Supporting Information

Asymmetric Syntheses of 8-Oxabicyclo[3,2,1]octane and 11-

Oxatricyclo[5.3.1.0]undecane from Glycals

Hongze Liao, Wei Lin Leng, Kim Le Mai Hoang, Hui Yao, Jinxi He, Ying Hui Voo

and Xue-Wei Liu*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 **Supporting Information**

Table of Contents :

Section A: General Information

Section B: General procedure for substrate scope synthesis

Section C: Characterization Data for the Isolated Products

Section D: Experimental Procedures and Characterization of

Substrates and Products for Mechanistic Studies

Section E: Preparation of 2,4-dinitrophenyl hydrazone S2a for

Stereochemistry Identification

Section F: Supplementary Figures

Section A: General Information

General: All the reactions were performed under nitrogen atmosphere. All reagents and solvents were purchased commercially (Alfa Asear, Strem, Merck and Sigma-Aldrich) and used as received. Evaporation of organic solvent was achieved by rotary evaporation with a water bath temperature below 40 °C. Thin layer chromatography (TLC) with Merck TLC silica gel 60 F254 plate was used to check reaction progress. UV light at 254 nm and basic solution of potassium permanganate were used to visualize compounds on TLC plates. Flash column chromatography with silica gel 60 (0.010-0.063 mm) was used for product purification. ¹H and ¹³C NMR spectra were obtained using 300 MHz Bruker ACF 300, 400 MHz, Bruker AVIII 400 and 400 MHz Bruker DPX 400 spectrometer. Tetramethylsilane (TMS) was used as the internal standard for the measurement of chemical shifts (δ) in ppm. The following abbreviations classify the multiplicity: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet or unsolved), br s (broad singlet), dd (doublet of doublets), dt (doublet of triplet). The coupling constants were reported as J values in units of Hz. HRMS (ESI) spectra were obtained using a Waters Q-Tof premierTM mass spectrometer. X-ray crystallographic data was collected by using a Bruker X8Apex diffractometer with Mo K/a radiation. Characterization data for known compounds were checked in comparison with literature for consistency and not presented in this report.

Section B: General procedure for substrate scope synthesis

General procedure A for preparation of 3,4-protected glycals:

To a solution of glycal 7 (20 mmol, 1 equiv) and imidazole (40 mmol, 2 equiv) in anhydrous DMF (100 mL), TIPSCl (21 mmol, 1.05 equiv) was slowly added dropwise under a N₂ atmosphere and stirred overnight at room temperature. The reaction was poured in to H₂O (150 mL) and extracted with ether (3×80 mL), the combined organic phases were washed with brine (80 mL), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to afford the crude silylated derivative.

The crude silylated compound was dissolved in THF (50 mL) under N₂. NaH (60% in mineral oil, 50 mmol, 2.5 equiv) was added slowly at 0 °C and the solution was stirred at the same temperature for 30 min. R_4X (48 mmol, 2.4 equiv) was added dropwise at 0 °C and the solution was the stirred at room temperature overnight. Methanol (3 mL) was added and the mixture was concentrated *in vacuo*. The residue was dissolved in diethyl ether (200 mL), washed with brine (3 × 80 mL) and concentrated *in vacuo*. The residue was used in next step without other purification.

The fully protected glycal derivative was dissolved in a 1M THF solution of TBAF (45 mmol, 2.25 equiv) and stirred overnight. The mixture was concentrated *in vacuo*

and the product 8 was purified by flash chromatography on silica gel (*n*-Hexane/EtOAc).

General procedure B for preparation of propargylic esters:

A solution of **8** (1.22 mmol, 1 equiv) in anhydrous CH_2Cl_2 (10 mL) at 0 °C was treated with Dess-Martin periodinate (1.72 mmol, 1.4 equiv). The suspension was stirred for 4 h at room temperature under nitrogen. Saturated aqueous NaS_2O_3 (10 mL) and $NaHCO_3$ (10 mL) were added to the mixture and it was stirred until the cloudiness disappeared. The resulting solution was separated and the organic layer was washed with saturated $NaHCO_3$ solution and brine, dried over Na_2SO_4 , filtered and concentrated *in vacuo* to afford crude aldehyde as colorless oil.

A solution of alkyne (3.45 mmol, 2.8 equiv) in 5 mL THF was treated at -80 °C with a 3.45 mL of a 1 M solution of *n*-BuLi in cyclohexane, stirred for 30 min at -78 °C, then treated with a solution of the crude aldehyde in 3 mL THF and stirred overnight. The reaction mixture was quenched by H₂O and extracted with ethyl acetate (3×10 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo*. After removing the solvent, the residue was purified by flash chromatography on silica gel (*n*-Hexane/EtOAc) to afford the propargylic alcohol.

To a mixture of propargylic alcohol in CH_2Cl_2 (4 mL) was added pyridine (622.3 mg, 8 mmol) and acyl chloride (1.6 mmol) at 0 °C, the reaction was stirred for 4 h. The mixture was diluted with CH_2Cl_2 (10 mL), washed with H_2O (5 mL), saturated NaHCO₃ solution (5 mL) and brine (5 mL). The organic layer was dried over Na₂SO₄ and filtered. Evaporation and flash chromatography on silica gel (*n*-Hexane/EtOAc) afforded the propargylic acetate **1**.

General procedure C for preparation of 8-Oxabicyclo[3.2.1]octanes:

To solution of Ph₃PAuCl (2.5 mg, 5 mol %) and AgSbF₆ (3.4 mg, 10 mol %) in distilled CH₂Cl₂ (1 mL), the solution of propargylic acetate **1** (0.1 mmol, 1 equiv) in distilled CH₂Cl₂ (1 mL) was added. The reaction was stirred at room temperature until the starting material was completely consumed. The mixture was filtered through a plug of silica and concentrated *in vacuo*. Purification of the residue by flash chromatography on silica gel (*n*-Hexane/EtOAc) afforded the product **2**.

General procedure D for preparation of 11-oxatricyclo[5.3.1.0]-undecanes:

To solution of divinyl ketone 2 (0.1 mmol) in distilled CH₂Cl₂ (1 mL), BF₃•OEt₂

(26.0 µL, 0.2 mmol) and H₂O 1 $_{\circ}$ 8 µL, 0.1 mmol) was added dropwise at -78 °C under nitrogen atmosphere successively. The reaction was warmed to -20 °C and stirred until the starting material was completely consumed. Saturated NaHCO₃ solution was added and the mixture was stirred vigorously for 10 min. The aqueous layer was extracted with CH₂Cl₂ (3 ×10 mL), the combined organic layers were dried over Na₂SO₄ and filtered. Evaporation and flash chromatography on silica gel (*n*-Hexane/EtOAc) afforded the cyclization product **3**.

Section C: Characterization Data for the Isolated Products

1,5-anhydro-3,4-bis-*O***-benzyl-2-deoxy-D-arabino-hex-1-enitol** (**8a**): Compound was prepared following the general procedure **A**, **8a** was obtained (5.01 g, 76%) after flash chromatography on silica (10:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = -31.0$; (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.29 (m, 10H), 6.41 (dd, J = 0.92, 6.2 Hz, 1H), 4.88-4.83 (m, 2H), 4.73 (d, J = 12.0 Hz, 1H), 4.67-4.64 (m, 2H), 4.19-4.17 (m, 1H), 4.14-4.10 (m, 1H), 4.01-3.96 (m, 2H), 3.78-3.72 (m, 1H), 2.33 (dd, J = 4.1, 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 145.0, 138.2, 138.0, 128.5, 128.5, 128.1, 128.0, 127.8, 127.6, 98.8, 75.7, 72.6, 72.0, 71.2, 69.4, 61.3; HRMS (ESI) calcd. for $[C_{20}H_{23}O_4]^+$, 327.1596; found 327.1596.

1,5-anhydro-2-deoxy-3,4-bis-*O*-methyl-D-arabino-hex-1-enitol (8b): Compound was prepared following the general procedure **A**, iodomethane (6.80 g, 48 mmol), **8b** was obtained (2.51 g, 72%) after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = -13.8$; (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 6.39 (d, *J* = 6.2 Hz, 1H), 4.86 (dd, *J* = 2.8, 6.1 Hz, 1H), 3.93-3.84 (m, 4H), 3.56 (s, 3H), 3.48 (dd, *J* = 6.0, 7.8 Hz, 1H), 3.41 (s, 3H), 2.10 (t, *J* = 6.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 144.5, 99.6, 77.2, 76.8, 76.4, 61.8, 59.3, 55.8; HRMS (ESI) calcd. for $[C_8H_{14}O_4]^+$, 175.0970; found 175.0972.

