2F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{15}H_{12}F_2+Na]^+$  253.0799 found 253.0804.

# Trifluoromethylation of alkenes with various trifluoromethylating reagents *N*-(3,3,3-Trifluoro-1-phenylpropyl)acetamide (5)



A 20 mL Schlenk tube was charged with a CH<sub>3</sub>CN (5.00 mL) solution of **2a** (26.3 mg, 0.253 mmol), Yagupolskii reagent **B** (171.0 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol) and H<sub>2</sub>O (4.5 mg, 0.250 mmol) under N<sub>2</sub> atmosphere. The mixture was degassed by three freeze-pump-thaw cycles. The Schlenk tube was placed at 2-3 cm away from blue LED lamps ( $\lambda$  = 425 ± 15 nm) in a water bath. The mixture was stirred for 6 h at room temperature under visible light irradiation. After the reaction, H<sub>2</sub>O (15 mL) was added and resulting suspension was extracted with CH<sub>2</sub>Cl<sub>2</sub> (15 mL × 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. Purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 1) and GPC afforded **5** as a white solid (38.3 mg, 66%). Spectral data is in agreement with the reported literature.<sup>2a</sup>

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.39-7.29 (5H; *Ar*), 5.74 (brs, 1H; N*H*CHCH<sub>2</sub>), 5.35 (apparent dt, *J* = 8.0 Hz, 6.4 Hz, 1H; NHC*H*CH<sub>2</sub>), 2.82-2.53 (m, CHCH<sub>2</sub>CF<sub>3</sub>), 2.00 (s, 3H; *Me*).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.6, 140.2, 129.1, 128.2, 126.5, 125.7 (q, *J* = 277.6 Hz), 48.4 (q, *J* = 3.1 Hz), 39.6 (q, *J* = 27.5 Hz), 23.2.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -64.3 (t, *J* = 10.5 Hz, 3F).

#### 5-Chloro-7,7,7-trifluoroheptyl tosylcarbamate (6)



A 20 mL Schlenk tube was charged with a CH<sub>3</sub>CN (5.00 mL) solution of 5-hexen-1-yl tosylcarbamate **2p** (74.5 mg, 0.251 mmol), trifluoromethansulfonyl chloride (84.4 mg, 0.501 mmol) and perylene (3.2 mg, 0.0127 mmol) under N<sub>2</sub> atmosphere. The mixture was degassed by three freeze-pump-thaw cycles. The Schlenk tube was placed at 2-3 cm away from blue LED lamps ( $\lambda$  = 425 ± 15 nm) in a water bath. The mixture was stirred for 6 h at room temperature under visible light irradiation. After the reaction, the mixture was concentrated under reduced pressure. Purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1) and GPC afforded **6** as a pale yellow oil (57.2 mg, 57%).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt): δ 7.98 (brs, 1H, N*H*Ts), 7.91 (d, J = 8.4 Hz, 2H; *Ar*), 7.34 (d, J = 8.4 Hz, 2H; *Ar*), 4.10 (t, J = 6.0 Hz, 2H; OC*H*<sub>2</sub>CH<sub>2</sub>), 4.06-4.01 (m, 1H; CIC*H*CH<sub>2</sub>), 2.66-2.46 (m, 2H; CF<sub>3</sub>C*H*<sub>2</sub>CH), 2.44 (s, 3H; *Me*), 1.84-1.37 (6H; CICHC*H*<sub>2</sub>, OCH<sub>2</sub>C*H*<sub>2</sub>, CH<sub>2</sub>C*H*<sub>2</sub>CH<sub>2</sub>).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 150.7, 145.3, 135.6, 129.8, 128.4, 125.3 (q, *J* = 277.6 Hz), 66.7, 53.9 (q, *J* = 3.0 Hz), 42.4 (q, *J* = 28.5 Hz), 37.5, 27.8, 22.3, 21.8.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.):  $\delta$  -64.8 (t, *J* = 10.5 Hz, 3F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{15}H_{19}CIF_{3}NO_{4}S+Na]^{+}$  424.0568 found 424.0568.

#### Gram-scale synthesis



A 200 mL Schlenk tube was charged with a CH<sub>3</sub>CN (120 mL) solution of **2e** (1.10 g, 6.01 mmol), **1** (3.88 g, 10.2 mmol), perylene (75.7 mg, 0.300 mmol) and H<sub>2</sub>O (0.109 g, 6.08 mmol) under N<sub>2</sub> atmosphere. The mixture was degassed by three freeze-pump-thaw cycles. The Schlenk tube was placed at 2–3 cm away from blue LED lamps ( $\lambda$  = 425 ± 15 nm) in a water bath. The mixture was stirred for 48 h at room temperature

under visible light irradiation. After the reaction, the mixture was concentrated under reduced pressure.  $H_2O$  (50 mL) and  $CH_2CI_2$  (50 mL) were added and the organic layer was separated. The water phase was extracted with  $CH_2CI_2$  (50 mL × 2). The combined organic layer was dried over  $Na_2SO_4$ , filtered, and concentrated under reduced pressure. Purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and reprecipitation afforded **3e** as a pale yellow sold (1.11 g, 64%)

## **Deprotection of 3e**



A 100 mL two-neck flask was charged with **3e** (0.296 g, 1.01 mmol) and conc. HCl (15 mL). The mixture was stirred for 48 h at 100 °C. Volatiles were evaporated by aspirator, and the residue was washed with  $Et_2O$  to afford the desired amine-salt as a beige solid (0.154 g, 53%).

<sup>1</sup>**H NMR** (400 MHz, CD<sub>3</sub>OD, rt):  $\delta$  7.67 (d, *J* = 8.4 Hz, 2H; *Ar*), 7.44, (d, *J* = 8.0 Hz, 2H; *Ar*), 5.92 (apparent tt, *J* = 55.2 Hz, 4.4 Hz, 1H; CF<sub>2</sub>*H*), 4.60 (t, 1H; *J* = 7.6 Hz, C*H*CH<sub>2</sub>CF<sub>2</sub>H), 2.65-2.54 (m, 2H; CHCH<sub>2</sub>CF<sub>2</sub>H).

<sup>13</sup>**C** NMR (125 MHz, CD<sub>3</sub>OD, rt): δ 136.3, 133.8, 130.4, 124.8, 116.3 (apparent t, J = 238.8 Hz), 51.0 (apparent t, J = 7.7 Hz), 39.3 (apparent t, J = 22.3 Hz).

<sup>19</sup>**F NMR** (376 MHz, CD<sub>3</sub>OD, r.t.): δ-116.0 (dddd, *J* = 290.6 Hz, 54.9 Hz, 14.7 Hz, 14.7 Hz, 1F), -117.4 (dddd, *J* = 289.9 Hz, 55.6 Hz, 17.3 Hz, 17.3 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_9H_{10}BrF_2N+H]^+$  250.0037 found 250.0041.

