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1 Approximations in the derivation of the moment

equations

The original differential equations for M and P are obtained by calculating the moments
of the master equation [1], which in turn is derived using mass action and considering
how the aggregates of all sizes may inter-convert (as shown in the reaction network in
Fig. 2). To obtain the differential equations presented here, several approximations are
made, namely the fibril mass produced directly by nucleation, as well as the mass lost
through fragmentation into pieces smaller than the critical nucleus, is negligible, hence
the corresponding terms were not included in the above equations. These approximations
are generally valid for systems of linear self-assembly that produce elongated fibrils, that
are on average significantly larger than the critical nucleus size. For more details see
Cohen et al. [2]. In addition we also neglect the back rates for all processes except for
the formation of the intermediate species during elongation and secondary nucleation,
denoted by M∗ and P ∗ in the Petri net, as these rates usually represent only a minor
contribution to the kinetics. These neglected processes include the dissociation of from
the ends of fibrils, the reverse of fragmentation (i.e. end to end joining of fibrils) and
the reverse of the nucleation processes. Descriptions that explicitly include the monomer
dissociation can be found in Cohen et al. [2] and are very similar to the results presented
here.
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2 Primary nucleation in the presence of dominant

secondary processes

Whatever the dominant process in a particular system might be, to aggregate from
soluble monomer it must always be preceded by primary nucleation. Thus primary
nucleation can always be expected to limit the rate of growth to a certain degree.

However, it has been shown [1, 2] that the effect of primary nucleation on a system
dominated by a secondary process is manifested in the scaling laws only through a
logarithmic correction, which was therefore neglected in the main text. To illustrate,
consider the case of an aggregation reaction proceeding via unsaturated elongation and
secondary nucleation:

τ1/2 ∼ log(2κ2/λ2)κ−1 (S1)

where

κ =
√
m(0)k+m(0)n2k2 (S2)

λ =
√
m(0)k+m(0)nc−1kn (S3)

This results in a correction to the scaling exponent due to primary nucleation of the
form:

γ = −1 + n2

2
− 1 + n2 − nc

log(λ2/[2κ2])
(S4)

It is interesting to note from the functional form of the correction in Eq. (S4) that the
scaling exponent is, therefore, affected by primary nucleation even at small values of the
ratio λ2/κ2.

This is in contrast to the result obtained in the case of 2 secondary mechanisms
competing in parallel (Eq. (5) of the main text), which shows that the presence of a
weak additional secondary process, active in addition to a more dominant secondary
process, is not reported to a significant level in the scaling exponent. Fundamentally,
this difference emerges since in a polymerisation reaction where all of the peptide is
initially monomeric, there must always be a timescale within which primary nucleation
is the dominant mechanism, and is thus rate determining. This occurs before enough
aggregated material is formed for secondary nucleation to become dominant.

If the primary process competes with the secondary process,

3 The effect of seeding

The network and scalings discussed in the main paper all focused on reactions of a
solution of monomeric proteins alone, in the absence of preformed fibrils. The reason
for this is two-fold: scalings are more informative in the absence of seeds and seeded
experiments are inherently more difficult as more parameters need to be controlled,
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such as the exact composition of the seed stock in terms of concentration and length
distribution, as well as the time of addition of seeds.

The addition of such preformed seed fibrils at the beginning of the reaction does not
alter the reaction network, i.e. a fibril that is prone to display surface catalysed secondary
nucleation will still do so in the presence of seeds. However, the importance of some of
the inherent processes of aggregation can decrease compared to the simple growth of the
added seed fibrils. In particular, primary nucleation can sometimes be bypassed already
at nM concentrations of seeds for µM concentrations of monomer (Aβ42) and the large
effect on the kinetics of a small amount of seeds can be used as evidence for the presence
of secondary processes [3].