1,5-anhydro-2-deoxy-3,4-bis-*O*-methoxymethyl-D-arabino-hex-1-enitol8c):Compound was prepared following the general procedure A, chloromethyl methyl

ether (3.8 g, 48 mmol), **8c** was obtained (3.61 g, 77%) after flash chromatography on silica (10:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = 1.4$; (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 6.39 (d, J = 6.1 Hz, 1H), 4.91 (d, J = 6.5 Hz, 1H), 4.84 (dd, J = 2.7, 6.1 Hz, 1H), 4.76-4.72 (m, 3H), 4.25-4.24 (m, 1H), 3.97-3.81 (m, 4H), 3.44 (s, 3H), 3.40 (s, 3H), 2.67 (dd, J = 5.7, 8.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 144.6, 100.6, 97.8, 95.7, 77.6, 73.8, 73.7, 61.3, 56.2, 55.6; HRMS (ESI) calcd. for $[C_{10}H_{18}O_6Na]^+$, 257.1001; found 257.1004.

1,5-anhydro-3,4-bis-*O***-benzyl-2-deoxy-D-arabino-hex-5-enitol** (8d): Compound was prepared following the general procedure **A**, D-Galactal (2.9 g, 20 mmol), 8d was obtained (5.18 g, 78%) after flash chromatography on silica (10:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = -83.1$; (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.29 (m, 10H), 6.41 (dd, *J* = 1.0 Hz, 6.1 Hz, 1H), 4.90 (dd, *J* = 2.7, 6.2 Hz, 1H), 4.88 (d, *J* = 11.8 Hz, 1H), 4.73 (d, *J* = 11.4 Hz, 1H), 4.68 (d, *J* = 11.6 Hz, 1H), 4.58 (d, *J* = 11.6 Hz, 1H), 4.25-4.23 (m, 1H), 3.97-3.93 (m, 1H), 3.88-3.86 (m, 2H), 3.82 (dd, *J* = 6.2 Hz, 8.5 Hz, 1H), 2.0 (t, *J* = 6.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 144.6, 138.1, 138.0, 128.5, 128.5, 128.0, 127.9, 127.8, 100.1, 75.5, 74.5, 73.7, 70.6, 61.8; HRMS (ESI) calcd. for [C₂₀H₂₃O₄]⁺, 327.1596; found 327.1599.

1,5-anhydro-3,4-bis-*O***-benzyl-2-deoxy-L-arabino-hex-5-enitol** (8e): Compound was prepared following the general procedure **A**, *L*-Glucal (2.9 g, 20 mmol), **8e** was obtained (5.15 g, 77%) after flash chromatography on silica (10:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = 23.6$; (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.30 (m, 3H), 6.41 (d, J = 6.1 Hz, 1H), 4.90 (dd, J = 2.7, 6.2 Hz, 1H), 4.87 (d, J = 11.7 Hz, 1H), 4.73 (d, J = 11.5 Hz, 1H), 4.68 (d, J = 11.6 Hz, 1H), 4.58 (d, J = 11.7 Hz), 4.25 (d, J = 5.2 Hz, 1H), 3.97-3.94 (m, 1H), 3.88-3.86 (m, 2H), 3.82 (dd, J = 6.3, 8.5 Hz, 1H), 1.98 (t, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 144.6, 138.2, 138.0, 128.5, 128.5, 128.0, 127.9, 127.8, 77.3, 75.6, 74.6, 73.8, 70.6, 61.8; HRMS (ESI) calcd. for $[C_{20}H_{23}O_4]^+$, 327.1596; found 327.1596.

1,5-anhydro-3,4-bis-O-benzyl-2-deoxy-6-(1-O-acetyl-3-phenylprop-2-yn-1-yl)-D-a rabino-hex-1-enitol (1a): Compound was prepared following the general procedure **B**, acyl chloride (124.8 mg, 1.6 mmol), phenylacetylene (352 mg, 3.45 mmol), **1a** was obtained (350.6 mg, 61%, 3 steps) as a 1:1.1 mixture of diastereomers about the propargylic position after flash chromatography on silica (4:1, n-Hexane/EtOAc). Obtained as a 1:1.1 mixture of diastereomers about the propargylic position. ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.28 (m, 15H, both isomers), 6.48 (dd, J = 1.6, 8.1 Hz, 1H, major isomer), 6.43 (dd, J = 0.8, 8.1 Hz, 1H, minor isomer), 5.03 (dd, J = 1.4, 4.6 Hz, 1H, minor isomer), 4.98 (d, J = 14.8 Hz, 1H), 4.94 (dd, J = 2.9, 8.2 Hz, 1H, major isomer), 4.84 (d, J = 14.7 Hz, 1H, major isomer), 4.79 (d, J = 15.5 Hz, 1H, minor isomer), 4.71-4.56 (m, 2H, both isomers), 4.37-4.30 (m, 1H, both isomers), 4.15 (dd, J = 3.8, 13.2 Hz, 1H, major isomer), 4.10-4.05 (m, 1H, both isomers), 3.97 (dd, J = 9.2, 13.2 Hz, 1H, major isomer), 2.15 (s, 3H, major isomer), 2.13 (s, 3H, minor isomer); ¹³C NMR (100 MHz, CDCl₃): δ 169.5, 169.5, 144.3, 144.0, 138.0, 138.0, 137.8, 137.5, 132.1, 131.9, 128.8, 128.8, 128.5, 128.4, 128.4, 128.3, 128.2, 128.0, 128.0, 127.9, 127.8, 127.8, 127.6, 121.9, 121.8, 100.5, 99.9, 87.4, 86.8, 83.7, 82.2, 77.4, 76.9, 76.7, 75.4, 74.5, 72.6, 72.2, 71.9, 70.9, 70.4, 64.1, 61.8, 20.9, 20.9; HRMS (ESI) calcd. for $[C_{30}H_{28}O_5Na]^+$, 491.1834; found 491.1830.

1,5-anhydro-3,4-bis-O-benzyl-2-deoxy-6-(1-O-acetyl-3-(p-methoxyphenyl)prop-2yn-1-yl)-D-arabino-hex-1-enitol (1b): Compound was prepared following the general procedure **B**, acyl chloride (124.8 mg, 1.6 mmol), 4-ethynylanisole (458.2 mg, 3.45 mmol), **1b** was obtained (382.1 mg, 62%, 3 steps) as a 1.1.5: mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.24 (m, 12H, both isomers), 6.83-6.79 (m, 2H, both isomers), 6.47 (d, J = 6.1 Hz, 1H, major isomer), 6.43, (d, J =6.2 Hz, 1H, minor isomer), 6.21 (d, J = 6.2 Hz, 1H, minor isomer), 6.17(d, J = 2.8 Hz, 1H, major isomer), 5.02 (dd, J = 6.2, 3.7 Hz, 1H, minor isomer), 4.96 (d, J = 11.1 Hz, 1H, major isomer), 4.93 (dd, J = 8.2, 2.1 Hz, 1H, major isomer), 4.82 (d, J = 11.1 Hz, 1H, major isomer), 4.78 (d, J = 11.6 Hz, 1H, minor isomer), 4.68 (d, J = 11.6 Hz, 1H, major isomer), 4.65 (d, J = 11.6 Hz, minor isomer), 4.64 (d, J = 11.6 Hz, 1H, major isomer), 4.55 (s, 2H, minor isomer), 4.36 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.30 (dt, J = 1 Hz, 5.8 Hz, 1H, minor isomer), 4.14-3.94 (m, 2H, both isomers), 3.81 (s, 3H, 3H, 3H)both isomers), 2.14 (s,3H, major isomer), 2,12 (s, 3H, minor isomer); ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 169.5, 160.0, 159.9, 144.3, 144.0, 138.0, 138.0, 137.9, 137.5, 133.6, 133.4, 1283.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.8, 127.7, 127.6, 127.6, 113.9, 113.9, 113.8, 100.5, 99.9, 87.4, 86.8, 82.4, 80.8, 77.5, 77.0, 76.8, 75.5, 74.5, 72.6, 72.2, 71.9, 70.9, 70.3, 64.3, 61.9, 55.2, 20.9, 20.9; HRMS (ESI) calcd. for

 $[C_{30}H_{31}O_6Na]^+$, 521.1940; found 521.1946.

1,5-anhydro-3,4-bis-O-benzyl-2-deoxy-6-(1-O-acetyl-3-(p-methylphenyl)prop-2-y n-1-yl)-D-arabino-hex-1-enitol (1c): Compound was prepared following the general procedure **B**, acyl chloride (124.8 mg, 1.6 mmol), 4-ethynyltoluene (401.0 mg, 3.45 mmol), 1c was obtained (371.6 mg, 60%, 3 steps) as a 1:1.2 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.19 (m, 12H, both isomer), 7.09-7.05 (m, 2H, both isomer), 6.46 (d, J = 5.3 Hz, 1H, major isomer), 6.42 (d, J =6.3 Hz, minor isomer), 6.22 (d, J = 6.2 Hz, 1H, minor isomer), 6.18 (d, J = 2.8 Hz, major isomer), 5.00 (dd, J = 3.8, 6.0 Hz, minor isomer), 4.96 (d, J = 11 Hz, 1H, major isomer), 4.91 (dd, J = 2.1, 6.1 Hz, 1H, major isomer), 4.82 (d, J = 11.0 Hz, 1H, major isomer), 4.76 (d, 11.8 Hz, 1H, minor isomer), 4.67 (d, 11.6 Hz, 1H, minor isomer), 4.64 (d, 11.7 Hz, 1H, major isomer), 4.57 (d, 11.6 Hz, 1H, major isomer), 4.53 (s, 1H, minor isomer), 4.35-4.29 (m, 1H, both isomers), 4.14-3.94 (m, 2H, both isomers), 2.32 (s, 3H, both isomers), 2.12 (s, 3H, major isomer), 2.10 (s, 3H, minor isomer); ^{13}C NMR (100 MHz, CDCl₃): δ 169.5, 169.4, 144.26, 143.9, 138.9, 138.9, 138.0, 137.9, 137.8, 137.5, 132.0, 131.8, 128.9, 128.4, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 121.8, 127.7, 127.6, 127.6, 118.7, 118.7, 100.5, 99.88, 87.5, 86.9, 83.0, 81.4, 77.4, 76.9, 75.4, 74.5, 72.5, 72.1, 71.8, 70.8, 70.2, 64.1, 61.8, 21.4, 20.9; HRMS (ESI) calcd. for [C₃₁H₃₀O₅Na]⁺, 505.1991; found 505.1991.