#### Electro- and photo-chemical studies

Cyclic voltammograms of 1, perylene and G



**Figure S3.** Cyclic voltammogram of **1**. The measurement was performed in  $CH_3CN$  ([**1**] = 1.00 mM, [[NBu<sub>4</sub>]PF<sub>6</sub>] = 0.100 M, referenced by ferrocene).



**Figure S4.** Cyclic voltammogram of perylene. The measurement was performed in  $CH_3CN$  ([perylene] = 1.00 mM, [[NBu<sub>4</sub>]PF<sub>6</sub>] = 0.100 M, referenced by ferrocene).



**Figure S5.** Cyclic voltammogram of **G**. The measurement was performed in  $CH_3CN$  ([ $CF_2H$  reagent] = 1.00 mM, [[ $NBu_4$ ] $PF_6$ ] = 0.100 M, referenced by ferrocene).

UV-vis spectra of perylene and 1, and emission spectrum of perylene



**Figure S6.** (a) UV-vis spectra of perylene and **1** and (b) emission spectrum of perylene. All the measurements were performed in CH<sub>3</sub>CN at room temperature ((a): [perylene] = 0.040 mM, [**1**] = 0.132 mM, Normalized spectra are shown in the figure. (b): [perylene] = 0.004 mM, excitation light:  $\lambda$  = 380 nm).

UV-vis spectra of other PAHs



**Figure S7.** UV-vis spectra of other PAHs. All the measurements were performed in  $CH_3CN$  at room temperature ([pyrene] = 0.014 mM, [9,10-dimethylanthracene] = 0.040 mM, [anthracene] = 0.040 mM, Normalized spectra are shown in the figure).

Estimation of the excited state energy of perylene



**Figure S8.** Normalized spectra for absorption and emission of perylene. All the measurements were performed in CH<sub>3</sub>CN at room temperature. Excited state energy was estimated at the intersection between normalized absorption and emission spectra after converting the wavelength axis to energy scale.

Redox potentials at the excited state are estimated by the following formula. They were calculated by using redox potentials at the ground state and the excited state energy of perylene measured in the above experiments.<sup>3</sup>

$$E^*_{ox} = E_{1/2.ox} - E_{0,0} \qquad E^*_{ox} = -2.23 V$$
$$E^*_{red} = E_{1/2.red} + E_{0,0} \qquad E^*_{red} = +0.72 V$$

Excited-state lifetime of perylene



Figure S9. Luminescence decay of perylene. The measurement was performed in CH<sub>3</sub>CN at room temperature.

Redox potentials and selected photophysical properties of perylene

| <i>E</i> <sub>1/2.ox</sub> (V) | <i>E</i> <sub>1/2.red</sub> (V) | $E^*_{ox}(V)$ | $E^*_{red}(V)$ | excited-state        | absorption | emission             |
|--------------------------------|---------------------------------|---------------|----------------|----------------------|------------|----------------------|
|                                |                                 |               |                | lifetime $\tau$ (ns) | λ (nm)     | $\lambda_{max}$ (nm) |
| + 0.61                         | -2.12                           | -2.23         | +0.72          | 8.2                  | 434, 407   | 440                  |

**Table S1** Redox potentials and selected photophysical properties of perylene.

#### Luminescence quenching experiments



**Figure S10.** Luminescence quenching experiments of perylene. The measurement was performed in  $CH_3CN$  at room temperature and absorption of perylene was adjusted to 0.1 for measurements. The Solutions were degassed by three freeze-pump-thaw cycles before all the measurements. (a) **1** was used as a quencher, and (b) styrene (**2a**) was used as a quencher.

## Time profile for the reaction of 2a with 1



Figure S11. Time profile for the reaction of 2a with 1.

The above result suggested that perylene served as a redox catalyst, and radical chain reaction was not a main pathway in the present reaction.

#### **Radical clock experiments**

NMR experiment



An NMR tube was charged with a CD<sub>3</sub>CN (0.5 mL; containing 0.0250 mmol of D<sub>2</sub>O) solution of (1-(2-phenylcyclopropyl)vinyl)benzene **2q** (5.5 mg, 0.0250 mmol), **1** (19.0 mg, 0.0500 mmol), perylene (0.6 mg, 0.00250 mmol) and tetraethylsilane as an internal standard under N<sub>2</sub> atmosphere. The mixture was degassed by three freeze-pump-thaw cycles. The NMR tube was placed at 2-3 cm away from blue LED lamps ( $\lambda$  = 425 ± 15 nm). The reaction was carried out under visible light irradiation for 3 h at room temperature (49% NMR yield). As a result, the almost single product was formed in the reaction.





**Preparative scale** 



A 20 mL Schlenk tube was charged with a CH<sub>3</sub>CN (5.00 mL) solution of (1-(2-phenylcyclopropyl)vinyl) benzene **2q** (55.1 mg, 0.250 mmol), **1** (190 mg, 0.500 mmol), perylene (3.2 mg, 0.0127 mmol) and H<sub>2</sub>O (4.5 mg, 0.250 mmol) under N<sub>2</sub> atmosphere. The mixture was degassed by three freeze-pump-thaw cycles. The Schlenk tube was placed at 2-3 cm away from blue LED lamps ( $\lambda$  = 425 ± 15 nm). The mixture was stirred for 6 h at room temperature under visible light irradiation. After the reaction, H<sub>2</sub>O (15 mL) was added and resulting suspension was extracted with CH<sub>2</sub>Cl<sub>2</sub> (15 mL × 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. Purification through flash column chromatography on silica gel (hexane/ethyl acetate = 4 : 1 - 1 : 3) and GPC afforded a as a white solid (19.2 mg, 23%).

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, rt):  $\delta$  7.38-7.24 (10H; Ar), 5.94 (brd, *J* = 7.6 Hz, 1H; NH), 5.81 (t, *J* = 7.2 Hz, 1H; C=CHCH<sub>2</sub>), 5.70 (tt, *J* = 56.8 Hz, 4.8 Hz, 1H; CF<sub>2</sub>H), 5.17 (dd, *J* = 8.0 Hz, 6.0 Hz, 1H; NHCHCH<sub>2</sub>), 3.10-3.00 (m, 2H; CHCH<sub>2</sub>CF<sub>2</sub>H), 2.85-2.70 (m, 2H; C=CHCH<sub>2</sub>), 1.99 (s, 3H; NHCOMe).

<sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>, rt): δ 169.7, 141.52, 141.47, 134.1 (t, *J* = 5.9 Hz), 129.5, 128.9, 128.7, 127.7 (2C), 126.6, 126.5, 116.0 (t, *J* = 240.8 Hz), 53.3, 35.7, 35.5 (t, *J* = 22.4 Hz), 23.4.

<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>, r.t.): δ -114.8 (dddd, *J* = 278 Hz, 56.4 Hz, 15.4 Hz, 15.4 Hz, 1F), -115.8 (dddd, *J* = 277.9 Hz, 56.8 Hz, 19.2 Hz, 15.4 Hz, 1F).