By adding a large amount of preformed fibrils (i.e. a protein mass comparable to
the mass of free monomers), one may be able to acquire kinetics that are dominated
only by the elongation of these seed fibrils and are not affected by nucleation processes.
Such experiments can be used to investigate the behaviour of the elongation process
separately, without interference from the nucleation processes, for example by looking at
the early time gradients of strongly seeded aggregation curves [4].

4 Parallel versus serial processes in the high and low

concentration limits

Here we will present a detailed mathematical analysis of the example system in Fig. 4b
of the main text. To recapitulate, we identified an increase in the magnitude of scaling
with increasing monomer concentration as characteristic of a parallel pathway. By con-
trast a decrease in the magnitude of scaling with increasing monomer concentration is
characteristic of a serial (i.e. saturating) pathway. For simplicity we will now refer to the
reactants / intermediates as A and B respectively and the product as C. Now consider
the kinetic equations describing the reactions in both cases.

4.1 Parallel

The parallel process is described by the equations

dA

dt
= −2kP1A

2 (S5)

dB

dt
= −kP2B (S6)

dC

dt
= kP1A

2 + kP2B (S7)

From equation S7 we see that the process are additive, the faster one will dominate:
If A is small (where by small we mean A2 � kP2B/kP1) the rate of formation of C is
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proportional to B and if A is large the rate of formation of C is proportional to A2.
Hence the scaling increases as A increases.

The differential equations for A and B can be solved directly to yield:

A(t) =
A0

1 + A02kP1t
(S8)

and
B(t) = B0e

−kP2t (S9)

where A0 and B0 are the initial reactant concentrations. The time evolution of the
product concentration is then simply given by

C(t) = B0(1− e−kP2t) + A0(1− 1

1 + A02kP1t
) (S10)

assuming that no product is present at time t = 0. The half time is given by

C(t1/2) = B0(1− e−kP2t1/2) + A0(1− 1

1 + A02kP1t1/2
) =

A0/2 +B0

2
(S11)

In the limit of large A0 this simplifies to t1/2 = 1
6A0kP1

, i.e. a scaling exponent of -1. In

the limit of small A0 this simplifies to t1/2 = log(2)
kP2

, i.e. a scaling exponent of 0. The
plot in the main text was obtained by numerically solving equation S11 and agrees with
these predicted approximate scaling exponents.

4.2 Serial with saturation (intermediate conversion through cat-
alyst)

The case of the saturating serial process, i.e. one where conversion of the intermediate
is through action of a catalyst, is similar to Michaelis-Menten kinetics, which is also
similar to the mechanism of secondary nucleation for Aβ40 [4]. Therefore this is the
process discussed in the main text as it is most relevant in the context of the kinetic
models presented here. However, as shown below the same general rules about scaling
exponents hold for a simpler case of serial reactions. The relevant kinetic equations are:

dA

dt
= −kS1ACat(free) (S12)

dB

dt
= kS1ACat(free)− 2kS2B

2 (S13)

dC

dt
= kS2B

2 (S14)

S4



One could equally well consider an alternative description, with the dimerisation step be-
fore attachment, analogous to the two descriptions of secondary nucleation in section 5.3.
The qualitative effect on the scaling exponent remains the same.

The fact that the catalyst is recovered upon formation of C from B gives us the
condition

Cat(free) + Cat(bound) = Cat(free) +B = Cat(total) (S15)

where we used the fact that the concentration of B is equivalent to the concentration of
bound catalyst.

The differential equations are now coupled and cannot be solved as simply as the ones
in the parallel network. Assuming steady state for B yields the equations below (see the
part on the fast initial conversion limit in Sec. 4.3 for a discussion of the behaviour when
steady state does not apply).

B =
−A(t)kS1 +

√
A(t)2k2

S1 + 8A(t)kS1Cat(total)kS2

4kS2

(S16)

For large A (A � Cat(total)kS2/kS1) this expression converges to B = Cat(total), i.e.
all the catalyst is bound. This gives a constant rate of product formation hence

C(t) = Cat(total)2kS2t (S17)

and therefore t1/2 = A0

4Cat(total)2kS2
, i.e. a scaling of +1. We cut the plots in the main text

when the scaling reaches 0, to avoid confusion that may arise from a positive scaling,
which can only rarely be found in filamentous aggregation, requiring a complete monomer
independence of all processes.