1,5-anhydro-3,4-bis-O-benzy-2-deoxyl-6-(1-O-acetyl-3-(4-trifluoromethyl-phenyl) prop-2-yn-1-yl)-D-arabino-hex-1-enitol (1d): Compound was prepared following mmol), general procedure B. acyl chloride (124.8)1.6 the mg, 4-ethynyl-α,α,α-trifluorotouene (586.5 mg, 3.45 mmol), 1d was obtained (382.2 mg, 58%, 3 steps) as a 1:1.2 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.56-7.49 (m, 3H, both isomers), 7.39-7.27 (m, 11H, both isomers), 6.47 (dd, J = 1.0, 6.1 Hz, 1H, major isomer), 6.45 (dd, J = 0.6, 6.2 Hz, 1H, minor isomer), 6.21 (d, J =5.8 Hz, 1H, minor isomer), 6.17 (d, J = 2.9 Hz, 1H, major isomer), 5.04 (dd, J = 3.6, 6.2 Hz, 1H, minor isomer), 4.99-4.95 (m, 1H, both isomers), 4.83 (d, J = 5.4 Hz, 1H, major isomer), 4.80 (d, J = 5.9 Hz, 1H, minor isomer), 4.70 (d, J = 11.5 Hz, 1H, major isomer), 4.64 (d, J = 11.6 Hz, 1H, minor isomer), 4.61 (d, J = 6.2 Hz, 1H, minor isomer), 4.58 (d, J = 6.1 Hz, 1H, major isomer), 4.54 (d, J = 11.7 Hz, 1H, minor isomer), 4.36 (dt, J = 1.8, 6.8 Hz, 1H, major isomer), 4.30 (td, J = 0.64, 5.9 Hz, 1H, minor isomer), 4.16 (dd, J = 2.9, 9.8 Hz, 1H, major isomer), 4.12-4.09 (m, 1H, minor isomer), 4.04-4.01 (m, 1H, minor isomer), 3.94 (dd, J = 6.4, 9.8 Hz, 1H, major isomer), 2.16 (s, 3H, major isomer), 2.13 (s, 3H, minor isomer); ¹³C NMR (100 MHz, CDCl₃): *δ* 169.6, 169.5, 144.3, 144.0, 138.0, 137.0, 137.7, 137.5, 132.4, 132.2, 130.6

(q, $J_{(C-F)} = 29.9$ Hz), 128.6, 128.5, 128.5, 128.5, 128.3, 128.1, 127.9, 127.9, 127.8, 127.6, 125.7 (q, $J_{(C-F)} = 1.8$ Hz), 125.2 (q, $J_{(C-F)} = 3.6$ Hz), 121.1 (q, $J_{(C-F)} = 271.2$ Hz), 100.6, 100.1, 86.3, 85.8, 85.3, 84.8, 76.8, 75.0, 74.4, 72.7, 72.6, 71.9, 70.9, 70.4, 64.0, 61.6, 20.9, 20.9; HRMS (ESI) calcd. for $[C_{31}H_{28}F_3O_5]^+$, 537.1889; found 537.1899.

1,5-anhydro-3,4-bis-O-benzyl-2-deoxy-6-(1-O-acetyl-3-(4-fluorophenyl)prop-2-yn -1-yl)-D-arabino-hex-1-enitol (1e): Compound was prepared following the general procedure **B**, acyl chloride (124.8 mg, 1.6 mmol), 1-ethynyl-4-fluorobenzene (414.0 mg, 3.45 mmol), (1e was obtained (341.0 mg, 57%, 3 steps) as a 1:1.1 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.22 (m, 12H, both isomers), 7.01-6.95 (m, 2H, both isomers), 6.48 (d, J = 6.0 Hz, 1H, major isomer), 6.45 (d, J =6.2 Hz, 1H, minor isomer), 6.20 (d, J = 5.9 Hz, 1H, major isomer), 6.17 (d, J = 2.8 Hz, 1H, major isomer), 5.04 (dd, J = 3.6, 6.1 Hz, 1H, minor isomer), 4.99-4.94 (m, 1H, both isomers), 4.84-4.53 (m, 3H, both isomers), 4.36 (dt, J = 1.6, 6.9 Hz, 1H, major isomer), 4.30 (dt, J = 0.6, 5.8 Hz, 1H, minor isomer), 4.16 (dd, J = 2.9, 9.9 Hz, 1H, major isomer), 4.10-4.08 (m, 1H, minor isomer), 4.06-4.04 (m, 1H, minor isomer), 3.96 (dd, J = 6.9, 9.9 Hz, 1H, major isomer), 2.15 (s, 1H, major isomer), 2.13 (s, 1minor isomer); 13 C NMR (100 MHz, CDCl₃): δ 169.5, 169.4, 164.0, 164.0, 161.5, 161.5, 144.3, 144.0, 138.0, 137.9, 137.8, 137.5, 134.1, 134.0, 133.89, 133.8, 128.5,

128.4, 128.4, 128.4, 128.2, 128.0, 127.9, 127.9, 127.6, 127.6, 117.9, 117.9, 115.6, 115.4, 100.5, 100.0, 86.3, 85.7, 83.5, 82.0, 77.4, 76.9, 76.7, 75.2, 74.4, 72.6, 72.4, 72.4, 72.0, 70.9, 70.3, 64.1, 61.7, 20.9; HRMS (ESI) calcd. for $[C_{30}H_{28}FO_5]^+$, 487.1921; found 487.1921.

1,5-anhydro-3,4-bis-O-benzyl-2-deoxy-6-(1-O-acetyl-3-cyclohexylprop-2-yn-1-yl)-D-arabino-hex-1-enitol (1f): Compound was prepared following the general procedure **B**, acyl chloride (124.8 mg, 1.6 mmol), cyclohexylacetylene (373.2 mg, 3.45 mmol), 1f was obtained (396.4 mg, 65%, 3 steps) as a 1:3 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.28 (m, 10H, both isomers), 6.45 (dd, J = 1.7, 6.0 Hz, 1H, major isomer), 6.41 (d, J = 6.2 Hz, 1H, minor isomer),6.02, (dd, J = 1.8, 6.3 Hz, 1H, minor isomer), 5.99 (t, J = 2.4 Hz, 4.7 Hz, 1H, major isomer), 5.00-4.98 (m, 1H, minor isomer), 4.95 (d, J = 11.0 Hz, 1H, major isomer), 4.90 (dd, J = 2.1, 6.1 Hz, major isomer), 4.80 (d, J = 11.0 Hz, 1H, major isomer), 4.77 (d, J = 11.8 Hz, minor isomer), 4.69 (d, J = 11.6 Hz, 1H, major), 4.65 (d, J = 11.8 Hz, 1H, minor isomer), 4.60 (d, J = 11.6 Hz, 1H, major isomer), 4.54 (s, 2H, minor isomer), 4.34 (dt, J = 1.7, 7.1 Hz, 1H, major isomer), 4.22-4.18 (m, 1H, minor isomer), 4.06 (d, J = 2.8 Hz, 1H, minor isomer), 4.03 (d, J = 2.6 Hz, 1H, major isomer), 3.91 (d, J = 7.1 Hz, 1H, major isomer), 3.89 (d, J = 7.0 Hz, 1H, minor isomer), 2.45-2.41

(m, 1H, major isomer), 2.35-2.31 (m, 1H, minor isomer), 2.12 (s, 3H, major isomer),
2.09 (s, 3H, minor isomer), 1.81-1.64 (m, 4H, both isomers), 1.53-1.42 (m, 2H, both isomers) 1.33-1.24 (m, 4H, both isomers); ¹³C NMR (100 MHz, CDCl₃): δ 169.5,
169.5, 144.3, 144.0, 138.1, 138.0, 137.9, 137.6, 128.4, 128.4, 128.4, 128.3, 128.1,
127.9, 127.8, 127.8, 127.7, 127.6, 127.5, 100.4, 99.7, 92.7, 91.9, 77.4, 76.8, 75.8, 74.7,
73.1, 72.4, 71.9, 70.8, 70.2, 64.1, 61.6, 32.3, 32.3, 32.2, 32.2, 29.00, 28.9, 25.7, 25.7,
24.7, 21.0; HRMS (ESI) calcd. for [C₃₀H₃₄O₅Na]⁺ 497.2307; found 497.2307.

