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Fig. S1. FTIR spectra of (a) graphite, G-Ph, CoOx@G-Ph-SN, and commercial Co3O4 

and (b) G-Ph-SO3H.

From Fig. S1a, the peaks at 687, 753 and 832 cm-1 assigned to the Ar-H 

vibrations, and peaks at 1455 and 1480 cm-1 due to the C=C vibrations can be clearly 

seen for the G-Ph sample, suggesting the successfully anchoring of phenyl on the 

surface of graphite. After further surface sulfonation, the peaks at 687, 753, 832, and 
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1480 cm-1 assigned to the Ar-H and C=C vibrations of phenyl groups for G-Ph-SO3H 

can be still seen (Fig. S1b), although the intensities of these peaks are decreased. This 

demonstrates that part of phenyl groups fell off during the sulfonation process. 

However, it should be pointed out that the content of the sulfur element analyzed by 

XPS (see Table S1) is as large as 0.4 mol%, demonstrating the amount of 

phenylsulfonic groups on the surface of graphite is still large. After the hydrothermal 

treatment, the bands (571 and 674 cm-1) related to Co-O bonds can be found, 

suggesting that the CoOx nanoparticles have been well supported on the surface of 

functionalized graphite (G-Ph-SO3H).
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Fig. S2. UV/Vis diffuse reflectance spectra of various solutions: 100 mM 

phenylsulfonic acid (black), graphite (red), 5 mM cobaltous acetate (blue), and the 

mixture of 5 mM cobaltous acetate and G-Ph-SO3H (pink).

From Fig. S2, the main UV-Vis absorption peak of the benzenesulfonate group 

shifts from 262 nm to 273 nm after anchoring it onto the surface of graphite, 

indicating the success of the synthesis. In addition, the UV-Vis absorption peak 

corresponding to the cobaltous acetate centred at ca. 644 nm disappears after adding 

G-Ph-SO3H to the solution of cobaltous acetate, suggesting the the possible formation 

of cobalt benzenesulfonate intermediate as further confirmed by the followed Fig. S3.
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Fig. S3. UV/Vis diffuse reflectance spectra of various solutions: (a) 50 mM acetic 

acid, (b) 50 mM phenylsulfonic acid, (c) the isometric mixture of 50 mM cobaltous 

acetate and 100 mM phenylsulfonic acid, and (d) 25 mM cobaltous acetate.
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Fig. S4. TEM images and histogram of size distributions of CoOx@G-O (a) and 

Co3O4-nano (b).
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Fig. S5. Contact angles (CAs) of (a) graphite, (b) G-Ph-SO3H and (c) G-O.
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Fig. S6. EPR spectra of Co3O4-nano, CoOx@graphite, and CoOx@G-Ph-SN.
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Fig. S7. XRD patterns of (a) graphite, CoOx@G-Ph-SN, CoOx@graphite and Co3O4-

nano; and (b) graphite, 10% CoOx@G-Ph-SN, CoO and Co(OH)2. 

10% CoOx@G-Ph-SN was similarly synthesized by following the hydrothermal 

process of CoOx@G-Ph-SN except that the initial Co(CH3COO)2•4H2O amount 

increased to 132 mg and the added ammonia amount increased to 750 µL.
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Fig. S8. HRTEM image of CoOx@G-Ph-SN (a) and SAED pattern of CoOx (b).
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Fig. S9. Investigation of TOF value as a function of photo flux: (A) Time course of 

O2 evolution; (B) Dependence of TOF value as the photo flux. 

Reaction conditions: 0.15 mg catalyst, 3 mL H2O, [RuII(bpy)3]Cl2 (1.0 mM), and Na2S2O8 (5.0 

mM) in borate buffer (80 mM, pH 9). As for the 100% light transmittance, the photo flux is 

1.28×10–7 mol cm–2 s–1, which was measured by an EKO LS-100 spectroradiometer. The light 

intensity was controlled by using neutral density filter (ZND0012, ZND0025 and ZND0050), 

which can keep spectrally even performance in VIS range.

As seen in Fig. S9, the TOF value is first linearly increased and then slowly 

increased with the increasing light intensity. The TOF value reaches a maximum 

under the 100% light transmittance and can not be increased even by using higher 

intensity light source to irradiate (e.g. 300 W xenon). It should be noted that the 

Ru(bpy)3
2+ is not stable under very strong light irradiation (e.g. 300 W xenon).
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Table S1 Surface elemental contents of CoOx@graphite, CoOx@G-O and CoOx@G-

Ph-SN analyzed by XPS

Surface composition (mol.%)Catalysts

C O N S Co

CoOx@graphite 96.8 2.9 - - 0.3

CoOx@G-O 93.1 6.4 0.1 0.1 0.3

CoOx@G-Ph-SN 95.5 3.4 0.4 0.4 0.3
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Table S2 Comparison of the catalytic performance of various Co-based water 

oxidation catalysts

Catalysts Oxidant TOF (s-1) References

CoOx@G-Ph-SN (~1.6 nm) Ru(bpy)3
3+ 1.2 This work

Co3O4 Ru(bpy)3
3+ 1.4*10–4 1

Nano Co3O4 (~ 6 nm) Ru(bpy)3
3+ 2.5*10‒4 2

SBA-15/Co3O4 Ru(bpy)3
3+ 3.4*10‒4 2

SBA-15/Co3O4 Ce(IV) 6.4*10‒4 3

Mesoporous Co3O4 Ce(IV) ∼2.2*10‒3 4

Mesoporous Mg−Co3O4 Ce(IV) 1*10‒3 4

Co3O4/mesoporous silica Ce(IV) ∼4*10‒4 4

ZnCo1.0Oy Ru(bpy)3
3+ 3.2*10‒3 5

Co4O4(py)4(Ac)4 Ru(bpy)3
3+ 0.02 6
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