For low concentrations of A (A� Cat(total)kS2/kS1) the steady state approximation
is poor, in particular for slow conversion of intermediate.

We can obtain an expression in this limit by making a number of approximations.
First we neglect the concentration of bound catalyst, replacing Cat(free) with Cat(total)
in equation S14. We then obtain the concentration of reactant simply as

A(t) = A0e
−Cat(total)kS1t (S18)

and the differential equation for the intermediate becomes

dB

dt
= kS1A0e

−Cat(total)kS1t − 2kS2B
2 (S19)

an analytical solution to this equation exists in terms of Bessel functions, however, for
the purpose of obtaining an approximate scaling exponent this is not very suitable and
we attempt to construct an approximate solution to B instead. Keep in mind that the
aim of this analysis is not to accurately determine the half times themselves, but only
estimate the scaling exponent, which will not be sensitive to approximations that do
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not affect the concentration dependence. Consider the following approximation: For
slow conversion rates k2 and low concentrations of reactant A0, most of A will initially
convert to B, which then decays as governed by the rate k2. Hence we can approximate
B(t) at late times as

dB

dt
≈ −2kS2B

2 (S20)

assuming B(t = 0) = A0, which gives

Bapprox(t) =
A0

1 + 2A0k2t
(S21)

Because most of A is converted to B immediately, the half time for B, i.e. the point at
which B = A0/2, will also approximately correspond to the half time for the product
C. The half time will occur at late times, so the approximation made for B will be
valid. A comparison of this approximation with the numerically integrated solution to
equation S14 is shown in Fig. S1.

Bapprox(t1/2) =
A0

(1 + 2A0k2t)
=
A0

2
(S22)

which yields the half time as t1/2 = 1
2A0k2

, i.e. a scaling exponent of -1. The plot in
the main text was obtained from numerical integration of equations S14 and the scaling
exponents agree with the approximate ones obtained here.
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A(0) = 0.1,  kS2 = 0.1 A(0) = 0.1,  kS2 = 1

Figure S1: Accurate numerical solution and approximation. The accurate numer-
ically integrated solution of equation S14 for B(t) (blue) is compared to the approximate
solution given in equation S21 (red). The time at which the approximation of B(t)
reaches half the reactant concentration (this is during the decay of B, not during its
production) is marked with a dashed red line. The half time of C(t), which determines
the scaling exponent, is marked with a dashed black line. Without loss of generality, the
initial attachment rate and the catalyst concentration are fixed at kS1 = 1 and Cat(total)
= 1. We then look at the low reactant regime by setting A0 = 0.1 and consider the case
of a slow conversion, kS2 = 0.1 (left), and a faster conversion, kS2 = 1 (right).
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4.3 Serial processes without saturation

Although this process is not discussed in the main text in any detail, we include it here for
completeness, to illustrate that the decrease in scaling upon an increase in concentration
is a general feature of serial processes not just the specific one chosen in the main text.
We generalize the reaction orders, with the initial reactant A having reaction order n1

and the intermediate B having reaction order n2, and we will show that the higher
reaction order always dominates the scaling at low concentrations, whereas the lower
reaction order dominates at high concentrations.

dA

dt
= −n1kS1A

n1 (S23)

dB

dt
= kS1A

n1 − n2kS2B
n2 (S24)

dC

dt
= kS2B

n2 (S25)

At this stage, we will assume that the reaction orders are different, i.e. n1 6= n2 (the case
when they are equivalent will be discussed at the end), and hence we can set kS1 = 1
and kS2 = 1 without limitation of generality as these rate constants now define the units
of concentration and time.