1,5-anhydro-3,4-bis-O-benzyl-2-deoxy-6-(1-O-acetylhept-2-yn-1-yl)-D-arabino-he

x-1-enitol (1g): Compound was prepared following the general procedure **B**, acyl chloride (124.8 mg, 1.6 mmol), 1-hexyne (283.2 mg, 3.45 mmol), **1g** was obtained (352.6 mg, 61%, 3 steps) as a 1:2.1 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.29 (m, 10H, both isomers), 6.44 (dd, J = 0.84, 6.9 Hz, 1H, major isomer), 6.41 (d, J = 6.2 Hz, 1H, minor isomer), 5.97-5.93 (m, 1H, both isomers), 4.97 (dd, J = 3.5, 6.2 Hz, 1H, minor isomer), 4.94 (d, J = 11.0 Hz, 1H, major isomer), 4.82 (d, J = 11.4 Hz, 1H, minor isomer), 4.68 (d, J = 11.5 Hz, major isomer), 4.62 (d, J = 11.6 Hz, 1H, minor isomer), 4.69 (d, J = 11.6 Hz, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t, J = 4.56 (s, 2H, minor isomer), 4.32 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.15 (t

5.8 Hz, 1H, minor isomer), 4.07 (t, J = 8.0 Hz, 1H, minor isomer), 4.03 (dd, J = 2.8, 10.0 Hz, 1H, major isomer), 3.99-3.96 (m, 1H, minor isomer), 3.88 (dd, J = 7.0, 10.0 Hz, 1H, major isomer), 2.23 (dt, J = 2.0, 7.0 Hz, 2H, major isomer), 2.15 (dt, J = 1.8, 6.9 Hz, 2H, minor isomer), 2.11 (s, 3H, major isomer), 2.08 (s, 3H, minor isomer), 1.53-1.31 (m, 4H, both isomers), 0.91-0.87 (s, 3H, major isomer), 0.88-0.85 (s, 3H, minor isomer); ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 169.5, 144.3, 144.1, 138.1, 138.1, 137.9, 137.7, 128.4, 128.4, 128.2, 128.0, 127.9, 127.8, 127.8, 127.8, 127.6, 127.6, 100.4, 99.8, 88.8, 87.8, 77.5, 75.5, 74.8, 74.5, 73.1, 72.8, 72.8, 72.3, 70.8, 70.3, 64.1, 61.7, 30.4, 30.4, 21.9, 21.9, 21.0, 18.5, 18.4, 13.5; HRMS (ESI) calcd. for $[C_{28}H_{32}O_5Na]^+$, 471.2147; found 471.2158.

1,5-anhydro-3,4-bis-*O***-benzyl-2-deoxy-6-(1-***O***-acetylbut-2-yn-1-yl)-D-arabino-He x-1-enitol (1h):** Compound was prepared following the general procedure **B**, acyl chloride (124.8 mg, 1.6 mmol), 1-propynylmagnesium bromide solution (0.5 M in THF, 6.9 mL, 3.45 mmol), **1h** was obtained (159.6 mg, 52%, 3 steps) as a 1:3 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.29 (m, 10H, both isomers), 6.45 (dd, *J* = 1.0, 6.1 Hz, 1H, major isomer), 6.43 (dd, *J* = 0.8, 6.2 Hz, 1H, minor isomer), 5.93-5.89 (m, 1H, both isomers), 4.99-4.91 (m, 2H, both isomers), 4.81-4.77 (m, 1H, both isomers), 4.70-4.53 (m, 2H, both isomers), 4.33 (dt, *J* = 1.8,

6.9 Hz, 1H, major isomer), 4.15-4.10 (m, 1H, both isomers), 4.04 (dd, J = 2.8, 10 Hz, 1H major isomer), 3.95 (dd, J = 1.6, 5.0 Hz, 1H, minor isomer) 3.90 (dd, J = 7.0, 10 Hz, 1H, major isomer), 2.11 (s, 3H, major isomer), 2.08 (s, 3H, minor isomer), 1.84 (d, J = 2.2 Hz, 3H, major isomer), 1.81 (d, J = 2.2 Hz, 3H, minor isomer); ¹³C NMR (100 MHz, CDCI3): δ 169.6, 169.5, 144.3, 144.0, 138.0, 138.0, 137.8, 137.5, 128.4, 128.3, 128.3, 128.0, 127.9, 127.8, 127.7, 127.6, 100.3, 100.0, 84.2, 83.4, 77.4, 77.0, 75.1, 74.3, 74.0, 73.4, 72.9, 72.3, 72.2, 70.8, 70.4, 64.0, 61.7, 20.9, 20.9, 3.8, 3.6; HRMS (ESI) calcd. for [C₂₅H₂₇O₅]⁺, 407.1858; found 407.1851.

1,5-anhydro-3,4-bis-*O*-benzyl-2-deoxy-6-(1-*O*-acetyl-3-(cyclohex-1-enyl)prop-2-y **n-1-yl)-D-arabino-Hex-1-enitol (1i):** Compound was prepared following the general procedure **B**, acyl chloride (124.8 mg, 1.6 mmol), 1-ethynycyclohexene (345.0 mg, 3.45 mmol), **1i** was obtained (360.0 mg, 62%, 3 steps) as a 1:3.5 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (300 MHz, CDCl₃): δ 7.38-7.29 (m, 10H, both isomers), 6.45 (d, J = 6.0 Hz, 1H, major isomer), 6.41 (d, J = 6.2 Hz, 1H, minor isomer), 6.16-6.14 (m, 1H, major isomer), 6.11 (d, J = 6.1 Hz, 1H, minor isomer), 6.08 (s, 1H, major isomer), 6.05-6.03 (m, 1H, minor isomer), 4.99 (dd, J = 4.2, 6.3 Hz, 1H, minor isomer), 4.95 (d, J = 11.0 Hz, 1H, major isomer), 4.91 (d, J = 2.0, 6.1 Hz, 1H, minor isomer), 4.80 (d, J = 11.0 Hz, 1H, major isomer), 4.75 (d, J = 11.7 Hz, 1H, minor

isomer), 4.68 (d, J = 11.5 Hz, 1H, major isomer), 4.64 (d, J = 11.6 Hz, 1H, minor isomer), 4.69 (d, J = 11.5 Hz, 2H, major isomer), 4.54 (s, 2H, minor isomer), 4.33 (dt, J = 1.6, 7.0 Hz, 1H, major isomer), 4.22 (td, J = 1.5, 5.6 Hz, 1H, major isomer), 4.07 (dd, J = 2.8, 10.0 Hz, 1H, major isomer), 4.03-4.01 (m, 2H, minor isomer), 3.90 (dd, J = 7.1, 10.0 Hz, 1H, major isomer), 2.12 (s, 3H, major isomer), 2.11-2.00 (m, 4H, both isomers), 1.63-1.55 (m, 4H, both isomers); ¹³C NMR (100 MHz, CDCl₃): δ 169.5, 144.3, 144.0, 138.1, 138.0, 137.9, 136.6, 136.4, 128.4, 128.4, 128.3, 128.2, 128.0, 127.9, 127.9, 127.8, 127.6, 127.6, 119.6, 100.4, 99.8, 89.4, 79.3, 77.4, 77.2, 76.8, 75.7, 74.6, 72.5, 72.2, 71.9, 70.9, 70.3, 64.3, 61.9, 28.9, 28.8, 25.6, 22.1, 21.3, 20.9; HRMS (ESI) calcd. for [C₃₀H₃₃O₅]⁺, 473.2328; found 473.2330.

