Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Design of Peptide-Containing N5-Unmodified Neutral Flavins That Catalyze Aerobic Oxygenations

Yukihiro Arakawa, Ken Yamanomoto, Hazuki Kita, Keiji Minagawa, Masami Tanaka, Naoki Haraguchi, Shinichi Itsuno and Yasushi Imada*

Table of Contents

1.	General Information	S2
2.	DFT conformational studies of flavopeptide (Fl-Pep)	S2
3.	Preparation of 3-FIC2-NH-PS	S9
4.	Preparation of Fl-Peps	S9
	4a. Fl-Pep1-a, Fl-Pep2-a, Fl-Pep3-a, Fl-Pep4-a, and Fl-Pep5-a	
	4b. Fl-Pep1-b, Fl-Pep2-b, Fl-Pep3-b, Fl-Pep4-b, and Fl-Pep5-b	
5.	Preparation of 3-FIC2-Pro-Tyr-Asp-Ado-NH ₂	S10
6.	Aerobic oxidation of thioanisole with flavin catalyst	S17
	6a. Typical procedure	
	6b. Comparison under different conditions	
	6c. Product isolation	
	6d. Competitive reaction of <i>p</i> -substituted methyl phenyl sulfides for Fl-Pep1-a-	
	catalyzed aerobic oxygenation	
7.	Aerobic Baeyer-Villiger oxidation of 3-phenylcyclobutan-1-one	
	with flavin catalyst	S19
	7a. Typical procedure	
	7b. Comparison under different conditions	
	7c. Product isolation	
	7d. Competitive reaction	
8.	NMR spectra for 3-FIC2-Pro-Tyr-Asp-Ado-NH ₂	S26
9.	References	S29

1. General information

NMR spectra were recorded using JEOL JNM-ECX-400 (¹H, 400 MHz), JNM-ECA-400 (1H, 400 MHz), and JNM-ECA-500W (1H, 500 MHz) spectrometers. Chemical shifts are reported in ppm using TMS or the residual solvent peak as a reference. Elemental analyses were carried out on a J-Science Lab JM10 micro corder. GC analyses were carried out on a Shimazu GC-2010 by using a DB-1 glass capillary column (0.25 mm×30 m). 3-Methyllumiflavin,¹ lumiflavin-3-acetic acid,^{1,2} and Boc-Ado-OH³ were prepared according to the literature procedures. Solid phase peptide syntheses were performed either on Intavis MultiPep CF automatically or under manual operation using (aminomethyl)polystyrene (70–90 mesh, 1% cross-linked, the N loadings were determined by elemental analysis in every lot: 1.21 mmol g⁻¹ for the synthesis of FI-Pep1-a, FI-Pep2-a, FI-Pep3-a, FI-Pep4-a, and FI-Pep5-a, 1.38 mmol g⁻¹ for the synthesis of FI-Pep1-b, FI-Pep2-b, FI-Pep3-b, FI-**Pep4-b**, and **FI-Pep5-b**, 1.48 mmol g⁻¹ for the synthesis of 3-FIC2-NH-PS) purchased from Sigma-Aldrich or Rink amide Resin (100–200 mesh, 1% cross-linked, 0.53 mmol g⁻¹ for the synthesis of 3-FlC2-Pro-Tyr-Asp-Ado-NH₂) purchased from Watanabe Chemical Industries, LTD. Fmoc- β Ala-NH-PS and Boc-Ado-NH-PS were prepared according to the general procedure for peptide coupling described below. 3-Phenylcyclobutanone was prepared according to the reported procedure.⁴ All other reagents were purchased from commercial supplies and used without purification.

2. DFT conformational studies of Fl-Pep

Spartan '14 (Wavefunction, Inc.; Irvine, California, USA) was used to estimate stable conformations of 3-FlC2_{4a(R)OOH}-Pro-Glu-NHMe, 3-FlC2_{4a(R)OOH}-Pro-Tyr-NHMe, 3-FlC2_{4a(R)OOH}-Pro-Gly-NHMe, 3-FlC2_{4a(R)OOH}-Pro-Asp-Glu-NHMe, 3-FlC2_{4a(R)OOH}-Pro-Tyr-Glu-NHMe, 3-FlC2_{4a(R)OOH}-Pro-Tyr-Ser-NHMe, 3-FlC2_{4a(R)OOH}-Pro-Pro-Phe-Glu-NHMe, 3-FlC2_{4a(S)OOH}-Pro-Tyr-Glu-NHMe, 3-FlC2_{4a(R)OOH}-Pro-Tyr-Glu-NHMe, 3-FlC2_{4a(R)OOH}-Pro-Tyr-Glu-NHMe, 3-FlC2_{4a(R)OOH}-Pro-Tyr-Glu-NHMe, 3-FlC2_{4a(R)OOH}-Pro-Tyr-Glu-NHMe, 3-FlC2_{4a(R)OOH}-Pro-Tyr-Glu-NHMe, 3-FlC2_{4a(R)OOH}-Pro-Tyr-Asp-NHMe. Monte Carlo conformational searches for these **Fl_{OOH}-Peps** in MMFF were initially conducted. Among the resulting conformers, those with relative potential energy less than 15 kJ mol⁻¹ and over Boltzmann distribution value of 0.02 were extracted and recalculated in DFT at B3LYP/6-31G* level. We analyzed the resulting lowest energy structures of **Fl_{OOH}-Peps** to find promising hydrogen bonds (see the main manuscript) only in 3-FlC2_{4a(R)OOH}-Pro-Tyr-Glu-NHMe and FlC2_{4a(R)OOH}-Pro-Tyr-Asp-NHMe.

Conformers within 10 kJ mol⁻¹ are shown below, where their relative potential energy values in kJ mol⁻¹ are given in parentheses and hydrogen bonds are given in blue dotted line.

• 3-FlC2_{4a(R)OOH}-Pro-Tyr-Glu-NHMe

M0004 (side)

M0008 (1.09)

M0001 (1.16)

M0003 (1.40)

M0011 (2.08)

M0005 (4.62)

M0002 (2.97)

A A

- 3-FlC2_{4a(R)OOH}-Pro-Phe-Glu-NHMe
 - M0004 (0.00)

M0001 (0.59)

M0002 (0.59)

• 3-FlC2_{4a(R)OOH}-Pro-Asp-Glu-NHMe

M0002 (0.00)

M0004 (3.55)

M0001 (19.74)

- 3-FlC2_{4a(R)OOH}-Pro-Tyr-Ser-NHMe
 - M0001 (0.00)

M0002 (0.22)

M0008 (5.83)

• 3-FlC2_{4a(S)OOH}-Pro-Tyr-Glu-NHMe

M0002 (0.00)

M0003 (0.30)

• 3-FlC2_{4a(R)OOH}-Pro-Glu-NHMe

M0010 (0.00)

M0005 (4.53)

• 3-FlC2_{4a(R)OOH}-Pro-Tyr-NHMe

M0006 (0.00)

M0002 (11.44)

- 3-FlC2_{4a(R)OOH}-Pro-Gly-NHMe
 - M0004 (0.00)

M0003 (3.56)

• 3-FlC2_{4a(R)OOH}-Pro-Tyr-Gln-NHMe

M0003 (0.00)

M0001 (0.19)

M0002 (0.09)

M0007 (4.92)

• 3-FlC2_{4a(R)OOH} - β Ala-Tyr-Glu-NHMe

• 3-FlC2_{4a(R)OOH}-Pro-Tyr-Asp-NHMe

M0014 (0.00)

M0002 (5.83)

M0012 (0.10)

M0009 (6.79)

3. Preparation of 3-FIC2-NH-PS

//To (aminomethyl)polystyrene pre-swollen in DMF was added a solution of lumiflavin-3acetic acid (2.5 equiv), HCTU (2.5 equiv) and *N*-ethyldiisopropylamine (7.5 equiv), and the mixture was agitated for 2 h at room temperature. The coupling reaction was monitored by qualitative Kaiser Test.⁵ The suspension was washed with DMF repeatedly until the solution layer becomes colorless and then with CH_2Cl_2 (3×), and the resulting resin was dried in *vacuo* at room temperature to give 3-FlC2-NH-PS. The catalyst loading of 3-FlC2-NH-PS was determined to be 1.00 mmol g⁻¹ by elemental analysis. Found: N 6.99%, H 6.82%, C 77.47%.