The differential equation for A(t) can be solved to give for n1 6= 1:

A(t) = (A1−n1
0 + n1(n1 − 1)t)

1
1−n1 (S26)

where A0 is the initial concentration of A.
To determine the dependence of the half time of product formation on the initial

concentration A0, first consider the steady state limit, i.e. dB
dt

= 0, which will be valid
when the rate of the second process is comparable to that of the first process. The
differential equations are now:

dA

dt
= −n1A

n1 (S27)

dC

dt
= An1 (S28)

The half time for product formation is simply given by the half time for A, which can
be obtained by solving A(t1/2) = A0/2 as t1/2 = A1−n1

0
2n1−1−1
n1(n1−1)

. Therefore in the steady

state limit the scaling is given by γss = −(n1 − 1). This limit is analogous to the limit
of low concentration of A in the above case with catalyst (A� Cat(total)kS2/kS1).

Now consider the other limit where the initial conversion of A to B is much faster
than conversion of B to C. In this case the majority of A is immediately converted to
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B, and we can instead consider the differential equations:

dB

dt
= −n2B

n2 (S29)

dC

dt
= Bn2 (S30)

with the initial condition B(t = 0) = A(t = 0)/n. These equations are the same as
in the previous equation with renamed variables A → B, n1 → n2 and A0 → A0/n1,
hence giving for the half time t1/2 = A1−n2

0
2n2−1−1

n2(n2−1)n11−n2
. Therefore in the limit of fast

initial conversion, the scaling is given by γinit = −(n2 − 1). Note that for the saturating
serial case above we did not consider this fast initial conversion limit. There the implicit
assumption was that the total amount of catalyst is much smaller than the amount of
reactant A present, therefore, for a fast initial conversion of A to the catalyst-bound
intermediate state, the system would saturate fast at the beginning of the reaction and
then proceed in steady state. If the amount of catalyst is larger than the total amount
of A, the case of serial processes without saturation discussed here is recovered.

What remains is to establish which limit is applicable at low and high concentrations
of A, for given values of n1 and n2. In order to do so we need to estimate the rates
of production and loss of B, in order to determine which limit is valid. Initially the
concentration of B will always be increasing, followed by a decrease in concentration of
B as it is converted to C. If the concentration of B increases until most of A is used up,
we are in the limit of fast initial conversion, if by contrast the concentration of B already
decreases when only a small amount of A has been used up, we are in the steady state
limit. We will now estimate the fraction, α, of A left when the rates of production and
loss of B equal each other. So α = A(tc)/A0 where tc is given by A(tc)

n1 = n2B(tc)
n2 .

Whilst the rate of production of B is easily determined, we need to estimate the rate of
loss. We can give an upper bound on the rate of loss of B by using the amount of A
converted at tc, which is (1−α)A0 as an upper bound for the amount of B present. This

gives as the loss rate n2

(
(1−α)A0

n1

)n2

. As we use an upper bound for the rate of loss, we

will overestimate α. Equating the two rates we get

(αA0)n1 = n2

(
(1− α)A0

n1

)n2

(S31)

which can be rearranged to give

(A0)n1−n2 =
(1− α)n2

αn1

n2

nn2
1

(S32)

Given that the reaction orders n1 and n2 will be small integers larger or equal to 1, it can
be assumed that the term n2

n
n2
1

is close to unity for the purposes of estimating α. There

is four cases to consider, n1 < n2 and n1 > n2 at both high and low concentrations of A.
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Fist consider n1 > n2 and start with the low concentration limit, A � 1. The
left hand side in equation S32 is much smaller than 1, therefore we require a small
numerator on the right hand side. Again noting that n1 and n2 will be small integers
larger or equal to 1, we require that α is close to 1. In other words, the concentration
of B already decreasing when most of A has not been converted yet, putting us in the
steady state limit and giving a scaling of γ = −(n1−1). By contrast, in the limit of high
concentrations, A� 1, we require a small denominator on the right hand side, giving a
small α and putting us in the fast initial conversion limit with γ = −(n2 − 1).