1,5-anhydro-3,4-bis-O-benzyl-2-deoxy-6-(1-O-acetyl-3-(4-tBu-cyclohex-1-enyl)pr op-2-yn-1-yl)-D-arabino-Hex-1-enitol (1j): Compound was prepared following the general procedure B, acyl chloride (124.8)1.6 mg, mmol), 4-(1,1-dimethylethyl)-1-ethynyl-cyclohexene (559.0mg, 3.45 mmol), 1j was obtained (404.2 mg, 64%, 3 steps) as a 1:1.3 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.29 (m, 10H, both isomers), 6.45 (d, J = 6.1 Hz, 1H, major isomer), 6.42 (d, J = 6.2 Hz, 1H, minor isomer), 6.17 (br, 1H, major isomer), 6.13 (d, J = 6.9 Hz, 1H, minor isomer), 6.10 (d, J = 2.7 Hz, 1H, major isomer), 6.06 (br, 1H,

minor isomer), 4.99 (dd, J = 3.4, 6.2 Hz, 1H, minor isomer), 4.98 (d, J = 11.0 Hz, 1H, major isomer), 4.92 (d, J = 2.0, 6.1 Hz, 1H, major isomer), 4.81 (d, J = 11.0 Hz, 1H, major isomer), 4.77 (d, J = 11.6 Hz, 1H, minor isomer), 4.69 (d, J = 11.6 Hz, 1H, major isomer), 4.65 (d, J = 11.7 Hz, 1H, minor isomer), 4.59 (d, J = 11.5 Hz, 1H, major isomer), 4.55 (s, 2H, minor isomer), 4.33 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.24 (td, J = 1.6, 6.3 Hz, 1H, minor isomer), 4.08 (dd, J = 2.9, 9.9 Hz, 1H, major isomer), 4.04-4.02 (m, 2H, minor isomer), 3.91 (dd, J = 7.0, 9.9 Hz, 1H, major isomer), 2.30-2.27 (m, 1H, both isomers), 2.21-2.21 (m, 3H, both isomers), 2.12 (s, 3H, major isomer), 2.10 (s, 3H, minor isomer), 1.58-1.40 (m, 8H, both isomers); ^{13}C NMR (100 MHz, CDCl₃): δ 169.5, 169.4, 144.3, 144.0, 138.0, 138.0, 137.9, 137.6, 137.0, 136.9, 136.8, 136.7, 128.4, 128.4, 128.4, 128.3, 128.2, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 127.6, 119.3, 100.4, 99.8, 89.1, 88.4, 81.1, 79.5, 77.4, 77.0, 76.7, 75.7, 75.6, 74.6, 72.5, 72.2, 71.9, 70.9, 70.3, 64.2, 61.8, 43.0, 32.1, 30.4, 30.3, 27.3, 27.0, 23.6, 20.9; HRMS (ESI) calcd. for [C₃₄H₄₁O₅₁⁺, 529.2954; found 529.2952.

1,5-anhydro-3,4-bis-*O***-benzyl-2-deoxy-6-(1-***O***-acetyl-3-(cycloocten-1-enyl)prop-2-yn-1-yl)-D-arabino-Hex-1-enitol (1k):** Compound was prepared following the general procedure **B**, acyl chloride (124.8 mg, 1.6 mmol), 1-ethynylcyclooctene (462.3 mg, 3.45 mmol), **1k** was obtained (387.6 mg, 66%, 3 steps) as a 1:1.1 mixture of diastereomers about the propargylic position after flash chromatography on silica

(8:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.28 (m, 10H, both isomers), 6.45 (d, J = 6.2 Hz, 1H, major isomer), 6.41 (d, J = 6.2 Hz, 1H, minor isomer), 6.27-5.99 (m, 2H, both isomers), 4.99 (dd, J = 3.9, 5.4 Hz, 1H, minor isomer), 4.97 (d, J = 11.0 Hz, 1H, major isomer), 4.90 (d, J = 2.1, 6.1 Hz, 1H, major isomer), 4.79 (d, J = 11.0 Hz, 1H, major isomer), 4.74 (d, J = 11.8 Hz, 1H, minor isomer), 4.68-4.63 (m, 1H, both isomers), 4.60-4.55 (m, 1H, both isomers), 4.52 (d, J = 11.8 Hz, 1H, minor isomer), 4.33 (dt, J = 1.7, 7.1 Hz, 1H, major isomer), 4.24 (td, J = 1.0, 6.0 Hz, 1H, minor isomer), 4.07 (dd, J = 2.8, 10.0 Hz, 1H, major isomer), 4.04-4.00 (m, 2H, major), 3.90 (dd, J = 7.1, 9.9 Hz, 1H, major isomer), 2.17-2.05 (m, 3H, both isomers), 2.12 (s, 3H, major isomer), 2.10 (s, 3H, minor isomer), 1.88-1.80 (m, 2H, both isomers), 1.28-1.11 (m, 2H, both isomers), 0.87 (s, 9H, both isomers); ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 169.5, 144.4, 144.0, 139.5, 139.3, 138.1, 138.0, 137.9, 137.6, 128.5, 128.4, 128.4, 128.4, 128.1, 128.0, 127.8, 127.8, 127.7, 127.6, 127.5, 122.6, 100.5, 99.8, 90.1, 89.4, 80.4, 78.8, 77.5, 76.7, 72.4, 71.9, 71.7, 70.8, 70.2, 64.3, 61.9, 29.8, 29.6, 29.5, 29.5, 28.4, 28.3, 26.9, 26.9, 26.3, 26.2, 25.7, 25.7, 21.0; HRMS (ESI) calcd. for $[C_{32}H_{37}O_5]^+$, 501.2641; found 501.2644.

1,5-anhydro-3,4-bis-O-benzyl-2-deoxy-6-(1-O-acetyl-4-methylbut-4-en-2-yn-1-yl)-D-arabino-Hex-1-enitol (11-A): Compound was prepared following the general

procedure **B**, acyl chloride (124.8 mg, 1.6 mmol), isopropenylacetylene (228.0 mg, 3.45 mmol), **11-A** was obtained (165.4 mg, 31%, 3 steps) after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). Rf 0.44 (3:1 Hexane/EtOAc); $[\alpha]_D^{22} = 38.2$; (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.28 (m, 10H), 6.46-6.44 (dd, *J* = 1.1, 6.0 Hz, 1H), 6.08-6.08 (d, *J* = 2.7 Hz, 1H), 5.35 (br, 1H), 5.28-5.27 (t, *J* = 1.6 Hz, 1H), 4.97-4.94 (d, *J* = 11.1 Hz, 1H), 4.93-4.91 (dd, *J* = 2.2, 6.1 Hz, 1H), 4.81-4.78 (d, *J* = 11.1 Hz, 1H), 4.69-4.67 (d, *J* = 11.5 Hz, 1H), 4.60-4.57 (d, *J* = 11.5 Hz, 1H), 4.34-4.32 (dt, *J* = 1.8, 7.0 Hz, 1H), 4.10-4.07 (dd, *J* = 2.9, 10.0 Hz, 1H), 3.91-3.87 (dd, *J* = 7.0, 10.0 Hz, 1H), 2.13 (s, 3H), 1.88 (s, 3H); ¹³C NMR (100 MHz, CDCl3): δ 169.4, 144.3, 138.0, 137.8, 128.4, 128.4, 128.0, 127.9, 127.8, 125.7, 123.5, 100.5, 88.6, 81.1, 77.3, 76.9, 75.4, 74.5, 70.9, 64.0, 23.2, 20.9; HRMS (ESI) calcd. for [C₂₇H₂₉O₅]⁺, 433.2015; found 433.2010.

1,5-anhydro-3,4-bis-*O***-benzyl-2-deoxy-6-(1-***O***-acetyl-4-methylbut-4-en-2-yn-1-yl)**-**D-arabino-Hex-1-enitol (11-B):** Compound was prepared following the general procedure **B**, acyl chloride (124.8 mg, 1.6 mmol), isopropenylacetylene (228.0 mg, 3.45 mmol), **11-B** was obtained (166.9 mg, 32%, 3 steps) after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). Rf 0.41 (3:1 Hexane/EtOAc); $[\alpha]_D^{22} = 1.4$; (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.28 (m, 10H), 6.43-6.40 (dd, *J* = 0.8, 6.2 Hz, 1H), 6.13-6.11 (d, *J* = 6.0 Hz, 1H), 5.25-5.23 (m, 2H), 5.01-4.98 (dd, *J* = 3.6, 6.2 Hz, 1H), 4.79-4.75 (d, *J* = 11.6 Hz, 1H), 4.65-4.61 (d, *J* = 11.6 Hz, 1H), 4.55 (s, 2H), 4.25-4.20 (dt, *J* = 1.1, 5.9 Hz, 1H), 4.06-3.98 (m, 2H), 2.10 (s, 3H), 1.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.5, 144.0, 138.0, 137.6, 128.5, 128.4, 128.2, 128.0,

127.6, 127.6, 125.7, 123.3, 99.9, 87.9, 82.7, 77.2, 72.6, 72.3, 71.9, 70.3, 61.3, 23.0, 20.9; HRMS (ESI) calcd. for $[C_{27}H_{29}O_5]^+$, 433.2015; found 433.2018.