**HRMS** (ESI-TOF) calcd m/z for  $[C_{20}H_{21}F_2NO+Na]^+$  352.1483 found 352.1480.

Crystallographic data of 1 and 3c



Figure S13. An ORTEP drawing of 1. One  $BF_4$  anion was omitted for clarity.

| ,                               |                                                        |
|---------------------------------|--------------------------------------------------------|
| Chemical formula                | C <sub>17</sub> H <sub>19</sub> BF <sub>6</sub> S      |
| Formula weight                  | 380.19                                                 |
| Temperature                     | 90(2) K                                                |
| Wavelength                      | 0.71073 Å                                              |
| Crystal size                    | 0.110 x 0.172 x 0.231 mm                               |
| Crystal system                  | orthorhombic                                           |
| Space group                     | Pbca                                                   |
| Unit cell dimensions            | a = 13.8754(11) Å α = 90°                              |
|                                 | $b = 14.2531(12) \text{ Å} \qquad \beta = 90^{\circ}$  |
|                                 | $c = 17.5717(14) \text{ Å} \qquad \gamma = 90^{\circ}$ |
| Volume                          | 3475.1(5) Å <sup>3</sup>                               |
| Z                               | 8                                                      |
| Density (calculated)            | 1.453 g/cm <sup>3</sup>                                |
| Absorption coefficient          | 0.243 mm <sup>-1</sup>                                 |
| F(000)                          | 1568                                                   |
| Theta range for data collection | 2.32 to 25.03°                                         |
| Index ranges                    | -16<=h<=16, -16<=k<=15, -20<=l<=18                     |
| Reflections collected           | 15395                                                  |
|                                 |                                                        |

| Table S2-1. Crystal data and structure refinen | nent for 1 | ١. |
|------------------------------------------------|------------|----|
|------------------------------------------------|------------|----|

| Independent reflections             | 3065 [R(int) = 0.0135]                       |                           |  |  |
|-------------------------------------|----------------------------------------------|---------------------------|--|--|
| Coverage of independent reflections | 100.00%                                      |                           |  |  |
| Absorption correction               | multi-scan                                   |                           |  |  |
| Max. and min. transmission          | 0.9740 and 0.9460                            |                           |  |  |
| Refinement method                   | Full-matrix least-square                     | es on F <sup>2</sup>      |  |  |
| Refinement program                  | SHELXL-2013 (Sheldrick, 2013)                |                           |  |  |
| Function minimized                  | $\Sigma w(Fo^2 - Fc^2)^2$                    |                           |  |  |
| Data / restraints / parameters      | 3065 / 0 / 230                               |                           |  |  |
| Goodness-of-fit on F2               | 0.98                                         |                           |  |  |
| Δ/σmax                              | 0.001                                        |                           |  |  |
| Final R indices                     | 2832 data; I>2σ(I)                           | R1 = 0.0279, wR2 = 0.0694 |  |  |
|                                     | all data                                     | R1 = 0.0306, wR2 = 0.0720 |  |  |
| Weighting scheme                    | w=1/[ $\sigma^2$ (Fo <sup>2</sup> )+(0.0302P | ) <sup>2</sup> +2.8611P]  |  |  |
|                                     | where $P=(Fo^2+2Fc^2)/3$                     |                           |  |  |
| Largest diff. peak and hole         | 0.355 and -0.281 eÅ <sup>-3</sup>            |                           |  |  |
| R.M.S. deviation from mean          | 0.040 eÅ <sup>-3</sup>                       |                           |  |  |

**Table S2-2.** Atomic coordinates and equivalent isotropic atomic displacement parameters ( $Å^2$ ) for **1**.

|     | x/a         | y/b         | z/c         | U(eq)     |
|-----|-------------|-------------|-------------|-----------|
| B1  | 0.34182(12) | 0.58501(11) | 0.00492(9)  | 0.0207(3) |
| C1  | 0.50262(10) | 0.30523(9)  | 0.51920(8)  | 0.0188(3) |
| C2  | 0.42769(10) | 0.29436(10) | 0.46783(8)  | 0.0208(3) |
| C3  | 0.42665(10) | 0.34824(10) | 0.40151(8)  | 0.0233(3) |
| C4  | 0.50079(11) | 0.41270(11) | 0.39079(8)  | 0.0266(3) |
| C5  | 0.57443(11) | 0.42295(10) | 0.44305(9)  | 0.0269(3) |
| C6  | 0.57860(10) | 0.36878(10) | 0.50878(8)  | 0.0225(3) |
| C7  | 0.66011(11) | 0.37884(11) | 0.56465(9)  | 0.0299(3) |
| C8  | 0.34714(11) | 0.33598(12) | 0.34417(9)  | 0.0300(4) |
| C9  | 0.47304(10) | 0.30370(10) | 0.67918(8)  | 0.0205(3) |
| C10 | 0.39013(10) | 0.35784(9)  | 0.67151(8)  | 0.0215(3) |
| C11 | 0.36018(12) | 0.41377(10) | 0.73206(9)  | 0.0274(3) |
| C12 | 0.41677(13) | 0.41384(11) | 0.79775(9)  | 0.0341(4) |
| C13 | 0.49885(12) | 0.35956(12) | 0.80404(9)  | 0.0340(4) |
| C14 | 0.52962(11) | 0.30151(11) | 0.74518(9)  | 0.0268(3) |
| C15 | 0.27044(13) | 0.47223(11) | 0.72645(10) | 0.0381(4) |
| C16 | 0.61845(12) | 0.24204(13) | 0.75422(10) | 0.0369(4) |