If n1 < n2 the left hand side is now small for large concentrations of a and large
for small concentrations, therefore inverting the above results and giving a scaling of
γ = −(n2 − 1) at low concentrations and γ = −(n1 − 1) at high concentrations. Finally,
it can be shown that in the case of n1 = n2 there is no change in the scaling upon a
change in the initial concentration of A.

In summary, the scaling changes from γ = −(nlarger − 1) at low concentrations to
γ = −(nsmaller−1) at high concentrations, where nlarger is the larger reaction order out of
(n1, n2) and nsmaller the smaller one. Therefore the feature of positive curvature in half
time plots is indeed general to serial processes and not a result of the choice of reaction
orders or of the inclusion of a catalyst for the intermediate conversion.

4.4 Mapping of the elongation reaction to a simpler serial re-
action

Here we discuss what modifications of a simple serial process are necessary to reproduce
the behaviour observed for the overall conversion of monomer to fibrils. In the above
simple serial case, the reaction was dominated by either of the steps in the two limits,
i.e. the faster step became kinetically invisible. The combination of a nucleation and an
elongation reaction as encountered in the linear aggregation reactions also constitutes a
serial reaction, however, in that case the elongation step does contribute even when it
is much faster than nucleation. The crucial difference is that the intermediate species
in this case, the fibril number concentration P , is not being destroyed in the production
of new fibril mass M . To map this to a simple chemical reaction, the free ends P can
be thought of as catalysts converting protein from its monomeric state m to its fibrillar
state M . The fact that P is not being lost means P can never reach steady state and is
therefore always kinetically visible. Mathematically, this effect can be easily incorporated
by simply removing the loss term in equation S24:

dA

dt
= −n1kS1A

n1 (S33)

dB

dt
= kS1A

n1 (S34)

dC

dt
= kS2B

n2 (S35)
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Although these equations now violate conservation of mass, and C diverges in the long
time limit, they are sufficient to highlight the crucial differences compared to the simple
serial example. We simply consider the half time to still be given by the time at which
half of the initial concentration of A is present as C.

The limit of fast initial conversion is not affected, the overall scaling depends only
on the second step, the conversion of the intermediate B to product C. C is formed
with constant rate, giving C(t) = kS2B

n2
0 t where B0 = A0/n1 and A0 is the initial

concentration of A. Therefore the scaling is given by γinit fast = −(n2 − 1) as expected.
The steady state limit however no longer exists, we instead consider the reaction

when A is not significantly depleted, i.e. A(t) ≈ A0. This simply gives B(t) = kS1A
n1
0 t

and therefore

C(t) = An1n2
0

kn2
S1kS2

n2 + 1
tn2+1 (S36)

The scaling exponent is given as γinit slow = −n1n2−1
n2+1

, i.e. it is affected by the reaction
orders of both the first and the second process.

In this simplified model, if we set n2 = 1 and make the rate of formation of C
dependent on A, we recover the equations for nucleated linear polymerization without
secondary processes [5]. Usually only the latter limit is relevant because nucleation,
the first step, is much slower than elongation. The case where nucleation is faster than
elongation is not usually encountered in the systems studied in the context of fibrillar
assembly because it will not produce long fibrils but only species of a size similar to the
nucleus. A scenario where elongation dominates as in the fast initial conversion case does
occur when large amounts of preformed seeds are added at the start of the aggregation
reaction (analogous to the late time limit).

5 Derivation of integrated rate laws

Although the non-linear differential equations describing the time evolution of aggregate
number and aggregate mass are not readily integrable, it is possible to derive closed-
form solutions using a self-consistent scheme, as we have used previously for related
growth problems [1,2,4]. This approach involves reformulating the equations in terms of
an integral operator, and then applying this integral operator (repeatedly) to an initial
guess. This results in a closed-form expression for the fibril mass concentration.