4. Preparation of flavopeptides (Fl-Peps)

4a. Fl-Pep1-a, Fl-Pep2-a, Fl-Pep3-a, Fl-Pep4-a, and Fl-Pep5-a

These flavopeptides were prepared through the automated synthesis of Fmoc-AA1-AA2-AA3- β Ala-NH-PS (where AA1=Pro or β Ala, AA2=Tyr(*t*-Bu) or Phe, AA3=Glu(O*t*-Bu), Asp(O*t*-Bu), or Gln(Trt)) from Fmoc- β Ala-NH-PS followed by the manual coupling of lumiflavin-3-acetic acid after Fmoc-deprotection, and finally *t*-Bu or Trt-deprotection. The automated processes were carried out using Fmoc- β Ala-NH-PS (215 mg, 245 μ mol), Fmoc-amino acids (0.5 M in DMF, 5.25 equiv), HBTU (0.5 M in DMF, 5.25 equiv) as a coupling agent, *N*-methylmorpholine (3.9 M in DMF, 9.60 equiv) as a base, Ac₂O (0.54 M in DMF, 13.2 equiv) as a capping agent, and DMF or NMP (when Fmoc-Pro-OH was used) as solvents under conditions recommended by Intavis. Fmoc-deprotection, the coupling of lumiflavin-3-acetic acid, and *t*-Bu or Trt deprotection under manual operation were carried out following the general procedures described below. Catalyst loadings of **FI-Pep1-a**, **FI-Pep2-a**, **FI-Pep3-a**, **FI-Pep4-a**, and **FI-Pep5-a** were determined to be 0.48, 0.42, 0.47, 0.53, and 0.48 mmol g⁻¹, respectively, by quantitative Fmoc test of Fmoc-AA1-AA2-AA3- β Ala-NH-PS.

General procedure for Fmoc-deprotection

A 20% v/v solution of piperidine in DMF was added to the Fmoc-protected resin preswollen in DMF and the reaction mixture was agitated for 10 min. The solution phase was drained and the resin was again treated with 20% v/v solution of piperidine for another 15 min. The resin was then washed with DMF (3×), DMF/CH₂Cl₂ (4:1) (5×), and CH₂Cl₂ (3×).

General procedure for the coupling of lumiflavin-3-acetic acid

To the resin modified by *N*-terminus unprotected peptide pre-swollen in DMF was added a solution of lumiflavin-3-acetic acid (2.5 equiv), HCTU (2.5 equiv), and *N*-ethyldiisopropylamine (7.5 equiv), and the mixture was agitated for 2 h. The suspension was washed with DMF repeatedly until the solution layer becomes colorless, then with DMF/CH₂Cl₂ (4:1) (5×), and with CH₂Cl₂ (3×).

The coupling reaction was monitored by either qualitative Kaiser test⁵ (**Fl-Pep2-a**) or chloranil test⁶ (**Fl-Pep1-a**, **Fl-Pep3-a**, **Fl-Pep4-a**, and **Fl-Pep5-a**).

General procedure for t-Bu or Trt-deprotection

After the coupling of lumiflavin-3-acetic acid, a mixture of TFA/CH₂Cl₂ (2:1) was added to the resulting resin pre-swollen in CH₂Cl₂, and the reaction mixture was agitated for 1 h. The solution phase was drained and the resin was again treated with a mixture of TFA/CH₂Cl₂ (2:1) for 20 min. Finally, the resin was washed with CH₂Cl₂ (6×) and dried in *vacuo* to afford **FI-Pep1-a–FI-Pep5-a**.

4b. Fl-Pep1-b, Fl-Pep2-b, Fl-Pep3-b, Fl-Pep4-b, and Fl-Pep5-b

These flavopeptides were prepared by manual solid-phase peptide synthesis from Boc-Ado-NH-PS following the general procedure for peptide coupling described below along with the above general procedures for Fmoc-deprotection, the coupling of lumiflavin-3-acetic acid, and *t*-Bu or Trt-deprotection. Boc-Ado-NH-PS was treated with a mixture of TFA/CH₂Cl₂ (2:1) twice (the 1st time: 1 h, the 2nd time: 20 min) to remove the Boc group and then washed with CH₂Cl₂ (3×), 5% v/v *N*-ethyldiisopropylamine in CH₂Cl₂ (3×), and CH₂Cl₂ (6×) prior to use. Catalyst loadings of **FI-Pep1-b**, **FI-Pep2-b**, **FI-Pep3-b**, **FI-Pep4-b**, and **FI-Pep5-b** were determined to be 0.54, 0.51, 0.62, 0.59, and 0.55 mmol g⁻¹, respectively, by quantitative Fmoc test of Fmoc-AA1-AA2-AA3- Ado-NH-PS.

General procedure for peptide coupling

To the amino functionalized resin pre-swollen in DMF was added a solution of the Fmocamino acid (2.5 equiv), HCTU (2.5 equiv), and *N*-ethyldiisopropylamine (7.5 equiv), and the mixture was agitated for 1.5 h. The suspension was washed with DMF (5×), DMF/CH₂Cl₂(4:1) (5×), and CH₂Cl₂ (3×). The coupling reaction was monitored by qualitative Kaiser⁵ and chloranil tests⁶ (secondary amine).

5. Preparation of 3-FIC2-Pro-Tyr-Asp-Ado-NH₂

3-FIC2-Pro-Tyr-Asp-Ado-NH₂ was prepared on Rink amide Resin following the general protocol for Fmoc solid phase peptide synthesis. After the flavopeptide sequence was constructed, a mixture of TFA/CH₂Cl₂ (2:1) was added to the modified resin pre-swollen in CH₂Cl₂, and the reaction mixture was agitated for 1 h for *t*-Bu and Trt-deprotection and cleavage of the flavopeptide. The solution phase was pooled and the resin was again treated with a mixture of TFA/CH₂Cl₂ (2:1) for 20 min. All volatiles were removed from the combined filtrates under reduced pressure. Et₂O was added to the residue, and the resulting precipitate was washed with Et₂O and recrystallized from