| C17              | 0.42029(10)                | 0.14099(10) | 0.59529(8) | 0.0220(3)   |  |
|------------------|----------------------------|-------------|------------|-------------|--|
| F1               | 0.43444(7)                 | 0.09001(6)  | 0.65847(5) | 0.0299(2)   |  |
| F2               | 0.33200(6)                 | 0.17793(6)  | 0.59883(5) | 0.0270(2)   |  |
| F3               | 0.33641(7)                 | 0.56126(8)  | 0.92852(5) | 0.0409(3)   |  |
| F4               | 0.30186(7)                 | 0.51428(7)  | 0.04835(6) | 0.0417(3)   |  |
| F5               | 0.43876(6)                 | 0.59509(7)  | 0.02415(5) | 0.0337(2)   |  |
| F6               | 0.29424(8)                 | 0.66792(7)  | 0.01728(7) | 0.0476(3)   |  |
| S1               | 0.51495(2)                 | 0.23370(2)  | 0.60183(2) | 0.01906(10) |  |
| Table S2-3. Bond | lengths (Å) for <b>1</b> . |             |            |             |  |
| B1-F6            | 1.3710(19)                 | B1-F4       |            | 1.3807(18)  |  |
| B1-F3            | 1.3866(19)                 | B1-F5       |            | 1.3942(18)  |  |
| C1-C2            | 1.385(2)                   | C1-C6       |            | 1.402(2)    |  |
| C1-S1            | 1.7824(14)                 | C2-C3       |            | 1.396(2)    |  |
| C2-H2            | 0.95                       | C3-C4       |            | 1.392(2)    |  |
| C3-C8            | 1.504(2)                   | C4-C5       |            | 1.382(2)    |  |
| C4-H4            | 0.95                       | C5-C6       |            | 1.390(2)    |  |
| C5-H5            | 0.95                       | C6-C7       |            | 1.504(2)    |  |
| C7-H7A           | 0.98                       | C7-H7B      |            | 0.98        |  |
| C7-H7C           | 0.98                       | C8-H8A      |            | 0.98        |  |
| C8-H8B           | 0.98                       | C8-H8C      |            | 0.98        |  |
| C9-C10           | 1.392(2)                   | C9-C14      |            | 1.401(2)    |  |
| C9-S1            | 1.7835(14)                 | C10-C1      | 1          | 1.393(2)    |  |
| C10-H10          | 0.95                       | C11-C1      | 2          | 1.396(2)    |  |
| C11-C15          | 1.502(2)                   | C12-C1      | 3          | 1.381(3)    |  |
| C12-H12          | 0.95                       | C13-C1      | 4          | 1.392(2)    |  |
| C13-H13          | 0.95                       | C14-C1      | 6          | 1.504(2)    |  |
| C15-H15A         | 0.98                       | C15-H1      | 5B         | 0.98        |  |
| C15-H15C         | 0.98                       | C16-H1      | 6A         | 0.98        |  |
| C16-H16B         | 0.98                       | C16-H1      | 6C         | 0.98        |  |
| C17-F2           | 1.3348(17)                 | C17-F1      |            | 1.3413(16)  |  |
| C17-S1           | 1.8666(14)                 | C17-H1      | 7          | 1           |  |
| Table S2-4. Bond | angles (°) for <b>1</b> .  |             |            |             |  |
| C10-C9-C14       | 123.76(13)                 | C10-C9      | )-S1       | 120.39(11)  |  |
| C14-C9-S1        | 115.83(11)                 | C9-C10      | )-C11      | 119.34(14)  |  |
| C9-C10-H10       | 120.3                      | C11-C1      | 0-H10      | 120.3       |  |

| C10-C11-C12   | 117.66(15) | C10-C11-C15   | 121.00(15) |
|---------------|------------|---------------|------------|
| C12-C11-C15   | 121.34(14) | C13-C12-C11   | 121.97(14) |
| C13-C12-H12   | 119        | C11-C12-H12   | 119        |
| C12-C13-C14   | 121.77(15) | C12-C13-H13   | 119.1      |
| C14-C13-H13   | 119.1      | C13-C14-C9    | 115.48(14) |
| C13-C14-C16   | 120.52(15) | C9-C14-C16    | 124.00(14) |
| C11-C15-H15A  | 109.5      | C11-C15-H15B  | 109.5      |
| H15A-C15-H15B | 109.5      | C11-C15-H15C  | 109.5      |
| H15A-C15-H15C | 109.5      | H15B-C15-H15C | 109.5      |
| C14-C16-H16A  | 109.5      | C14-C16-H16B  | 109.5      |
| H16A-C16-H16B | 109.5      | C14-C16-H16C  | 109.5      |
| H16A-C16-H16C | 109.5      | H16B-C16-H16C | 109.5      |
| F2-C17-F1     | 108.03(11) | F2-C17-S1     | 111.32(9)  |
| F1-C17-S1     | 103.27(9)  | F2-C17-H17    | 111.3      |
| F1-C17-H17    | 111.3      | S1-C17-H17    | 111.3      |
| C1-S1-C9      | 105.64(7)  | C1-S1-C17     | 106.69(7)  |
| C9-S1-C17     | 102.33(6)  |               |            |

**Table S2-5.** Anisotropic atomic displacement parameters  $(Å^2)$  for **1**.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                        | *·             | * *        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|----------------|------------|
| The and a stars is at a set of |                      |                        |                | L II 1     |
| I DO ODICOTRODIO OTOMIO O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | chiacomont tactor av | nonont takes the term. | - 2TT-1 h- 0 - | <u> </u>   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                        | - / II I II a  | 0 0121     |
| The amount opic atomic a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                        | — II I II 🛛    | ~ ~ ~ 12 1 |

|     | U11        | U22        | U33       | U23        | U13        | U12        |
|-----|------------|------------|-----------|------------|------------|------------|
| B1  | 0.0214(8)  | 0.0189(8)  | 0.0218(8) | 0.0009(6)  | -0.0001(6) | -0.0012(6) |
| C1  | 0.0234(7)  | 0.0160(7)  | 0.0169(7) | 0.0018(5)  | 0.0052(6)  | 0.0031(5)  |
| C2  | 0.0210(7)  | 0.0198(7)  | 0.0217(7) | 0.0001(6)  | 0.0048(6)  | 0.0021(6)  |
| C3  | 0.0249(7)  | 0.0242(7)  | 0.0207(7) | 0.0000(6)  | 0.0041(6)  | 0.0075(6)  |
| C4  | 0.0340(8)  | 0.0237(8)  | 0.0220(8) | 0.0066(6)  | 0.0064(6)  | 0.0050(6)  |
| C5  | 0.0309(8)  | 0.0217(7)  | 0.0280(8) | 0.0028(6)  | 0.0068(6)  | -0.0036(6) |
| C6  | 0.0247(7)  | 0.0198(7)  | 0.0229(7) | -0.0004(6) | 0.0048(6)  | -0.0006(6) |
| C7  | 0.0287(8)  | 0.0314(8)  | 0.0297(8) | 0.0035(7)  | 0.0002(7)  | -0.0100(7) |
| C8  | 0.0291(8)  | 0.0379(9)  | 0.0232(8) | 0.0040(7)  | 0.0004(6)  | 0.0087(7)  |
| C9  | 0.0247(7)  | 0.0191(7)  | 0.0177(7) | -0.0003(5) | 0.0048(6)  | -0.0049(6) |
| C10 | 0.0267(7)  | 0.0169(7)  | 0.0208(7) | 0.0020(5)  | 0.0041(6)  | -0.0035(6) |
| C11 | 0.0369(9)  | 0.0171(7)  | 0.0281(8) | -0.0007(6) | 0.0116(7)  | -0.0058(6) |
| C12 | 0.0470(10) | 0.0297(8)  | 0.0257(8) | -0.0104(7) | 0.0122(7)  | -0.0143(7) |
| C13 | 0.0386(9)  | 0.0429(10) | 0.0205(8) | -0.0023(7) | -0.0010(7) | -0.0171(8) |
| C14 | 0.0278(8)  | 0.0317(8)  | 0.0209(7) | 0.0039(6)  | 0.0006(6)  | -0.0101(6) |