5.1 Approximate form of half time and scaling

In the main text we stated ’half times are approximately given by t1/2 ≈ 1/κ, where κ is

of the form
√

elongation·
√

(sum 2o processes)’. To illustrate, consider the generalised
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moment equations:

dP

dt
= αPM(t) + βP (S37)

dM

dt
= αMP (t) (S38)

where αP is the rate of nucleus formation from secondary processes, per fibril mass, βP is
the rate of nucleus formation from primary nuclei and αM is the rate of elongation, per
fibril. For example, in the case of a single-step secondary nucleation and fragmentation
model, we would have αP = k2m(t)n2 + k−, βP = knm(t)nc and αM = k+m(t).

If we consider the early time linearised solution to this system, where m(t) ≈ m0,
then αP , βP and αM all remain constant and the early time solution simply is:

Mlin(t) ∝ e
√
αPαM t (S39)

where we neglected the contribution from primary nucleation. We identify
√
αPαM with

κ of the main text, which is indeed of the form
√

elongation·
√

(sum 2o processes). It
remains to show that t1/2 ≈ 1/κ.

In order to get an approximate half time we solve equation (S39) for a specific aggre-
gate mass, i.e. M(t1/2) = c, to obtain:

t1/2 =
1

√
αPαM

+ logarithmic terms (S40)

hence, neglecting the logarithmic terms, t1/2 ≈ 1/κ.

5.2 Saturating elongation

We first explicitly include the concentration of bound ends, P ∗, into the kinetics and the
use a steady state approximation to obtain the Michaelmas Menten-like kinetics.

dPf
dt

= knm(t)nc + k−M(t)− k∗+m(t)Pf (t) +
1

τr
P ∗(t) (S41)

dP ∗

dt
= k∗+m(t)Pf (t)−

1

τr
P ∗(t) (S42)

dM

dt
=

1

τr
P ∗(t) (S43)

where k∗+ is the attachment rate of monomer to a free end, 1/τr is the rate at which the
monomer on a bound end rearranges to be incorporated into the fibril, recovering a free
end, Pf (t) is the concentration of free ends and P ∗(t) is the concentration of bound ends.
We assume steady state, dP ∗/dt = 0. This assumption is valid as long as the steady state
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concentration of free ends is established quickly as soon as the fibril number changes.
Using the fact that these processes do not change the fibril number Pf (t)+P ∗(t) = 2P (t)
where P (t) is the total fibril number concentration (the factor of 2 comes from the fact
that the original definition of P (t) is in terms of number of fibrils, whereas when we
consider bound and free ends, there are 2 ends per fibril), equation (S42) becomes:

k∗+m(t)(2P (t)− P ∗(t)) =
1

τr
P ∗(t) (S44)

Solving for P ∗(t) and inserting into (S43) yields

dM

dt
=

1

τr

2τrk
∗
+m(t)P (t)

τrk∗+m(t) + 1
= 2k+

m(t)

1 +m(t)K−1
E

P (t) (S45)

where we have renamed k+ = k∗+ and KE = 1/(k∗+τr).
The full equations describing the fibril number and mass concentrations for a system

with fragmentation and saturating elongation are hence given by:

dP

dt
= k−M(t) + knm(t)nc (S46)

dM

dt
= 2k+

m(t)

1 +m(t)K−1
E

P (t) (S47)

where we assumed the increase in mass from nucleation processes and the loss in aggre-
gates due to fragmentation into pieces smaller than the critical nucleus size is negligible.
In the limit m� KE the monomer concentration is so low that no saturation effects are
evident because the fraction of bound ends, P ∗, is negligible. Equation (S47) becomes
dM/dt = 2k+m(t)P (t), recovering the single-step kinetics. By contrast, in the highly
saturated limit, m� KE, equation (S47) becomes dM/dt = 2k+KEP (t), corresponding
to a growth process whose rate is independent of the monomer concentration. Whilst the
single-step description can be valid for the full time-course of a reaction, the monomer
concentration-independent expression inevitably fails at late times when monomer is
depleted below the saturation concentration.