a mixture of methanol and ethanol to afford the flavopeptide as yellow solid, which was characterized by NMR (¹H, ¹³C, COSY, HMBC, HMQC, ROESY) and mass spectroscopy (MALDI-TOF). ¹H-NMR (600 MHz, DMSO- d_6 , δ): **Major conformer (Mj)** : 1.19 (14H, AdoH^{γ -1}), 1.28 (2H, AdoH^κ) 1.44 (2H, AdoH^β), 1.68–1.79 (m, 2H, ProH^β, ProH^γ), 1.87–1.90 (m, 1H, ProH^γ), 1.96 $(m, 1H, ProH^{\beta'})$, 2.00 (t, J = 7.4 Hz, 2H, AdoH $^{\alpha}$), 2.37 (dd, J = 6.9, 16.3 Hz, 1H, AspH $^{\beta}$), 2.40 (s, 3H, F17-*CH*₃), 2.51 (s, 3H, F18-*CH*₃), 2.56 (dd, J = 6.9, 16.4 Hz, 1H, AspH^{β}), 2.72 (dd, J = 9.5, 13.7 Hz, 1H, TyrH^β), 2.89–2.92 (3H, TyrH^β', AdoH^λ), 3.61–3.71 (m, 2H, ProH^{δ,δ'}), 4.00 (s, 3H, F110- CH_3), 4.24–4.28 (m, 2H, ProH^{α}, TyrH^{α}), 4.38 (ddd, J = 6.9, 6.9, 8.1 Hz, 1H, AspH^{α}), 4.72 (d, J =15.8 Hz, 1H, Fl3-CH₂), 4.78 (d, J = 15.9 Hz, 1H, Fl3-CH₂'), 6.62 (d, J = 8.5 Hz, 2H, TyrArH^{ortho}), 6.65 (br, 1H, CONH₂), 7.02 (d, J = 8.5 Hz, 2H, TyrArH^{meta}), 7.23 (t, J = 5.6 Hz, 1H, AdoNH), 7.78 (d, J = 8.1 Hz, 1H, AspNH), 7.81 (d, J = 7.7 Hz, 1H, TyrNH), 7.83 (1H, Fl9-H), 7.94 (1H, Fl6-H); **Minor conformer (Mn)** : 1.19 (14H, AdoH^{γ-t}), 1.34 (2H, AdoH^κ), 1.44 (2H, AdoH^β), 1.68–1.79 (m, 2H, ProH^{γ , γ'}), 1.87–1.90 (m, 1H, ProH^{β}), 1.99 (t, *J* = 7.1 Hz, 2H, AdoH^{α}), 2.23 (ddd, *J* = 8.5, 12.8, 17.3 Hz, 1H, $ProH^{\beta'}$), 2.41 (s, 3H, Fl7-CH₃), 2.51 (s, 3H, Fl8-CH₃), 2.54 (dd, J = 6.7, 16.5 Hz, 1H, AspH^{β}), 2.64 (dd, J = 10.7, 13.8 Hz, 1H, TyrH^{β}), 2.65 (dd, J = 6.0, 16.5 Hz, 1H, AspH^{β}), 2.95 (dd, J $= 4.3, 13.7 \text{ Hz}, 1\text{H}, \text{TyrH}^{\beta'}), 2.99-3.01 \text{ (m, 2H, AdoH}^{\lambda}), 3.28-3.38 \text{ (m, 2H, ProH}^{\delta,\delta'}), 3.93 \text{ (s, 2H, ProH}^{\delta,\delta'}), 3.93 \text{ (s,$ Fl3-CH₂), 4.01 (s, 3H, Fl10-CH₃), 4.43 (dd, J = 3.6, 8.5 Hz, 1H, ProH^{α}), 4.49 (ddd, J = 6.5, 6.5, 7.4 Hz, 1H, AspH^α), 4.53 (ddd, *J* = 4.7, 8.5, 10.7 Hz, 1H, TyrH^α), 6.44 (d, *J* = 8.4 Hz, 2H, TyrArH^{ortho}), 7.02 (d, J = 8.5 Hz, 2H, TyrArH^{meta}), 7.19 (br, 1H, CONH₂), 7.57 (t, J = 5.6 Hz, 1H, AdoNH), 7.83 (1H, Fl9-H), 7.94 (1H, Fl6-H), 8.21 (d, *J* = 7.7 Hz, 1H, AspNH), 8.40 (d, *J* = 8.4 Hz, 1H, TyrNH); ¹³C-NMR (151 MHz, DMSO-*d*₆, δ): 18.7 (FI7-CH₃, **Mj** and **Mn**), 20.6 (FI8-CH₃, **Mj** and **Mn**), 22.2 $(ProC^{\gamma}, Mn)$, 24.1 $(ProC^{\gamma}, Mj)$, 25.1 $(AdoC^{\beta}, Mj)$ and Mn), 25.3, 26.1, 26.2, 26.3, 29.1/29.0/28.9/28.8/28.7 (including ProC^{β}, **Mj**), 31.9/31.8 (Fl10-CH₃, **Mj** and **Mn**; ProC^{β}, **Mn**), 35.1 (AdoC^α, **Mj** and **Mn**), 35.4, 35.9, 36.0, 36.2, 36.5, 38.6/38.3 (AdoC^λ, **Mj** and **Mn**), 42.2 (Fl3-CH₂, Mn), 43.0 (Fl3-CH₂, Mj), 46.3 (ProC^δ, Mj), 46.9 (ProC^δ, Mn), 49.5 (AspC^α, Mj and Mn), 54.3 (TyrC^a, **Mn**), 54.8 (TyrC^a, **Mj**), 58.8 (ProC^a, **Mn**), 60.0 (ProC^a, **Mj**), 114.7 (TyrArC^{ortho}), 114.9 (TyrArC^{ortho}), 116.5/116.4 (FlC⁹, Mj and Mn), 127.5, 127.7, 129.9 (TyrArC^{meta}, Mn), 130.0 (TyrArC^{meta}, Mj), 130.9 (FlC⁶, Mj and Mn), 131.7 (FlC^{9a}), 134.1/134.0 (FlC^{5a}), 136.2/136.1/135.8/135.6 (FIC⁷/FIC^{4a}), 147.3/147.0 (FIC⁸), 149.0 (FIC^{10a}, Mn), 149.1 (FIC^{10a}, Mj), 154.2 (FlC⁴, Mn), 154.5 (FlC⁴, Mj), 155.6 (TyrArC^{ipso}, Mn), 155.8 (TyrArC^{ipso}, Mj), 158.7 (FlC², Mn), 159.3 (FlC², Mj), 165.5 (ProNCO, Mn), 166.2 (ProNCO, Mj), 169.7 (AspCONH, Mj), 169.8 (AspCONH, Mn), 171.7/171.6/171.4/171.1/171.0/170.8 (TyrCONH, ProCONH, AspC'O, Mj and **Mn**), 174.3 (CONH₂, **Mj** and **Mn**); MS (MALDI-TOF): m/z calculated for $C_{45}H_{59}N_9O_{10}$ [M + Na]⁺ 908.4283, found 908.4333.

COSY cross-peaks						
F1 (ppm)	F2 (ppm)	Assignment	F1 (ppm)	F2 (ppm)	Assignment	
1.19	1.44	AdoH ^{γ-ι} – AdoH ^β	1.28	1.19	AdoH ^{κ} -AdoH ^{γ-ι} (Mj)	
1.44	1.19	(Mj and Mn)	1.19	1.28		
1.28	2.89-2.92	AdoH ^{κ} –AdoH ^{λ} (Mj)	1.34	1.19	AdoH ^{κ} -AdoH ^{γ-ι} (Mn)	
2.89-2.92	1.28		1.19	1.34		
1.34	2.99-3.01	$AdoH^{\kappa}-AdoH^{\lambda}(\mathbf{Mn})$	1.44	1.19	AdoH ^β –AdoH ^{γ–ι}	
2.99-3.01	1.34		1.19	1.44	(Mj and Mn)	
1.44	2.00	$AdoH^{\beta}-AdoH^{\alpha}$ (Mj)	1.68–1.79	1.87 - 1.90	$ProH^{\beta}/ProH^{\gamma}-ProH^{\gamma'}(Mj)$	
2.00	1.44		1.87–1.90	1.68–1.79	$ProH^{\gamma/\gamma}$ – $ProH^{\beta}$ (Mn)	
1.68–1.79	1.96	$ProH^{\beta}/ProH^{\gamma}-ProH^{\beta'}(Mj)$	1.68–1.79	2.23	$ProH^{\gamma,\gamma'}-ProH^{\beta'}(\mathbf{Mn})$	
1.96	1.68–1.79		2.23	1.68–1.79		
1.68–1.79	3.28-3.38	$\operatorname{ProH}^{\gamma,\gamma'}$ – $\operatorname{ProH}^{\delta,\delta'}(\mathbf{Mn})$	1.68–1.79	3.61-3.71	ProH ^{$γ$} –ProH ^{$δ,δ'$} (Mj)	
3.28-3.38	1.68–1.79		3.61-3.71	1.68–1.79		
1.68–1.79	4.24-4.28	$ProH^{\gamma}$ – $ProH^{\alpha}$ (Mj)	1.87–1.90	1.96	$ProH^{\gamma}$ – $ProH^{\beta}$ (Mj)	
4.24-4.28	1.68–1.79		1.96	1.87–1.90		
1.87–1.90	2.23	$ProH^{\beta}-ProH^{\beta'}(\mathbf{Mn})$	1.87–1.90	3.61-3.71	$\operatorname{ProH}^{\gamma,\gamma'}$ – $\operatorname{ProH}^{\delta,\delta'}$ (Mj)	
2.23	1.87–1.90		3.61-3.71	1.87–1.90		
1.87–1.90	4.43	$ProH^{\beta}-ProH^{\alpha}(\mathbf{Mn})$	1.96	4.24-4.28	$ProH^{\beta}$ – $ProH^{\alpha}$ (Mj)	
4.43	1.87-1.90		4.24-4.28	1.96		
2.23	4.43	$ProH^{\beta}$ – $ProH^{\alpha}$ (Mn)	2.37	2.56	$AspH^{\beta}-AspH^{\beta}$ (Mj)	
4.43	2.23		2.56	2.37		
2.37	4.38	Asp H^{p} –Asp H^{α} (Mj)	2.40	7.94	$FI/-CH_3$ -FI6-H (MJ)	
4.38	2.37	E_{17} CII E_{16} (M_{-2})	7.94	2.40		
2.41	7.94	$F1/-CH_3$ -F10-H (MI I)	2.31	7.83	$F18-CH_3-F19-H$	
7.94	2.41		7.05	2.31	$(\mathbf{W}_{\mathbf{J}})$ and $\mathbf{W}_{\mathbf{I}}$	
2.34	4.49	Aspn ^p –Aspn ^w (MIII)	2.34	2.03	Asph ^p –Asph ^p (MII)	
2 56	4 38	$\Lambda c \mathbf{p} \mathbf{H}^{\beta'}$ $\Lambda c \mathbf{p} \mathbf{H}^{\alpha} (\mathbf{M};)$	2.05	2.54	$\mathbf{T}_{\mathbf{M}}\mathbf{r}\mathbf{H}^{\beta}$ $\mathbf{T}_{\mathbf{M}}\mathbf{r}\mathbf{H}^{\beta}$ (Mn)	
4.38	2.56	Aspir [*] – Aspir [*] (WIJ)	2.04	2.55		
2 64	4 53	$T_{\rm V}rH^{\beta}T_{\rm V}rH^{\alpha}(Mn)$	2.75	2.04	$T_{\rm W} H^{\beta} T_{\rm W} H^{\beta'}$ (Mi)	
4 53	2.64	i yili i yili (wiii)	2.89-2.92	2.72	i yiii' i yiii' (ivij)	
2.72	4.24-4.28	$TvrH^{\beta}-TvrH^{\alpha}$ (Mi)	2.89-2.92	4.24-4.28	$TvrH^{\beta}$ – $TvrH^{\alpha}$ (Mi)	
4.24-4.28	2.72	i jiii i jiii (i ij)	4.24-4.28	2.89-2.92	(iv j)	
2.89-2.92	7.23	AdoH $^{\lambda}$ -AdoNH (Mi)	2.95	4.53	$TvrH^{\beta'}-TvrH^{\alpha}(\mathbf{Mn})$	
7.23	2.89-2.92		4.53	2.95		
2.99-3.01	7.57	$AdoH^{\lambda}$ - $AdoNH$ (Mn)	4.24-4.28	7.81	$TvrH^{\alpha}$ - $TvrNH$ (Mi)	
7.57	2.99-3.01		7.81	4.24-4.28	J J (3 /	
4.38	7.78	AspH $^{\alpha}$ –AspNH (Mj)	4.49	2.65	AspH ^{α} -AspH ^{β} (Mn)	
7.78	4.38	1 1 0/	2.65	4.49		
4.49	8.21	AspH α -AspNH (Mn)	4.53	8.40	TyrH α –TyrNH (Mn)	
8.21	4.49		8.40	4.53		
6.44	7.02	TyrArH ^{ortho} –TyrArH ^{meta}	6.62	7.02	TyrArH ^{ortho} –TyrArH ^{meta}	
7.02	6.44	(Mn)	7.02	6.62	(M j)	

