Electronic Supplementary Information

Photocatalytic oxidation of benzene to phenol using dioxygen as an oxygen source and water as an electron source in the presence of a cobalt catalyst

Ji Won Han,^{‡a} Jieun Jung,^{‡ab} Yong-Min Lee,^a Wonwoo Nam^{*a} and Shunichi Fukuzumi^{*ac}

^a Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea

^b Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan

^c Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-8502, Japan

[‡] These authors contributed equally to this work.

* To whom correspondence should be addressed. E-mail: wwnam@ewha.ac.kr, fukuzumi@chem.eng.osaka-u.ac.jp **Table S1** Stern-Volmer quenching constants (K_{SV}), exited state lifetimes (τ_0) in the absence of quencher, and rate constants (k_{et}) of photoinduced electron transfer from $[Ru^{II}(Me_2phen)_3]^{2+*}$ to O₂ in the absence and presence of Sc(NO₃)₃ (100 mM) in a solvent mixture of MeCN and H₂O (v/v = 23:2) at 273 K.

	without Sc(NO ₃) ₃	with Sc(NO ₃) ₃
$K_{ m Sv}{}^{ m a}$	$8.2(6) \times 10^2 \text{ M}^{-1}$	$1.1(1) \times 10^3 \mathrm{M}^{-1}$
τ ₀	$7.6(6) \times 10^{-7}$ s	$7.1(6) \times 10^{-7} s$
$k_{\rm et}{}^{\rm b}$	$1.1(1) \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$	$1.5(1) \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$

^a The Stern-Volmer quenching constant (K_{SV}) was obtained from the slope of the Stern-Volmer plot, I_0/I - 1 vs. [O₂] (see Figure S5c). Stern-Volmer equation is $I_0/I = 1 + K_{SV}[Q]$, where I_0 and I are the emission intensities observed in the absence and presence of quencher, Q.

^b $K_{SV} = k_q \times \tau_0$, where k_q is bimolecular quenching rate constant and τ_0 is the exited state lifetime in the absence of quencher. Therefore, the observed rate constants (k_{et}) were obtained from the K_{SV} and the emission lifetime (τ_0) (*i.e.*, $k_{et} = K_{SV} / \tau_0$).

Fig. S1 UV-visible absorption spectra of the 50 times diluted reaction solution [before reaction (black line) and after reaction for 15 h (red line)] obtained in the photocatalytic oxidation of benzene under photoirradiation (white light) of an O₂-saturated solvent mixture of MeCN and H₂O (v/v = 23:2) containing **1** (0.10 mM), [Ru^{II}(Me₂phen)₃]²⁺ (1.0 mM), Sc(NO₃)₃ (100 mM), and benzene (1.0 mM) at 298 K.

Fig. S2 Time course of concentration of *p*-benzoquinone produced in the photocatalytic oxidation of phenol (PhOH) by O₂ under photoirradiation (white light) of an O₂-saturated solvent mixture of MeCN and H₂O (v/v = 23:2) containing **1** (1.0 μ M), [Ru^{II}(Me₂phen)₃]²⁺ (1.0 mM), Sc(NO₃)₃ (100 mM), and PhOH (1.0 mM) at 298 K.

Fig. S3 Time course of concentration of PhOH produced in the photocatalytic oxidation of benzene under photoirradiation ($\lambda = 440$ nm with filter) of an O₂-saturated solvent mixture of MeCN and H₂O ($\nu/\nu = 23:2$) containing **1** (1.0 mM), [Ru^{II}(Me₂phen)₃]²⁺ (1.0 mM), Sc(NO₃)₃ (100 mM), and benzene (2.0 M) at 298 K.

Fig. S4 (a) Time courses of concentration of PhOH produced in the photocatalytic oxidation of benzene under photoirradiation (white light) of an O₂-saturated solvent mixture of MeCN and H₂O (v/v = 23:2) containing **1** (1.0 µM), [Ru^{II}(Me₂phen)₃]²⁺ (1.0 mM), and benzene [0.25 M (red), 0.50 M (orange), 0.75 M (green), and 1.0 M (blue)] in the presence of Sc(NO₃)₃ (100 mM) at 298 K. (b) Time courses of concentration of PhOH produced in the photocatalytic oxidation of benzene under photoirradiation (white light) of an O₂-saturated solvent mixture of MeCN and H₂O (v/v = 23:2) containing **1** (1.0 µM), [Ru^{II}(Me₂phen)₃]²⁺ [0.10 mM (red), 0.50 mM (blue), and 1.0 mM (black)], and benzene (1.0 M) in the presence of Sc(NO₃)₃ (100 mM) at 298 K.

Fig. S5 (a, b) Emission spectra of $[Ru^{II}(Me_2phen)_3]^{2+}$ (4.0 µM) in the presence of O₂ [0 mM (blue) – 1.2 mM (red)] observed under visible light excitation (λ = 450 nm) of an O₂-saturated solvent mixture of MeCN and H₂O (ν/ν = 23:2) containing $[Ru^{II}(Me_2phen)_3]^{2+}$ (4.0 µM) in the absence (a) and presence (b) of Sc(NO₃)₃ (100 mM) at 298 K. (c) Stern-Volmer plots for the emission quenching of $[Ru^{II}(Me_2phen)_3]^{2+}$ by O₂ determined from emission spectra in the absence (blue) and presence (red) of Sc(NO₃)₃ (100 mM) at 298 K. (d) Time courses of concentration of H₂O₂ produced from H₂O and O₂ for the photocatalytic oxidation of $[Ru^{II}(Me_2phen)_3]^{2+}$ under photoirradiation (white light) of an air-saturated (blue) and O₂-satured (red) solvent mixture of MeCN and H₂O (ν/ν = 23:2) containing $[Ru^{II}(Me_2phen)_3]^{2+}$ (100 µM) in the presence of Sc(NO₃)₃ (100 mM) at 298 K.

Fig. S6 Plot of the zeroth-order rate constants (k_{obs}) for the H₂O₂ production *vs.* the concentration of **1** in the photocatalytic oxidation of H₂O by O₂ upon photoirradiation (white light) of an O₂-saturated solvent mixture of MeCN and H₂O (v/v = 23:2) containing **1** (0.50 – 2.0 mM) and [Ru^{II}(Me₂phen)₃]²⁺ (0.10 mM) in the presence of Sc(NO₃)₃ (100 mM) at 298 K.

Fig. S7 (a) Visible spectral change observed in the oxidation of H₂O by $[Ru^{III}(Me_2phen)_3]^{3+}$ (50 µM, blue line) with **1** (0.20 mM) in the presence of Sc(NO₃)₃ (100 mM) in a solvent mixture of MeCN and H₂O (v/v = 23:2) at 298 K. (b) Time courses monitored for the change of absorbance at 445 nm due to the formation of $[Ru^{II}(Me_2phen)_3]^{2+}$ observed in the oxidation of H₂O by $[Ru^{III}(Me_2phen)_3]^{3+}$ (50 µM) with **1** [0.20 mM (black), 0.40 mM (blue), and 0.60 mM (red)] in the presence of Sc(NO₃)₃ (100 mM) in a solvent mixture of MeCN and H₂O (v/v = 23:2) at 298 K.

Fig. S8 Time courses of concentration of PhOH produced in the hydroxylation of benzene (1.0 M) by H_2O_2 [100 mM (blue) and 200 mM (red)] with a catalytic amount of **1** (1.0 μ M) in an O₂-saturated solvent mixture of MeCN and H₂O ($\nu/\nu = 23:2$) at 298 K.