| C15         | 0.0476(10)    | 0.0256(8)      | 0.0411(10)        | -0.0036(7)      | 0.0192(8)      | 0.0052(7)            |
|-------------|---------------|----------------|-------------------|-----------------|----------------|----------------------|
| C16         | 0.0303(8)     | 0.0527(10)     | 0.0278(8)         | 0.0099(8)       | -0.0052(7)     | -0.0032(8)           |
| C17         | 0.0254(7)     | 0.0170(7)      | 0.0235(7)         | 0.0027(5)       | 0.0045(6)      | -0.0008(6)           |
| F1          | 0.0389(5)     | 0.0231(4)      | 0.0276(5)         | 0.0091(4)       | 0.0043(4)      | -0.0022(4)           |
| F2          | 0.0228(4)     | 0.0223(4)      | 0.0359(5)         | -0.0002(4)      | 0.0057(4)      | -0.0014(3)           |
| F3          | 0.0471(6)     | 0.0498(6)      | 0.0256(5)         | -0.0090(4)      | -0.0078(4)     | 0.0017(5)            |
| F4          | 0.0379(5)     | 0.0402(6)      | 0.0469(6)         | 0.0200(5)       | -0.0058(5)     | -0.0145(4)           |
| F5          | 0.0230(5)     | 0.0501(6)      | 0.0279(5)         | -0.0014(4)      | -0.0011(4)     | -0.0078(4)           |
| F6          | 0.0487(6)     | 0.0300(5)      | 0.0641(7)         | -0.0083(5)      | 0.0059(5)      | 0.0135(5)            |
| S1          | 0.02034(18)   | 0.01819(19)    | 0.01865(18)       | 0.00286(13)     | 0.00261(13)    | 0.00079(13)          |
| Table S2-6. | Hydrogen atom | nic coordinate | s and isotropic a | tomic displacer | nent parameter | s (Ų) for <b>1</b> . |
|             | x/a           |                | y/b               | z/c             | U(eq)          |                      |
| H2          | 0.377         | 5              | 0.2507            | 0.4776          | 0.025          |                      |
| H4          | 0.5008        | 3              | 0.4507            | 0.3463          | 0.032          |                      |
| H5          | 0.6234        | 4              | 0.4681            | 0.4339          | 0.032          |                      |
| H7A         | 0.7076        | 6              | 0.4233            | 0.5446          | 0.045          |                      |
| H7B         | 0.6908        | 3              | 0.3177            | 0.5725          | 0.045          |                      |
| H7C         | 0.635         |                | 0.4021            | 0.6132          | 0.045          |                      |
| H8A         | 0.3387        | 7              | 0.2691            | 0.3331          | 0.045          |                      |
| H8B         | 0.3639        | 9              | 0.3694            | 0.2972          | 0.045          |                      |
| H8C         | 0.287         |                | 0.3615            | 0.3648          | 0.045          |                      |
| H10         | 0.3543        | 3              | 0.3567            | 0.6254          | 0.026          |                      |
| H12         | 0.3983        | 3              | 0.4524            | 0.8394          | 0.041          |                      |
| H13         | 0.5353        | 3              | 0.3619            | 0.8498          | 0.041          |                      |
| H15A        | 0.2876        | 6              | 0.5362            | 0.7112          | 0.057          |                      |
| H15B        | 0.238         | 1              | 0.4737            | 0.776           | 0.057          |                      |
| H15C        | 0.227         |                | 0.4449            | 0.6885          | 0.057          |                      |
| H16A        | 0.6692        | 2              | 0.2654            | 0.7204          | 0.055          |                      |
| H16B        | 0.603         | 3              | 0.1769            | 0.741           | 0.055          |                      |
| H16C        | 0.6407        | 7              | 0.245             | 0.8071          | 0.055          |                      |
| H17         | 0.4286        | 6              | 0.102             | 0.5484          | 0.026          |                      |



Figure S14. An ORTEP drawing of 3c. The same structure was omitted for clarify

| Chemical formula                | $C_{11}H_{12}F_3NO$       |                                |
|---------------------------------|---------------------------|--------------------------------|
| Formula weight                  | 231.22                    |                                |
| Temperature                     | 90(2) K                   |                                |
| Wavelength                      | 0.71073 Å                 |                                |
| Crystal size                    | 0.060 x 0.095 x 0.127     | mm                             |
| Crystal system                  | triclinic                 |                                |
| Space group                     | P 1                       |                                |
| Unit cell dimensions            | a = 5.0215(5) Å           | $\alpha = 80.3440(10)^{\circ}$ |
|                                 | b = 8.6681(9) Å           | $\beta = 83.0720(10)^{\circ}$  |
|                                 | c = 12.6928(13) Å         | γ = 88.4000(10)°               |
| Volume                          | 540.66(10) Å <sup>3</sup> |                                |
| Z                               | 2                         |                                |
| Density (calculated)            | 1.420 g/cm <sup>3</sup>   |                                |
| Absorption coefficient          | 0.126 mm <sup>-1</sup>    |                                |
| F(000)                          | 240                       |                                |
| Theta range for data collection | 1.64 to 25.01°            |                                |
|                                 |                           |                                |

Table S3-1. Crystal data and structure refinement for 3c.

| Index ranges                        | -5<=h<=5, -9<=k<=10,                 | -7<=l<=15                 |
|-------------------------------------|--------------------------------------|---------------------------|
| Reflections collected               | 2564                                 |                           |
| Independent reflections             | 2146 [R(int) = 0.0070]               |                           |
| Coverage of independent reflections | 97.20%                               |                           |
| Absorption correction               | multi-scan                           |                           |
| Max. and min. transmission          | 0.9920 and 0.9840                    |                           |
| Refinement method                   | Full-matrix least-square             | es on F <sup>2</sup>      |
| Refinement program                  | SHELXL-2013 (Sheldrid                | ck, 2013)                 |
| Function minimized                  | $\Sigma w(Fo^2 - Fc^2)^2$            |                           |
| Data / restraints / parameters      | 2146 / 3 / 291                       |                           |
| Goodness-of-fit on F2               | 1.087                                |                           |
| Final R indices                     | 2141 data; I>2σ(I)                   | R1 = 0.0210, wR2 = 0.0544 |
|                                     | all data                             | R1 = 0.0211, wR2 = 0.0545 |
| Weighting scheme                    | $w=1/[\sigma^{2}(Fo^{2})+(0.0271P)]$ | ) <sup>2</sup> +0.1434P]  |
|                                     | where $P=(Fo^2+2Fc^2)/3$             |                           |
| Absolute structure parameter        | 0.2(2)                               |                           |
| Largest diff. peak and hole         | 0.118 and -0.129 eÅ <sup>-3</sup>    |                           |
| R.M.S. deviation from mean          | 0.029 eÅ <sup>-3</sup>               |                           |