HMQC of	cross-peaks
---------	-------------

	· · · · · · · · · · · · · · · · · · ·				
F1 (ppm)	F2 (ppm)	Assignment	F1 (ppm)	F2 (ppm)	Assignment
18.7	2.40/2.41	Fl7-CH ₃ -Fl7-CH ₃	20.6	2.51	F18-CH ₃ -F18-CH ₃
		(Mj and Mn)			(Mj and Mn)
22.2	1.68-1.79	$ProC^{\gamma}-ProH^{\gamma,\gamma'}(\mathbf{Mn})$	24.1	1.87-1.90	$ProC^{\gamma}$ – $ProH^{\gamma'}$ (M j)
25.1	1.44	AdoC ^β –AdoH ^β	26.1-26.3	1.19	-AdoH ^{γ-ι}
		(Mj and Mn)			(Mj and Mn)
29.1-28.7	1.19	-AdoH ^{γ-ι}	29.1-28.7	1.28	AdoC κ -AdoH κ (Mj)
		(Mj and Mn)			

HMQC cross-peaks (continued)						
29.1-28.7	1.34	$AdoC^{\kappa}-AdoH^{\kappa}(\mathbf{Mn})$	29.1-28.7	1.68-1.79	$ProC^{\beta}-ProH^{\beta}$ (M j)	
29.1-28.7	1.96	$ProC^{\beta}-ProH^{\beta'}(Mj)$	31.9/31.8	1.87-1.90	$ProC^{\beta}-ProH^{\beta}(\mathbf{Mn})$	
31.9/31.8	2.23	$ProC^{\beta}-ProH^{\beta'}(\mathbf{Mn})$	31.9/31.8	4.00/4.01	F110-CH ₃ -F110-CH ₃	
					(Mj and Mn)	
35.1	1.99/2.00	$AdoC^{\alpha}$ – $AdoH^{\alpha}$	36.5–35.4	2.95	$TyrC^{\beta}-TyrH^{\beta'}(\mathbf{Mn})$	
		(Mj and Mn)				
36.5-35.4	2.89-2.92	$TyrC^{\beta}-TyrH^{\beta'}(Mj)$	36.5-35.4	2.72	$TyrC^{\beta}$ – $TyrH^{\beta}$ (Mj)	
36.5-35.4	2.65	AspC ^{β} –AspH ^{β} (Mn)	36.5-35.4	2.64	$TyrC^{\beta}$ – $TyrH^{\beta}(\mathbf{Mn})$	
36.5-35.4	2.56	AspC ^{β} –AspH ^{β} (Mj)	36.5-35.4	2.54	AspC ^{β} -AspH ^{β} (Mn)	
36.5-35.4	2.37	AspC ^{β} –AspH ^{β} (Mj)	38.6/38.3	2.89-2.92	$AdoC^{\lambda}-AdoH^{\lambda}$ (Mj)	
38.6/38.3	2.99-3.01	$AdoC^{\lambda}-AdoH^{\lambda}$ (Mn)	42.2	3.93	Fl3-CH ₂ -Fl3-CH ₂	
					(Mn)	
43.0	4.72	F13-CH ₂ -F13-CH ₂	43.0	4.78	Fl3-CH ₂ -Fl3-CH ₂ '	
		(Mj)			(Mj)	
46.3	3.61-3.71	ProC ^δ –ProH ^{δ,δ'} (Mj)	46.9	3.28-3.38	ProC ^δ –ProH ^{δ,δ'} (Mn)	
49.5	4.38	AspC α -AspH α (Mj)	49.5	4.49	AspC α -AspH α (Mn)	
54.3	4.53	TyrC α -TyrH α (Mn)	54.8	4.24-4.28	TyrC $^{\alpha}$ -TyrH $^{\alpha}$ (Mj)	
58.8	4.43	$ProC^{\alpha}$ – $ProH^{\alpha}$ (Mn)	60.0	4.24-4.28	$ProC^{\alpha}$ – $ProH^{\alpha}$ (Mj)	
114.7	6.44	TyrArCortho-	114.9	6.62	TyrArCortho-	
		TyrArH ^{ortho} (Mn)			TyrArH ^{ortho} (Mj)	
116.5/116.4	7.83	FIC ⁹ –F19-H	129.9	7.02	TyrArC ^{meta} -	
		(Mj and Mn)			TyrArH ^{meta} (Mn)	
130.0	7.02	TyrArC ^{meta}	130.9	7.94	FlC ⁶ –Fl6-H	
		TyrArH ^{meta} (Mj)			(Mj and Mn)	

HMBC cross-peaks						
F1 (ppm)	F2 (ppm)	Assignment	F1 (ppm)	F2 (ppm)	Assignment	
18.7	7.94	Fl7-CH ₃ -Fl6-H	20.6	7.83	F18-CH ₃ -F19-H	
		(Mj and Mn)			(Mj and Mn)	
22.2	3.28-3.38	ProC ^γ –ProH ^{δ,δ'} (Mn)	24.1	3.61-3.71	ProC ^{$γ$} ProH ^{$δ,δ'$} (Mj)	
25.1	1.19	$AdoC^{\beta}-AdoH^{\gamma-\iota}$	25.1	1.99/2.00	AdoC ^β –AdoH ^α	
		(Mj and Mn)			(Mj and Mn)	
26.1–26.3	1.19	–AdoH ^{γ–ι}	26.1–26.3	1.28	$-\mathrm{AdoH}^{\kappa}(\mathbf{Mj})$	
		(Mj and Mn)				
26.1-26.3	1.34	$-\mathrm{AdoH}^{\kappa}(\mathbf{Mn})$	26.1-26.3	2.89-2.92	$-\mathrm{AdoH}^{\lambda}\left(\mathbf{Mj}\right)$	
26.1–26.3	2.99-3.01	$-\mathrm{AdoH}^{\lambda}\left(\mathbf{Mn}\right)$	26.1–26.3	1.19	–AdoH ^{γ–ι}	
					(Mj and Mn)	
29.1-28.7	1.28	–AdoH ^κ (Mj)	29.1-28.7	1.34	$-\mathrm{AdoH}^{\kappa}(\mathbf{Mn})$	
29.1-28.7	1.44	–AdoH ^β	29.1-28.7	1.96	$-\operatorname{ProH}^{\beta'}(\mathbf{Mj})$	
		(Mj and Mn)				
29.1-28.7	2.89-2.92	$-\mathrm{AdoH}^{\lambda}\left(\mathbf{Mj}\right)$	29.1-28.7	2.99-3.01	$-\mathrm{AdoH}^{\lambda}\left(\mathbf{Mn}\right)$	
31.9/31.8	3.28-3.38	ProC ^β –ProH ^{δ,δ'} (Mn)	35.1	1.19	AdoCα–AdoH ^{γ-ι}	
					(Mj and Mn)	
35.1	1.44	$AdoC^{\alpha}$ – $AdoH^{\beta}$	36.5-35.4	4.24-4.28	$TyrC^{\beta}-TyrH^{\alpha}(\mathbf{Mj})$	
		(Mj and Mn)				
36.5-35.4	4.38	AspC ^{β} -AspH ^{α} (Mj)	36.5-35.4	4.49	AspC ^{β} –AspH ^{α} (Mn)	
36.5-35.4	7.02	TyrC ^β −TyrArH ^{meta}	38.6/38.3	1.19	AdoC ^λ –AdoH ^{γ-ι}	
		(Mj and Mn)			(Mj and Mn)	
38.6/38.3	1.28	$AdoC^{\lambda}-AdoH^{\kappa}(Mj)$	38.6/38.3	1.34	$AdoC^{\lambda}$ – $AdoH^{\kappa}$ (Mn)	