1,5-anhydro-3,4-bis-O-benzyl-2-deoxy-6-(1-O-acetyl-6-methyl-4-hepten-2-yn-1-yl)-D-arabino-Hex-1-enitol (1m): Compound was prepared following the general procedure **B**, acyl chloride (124.8 mg, 1.6 mmol), (3*E*)-5-methyl-3-hexen-1-yne (324.3 mg, 3.45 mmol), **1m** was obtained (362.3 mg, 64%, 3 steps) as a 1:3.5 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (300 MHz, CDCl₃): δ 7.36-7.27 (m, 10H, both isomers), 6.45 (d, J = 6.0 Hz, 1H, major isomer), 6.41 (d, J = 5.7 Hz, 1H, minor isomer), 6.16 (dd, J = 6.8, 16.0 Hz, 1H, major isomer), 6.10-6.06 (m, 1H, minor isomer), 6.07-6.04 (m, 1H, both isomers), 5.43-5.36 (m, 1H, both isomers), 4.98 (dd, J = 3.6, 6.1 Hz, 1H, minor isomer), 4.94 (d, J = 11.3 Hz, 1H, major isomer), 4.91 (d, J =2.1, 6.2 Hz, 1H, major isomer), 4.78 (d, J = 11.1 Hz, 1H, major isomer), 4.76 (d, J =11.4 Hz, 1H, minor isomer), 4.68 (d, J = 11.5 Hz, 1H, major isomer), 4.63 (d, J = 11.4Hz, 1H, minor isomer), 4.58 (d, J = 11.4 Hz, 1H, major isomer), 4.54 (s, 2H, minor isomer), 4.31 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.24 (t, J = 11.6 Hz, 1H, minor isomer), 4.08-4.04 (m, 1H, both isomers), 4.00-3.97 (m, 1H, minor isomer), 3.89 (dd, J = 7.0, 9.9 Hz, 1H, major isomer), 2.33 (sep, J = 6.7 Hz, 1H, both isomers) 2.11 (s, 3H, major isomer), 2.10 (s, 3H, minor isomer), 1.00 (d, J = 6.7 Hz, 6H, major isomer), 0.97 (d, *J* = 6.7 Hz, 6H, minor isomer); ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 169.5, 153.2, 153.1, 144.3, 144.1, 138.1, 138.0, 137.9, 137.6, 128.5, 128.4, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 105.9, 105.8, 100.4, 99.9, 86.5, 85.8, 82.2, 80.6, 77.5, 77.2, 76.8, 75.3, 74.5, 72.9, 72.8, 72.1, 71.0, 70.4, 64.3, 61.9, 31.7, 21.6, 20.9; HRMS (ESI) calcd. for [C₂₉H₃₃O₅]⁺, 461.2328; found 461.2324.

1,5-anhydro-2-deoxy-3,4-bis-O-methyl-6-(1-O-acetyl-3-phenylprop-2-yn-1-yl)-Darabino-Hex-1-enitol (1n): Compound was prepared following the general procedure **B**, 8b (212.4 mg, 1.2 mmol), acyl chloride (124.8 mg, 1.6 mmol), 1n was obtained (254.9 mg, 65%, 3 steps) as a 1:1.1 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (300 MHz, CDCl₃): δ 7.48-7.44 (m, 2H, both isomers), 7.36-7.27 (m, 3H, both isomers), 6.46-6.44 (dd, J = 1.1, 6.1 Hz, 1H, minor isomer), 6.38 (d, J = 6.2 Hz, 1H, major isomer), 4.99-4.96 (dd, J = 3.7, 6.2 Hz, 1H, major isomer), 4.88 (dd, J = 2.3, 6.1 Hz, 1H, minor isomer), 4.26 (dt, J = 1.1, 5.9 Hz, 1H, major isomer), 4.05 (dd, J = 3.1, 9.8Hz, 1H, minor isomer), 4.00 (dt, J = 3.7, 6.9 Hz, 1H, major isomer), 3.80-3.72 (m, 1H, both isomers), 3.64 (s, 3H, minor isomer), 3,61 (dd, J = 6.9, 9.8 Hz, 1H, major isomer), 3.51 (s, 3H, major isomer), 3.42 (s, 3H, both isomers), 2.16 (s, 3H, minor isomer), 2.15 (s, 3H, major isomer); 13 C NMR (75 MHz, CDCl₃): δ 169.5, 169.5, 144.3, 14308, 132.0, 131.9, 128.8, 128.3, 128.2, 121.9, 121.9, 100.1, 99.7, 87.2, 86.7, 83.8, 82.3, 78.1, 77.2, 76.9, 76.3, 74.5, 73.8, 64.0, 61.6, 60.1, 58.6, 56.0, 55.9, 20.9.

20.9; HRMS (ESI) calcd. for $[C_{18}H_{21}O_5]^+$, 317.1389; found 317.1392.

1,5-anhydro-2-deoxy-3,4-bis-O-methyl-6-(1-O-acetyl-3-(p-methoxyphenyl)prop-2 -yn-1-yl)-D-arabino-Hex-1-enitol (10): Compound was prepared following the general procedure **B**, **8b** (212.4 mg, 1.2 mmol), acyl chloride (124.8 mg, 1.6 mmol), 4-ethynylanisole (458.2 mg, 3.45 mmol), **10** was obtained (274.2 mg, 61%, 3 steps) as a 1:3 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (300 MHz, CDCl₃): δ 7.42-7.38 (m, 2H, both isomers), 6.84-6.81 (m, 2H, both isomers), 6.45 (d, J = 6.0 Hz, 1H, major isomer), 6.38 (d, J = 6.2 Hz, minor isomer), 6.12 (d, J = 6.2 Hz, 1H, minor isomer), 6.08 (d, J = 3.0 Hz, 1H, major isomer), 4.97 (dd, J = 3.8, 6.1 Hz, 1H, minor isomer), 4.87 (dd, J = 2.2, 6.1 Hz, 1H, major isomer), 4.24 (t, J = 5.9 Hz, minor isomer), 4.03 (dd, J = 3.0, 9.8 Hz, 1H, major isomer), 4.00 (dt, J = 1.6, 6.9 Hz, 1H, major isomer), 3.80 (s, 3H, both isomers), 3.79 (t, J = 4.0 Hz, 1H, minor isomer), 3.73 (t, J = 5.1 Hz, 1H, minor isomer), 3.63 (s, 3H, major isomer), 3.59 (dd, J = 6.9, 9.8 Hz)1H, both isomers), 3.51 (s, 3H, minor isomer), 3.42 (s, 3H, both isomers); ¹³C NMR (100 MHz, CDCl3): δ 169.6, 169.6, 160.0, 144.3, 143.8, 133.6, 133.5, 114.0, 114.0, 113.9, 113.9, 100.1, 99.7, 87.4, 86.8. 82.4, 80.9, 78.2, 77.3, 76.9, 76.4, 74.5, 73.9, 64.2, 61.8, 60.2, 58.6, 56.1, 56.0, 55.3, 21.0, 21.0; HRMS (ESI) calcd. for $[C_{19}H_{22}O_6Na]^+$, 369.1314; found 369.1310.

1,5-anhydro-2-deoxy-6-(1-O-acetylhept-2-yn-1-yl)-3,4-bis-O-methyl-D-arabino-H ex-1-enitol (1p): Compound was prepared following the general procedure B, 8b (212.4 mg, 1.2 mmol), acyl chloride (124.8 mg, 1.6 mmol), 1-hexyne (283.2 mg, 3.45 mmol), 1p was obtained (244.9 mg, 63%, 3 steps) as a 1:1.3 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 6.36 (d, J = 6.0 Hz, 1H, major isomer), 6.32 (d, J = 6.2 Hz, 1H, minor isomer), 5.84 (dt, J = 1.9, 6.1 Hz, 1H, minor isomer), 5.80 (d, J = 3.4 Hz, 1H, major isomer), 4.91 (dd, J = 3.7, 9.9 Hz, 1H, minor isomer), 4.82 (dd, J = 2.2, 8.2 Hz, 1H, major isomer), 4.04 (t, J = 6.0 Hz, 1H, minor isomer), 3.94 (d, J = 6.9 Hz, 1H. major isomer), 3.89 (dd, J = 2.9, 9.9 Hz, 1H, major isomer), 3.73 (t, J = 4.0 Hz, 1H, minor isomer), 3.66-3.61 (m, 1H, both isomers), 3.57(s, 3H, major isomer), 3.49-3.32 (m, 1H, both isomers), 3.45 (s, 3H, minor isomer), 3.38 (s, 3H, major isomer), 3.37 (s, 3H, minor isomer), 2.23-2.19 (m, 2H, both isomers), 2.09 (s, 3H, major isomer), 2.08 (s, 3H, minor isomer), 1.51-1.44 (m, 2H, both isomers), 1.42-1.34 (m, 2H, both isomers), 0.89-0.85 (m, 3H, both isomers); ^{13}C NMR (100 MHz, CDCl₃): δ 1695, 144.2, 143.8, 99.9, 99.4, 88.5, 87.9, 78.2, 77.2, 76.7, 76.4, 74.8, 74.5, 73.9, 73.1, 63.9, 61.4, 60.0, 58.5, 55.9, 55.8, 30.3, 21.8, 20.9, 20.8, 18.4, 13.4; HRMS (ESI) calcd. for $[C_{16}H_{24}O_5Na]^+$, 319.1521; found 319.1522.