| 11.10.00.00016 |                       | 0.020 C/             |                     |                                              |
|----------------|-----------------------|----------------------|---------------------|----------------------------------------------|
| Table S3-2. A  | tomic coordinates and | equivalent isotropic | atomic displacement | parameters (Å <sup>2</sup> ) for <b>3c</b> . |
|                | x/a                   | y/b                  | z/c                 | U(eq)                                        |
| C1             | 0.4649(4)             | 0.0961(3)            | 0.48848(19)         | 0.0221(4)                                    |
| C2             | 0.5260(4)             | 0.0442(2)            | 0.60134(18)         | 0.0206(4)                                    |
| C3             | 0.3603(4)             | 0.9016(2)            | 0.65965(17)         | 0.0171(4)                                    |
| C4             | 0.4029(4)             | 0.8645(2)            | 0.77738(17)         | 0.0180(4)                                    |
| C5             | 0.6068(4)             | 0.7659(3)            | 0.81350(18)         | 0.0247(5)                                    |
| C6             | 0.6475(4)             | 0.7376(3)            | 0.92131(19)         | 0.0284(5)                                    |
| C7             | 0.4824(4)             | 0.8097(3)            | 0.99276(18)         | 0.0246(5)                                    |
| C8             | 0.2763(5)             | 0.9069(3)            | 0.9611(2)           | 0.0306(5)                                    |
| C9             | 0.2375(4)             | 0.9333(3)            | 0.85280(19)         | 0.0260(5)                                    |
| C10            | 0.2283(4)             | 0.6888(2)            | 0.57084(15)         | 0.0147(4)                                    |
| C11            | 0.3227(4)             | 0.5522(2)            | 0.51711(18)         | 0.0208(4)                                    |
| C12            | 0.9981(4)             | 0.4447(3)            | 0.28402(18)         | 0.0199(4)                                    |
| C13            | 0.8876(4)             | 0.4229(3)            | 0.18289(17)         | 0.0197(4)                                    |
| C14            | 0.0444(4)             | 0.2984(2)            | 0.12763(16)         | 0.0160(4)                                    |
| C15            | 0.9845(4)             | 0.3084(2)            | 0.01233(16)         | 0.0158(4)                                    |

| C16             | 0.1331(4)                      | 0.4110(2)          | 0.93181(18) | 0.0225(5) |
|-----------------|--------------------------------|--------------------|-------------|-----------|
| C17             | 0.0822(5)                      | 0.4287(3)          | 0.82525(19) | 0.0274(5) |
| C18             | 0.8788(4)                      | 0.3418(3)          | 0.80130(17) | 0.0239(5) |
| C19             | 0.7280(4)                      | 0.2389(3)          | 0.87808(18) | 0.0239(5) |
| C20             | 0.7808(4)                      | 0.2231(3)          | 0.98428(17) | 0.0210(4) |
| C21             | 0.1783(4)                      | 0.0516(2)          | 0.23725(16) | 0.0159(4) |
| C22             | 0.0811(4)                      | 0.8975(2)          | 0.30181(18) | 0.0226(5) |
| F1              | 0.6070(3)                      | 0.22783(16)        | 0.44319(11) | 0.0330(3) |
| F2              | 0.1991(2)                      | 0.13892(16)        | 0.48808(11) | 0.0304(3) |
| F3              | 0.5257(3)                      | 0.78499(17)        | 0.09740(11) | 0.0374(3) |
| F4              | 0.2493(2)                      | 0.51009(16)        | 0.25776(11) | 0.0281(3) |
| F5              | 0.8452(2)                      | 0.55047(15)        | 0.33363(11) | 0.0270(3) |
| F6              | 0.8257(3)                      | 0.35736(18)        | 0.69743(11) | 0.0369(3) |
| N1              | 0.4194(3)                      | 0.76788(19)        | 0.60397(14) | 0.0168(4) |
| N2              | 0.9900(3)                      | 0.14310(19)        | 0.19128(14) | 0.0161(3) |
| O1              | 0.9887(3)                      | 0.72733(18)        | 0.58308(12) | 0.0206(3) |
| O2              | 0.4156(3)                      | 0.09073(17)        | 0.22830(13) | 0.0222(3) |
| Table S3-3. Bon | nd lengths (Å) for <b>3c</b> . |                    |             |           |
| C1-F1           | 1.368(2)                       | C1-F2              |             | 1.376(2)  |
| C1-C2           | 1.493(3)                       | C1-H1              |             | 1         |
| C2-C3           | 1.540(3)                       | C2-H2/             | ٩           | 0.99      |
| C2-H2B          | 0.99                           | C3-N1              |             | 1.461(3)  |
| C3-C4           | 1.515(3)                       | C3-H3              |             | 1         |
| C4-C5           | 1.387(3)                       | C4-C9              |             | 1.391(3)  |
| C5-C6           | 1.388(3)                       | C5-H5              |             | 0.95      |
| C6-C7           | 1.371(3)                       | C6-H6              |             | 0.95      |
| C7-F3           | 1.352(3)                       | C7-C8              |             | 1.371(3)  |
| C8-C9           | 1.391(3)                       | C8-H8              |             | 0.95      |
| C9-H9           | 0.95                           | C10-O <sup>2</sup> | 1           | 1.238(2)  |
| C10-N1          | 1.341(3)                       | C10-C <sup>2</sup> | 11          | 1.501(3)  |
| C11-H11A        | 0.98                           | C11-H1             | I1B         | 0.98      |
| C11-H11C        | 0.98                           | C12-F5             | 5           | 1.365(3)  |
| C12-F4          | 1.378(2)                       | C12-C1             | 13          | 1.500(3)  |
| C12-H12         | 1                              | C13-C1             | 14          | 1.533(3)  |
| C13-H13A        | 0.99                           | C13-H <sup>2</sup> | 13B         | 0.99      |

| C14-N2                 | 1.463(3)               | C14-C15       | 1.517(3)   |
|------------------------|------------------------|---------------|------------|
| C14-H14                | 1                      | C15-C20       | 1.392(3)   |
| C15-C16                | 1.393(3)               | C16-C17       | 1.389(3)   |
| C16-H16                | 0.95                   | C17-C18       | 1.378(3)   |
| C17-H17                | 0.95                   | C18-F6        | 1.360(3)   |
| C18-C19                | 1.373(3)               | C19-C20       | 1.389(3)   |
| C19-H19                | 0.95                   | C20-H20       | 0.95       |
| C21-O2                 | 1.235(2)               | C21-N2        | 1.342(3)   |
| C21-C22                | 1.505(3)               | C22-H22A      | 0.98       |
| C22-H22B               | 0.98                   | C22-H22C      | 0.98       |
| N1-H1A                 | 0.88                   | N2-H2         | 0.88       |
| Table S3-4. Bond angle | es (°) for <b>3c</b> . |               |            |
| F1-C1-F2               | 105.57(17)             | F1-C1-C2      | 109.97(17) |
| F2-C1-C2               | 110.06(18)             | F1-C1-H1      | 110.4      |
| F2-C1-H1               | 110.4                  | C2-C1-H1      | 110.4      |
| C1-C2-C3               | 112.81(17)             | C1-C2-H2A     | 109        |
| C3-C2-H2A              | 109                    | C1-C2-H2B     | 109        |
| C3-C2-H2B              | 109                    | H2A-C2-H2B    | 107.8      |
| N1-C3-C4               | 112.51(16)             | N1-C3-C2      | 110.26(16) |
| C4-C3-C2               | 111.21(16)             | N1-C3-H3      | 107.5      |
| C4-C3-H3               | 107.5                  | C2-C3-H3      | 107.5      |
| C5-C4-C9               | 118.0(2)               | C5-C4-C3      | 122.29(18) |
| C9-C4-C3               | 119.74(18)             | C4-C5-C6      | 121.3(2)   |
| C4-C5-H5               | 119.4                  | C6-C5-H5      | 119.4      |
| C7-C6-C5               | 118.9(2)               | C7-C6-H6      | 120.6      |
| C5-C6-H6               | 120.6                  | F3-C7-C8      | 119.1(2)   |
| F3-C7-C6               | 118.9(2)               | C8-C7-C6      | 122.0(2)   |
| C7-C8-C9               | 118.4(2)               | C7-C8-H8      | 120.8      |
| C9-C8-H8               | 120.8                  | C4-C9-C8      | 121.5(2)   |
| C4-C9-H9               | 119.2                  | C8-C9-H9      | 119.2      |
| O1-C10-N1              | 121.87(18)             | O1-C10-C11    | 122.14(18) |
| N1-C10-C11             | 115.99(16)             | C10-C11-H11A  | 109.5      |
| C10-C11-H11B           | 109.5                  | H11A-C11-H11B | 109.5      |
| C10-C11-H11C           | 109.5                  | H11A-C11-H11C | 109.5      |
| H11B-C11-H11C          | 109.5                  | F5-C12-F4     | 105.52(16) |
|                        |                        |               |            |