_	HMBC Closs-	peaks (contin	lueu)			
	38.6/38.3	7.23	$AdoC^{\lambda}$ -AdoNH (Mj)	49.5	2.37	$AspC^{\alpha}$ - $AspH^{\beta}$ (Mj)
	49.5	2.54	Asp C^{α} -Asp H^{β} (Mn)	49.5	2.56	AspC $^{\alpha}$ -AspH $^{\beta}$ (Mj)
	49.5	2.65	Asp C^{α} -Asp $H^{\beta'}$ (Mn)	49.5	7.78	$AspC^{\alpha}$ - $AspNH$ (Mj)
	54.3	2.64	$TyrC^{\alpha}$ - $TyrH^{\beta}(\mathbf{Mn})$	54.3	2.95	TyrC ^α –TyrH ^{$β$} (Mn)
Î	54.8	2.72	$TyrC^{\alpha}$ - $TyrH^{\beta}(\mathbf{Mj})$	54.8	2.89-2.92	$TyrC^{\alpha}$ - $TyrH^{\beta'}(Mi)$
	54.8	7.81	$TvrC^{\alpha}$ -TvrNH (Mi)	116.5/116.4	2.51	FIC ⁹ –F18-CH ₃
			- j - c j (- j)			(Mj and Mn)
l	127.7/127.5	2.64	$-TyrH^{\beta}(\mathbf{Mn})$	127.7/127.5	2.72	$-TyrH^{\beta}(\mathbf{Mj})$
	127.7/127.5	2.89-2.92	$-\mathrm{Tyr}\mathrm{H}^{\beta'}(\mathbf{Mj})$	127.7/127.5	2.95	$-TyrH^{\beta'}(\mathbf{Mn})$
l	127.7/127.5	4.24-4.28	$-TyrH^{\alpha}(\mathbf{Mj})$	127.7/127.5	6.44	-TyrArH ^{ortho} (Mn)
	127.7/127.5	6.62	-TyrArHortho (Mj)	130.0/129.9	2.64	$-\mathrm{Tyr}\mathrm{H}^{\beta}(\mathbf{Mn})$
l	130.0/129.9	2.72	$-\text{Tyr}\text{H}^{\beta}(\mathbf{M}\mathbf{i})$	130.0/129.9	2.89-2.92	$-\mathrm{Tyr}\mathrm{H}^{\beta'}(\mathbf{Mj})$
	130.0/129.9	2.95	$-\mathrm{Tvr}\mathrm{H}^{\beta'}(\mathbf{Mn})$	130.9	2.41/2.40	FIC ⁶ –FI7-CH ₃
			5 ()			(Mj and Mn)
	131.7	4.01/4.00	F1C ^{9a} –F110-CH ₃	131.7	7.83	FIC ^{9a} -F19-H
	131.7	7.94	FlC ^{9a} –Fl6-H	134.1/134.0	7.83	FlC ^{5a} –Fl9-H
	136.2-135.6	2.41/2.40	FlC ⁷ –Fl7-CH ₃	136.2-135.6	2.51	FlC7–Fl8-CH3
	136.2–135.6	7.83	FIC ⁷ –FI9-H	147.3/147.0	2.41/2.40	FlC ⁸ –Fl7-CH ₃
	147.3/147.0	2.51	FlC ⁸ –Fl8-CH ₃	147.3/147.0	7.94	FlC ⁸ –Fl6-H
	149.1/149.0	4.01/4.00	FlC ^{10a} –Fl10-CH ₃	154.2	3.93	FlC^4 – $Fl3$ - CH_2 (Mn)
	154.5	4.72	$F1C^4$ – $F13$ - $CH_2(Mj)$	154.5	4.78	FlC^4 – $Fl3$ - CH_2 ' (Mj)
	155.8/155.6	6.44	TyrArC ^{ipso} –TyrArH ^{ortho} (Mn)	155.8/155.6	6.62	TyrArC ^{ipso} –TyrArH ^{ortho} (Mi)
Ì	155 8/155 6	7.02	TvrArC ^{ipso} -TvrArH ^{meta}	158 7	3 93	$F_1C^2 - F_13 - CH_2(\mathbf{Mn})$
	159.3	4.72	$F1C^2 - F13 - CH_2$ (Mi)	159.3	4.78	$F1C^2 - F13 - CH_2'$ (Mi)
Ì	165.5	3.93	$ProNCO-F13-CH_2(Mn)$	166.2	4.72	$ProNCO-Fl3-CH_2(Mi)$
	166.2	4.78	$ProNCO-F13-CH_2'(Mj)$	169.7	2.37	Asp $CONH$ –Asp H^{β}
			- ()			(M j)
	169.7	2.56	Asp $CONH$ -Asp $H^{\beta'}$	169.7	2.89-2.92	Asp $CONH$ –AdoH $^{\lambda}$
ì	160 7	1 20	$(\mathbf{M}\mathbf{J})$	160 7	7 72	(NIJ)
	109.7	4.38	(Mj)	109.7	1.23	(Mj)
	169.8	2.54	AspCONH–AspH ^β	169.8	2.65	AspCONH–AspH ^{β'}
			(Mn)			(Mn)
	169.8	4.49	Asp $CONH$ –Asp H^{α}	169.8	7.57	AspCONH–AdoNH (Mn)
Ì	171 7-170 8	2.23	$ProCONH_ProH^{\beta'}$	171 7-170 8	2.37	$A snC^{\beta}O - A snH^{\beta}$
	1,11, 1,010		(Mn)	1,11, 1,010	,	(Mj)
	171.7–170.8	2.56/2.54	Asp $C^{\beta}O$ -AspH ^{β} (Mj) Asp $C^{\beta}O$ -AspH ^{β} (Mn)	171.7–170.8	2.65	$AspC^{\beta}O-AspH^{\beta'}(Mn)$
	171 7-170 8	2 72	$T_{\rm M}CONH_T_{\rm M}H^{\beta}(Mi)$	171 4-170 8	2 89_2 92	$T_{\rm M}CONH_T_{\rm M}H^{\beta'}(Mi)$
Ì	171.7-170.8	2.72	$TyrCONH_TyrH^{\beta'}$	171.4-170.8	4 24-4 28	$ProCONH_ProH^{\alpha}(Mi)$
	171.7 170.0	2.75	(Mn)	1/1.4 1/0.0	4.24 4.20	Tyr $CONH$ –TyrH α (Mj)
	171.7-170.8	4.38	Asp C^{β} O–AspH $^{\alpha}$ (Mj)	171.7-170.8	4.49	Asp C^{β} O–AspH $^{\alpha}$ (Mn)
			TyrCONH–AspH ^α (Mj)			TyrCONH–AspH ^α (Mn)
ļ	171.4-170.8	7.78	TyrCONH-AspNH	171.4-170.8	7.81	ProCONH-TyrNH
		0.01	(Mj)	181 4 180 5	0.40	(Mj)
	171.4–170.8	8.21	TyrCONH–AspNH (Mn)	171.4–170.8	8.40	ProCONH–TyrNH (Mn)
ļ	174 3	1 44	$CONH_{\alpha} = A d_{\alpha} H^{\beta}$	174 3	1 99/2 00	$CONH_{\alpha}$
	171.5	1.11	(Mj and Mn)	171.5	1.9972.00	(Mj and Mn)

HMBC cross-peaks (continued)