1,5-anhydro-6-(1-O-acetylbut-2-yn-1-yl)-2-deoxy-3,4-bis-O-methyl-D-arabino-He x-1-enitol (1q): Compound was prepared following the general procedure B, 8b (212.4 mg, 1.2 mmol), acyl chloride (124.8 mg, 1.6 mmol), 1-propynylmagnesium bromide solution (0.5 M in THF, 6.9 mL, 3.45 mmol), 1q was obtained (178.3 mg, 58%, 3 steps) as a 1:1.7 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 6.41 (d, J = 4.8 Hz, 1H, major isomer), 6.35 (d, J = 6.2 Hz, 1H, minor isomer), 5.82 (dd, J = 2.3, 5.6 Hz, 1H, minor isomer), 5.79 (t, J = 2.4 Hz, 1H, major isomer), 4.92 (dd, J = 3.6, 6.2 Hz, 1H, minor isomer), 4.85 (dd, J = 2.2, 6.1 Hz, 1H, major isomer),4.06 (t, J = 6.0 Hz, 1H, minor isomer), 3.95 (dt, J = 1.6, 6.8 Hz, 1H, major isomer), 3.91 (dd, J = 3.0, 9.9 Hz, 1H, major isomer), 3.78 (t, J = 3.9 Hz, 1H, minor isomer, 3.60 (t, J = 6.0 Hz, 1H, minor isomer), 3.58 (s, 3H, major isomer), 3.50 (dd, J = 6.8, 9.8 Hz, 1H, major isomer), 3.47 (s, 3H, minor isomer), 3.40 (s, 3H, major isomer), 3.39 (s, 3H, minor isomer), 2.11 (s, 3H, major isomer), 2.11 (s, 3H, minor isomer), 1.87 (s, 3H, minor isomer), 1.87 (s, 3H, major isomer); ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 169.6, 144.2, 143.9, 99.9, 99.5, 84.0, 83.4, 78.1, 77.1, 76.7, 76.6, 74.6, 74.5, 73.9, 72.4, 63.9, 61.5, 60.0, 58.7, 60.0, 55.9, 20.9, 20.9, 3.7; HRMS (ESI) calcd. for $[C_{13}H_{18}O_5Na]^+$, 277.1052; found 277.1056.

1,5-anhydro-2-deoxy-3,4-bis-O-methoxymethyl-6-(1-O-acetyl-3-phenylprop-2-yn-1-yl)-D-arabino-Hex-1-enitol (1r): Compound was prepared following the general procedure **B**, 8c (280.8 mg, 1.2 mmol), acyl chloride (124.8 mg, 1.6 mmol), 1r was obtained (301.9 mg, 63%, 3 steps) as a 1:2.4 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). 1 H NMR (400 MHz, CDCl₃): δ 7.48-7,43 (m, 2H, both isomers), 7.35-7.27 (m, 3H, both isomers), 6.44 (dd, J = 1.3, 7.4 Hz, 1H, minor isomer), 6.40 (dd, J = 0.8, 7.0 Hz, 1H, major isomer), 6.12 (d, J = 2.9 Hz, major isomer), 6.10 (s, 1H, minor isomer), 5.01-4.96 (m, 1H, both isomers), 4.91 (dd, J = 2.6, 6.1 Hz, 1H, minor isomer), 4.83-4.69 (m, 4H, both isomers), 4.34 (dd, J = 1.3, 7.4 Hz, 1H, major isomer), 4.29-4.24 (m, 1H, both isomers), 4.16 (dd, J = 3.8, 8.9 Hz, 1H, minor isomer), 4.10 (t, J = 4.0 Hz, 1H, major isomer), 4.01 (dd, J = 6.4, 9.0 Hz, 1H, minor isomer), 3.47 (s, 3H, minor isomer), 3.40 (s, 3H, major isomer), 3.38 (s, 3H, both isomers), 2.16 (s, 3H, minor isomer), 2.15 (3H, major isomer); 13 C NMR (100 MHz, CDCl₃): δ 169.6, 169.4, 144.0, 143.7, 132.0, 131.8, 128.9, 128.7, 128.3, 128.2, 121.9, 121.8, 101.2, 100.1, 97.1, 96.3, 95.8, 94.8, 87.1, 86.9, 83.6, 82.4, 77.2, 76.9, 74.2, 72.8, 71.2, 68.3, 63.7, 61.6, 56.3, 56.0, 55.6, 55.5, 20.9, 20.9; HRMS (ESI) calcd. for $[C_{20}H_{24}O_7Na]^+$, 399.1420; found 399.1425.

1,5-anhydro-3,4-bis-*O*-benzyl-2-deoxy-6-(1-*O*-acetyl-3-phenylprop-2-yn-1-yl)-D-a rabino-hex-5-enitol (*epi*-1a-A): Compound was prepared following the general procedure **B**, **8d** (400.0 mg, 1.2 mmol), acyl chloride (124.8 mg, 1.6 mmol), *epi*-1a-A was obtained (195.9 mg, 32%, 3 steps) after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). Rf 0.45 (4:1 Hexane/EtOAc); $[\alpha]_D^{22} = -77.9$; (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.27 (m, 15H), 6.46 (dd, *J* = 1.3, 7.5 Hz, 1H), 5.81 (d, *J* = 8.6 Hz, 1H), 4.98 (d, *J* = 11.4 Hz, 1H), 4.94 (d, *J* = 6.3 Hz, 1H), 4.75-4.70 (m, 2H), 4.64 (d, *J* = 12.0 Hz), 4.37 (br, 1H), 4.11 (d, *J* = 8.6 Hz, 1H), 4.03 (br, 1H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 168.8, 144.1, 138.2, 138.2, 132.1, 128.7, 128.5, 128.4, 128.2, 127.7, 127.5, 122.2, 100.6, 86.0, 84.6, 76.8, 74.0, 73.0, 71.0, 68.3, 62.6, 20.9; HRMS (ESI) calcd. for [C₃₀H₂₈O₅Na]⁺, 491.1834; found 491.1833.

1,5-anhydro-3,4-bis-*O***-benzyl-2-deoxy-6-(1-***O***-acetyl-3-phenylprop-2-yn-1-yl)-D-a rabino-hex-5-enitol** (*epi***-1a-B**): Compound was prepared following the general procedure **B**, **8d** (400.0 mg, 1.2 mmol), acyl chloride (124.8 mg, 1.6 mmol), *epi***-1a-B** was obtained (193.2 mg, 30%, 3 steps) after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). Rf 0.40 (4:1 Hexane/EtOAc); $[\alpha]_D^{22} = -30.6$; (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.28 (m, 15H), 6.42 (dd, *J* = 1.3, 6.2 Hz, 1H), 6.08 (d, *J* = 9.2 Hz, 1H), 5.09 (d, *J* = 11.4 Hz, 1H), 4.95 (d, *J* = 6.3 Hz, 1H), 4.82 (d, *J* = 11.3 Hz, 1H), 4.74 (d, *J* = 12.1 Hz, 1H), 4.67 (d, *J* = 12.1 Hz, 1H), 4.42 (br, 1H), 4.36 (br, 1H), 4.18 (d, J = 9.2 Hz, 1H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 143.9, 138.3, 138.2, 131.9, 129.0, 128.4, 128.3, 128.3, 128.0, 127.6, 127.6, 127.4, 121.7, 100.4, 87.4, 83.1, 77.5, 74.7, 73.0, 71.0, 70.8, 64.7, 21.0; HRMS (ESI) calcd. for $[C_{30}H_{28}O_5Na]^+$, 491.1834; found 491.1830.

1-((1S,2R,5S)-2(benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-phenyl-metha none (ent-1a): Compound was prepared following the general procedure B, 8e (400.0 mg, 1.2 mmol), acyl chloride (124.8 mg, 1.6 mmol), ent-1a was obtained (382.1 mg, 64%, 3 steps) as a 1:1.1 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.27 (m, 15H, both isomers), 6.50 (dd, J = 1.6, 6.1 Hz, 1H, minor isomer), 6.46 (d, J = 6.4 Hz, 1H, major isomer), 6.25 (d, J = 6.2 Hz, 1H, minor isomer), 6.22 (d, J =2.8 Hz, 1H, minor isomer), 5.05 (ddd, J = 0.6, 3.6, 6.2 Hz, 1H, major isomer), 5.01 (d, J = 11.1 Hz, 1H, minor isomer), 4.96 (dd, J = 2.1, 6.1 Hz, 1H, minor isomer), 4.86 (d, J = 11.0 Hz, 1H, minor isomer) 4.81 (d, J = 11.6 Hz, 1H, major isomer), 4.71 (d, J =11.6 Hz, 1H, major isomer), 4.67 (d, J = 11.6 Hz, 1H, major isomer), 4.61 (d, J = 11.6Hz, 1H, major isomer), 4.58 (s, 2H, minor isomer), 4.38 (dt, J = 1.7, 7.0 Hz, 1H, minor isomer), 4.35 (dt, J = 1.2, 5.8 Hz, 1H, major isomer), 4.17 (dd, J = 2.9, 9,9 Hz, 1H, minor isomer), 4.11-4.07 (m, 1H, both isomers), 4.00 (dd, J = 7.0, 10.0 Hz, 1H, minor isomer), 2.16 (s, 3H, minor isomer), 2.14 (s, 3H, major isomer); ¹³C NMR (100 MHz, CDCl₃): δ 169.5, 169.4, 144.2, 144.0, 138.0, 137.9, 137.8, 137.5, 132.0, 131.9, 128.8, 128.7, 128.5, 128.5, 128.4, 128.3, 128.2, 128.2, 128.1, 128.0, 127.9, 127.8, 127.8, 127.7, 127.6, 121.8, 121.8, 100.5, 99.9, 87.3, 86.7, 83.7, 82.1, 77.4, 76.9, 75.3, 74.5, 72.5, 72.1, 71.8, 70.8, 70.3, 66.2, 64.1, 61.7, 20.9; HRMS (ESI) calcd. for $[C_{30}H_{28}O_5Na]^+$, 491.1834; found 491.1830.