| F5-C12-C13    | 110.17(17) | F4-C12-C13    | 109.18(17) |
|---------------|------------|---------------|------------|
| F5-C12-H12    | 110.6      | F4-C12-H12    | 110.6      |
| C13-C12-H12   | 110.6      | C12-C13-C14   | 111.95(16) |
| C12-C13-H13A  | 109.2      | C14-C13-H13A  | 109.2      |
| C12-C13-H13B  | 109.2      | C14-C13-H13B  | 109.2      |
| H13A-C13-H13B | 107.9      | N2-C14-C15    | 112.39(16) |
| N2-C14-C13    | 109.86(17) | C15-C14-C13   | 111.38(15) |
| N2-C14-H14    | 107.7      | C15-C14-H14   | 107.7      |
| C13-C14-H14   | 107.7      | C20-C15-C16   | 118.67(19) |
| C20-C15-C14   | 122.58(17) | C16-C15-C14   | 118.71(17) |
| C17-C16-C15   | 121.34(19) | C17-C16-H16   | 119.3      |
| C15-C16-H16   | 119.3      | C18-C17-C16   | 117.9(2)   |
| C18-C17-H17   | 121        | C16-C17-H17   | 121        |
| F6-C18-C19    | 118.5(2)   | F6-C18-C17    | 118.9(2)   |
| C19-C18-C17   | 122.6(2)   | C18-C19-C20   | 118.7(2)   |
| C18-C19-H19   | 120.7      | C20-C19-H19   | 120.7      |
| C19-C20-C15   | 120.73(19) | C19-C20-H20   | 119.6      |
| C15-C20-H20   | 119.6      | O2-C21-N2     | 122.62(18) |
| O2-C21-C22    | 121.82(18) | N2-C21-C22    | 115.56(17) |
| C21-C22-H22A  | 109.5      | C21-C22-H22B  | 109.5      |
| H22A-C22-H22B | 109.5      | C21-C22-H22C  | 109.5      |
| H22A-C22-H22C | 109.5      | H22B-C22-H22C | 109.5      |
| C10-N1-C3     | 122.78(15) | C10-N1-H1A    | 118.6      |
| C3-N1-H1A     | 118.6      | C21-N2-C14    | 123.56(16) |
| C21-N2-H2     | 118.2      | C14-N2-H2     | 118.2      |

**Table S3-5.** Anisotropic atomic displacement parameters  $(Å^2)$  for **3c**.

|                                       |                      |                                  | 0 0 *0                 | * * |
|---------------------------------------|----------------------|----------------------------------|------------------------|-----|
| The average stream is a taxed and all |                      | we are and tall and the a famous |                        |     |
| i ne anisotronic atomic di            | Shiacement factor ey | (nonent takes the form)          | · - /π-i n- a - i L, + |     |
|                                       |                      |                                  |                        |     |
|                                       |                      |                                  |                        |     |

|    | U11        | U22        | U33        | U23        | U13         | U12        |
|----|------------|------------|------------|------------|-------------|------------|
| C1 | 0.0186(10) | 0.0194(10) | 0.0270(12) | -0.0005(9) | -0.0027(8)  | -0.0011(8) |
| C2 | 0.0192(10) | 0.0185(10) | 0.0243(11) | -0.0023(8) | -0.0046(9)  | -0.0038(8) |
| C3 | 0.0127(9)  | 0.0160(10) | 0.0232(11) | -0.0044(8) | -0.0030(8)  | -0.0002(7) |
| C4 | 0.0148(10) | 0.0153(10) | 0.0241(11) | -0.0046(8) | -0.0008(8)  | -0.0042(8) |
| C5 | 0.0201(10) | 0.0308(12) | 0.0211(12) | -0.0023(9) | 0.0018(9)   | 0.0036(9)  |
| C6 | 0.0267(11) | 0.0325(13) | 0.0231(12) | 0.0016(10) | -0.0015(10) | 0.0063(10) |
| C7 | 0.0333(12) | 0.0218(11) | 0.0177(11) | -0.0006(8) | -0.0013(9)  | -0.0072(9) |