KOESY cr	oss-peaks				
F1 (ppm)	F2 (ppm)	Assignment	F1 (ppm)	F2 (ppm)	Assignment
1.19	1.44	AdoH ^{γ-ι} –AdoH ^β	1.19	1.99/2.00	AdoH ^{γ-ι} –AdoH ^α
1.44	1.19	(Mj and Mn)	1.99/2.00	1.19	(Mj and Mn)
1.19	2.89-2.92	$AdoH^{\gamma-1}-AdoH^{\lambda}(Mj)$	1.19	2.99-3.01	$AdoH^{\gamma-1}-AdoH^{\lambda}(\mathbf{Mn})$
2.89-2.92	1.19		2.99-3.01	1.19	
1.28	2.89-2.92	AdoH ^κ –AdoH ^λ (Mj)	1.28	7.23	AdoH [⊾] –AdoNH (Mj)
2.89-2.92	1.28		7.23	1.28	
1.34	2.99-3.01	$AdoH^{\kappa}-AdoH^{\lambda}(\mathbf{Mn})$	1.34	7.57	AdoH ^κ –AdoNH (Mn)
2.99-3.01	1.34		7.57	1.34	
1.44	1.99/2.00	AdoH ^β –AdoH ^α	1.44	6.65	AdoH ^{β} -CON H_2 (Mj)
1.99/2.00	1.44	(Mj and Mn)	6.65	1.44	
1.44	7.19	AdoH ^{β} –CON H_2 (Mn)	1.68–1.79	1.87-1.90	$ProH^{\beta}/ProH^{\gamma}-ProH^{\gamma'}(Mj)$
7.19	1.44		1.87-1.90	1.68–1.79	$ProH^{\gamma}/ProH^{\gamma}-ProH^{\beta}(\mathbf{Mn})$
1.68–1.79	1.96	ProH ^{$β$} /ProH ^{$γ$} –ProH ^{$β$} (Mj)	1.68-1.79	2.23	$ProH^{\gamma}/ProH^{\gamma'}-ProH^{\beta'}$ (Mn)
1.96	1.68-1.79		2.23	1.68-1.79	
1.68-1.79	3.28-3.38	ProH ^γ /ProH ^γ -ProH ^{δ,δ}	1.68–1.79	3.61-3.71	ProH ^{$β$} /ProH ^{$γ$} –ProH ^{$δ,δ'$} (Mj)
3.28-3.38	1.68–1.79	(Mn)	3.61-3.71	1.68–1.79	
1.68–1.79	4.24-4.28	ProH ^{$β$} /ProH ^{$γ$} –ProH ^{$α$} (Mj)	1.68-1.79	7.02	–TyrArH ^{meta}
4.24-4.28	1.68-1.79		7.02	1.68-1.79	(Mj and Mn)
1.68-1.79	7.81	ProH ^β /ProH ^γ –TyrNH	1.87-1.90	2.23	$ProH^{\beta}-ProH^{\beta'}(\mathbf{Mn})$
7.81	1.68–1.79	(M j)	2.23	1.87-1.90	
1.87 - 1.90	3.61-3.71	ProH ^{γ'} –ProH ^{δ,δ'} (Mj)	1.87-1.90	4.24-4.28	$ProH^{\gamma'}-ProH^{\alpha}(Mj)$
3.61-3.71	1.87-1.90		4.24-4.28	1.87 - 1.90	
1.87 - 1.90	8.40	ProH ^β –TyrNH (Mn)	1.96	7.81	$ProH^{\beta'}-TyrNH(\mathbf{Mj})$
8.40	1.87-1.90		7.81	1.96	
1.99/2.00	4.24-4.28	AdoH ^a –ProH ^a /TyrH ^a	1.99/2.00	6.65	AdoH α –CON H_2 (Mj)
4.24-4.28	1.99/2.00	(Mj)	6.65	1.99/2.00	
1.99/2.00	7.19	AdoH α –CON H_2 (Mn)	2.23	3.28-3.38	$\operatorname{ProH}^{\beta'}-\operatorname{ProH}^{\delta/\delta'}(\mathbf{Mn})$
7.19	1.99/2.00		3.28-3.38	2.23	
2.23	3.93	$ProH^{\beta}-Fl3-CH_2(\mathbf{Mn})$	2.23	4.43	$ProH^{\beta}-ProH^{\alpha}(\mathbf{Mn})$
3.93	2.23		4.43	2.23	
2.23	8.40	$ProH^{\beta}-TyrNH(\mathbf{Mn})$	2.37	2.56	$AspH^{\beta}-AspH^{\beta'}(Mj)$
8.40	2.23		2.56	2.37	
2.37	4.38	AspH ^{β} –AspH ^{α} (Mj)	2.37	7.78	AspH ^β –AspNH (Mj)
4.38	2.37		7.78	2.37	
2.40/2.41	7.94	Fl7-CH ₃ –Fl6-H	2.51	4.00/4.01	Fl8-CH ₃ -Fl10-CH ₃
7.94	2.40/2.41	$(\mathbf{M}\mathbf{j} \text{ and } \mathbf{M}\mathbf{n})$	4.00/4.01	2.51	(Mj and Mn)
2.51	7.83	F18-CH ₃ -F19-H	2.54	4.49	$AspH^{\beta}-AspH^{\alpha}$ (Mn)
7.83	2.51	$(\mathbf{M}\mathbf{J} \text{ and } \mathbf{M}\mathbf{n})$	4.49	2.54	
2.54	8.21	AspH ^p –AspNH (Mn)	2.56	4.38	$AspH^{p}$ – $AspH^{\alpha}$ (Mj)
8.21	2.54		4.38	2.56	
2.64/2.65	2.95	$1 \text{ yrH}^{\text{p}}-1 \text{ yrH}^{\text{p}}$ (Mn)	2.64/2.65	4.49	Asp H^{p} – Asp H^{α} (Mn)
2.95	2.04/2.03	T IIB T A IImeta (N)	4.49	2.04/2.03	
2.04/2.03	7.02	$1 \text{ yrH}^p - 1 \text{ yrArH}^m (\mathbf{WIR})$	2.04/2.03	0.40	$1 \text{ yrH}^p - 1 \text{ yrINH} (NIN)$
7.02	2.04/2.03		0.40 2.72	2.04/2.03	True IIB True A el Imeta (M:)
2.12 2 802 02	2.09-2.92 2.72	$1 y_1 \Pi^r - 1 y_1 \Pi^r (\mathbf{WIJ})$	2.72	7.02	$1 y_1 \Pi^r - 1 y_1 A_1 \Pi^{max} (\mathbf{W} \mathbf{I} \mathbf{J})$
2.09-2.92	7.81	Turuß Tur NU (M:)	2 80 2 02	4 24- 1 28	$\mathbf{T}_{\mathbf{M}}$
7.81	2 72	$1 \text{ y}_{111} - 1 \text{ y}_{1} - \text{N}_{11} (\text{IVIJ})$	4.24 - 4.92	7.27 - 7.20	1 y111 [,] – 1 y111 [,] (1 v1 J)
2 89_2 92	7.02	$T_{M}H\beta'_T_{M}A_r Hmeta (M;)$	7 89_7 97	7.23	$A d H^{\lambda} - A d N H (M;)$
2.09-2.92	2 89_2 92	$I YIII^{r} - I YIAI \Pi^{mm} (IVIJ)$	2.09-2.92	7.25 7.89_7.97	Auon - Auon (191)
2 89_2 92	7.81	$T_{VT}H^{\beta'}$ _ $T_{VT}NH(Mi)$	2.95	4 53	$T_{VT}H^{\beta'}$ T $_{VT}H^{\alpha}(M_{n})$
7.81	2 89-2 92	$\mathbf{I}_{\mathbf{y}\mathbf{I}\mathbf{I}\mathbf{I}} = \mathbf{I}_{\mathbf{y}\mathbf{I}} - \mathbf{I}_{\mathbf{y}\mathbf{I}} = $	4 53	2.95	
1.01	2.07 2.72		1.00	_ .,,,	

KOLDT CIU	KOLST Closs-peaks (continued)							
F1 (ppm)	F2 (ppm)	Assignment	F1 (ppm)	F2 (ppm)	Assignment			
2.95	7.02	TyrH ^{β'} –TyrArH ^{meta}	2.95	8.40	$TyrH^{\beta'}$ – $TyrNH$ (Mn)			
7.02	2.95	(Mn)	8.40	2.95				
2.99-3.01	7.57	$AdoH^{\lambda}$ - $AdoNH$ (Mn)	3.61-3.71	4.72	$ProH^{\delta,\delta}$ -Fl3-CH ₂ (Mj)			
7.57	2.99-3.01	× ,	4.72	3.61-3.71	- 、 ・			
3.61-3.71	4.78	$ProH^{\delta,\delta'}$ -Fl3-CH ₂ ' (Mj)	3.93	4.43	Fl3-CH ₂ –ProH $^{\alpha}$ (Mn)			
4.78	3.61-3.71		4.43	3.93				
3.93	6.44	Fl3-CH ₂ -TyrArH ^{ortho}	3.93	7.02	Fl3-CH ₂ - TyrArH ^{meta}			
6.44	3.93	(Mn)	7.02	3.93	(Mn)			
3.93	8.40	Fl3-CH ₂ –TyrNH (\mathbf{Mn})	4.00/4.01	7.83	Fl10-CH ₃ -Fl9-H			
8.40	3.93		7.83	4.00/4.01	(Mj and Mn)			
4.24-4.28	7.02	$TyrH^{\alpha}$ – $TyrArH^{meta}$ (Mj)	4.24-4.28	7.78	$TyrH^{\alpha}$ –AspNH (Mj)			
7.02	4.24-4.28		7.78	4.24-4.28				
4.24-4.28	7.81	ProH ^{α} -TyrNH (Mj)	4.38	7.23	AspHα–AdoNH (Mj)			
7.81	4.24-4.28		7.23	4.38				
4.38	7.78	AspH α –AspNH (Mj)	4.43	8.40	ProH ^{α} -TyrNH (Mn)			
7.78	4.38		8.40	4.43				
4.49	7.57	AspH ^α –AdoNH (Mn)	4.53	6.44	TyrH ^a –TyrArH ^{ortho} (Mn)			
7.57	4.49		6.44	4.53				
4.53	7.02	$TyrH^{\alpha}$ – $TyrArH^{meta}(\mathbf{Mn})$	4.53	8.21	TyrHα–AspNH (Mn)			
7.02	4.53		8.21	4.53				
4.53	8.40	TyrHα–TyrNH (Mn)	6.44	7.02	TyrArH ^{ortho} –TyrArH ^{meta}			
8.40	4.53		7.02	6.44	(Mn)			
6.62	7.02	TyrArH ^{ortho} –TyrArH ^{meta}	7.02	7.81	TyrArH ^{meta} –TyrNH (Mj)			
7.02	6.62	(Mj)	7.81	7.02				
7.02	8.40	TyrArH ^{meta} –TyrNH	7.23	7.78	AdoNH–AspNH (Mj)			
8.40	7.02	(M n)	7.78	7.23				
7.57	8.21	AdoNH–AspNH (Mn)						
8.21	7.57							