The above equation can then be integrated to yield:

M(t) = m(0)
W
(
K−1
E m(0) exp

(
m(0)K−1

E − 2k+

∫ t
0
P (t)dt

))
K−1
E

(S48)

where W (x) is the Lambert W (product log) function defined by W (x exp(x)) = x.
Now we obtain the linearised solutions, Plin(t) and Mlin(t), by assuming a constant

concentration of monomer and solving Eqs. (S46) and (S47) with m(t)→ m(0). Inserting
this linearised solution for the aggregate number concentration, Plin(t), into Eq. (S48)
yields the first-order self-consistent solution for M(t):
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M

mtot

= 1− KE

mtot

W

(
mtot −M0

KE

exp

[
(mtot −M0)

KE

− 2k+(P0κ sinh(κt) + α(cosh(κt)− 1))

κ2

])
(S49)

where the definitions of the parameters are

κ =

√
2

m0k+

1 +m0/KE

k− (S50)

α = knm
n
0c+ k−M0 (S51)

and P0 and M0 denote the aggregate number and mass concentrations at the beginning of
the reaction respectively. In the case of unseeded data P0 = M0 = 0 and these equations
will simplify significantly.

The half time of the reaction is determined by the argument in the hyperbolic func-
tion:

τlag ∼ κ−1 (S52)

The scaling exponent is therefore given by

γ ≈ − 1

2(1 +m(0)/KE)
(S53)

which interpolates between the limits γ = −1/2 when m(0)K−1
E � 1 and γ = 0 in the

opposite limit, i.e. the scaling exponent increases with increasing monomer and there is
positive curvature in the double logarithmic plots.

As expected, Eq. (S49) recovers the result known previously for cases where the
elongation rate does not saturate, in the limit K−1

E → 0.
In the opposing limit, K−1

E →∞, Eq. (S49) results in

M(t) = m(0)−W (K−1
E m(0) exp(K−1

E m(0)))/K−1
E = 0 (S54)

Physically this corresponds to the equilibrium constant of monomer binding to the fibril
ends being extremely in favour of unbound monomer, hence no elongation reaction takes
place and the fibril mass is zero.

5.3 Saturating secondary nucleation

The derivation of the Michaelis Menten-type kinetics follows the same principle as for
elongation above and the full details can be found in the supplementary of Meisl et al. [4].
The rates in the Petri nets in Fig. 2 and Fig. 5 of the main text are linked to the rate
equations as follows: k2 = k2 and KM = kd/k2.
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The differential equations for this system are given by:

dP

dt
= knm(t)nc + k2

m(t)n2

1 +m(t)n2/KM

M(t) (S55)

dM

dt
= 2m(t)k+P (t) (S56)

In the limit m(t)n2 � KM the rate limiting step is the binding to the fibril surface
and equation (S55) becomes, dP/dt = k2m(t)n2M(t) + knm(t)nc , recovering the single-
step description [2]. In the opposite limit of m(t)n2 � KM , all binding sites on the
fibril surface are fully covered and the rate-determining step is the rearrangement and
detachment of new nuclei, leading to monomer-independent kinetics. In this limit equa-
tion (S55) becomes formally equivalent to that for a fragmentation dominated system
(see equation (S46)) dP/dt = k2KMM(t)+knm(t)nc , where replacing k2KM by k− yields
the equation for fragmentation. This equivalence has significant practical consequences,
showing that it is not possible to distinguish between a mechanism dominated by frag-
mentation and one dominated by a fully saturated secondary nucleation mechanism from
measurement of P (t) and M(t) alone.