| C8        | 0.0388(13)      | 0.0263(12)     | 0.0265(12)        | -0.0097(10)     | 0.0029(10)    | 0.0034(10)             |
|-----------|-----------------|----------------|-------------------|-----------------|---------------|------------------------|
| C9        | 0.0287(11)      | 0.0227(11)     | 0.0277(12)        | -0.0077(9)      | -0.0035(10)   | 0.0055(9)              |
| C10       | 0.0155(10)      | 0.0174(10)     | 0.0099(9)         | 0.0012(7)       | -0.0010(7)    | -0.0015(8)             |
| C11       | 0.0196(10)      | 0.0239(11)     | 0.0202(11)        | -0.0071(9)      | -0.0026(8)    | 0.0000(8)              |
| C12       | 0.0175(10)      | 0.0199(10)     | 0.0224(11)        | -0.0060(8)      | 0.0015(8)     | -0.0025(8)             |
| C13       | 0.0184(10)      | 0.0207(10)     | 0.0208(11)        | -0.0046(8)      | -0.0049(8)    | 0.0033(8)              |
| C14       | 0.0132(9)       | 0.0159(10)     | 0.0186(11)        | -0.0009(8)      | -0.0031(8)    | -0.0005(7)             |
| C15       | 0.0147(9)       | 0.0146(10)     | 0.0180(10)        | -0.0031(8)      | -0.0016(8)    | 0.0056(7)              |
| C16       | 0.0260(11)      | 0.0189(11)     | 0.0223(12)        | -0.0009(9)      | -0.0040(9)    | -0.0024(9)             |
| C17       | 0.0336(12)      | 0.0236(11)     | 0.0230(13)        | 0.0009(9)       | -0.0009(10)   | -0.0019(9)             |
| C18       | 0.0315(11)      | 0.0258(11)     | 0.0149(11)        | -0.0048(9)      | -0.0056(9)    | 0.0085(9)              |
| C19       | 0.0202(10)      | 0.0298(12)     | 0.0231(11)        | -0.0076(9)      | -0.0045(9)    | 0.0023(9)              |
| C20       | 0.0168(10)      | 0.0255(11)     | 0.0197(11)        | -0.0026(9)      | 0.0002(8)     | -0.0003(8)             |
| C21       | 0.0173(10)      | 0.0171(10)     | 0.0139(10)        | -0.0045(8)      | -0.0013(8)    | 0.0006(8)              |
| C22       | 0.0261(11)      | 0.0181(10)     | 0.0220(11)        | 0.0025(8)       | -0.0043(9)    | -0.0035(8)             |
| F1        | 0.0356(7)       | 0.0284(7)      | 0.0312(8)         | 0.0067(6)       | -0.0027(6)    | -0.0085(6)             |
| F2        | 0.0230(6)       | 0.0333(7)      | 0.0325(8)         | 0.0042(6)       | -0.0082(6)    | 0.0044(5)              |
| F3        | 0.0549(8)       | 0.0376(8)      | 0.0181(7)         | -0.0009(6)      | -0.0036(6)    | 0.0022(7)              |
| F4        | 0.0192(6)       | 0.0352(8)      | 0.0325(7)         | -0.0147(6)      | 0.0001(5)     | -0.0072(5)             |
| F5        | 0.0259(6)       | 0.0292(7)      | 0.0278(7)         | -0.0146(5)      | 0.0031(5)     | -0.0012(5)             |
| F6        | 0.0489(8)       | 0.0451(9)      | 0.0174(7)         | -0.0027(6)      | -0.0095(6)    | -0.0031(7)             |
| N1        | 0.0095(7)       | 0.0186(9)      | 0.0228(9)         | -0.0056(7)      | -0.0014(7)    | 0.0016(6)              |
| N2        | 0.0118(7)       | 0.0177(8)      | 0.0180(9)         | 0.0001(7)       | -0.0022(7)    | -0.0031(6)             |
| O1        | 0.0107(7)       | 0.0271(8)      | 0.0258(8)         | -0.0093(6)      | -0.0020(6)    | 0.0005(6)              |
| O2        | 0.0134(7)       | 0.0246(8)      | 0.0275(8)         | 0.0004(6)       | -0.0041(6)    | -0.0007(6)             |
| Table S3- | 6. Hydrogen ato | mic coordinate | s and isotropic a | atomic displace | ment paramete | rs (Ų) for <b>3c</b> . |
|           | x/a             |                | y/b               | z/c             | U(eq          | )                      |
| H1        | 0.508           | 35             | 1.0107            | 0.4449          | 0.026         | 6                      |
| H2A       | 0.489           | 94             | 1.1319            | 0.6421          | 0.025         | 5                      |
| H2B       | 0.719           | 92             | 1.0175            | 0.6004          | 0.025         | 5                      |
| H3        | 0.166           | 65             | 0.9293            | 0.6561          | 0.02          | 1                      |
| H5        | 0.721           | I              | 0.7167            | 0.7635          | 0.03          |                        |
| H6        | 0.787           | 73             | 0.6694            | 0.9452          | 0.034         | 1                      |
| H8        | 0.162           | 28             | 0.9551            | 1.0118          | 0.037         | 7                      |
| H9        | 0.094           | 17             | 0.9999            | 0.8299          | 0.03          | 1                      |

| H11A | 0.1922  | 0.4674  | 0.5381  | 0.031 |
|------|---------|---------|---------|-------|
| H11B | 0.497   | 0.5156  | 0.5393  | 0.031 |
| H11C | 0.3407  | 0.5846  | 0.4388  | 0.031 |
| H12  | 0.0066  | 0.3425  | 0.3336  | 0.024 |
| H13A | -0.1052 | 0.5237  | 0.1326  | 0.024 |
| H13B | -0.3028 | 0.3916  | 0.2005  | 0.024 |
| H14  | 0.2398  | 0.3194  | 0.1257  | 0.019 |
| H16  | 0.2722  | 0.47    | -0.0499 | 0.027 |
| H17  | 0.1844  | 0.4986  | -0.2294 | 0.033 |
| H19  | -0.4096 | 0.1797  | -0.1411 | 0.029 |
| H20  | -0.3232 | 0.1532  | 0.0384  | 0.025 |
| H22A | 0.209   | -0.1855 | 0.2862  | 0.034 |
| H22B | -0.0948 | -0.1259 | 0.2825  | 0.034 |
| H22C | 0.0659  | -0.0963 | 0.3787  | 0.034 |
| H1A  | 0.5876  | 0.738   | 0.5916  | 0.02  |
| H2   | -0.1752 | 0.1078  | 0.1999  | 0.019 |

#### References

1 For synthesis of **D**: (*a*) L. Li, F. Wang, C. Ni and J. Hu, *Angew. Chem. Int. Ed.*, 2013, **52**, 12390–12394. (*b*) J. Rong, L. Deng, P. Tan, C. Ni, Y. Gu and J. Hu, *Angew. Chem. Int. Ed.*, 2016, **55**, 2743–2747. For synthesis of **E**: (*c*) V. P. Mehta and M. F. Greaney, *Org. Lett.*, 2013, **15**, 5036–5039. (*d*) W. Zhang, F. Wang and J. Hu, *Org. Lett.*, 2009, **11**, 2109–2112. For Synthesis of **G**: (*e*) G. K. S. Prakash, C. Weber, S. Chacko and G. A. Olah, *Org. Lett.*, 2007, **9**, 1863–1866.

2 (*a*) Y. Yasu, T. Koike and M. Akita, *Org. Lett.*, 2013, **15**, 2136–2139. (*b*) K. Miyazawa, T. Koike and M. Akita, *Chem. Eur.J.*, 2015, **21**, 11677–11680.

3 N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116, 10075–10166.

## NMR spectra

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)









S40

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)





ppm

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



# <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)



# <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)



# <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)



# <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)



## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)







<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)



# <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)









<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)



# <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



S55

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)





<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)



# <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)



<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>)



# <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



S61

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)



# <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)



<sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>)



## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)







-102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 ppm

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)





<sup>1</sup>**H NMR** (400 MHz, CD<sub>3</sub>OD)



<sup>13</sup>C NMR (125 MHz, CD<sub>3</sub>OD)



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)



## <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>)



-106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 ppm



# <sup>1</sup>H-<sup>1</sup>H NOESY (400 MHz, CDCl<sub>3</sub>)