ROESY cross-peaks (continued)

ROESY map

Mj (trans of 3-FIC2-Pro amide bond)

Mn (cis of 3-FIC2-Pro amide bond)

6. Aerobic oxidation of thioanisole with flavin catalyst

6a. Typical procedure

To a stirred mixture of thioanisole (12.4 mg, 0.10 mmol) and flavin catalyst (10 μ mol, 10 mol%) in a TFE—DCE mixed solvent (1:1, 0.5 mL) was added NH₂NH₂·H₂O (20 mg, 0.40 mmol), and the resulting mixture was continued to stir at 25 °C for 24–36 h under an atmosphere of oxygen. The yield of methyl phenyl sulfoxide was determined by means of GC analysis with the corrected area normalization method.

6b. Comparison under different conditions

Reactions were carried out under several different conditions, whose results were summarized below.

S_	catalyst (x mol%)	
	atmosphere (1 atm) NH ₂ NH ₂ • H ₂ O	
	TFE—DCE, no light, 25 °C, 24 h	

Entry	Catalyst	atmosphere	Reductant	TFE—DCE	Yield (%) ^a
	(loading [mol%])		(amount [equiv])		
1	Fl-Pep5-b (10)	O ₂	$NH_2NH_2 \cdot H_2O(4)$	100:0	26
2	Fl-Pep5-b (10)	O ₂	$NH_2NH_2 \cdot H_2O(4)$	75:25	40
3	Fl-Pep5-b (10)	O ₂	$NH_2NH_2 \cdot H_2O(4)$	50:50	62
4	Fl-Pep5-b (10)	O ₂	$NH_2NH_2 \cdot H_2O(4)$	25:75	4
5	Fl-Pep5-b (10)	air	$NH_2NH_2 \cdot H_2O(4)$	50:50	15
6	Fl-Pep5-b (10)	N_2	$NH_2NH_2 \cdot H_2O(4)$	50:50	0
7	Fl-Pep5-b (5)	O ₂	$NH_2NH_2 \cdot H_2O(4)$	50:50	50
8	Fl-Pep5-b (10)	O ₂	$NH_2NH_2 \cdot H_2O(0)$	50:50	0
9	Fl-Pep1-a (10)	O ₂	$NH_2NH_2 \cdot H_2O(2)$	50:50	6
10	Fl-Pep1-a (10)	O ₂	$NH_2NH_2 \cdot H_2O(4)$	50:50	36
11	Fl-Pep1-a (10)	O ₂	$NH_2NH_2 \cdot H_2O(6)$	50:50	57
12	Fl-Pep1-a (10)	O ₂	$NH_2NH_2 \cdot H_2O(10)$	50:50	92
13	3-FlC2-Pro-Tyr-	O ₂	$NH_2NH_2 \cdot H_2O(4)$	50:50	7
	Asp-Ado-NH ₂ (10)				
14	3-FlC2-Pro-Tyr-	O ₂	$NH_2NH_2 \cdot H_2O(8)$	50:50	40
	Asp-Ado-NH $_2$ (10)				
15	Fl-Pep5-b (10)	O_2	50% NH ₂ OH aq. (5)	50:50	3 (35) ^b

^a Determined by GC analysis. ^b Yield after heating at 60 °C for another 24 h.

6c. Product isolation

To a stirred mixture of thioanisole (124 mg, 1.0 mmol) and **FI-Pep-b** (5 μ mol, 5 mol%) in a TFE–DCE mixed solvent (1:1, 5 mL) was added NH₂NH₂·H₂O (200 mg, 4.0 mmol), and the resulting mixture was further stirred at 25 °C under an atmosphere of oxygen. After 14 h NH₂NH₂·H₂O (200 mg, 4.0 mmol) was added, and the reaction was continued for another 34 h to give methyl phenyl sulfoxide in 97% GC yield. The catalyst was filtered out and washed with CH₂Cl₂ (5 × 1 mL), and the combined filtrate was washed with saturated aqueous Na₂SO₃ (5 mL). The aqueous layer was extracted with CH₂Cl₂ (2 × 10 mL), and the combined organic layers were dried over Na₂SO₄, which was filtered and concentrated under reduced pressure. The resulting crude product was purified by flash column chromatography on silica gel using a gradient of hexane:EtOAc from 8:1 to 2:3 to afford 119 mg of methyl phenyl sulfoxide as colorless oil (85%). Analytical data were in agreement with the published data.⁷

6d. Competitive reaction of *p*-substituted methyl phenyl sulfides for Fl-Pep1-a-catalyzed aerobic oxygenation

To a stirred mixture of thioanisole (10 mg, 0.08 mmol), *p*-substituted methyl phenyl sulfide (0.08 mmol), and **Fl-Pep1-a** (34 mg, 16 µmol, 10 mol%) in a TFE—DCE mixed solvent (1:1, 0.8 mL) was added NH₂NH₂·H₂O (32 mg, 0.64 mmol), and the resulting mixture was continued to stir at 25 °C for 4 h under an atmosphere of oxygen. Saturated aqueous Na₂SO₃ was added to quench the reaction, and the reaction mixture was extracted with diethyl ether. The combined extracts were dried over MgSO₄ and evaporated under reduced pressure. The product ratios were determined on the basis of the integration of the methyl protons (X-C₆H₄S(O)CH₃). The singlets for methyl protons of X-C₆H₄SOCH₃ are observed at $\delta = 2.71$ (*p*-MeO), 2.71 (*p*-Me), 2.73 (*p*-H), 2.75 (*p*-CN), and 2.78 ppm (*p*-NO₂).

7. Aerobic Baeyer-Villiger oxidation of 3-phenylcyclobutan-1-one with flavin catalyst

7a. Typical procedure

A mixture of 3-phenylcyclobutanone (14.6 mg, 0.10 mmol), flavin catalyst (5.0 μ mol, 5 mol%), zinc (22.8 mg, 0.35 mmol), H₂O (36 μ l, 2.0 mmol), and dodecane (1 μ mol, internal standard) in an acetonitrile—toluene—ethyl acetate mixed solvent (8:4:1, 1.0 mL) was stirred at a defined temperature (25–60 °C) for 6–40 h under an atmosphere of oxygen. The yield of β -phenyl- γ -butyrolactone was determined by ¹H NMR spectroscopy of the crude mixture.

7b. Comparison under different conditions

Reactions were carried out under several different conditions, whose results were summarized below.

	O F O O ₂ (I-Pep5-a (5 mol 1 atm), Zn (x ec	%) uiv)	Å		
	Ph	H ₂ O (y equiv) solvent, no light		Ph		
Entry	Solvent	Zinc	H_2O	Temp.	Time	Yield
		(equiv)	(equiv)	(°C)	(h)	(%) ^a
1	EtOH/Toluene 1:1	5	0	60	6	66
2	Toluene	5	0	60	24	<1
3	EtOH	5	0	60	24	2
4 ^b	EtOH/Toluene 1:1	5	0	60	24	<1
5	EtOH/Toluene 1:1	0	0	60	24	<1
6 ^c	EtOH/Toluene 1:1	5	0	60	24	<1
7	CH ₃ CN/Toluene 1:1	5	10	60	6	35
8	CH ₃ CN/Toluene 1:1	5	50	60	6	11
9	CH ₃ CN/Toluene 1:1	5	100	60	6	3
10	CH ₃ CN/Toluene 2:1	5	5	60	6	5
11	CH ₃ CN/Toluene 2:1	5	30	60	6	56
12	CH ₃ CN/Toluene 2:1	5	50	60	12	61
13	CH ₃ CN/Toluene 2:1	5	10	35	40	70
14	CH ₃ CN/Toluene 2:1	5	10	25	40	42
15	CH ₃ CN/Toluene 2:1	5	30	35	24	65
16	CH ₃ CN/Toluene 2:1	3.5	20	35	24	60
17 ^d	CH ₃ CN/Toluene/EtOAc 8:4:1	3.5	20	35	7	72
18 ^d	CH ₃ CN/Toluene/EtOAc 8:4:1	3.5	0	35	7	18
19 ^d	CH ₃ CN/Toluene/EtOAc 8:4:1	2	20	35	7	19
20 ^d	CH ₃ CN/Toluene/EtOAc 8:4:1	3.5	20	35	4	58
21 ^d	CH ₃ CN/Toluene/EtOAc 4:2:1	3.5	20	35	4	47
22 ^d	CH ₃ CN/Toluene/EtOAc 2:1:1	3.5	20	35	4	31
23 ^d	CH ₃ CN/Toluene/EtOAc 8:2:1	3.5	20	35	4	57

^a Determined by ¹H NMR analysis using hexadecane or dodecane as an internal standard. ^b In the absence of the catalyst. ^c Under N_2 . ^d **Fl-Pep5-b** was used instead of **Fl-Pep5-a**.