The detailed derivation of an approximate analytical solution can be found in Meisl
et al. [4] and yields:

M

M∞
= 1−

(
1− M0

M∞

)
e−k∞t

·
(
B− + C+e

κt

B+ + C+eκt
· B+ + C+

B− + C+

) k∞
κk̄∞

(S57)

where the definitions of the parameters are

κ =

√
2m0k+

mn2
0 k2

1 +mn2
0 /KM

(S58)

λ =
√

2k+knm
nc
0 (S59)

C± =
k+P0

κ
± k+M0

2m0k+

± λ2

2κ2
(S60)

k∞ =

√
(2k+P (0))2 − 2A− 4k+k2mtotKM

log [KM ]

n2

(S61)

A = −2k+knm
nc
0

nc
− 2k+k2mtotKM

log [KM +mn2
0 ]

n2

− 2k+k2KMm0

(
2F1

[
1

n2

, 1, 1 +
1

n2

,−m
n2
0

KM

]
− 1

)
(S62)

k̄∞ =
√
k2
∞ − 2C+C−κ2 (S63)

B± =
k∞ ± k̄∞

2κ
(S64)
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where M∞ is the aggregate mass concentration at long times and 2F1(a, b, c, d) is the
ordinary hyper-geometric function.

The approximate scaling exponent is:

γ ≈ −1

2

(
n2

1 +m(0)n2/KM

+ 1

)
(S65)

In the limit of low and high monomer concentration this becomes γ = −(n2 + 1)/2 and
γ = −1/2 respectively, i.e. the scaling exponent increases with increasing monomer and
there is positive curvature in the double logarithmic plots.

5.3.1 Alternate model for saturating secondary nucleation

For completeness we add a note here on the use of two slightly different, but so far equally
valid, models for secondary nucleation. In all of the main text the model discussed
above was used. A physical interpretation of the above equations would be as follows:
Monomers in solution are in equilibrium with pre-nucleus species, dimers, trimers, etc.
These pre-nuclei need to undergo structural rearrangement to become growth competent
nuclei and this process can be catalysed on the surface of existing fibrils. In short,
the above equations describe monomers meeting before they attach to the surface and
rearrange. A physically equally valid model is that monomeric species attach to the fibril
surface and formation of the pre-nucleus cluster occurs on the surface. Mathematically

this corresponds to replacing the term
m
n2
0

1+m
n2
0 /KM

by
(

m0

1+m0/KM

)n2

and the solutions

obtained in the two cases behave very similarly (see Saric et al. [6] for the detailed
solution). Indeed we found the two models to yield equally good results in the fitting
of experimental data so far, although the values of the fitted parameters will differ,
preventing a determination of the correct model based on the aggregation data alone.
In a recent in silico study [6] we observed direct attachment of monomers to the surface
of fibrils and hence used the latter model to analyse this data. In all previous work we
have opted to use the model assuming an attachment of pre-nuclei and therefore also use
this description here.

5.4 Competing secondary processes

The relevant differential equations for the rate of new aggregate formation are:

dP

dt
= knm(t)nc + k−M(t) + k2m(t)n2M(t) (S66)

dM

dt
= 2(m(t)k+ − koff)P (t) (S67)

Again the linearised solution is obtained by setting m(t) = m0 (see also see Meisl et
al. [3]). This is then used in a fixed point iteration to give the first order fixed point
solution:
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M(t) = M∞ + Exp

[
−k+(4cκCosh(κt) + 4P0κ

2Sinh(κt))

2κ3

]
(

(M0 −M∞)e
2k+c

κ2

)
(S68)

where

a = k2m
n2
0 + k−

c = knm
nc
0 + aM0

κ =
√

2(k+m0 − koff)(k2m
n2
0 + k−)

M∞ = mtot − koff/k+ (S69)

The approximate scaling exponent is:

γ =
d log(t1/2)

d log(m(0))
≈ −1

2

(
n2

1 +K/m(0)n2
+ 1

)
(S70)

where K = k−/k2. In the limit of low and high monomer concentration this becomes
γ = −1/2 and γ = −(n2 + 1)/2 respectively, i.e. the scaling exponent decreases with
increasing monomer and there is negative curvature in the double logarithmic plots.
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