7c. Product isolation

A mixture of 3-phenylcyclobutanone (117 mg, 0.80 mmol), FI-Pep5-b (0.040 mmol, 5 mol%), H₂O (290 µL, 16 mmol) and zinc (183 mg, 2.80 mmol) in an acetonitrile-toluene-ethyl acetate mixed solvent (8:4:1, 8.0 mL) was stirred at 35 °C under an atmosphere of oxygen for 15 h. The catalyst was filtered out and washed with CH_2Cl_2 (5 × 1 mL), and the combined filtrate was washed with saturated aqueous Na₂SO₃ (5 mL). The aqueous layer was extracted with CH₂Cl₂ (4 \times 7 mL), and the combined organic layers were dried over Na2SO4, which was filtered and concentrated under reduced pressure. The resulting crude product was purified by flash column chromatography on silica gel using a mixture of hexane and ethyl acetate 7:3 as eluent to afford 83 mg of β -phenyl- γ -butyrolactone as colorless oil (66%). Analytical data were in agreement with the published data.⁸ ¹H NMR (400 MHz, CDCl₃, δ) : 2.68 (dd, J = 9.1, 17.4 Hz, 1 H, -C(O)CHH-), 2.93 (dd, J = 8.7, 17.4 Hz, 1 H, -C(O)CHH-), 3.76-3.83 (m, 1 H, ArCH), 4.27 (dd, J = 8.0, 9.2 Hz, 1 H, -OCHH-), 4.67 (dd, J = 7.9, 9.1 Hz, 1 H, -OCHH-), 7.23-7.25 (m, 2 H, ArH), 7.29-7.32 (m, 1 H, (CDCl₃, 7.36-7.39 ArH); ^{13}C NMR MHz, ArH), (m, 2 H, 100 δ) : 35.7, 41.1, 74.1, 126.7, 127.7, 129.2, 139.5, 176.4; Anal. calcd. for C₁₀H₁₀O₂: C 74.06, H 6.22; found: C 73.97, H 6.30.

7d. Competitive reaction

Competitive experiments (equations 1–4 in the main text) were carried out and analyzed according to the following procedures.

3-phenylcyclobutanone vs cyclooctene under Fl-Pep conditions (equation 1)

A mixture of 3-phenylcyclobutanone (14.6 mg, 0.10 mmol), cyclooctene (11.0 mg, 0.10 mmol), **Fl-Pep5-b** (5.0 μ mol, 5 mol%), dodecane (0.010 mmol, internal standard), H₂O (36 μ L, 2.0 mmol), and zinc (22.9 mg, 0.35 mmol) in an acetonitrile—toluene—ethyl acetate mixed solvent (8:4:1, 1.0 mL) was stirred at 35 °C for 7 h under an atmosphere of oxygen. The yields of products were determined by ¹H NMR spectroscopy of the crude mixture (see below).

	chemical shift (ppm)	peak integral	yield (%)
dodecane (6H)	0.88	6.00	-
lactone (1H)	2.93	6.50	67
epoxide (2H)	2.90	0	0

lactone = β -phenyl- γ -butyrolactone, epoxide = cyclooctene oxide

3-phenylcyclobutanone vs cyclooctene under mCPBA conditions (equation 2)

A mixture of 3-phenylcyclobutanone (14.6 mg, 0.10 mmol), cyclooctene (11.0 mg, 0.10 mmol), *m*CPBA (20.9 mg, 0.12 mmol), NaHCO₃ (8.4 mg, 0.10 mmol), and dodecane (0.010 mmol, internal standard) in CH₂Cl₂ (0.5 mL) was stirred at room temperature for 24 h. The yields of products were determined by ¹H NMR spectroscopy of the crude mixture (see below).

	chemical shift (ppm)	peak integral	yield (%)
dodecane (6H)	0.88	6.00	-
lactone (1H)	2.65-2.71	3.28	33
lactone (1 <i>H</i>) and epoxide (2 <i>H</i>)	2.88–2.97	16.08	-
epoxide (2H)	2.88–2.94	16.08–3.28 = 12.8	64

lactone = β -phenyl- γ -butyrolactone, epoxide = cyclooctene oxide

3-phenylcyclobutanone vs methyl phenyl sulfide under Fl-Pep conditions (equation 3)

A mixture of 3-phenylcyclobutanone (14.6 mg, 0.10 mmol), methyl phenyl sulfide (12.4 mg, 0.10 mmol), **Fl-Pep5-b** (5.0 μ mol, 5 mol%), dodecane (0.010 mmol, internal standard), H₂O (36 μ L, 2.0 mmol), and zinc (22.9 mg, 0.35 mmol) in an acetonitrile—toluene—ethyl acetate mixed solvent (8:4:1, 1.0 mL) was stirred at 35 °C for 7 h under an atmosphere of oxygen. The yields of products were determined by ¹H NMR spectroscopy of the crude mixture (see below).

	chemical shift (ppm)	peak integral	yield (%)
dodecane (6H)	0.88	6.00	-
lactone $(1H)$ and sulfoxide $(3H)$	2.65-2.73	7.80	-
lactone (1H)	2.93	7.14	65
sulfoxide (3 <i>H</i>)	2.73	7.80–7.14 = 0.66	2
sulfone (3 <i>H</i>)	3.05	0.046	<1

lactone = β -phenyl- γ -butyrolactone, sulfoxide = methyl phenyl sulfoxide,

sulfone = methyl phenyl sulfone

3-phenylcyclobutanone vs methyl phenyl sulfide under mCPBA conditions (equation 4)

A mixture of 3-phenylcyclobutanone (14.6 mg, 0.10 mmol), methyl phenyl sulfide (12.4 mg, 0.10 mmol), *m*CPBA (20.9 mg, 0.12 mmol), NaHCO₃ (8.4 mg, 0.10 mmol), and dodecane (0.010 mmol, internal standard) in CH₂Cl₂ (0.5 mL) was stirred at room temperature for 24 h. The yields of products were determined by ¹H NMR spectroscopy of the crude mixture (see below).

	chemical shift (ppm)	peak integral	yield (%)
dodecane (6H)	0.88	6.00	-
lactone (1H)	2.93	0	0
sulfoxide (3H)	2.75	23.37	78
sulfone (3H)	3.05	1.21	4

lactone = β -phenyl- γ -butyrolactone, sulfoxide = methyl phenyl sulfoxide,

sulfone = methyl phenyl sulfone

8. NMR spectra for 3-FlC2-Pro-Tyr-Asp-Ado-NH₂

9. References

- 1) Imada, Y.; Iida, S.; Ono, S.; Masui, Y.; Murahashi, S. Chem. Asian J. 2006, 1, 136-147.
- 2) Ikeda, H.; Yoshida, K.; Ozeki, M.; Saito, I. Tetrahedron Lett. 2001 42, 252-2531.
- Teunissen, J. P. A.; Paffen, F. E. T.; Ercolani, G.; de Greef, T. F. A.; Meijer, E. W. J. Am. Chem Soc. 2016, 138, 6852–6860.
- 4) (a) Hassner, A.; Dillon, J., Jr. J. Org. Chem. 1983, 48, 3382—3386; (b) Zhou, L.; Liu, X.; Ji, J.; Zhang, Y. Hu, X.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2012, 134, 17023—17026.
- 5) Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I. Anal. Biochem. 1970, 34, 595.
- 6) Vojkovsky, T. Pept. Res. 1995, 8, 236.
- 7) Arakawa, Y.; Oonishi, T.; Kohda, T. Minagawa, K.; Imada, Y. ChemSucChem 2016, 9, 2769.
- 8) Imada, Y.; Iida, H.; Murahashi, S.-I.; Naota, T. Angew. Chem. Int. Ed. 2005, 44, 1704–1706.