1-((1S,2R,5S)-2-benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-(4-methoxyphe nyl)-methanone (*ent*-1b): Compound was prepared following the general procedure **B**, **8e** (400.0 mg, 1.2 mmol), acyl chloride (124.8 mg, 1.6 mmol), 4-ethynylanisole (458.2 mg, 3.45 mmol), *ent*-1b was obtained (422.1 mg, 66%, 3 steps) as a 1:1.3 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃): δ 7.38-7.24 (m, 12H, both isomers), 6.82-6.79 (m, 2H, both isomers), 6.47 (dd, *J* = 1.1, 4.8 Hz, 1H, major isomer), 6.43 (d, *J* = 6.2 Hz, 1H, minor isomer), 6.21 (d, *J* = 6.2 Hz, 1H, minor isomer), 6.17 (d, *J* = 2.9 Hz, 1H, major isomer), 5.02 (ddd, *J* = 0.5, 4.2, 6.2 Hz, 1H, minor isomer), 4.83 (d, *J* = 11.1 Hz, 1H, major isomer), 4.78 (d, *J* = 11.6 Hz, 1H, minor isomer), 4.65 (d, *J* = 11.6 Hz, minor isomer), 4.59 (d, *J* = 11.6 Hz, 1H, major isomer), 4.55 (s, 2H, minor isomer); 4.35 (dt,

J = 1.8, 7.0 Hz, 1H, major isomer), 4.31 (td, J = 1.1 Hz, 5.8 Hz, minor isomer), 4.14 (dd, J = 2.9, 10.0 Hz, 1H, major isomer), 4.09-4.05 (m, 2H, minor isomer), 3.97 (dd, J = 7.0, 9.9 Hz, 1H, major isomer), 3.81 (s, 3H, minor isomer), 3.81 (s, 3H, major isomer), 2.15 (s, 3H, major isomer), 2.12 (s, 3H, minor isomer); ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 169.5, 160.0, 159.9. 144.3, 144.0, 138.0, 138.0, 137.8, 137.5, 133.6, 133.4, 128.5, 128.4, 128.4, 128.4, 128.2, 128.0, 128.0, 127.8, 127.8, 127.8, 128.6, 128.6, 113.9, 113.8, 100.5, 99.9, 87.4, 86.8, 82.4, 80.8, 77.5, 77.0, 76.8, 75.5, 74.6, 72.6, 72.2, 71.9, 70.9, 70.3, 64.3, 61.9, 55.2, 21.0, 20.9; HRMS (ESI) calcd. for $[C_{31}H_{20}O_6Na]^+$, 521.1940; found 521.1940.

1,5-anhydro-3,4-bis-*O***-benzyl-2-deoxy-6-(1-***O***-acetylhept-2-yn-1-yl)-L-arabino-he x-1-enitol** (*ent-1g*): Compound was prepared following the general procedure **B**, **8e** (400.0 mg, 1.2 mmol), acyl chloride (124.8 mg, 1.6 mmol), 1-hexyne (283.2 mg, 3.45 mmol), *ent-1g* was obtained (352.5 mg, 61%, 3 steps) as a 1:1.7 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc).¹H NMR (500 MHz, CDCl₃): δ 7.37-7.29 (m, 10H, both isomers), 6.45 (dd, J = 0.84, 6.1 Hz, 1H, major isomer), 6.42 (d, J = 6.3 Hz, 1H, minor isomer), 5.98 (dt, J = 2.0, 5.6 Hz, 1H, minor isomer), 5.96-5.54 (m, 1H, major isomer), 4.98 (dd, J = 3.6, 6.2 Hz, 1H, minor isomer), 4.67 (d, J = 11.1 Hz, 1H, major isomer), 4.91 (dd, J = 2.1, 6.1 Hz, 1H, major isomer), 4.80 (d, J = 11.0 Hz, 1H, major isomer), 4.78 (d, J = 11.4 Hz, 1H, minor isomer), 4.69 (d, J = 11.6 Hz, 1H, major isomer), 4.63 (d, J = 11.5 Hz, 1H, minor isomer), 4.59 (d, J = 11.6 Hz, 1H, major isomer), 4.56 (s, 2H, minor isomer), 4.33 (dt, J = 1.7, 7.0 Hz, 1H, major isomer), 4.17 (t, J = 5.8 Hz,1H, minor isomer), 4.17 (t, J = 5.8 Hz, 1H, minor isomer), 4.09-4.07 (m, 1H, minor isomer), 4.04 (dd, J = 2.8, 10.0 Hz, 1H, major isomer), 4.00-3.97 (m, 1H, minor isomer), 3.90 (dd, J = 7.0, 10.0 Hz, 1H, major isomer), 2.22 (td, J = 2.0, 7.0 Hz, 2H, major isomer), 2.18-2.14 (td, J = 1.9, 7.1 Hz, 1H, minor isomer), 2.11 (s, 3H, major isomer), 2.09 (s, 3H, major isomer), 1.53-1.27 (m, 4H, both isomers), 0.92-0.86 (m, 3H, both isomers); ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 169.5, 144.3, 144.0, 138.0, 137.9, 137.6, 128.4, 128.4, 128.4, 128.4, 128.2, 128.0, 127.9, 127.8, 127.8, 127.7, 127.7, 127.6, 127.6, 100.4, 99.8, 88.7, 87.9, 77.4, 77.0, 75.4, 74.7, 74.5, 73.1, 72.8, 72.7, 72.2, 70.8, 70.3, 64.1, 61.3, 30.4, 30.3, 21.9, 21.9, 20.9, 20.9, 18.5, 18.4, 13.5; HRMS (ESI) calcd. for [C₂₈H₃₂O₅Na]⁺, 471.2147; found 471.2144.

1,5-anhydro-3,4-bis-*O***-benzyl-2-deoxy-6-(1-***O***-benzoyl-3-phenylprop-2-yn-1-yl)-D** -**arabino-hex-1-enitol (1s):** Compound was prepared following the general procedure **B**, benzoyl chloride (224.9 mg, 1.6 mmol), **1s** was obtained (413.9 mg, 61%, 3 steps) as a 1:1.1 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃): δ 8.13-8.10 (m, 2H, both isomers), 7.61-7.57 (m, 1H, both isomers), 7.48-7.42 (m, 4H, both isomers), 7.38-7.27 (m, 13H, both isomers), 6.53 (dd, J = 1.1, 6.1 Hz, 1H, minor isomer), 6.50-6.48 (m, 1H, major isomer), 6.48 (d, J = 6.1 Hz, 1H, major isomer); 6.44 (d, J = 3.4 Hz, 1H, minor isomer), 5.06 (dd, J = 3.5, 6.2 Hz, 1H, major isomer), 5.03 (d, J = 11.2 Hz, 1H, minor isomer), 4.98 (dd, J = 2.2, 6.1 Hz, 1H, minor isomer), 4.90 (d, J = 11.2 Hz, 1H, minor isomer), 4.98 (dd, J = 11.5 Hz, 1H, major isomer), 4.70-4.57 (m, 3H, both isomers), 4.47 (td, J = 0.9, 5.9 Hz, 1H, major isomer), 4.36 (dt, J = 1.8, 4.8 Hz, 1H, minor isomer), 4.34 (dd, J = 3.4, 9.4 Hz, 1H, minor isomer), 4.19-4.17 (m, 1H, major isomer), 4.15-4.13 (m, 1H, major isomer), 4.08 (dd, J = 6.6, 9.4 Hz, 1H, minor isomer) ; ¹³C NMR (100 MHz, CDCl₃): 165.3, 165.2, 144.4, 144.2, 138.1, 138.0, 137.9, 137.6, 133.3, 133.3, 132.2, 132.0, 130.0, 130.0, 129.7, 129.6, 128.8, 128.5, 128.5, 128.5, 128.4, 128.3, 128.2, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 122.0, 121.9, 100.5, 100.1, 87.4, 87.0, 83.9, 82.6, 77.5, 76.5, 75.1, 74.4, 72.9, 72.8, 72.4, 70.9, 70.6, 64.6, 62.5; HRMS (ESI) calcd. for [C₃₅H₃₀O₅Na]⁺, 553.1991; found 553.1984.

1,5-anhydro-3,4-bis-*O*-benzyl-2-deoxy-6-(1-*O*-pivaloyl-3-phenylprop-2-yn-1-yl)-D -arabino-hex-1-enitol (1t): Compound was prepared following the general procedure **B**, pivaloyl chloride (193.0 mg, 1.6 mmol), 1t was obtained (418.5 mg, 64%, 3 steps) as a 1:1.2 mixture of diastereomers about the propargylic position after flash chromatography on silica (8:1, *n*-Hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃): δ 7.42-7.27 (m, 15H, both isomers), 6.48 (d, J = 6.1 Hz, 1H, minor isomer), 6.42 (d, J = 6.2 Hz, 1H, major isomer), 6.26 (d, J = 6.6 Hz, 1H, major isomer), 6.16 (d, J = 3.3 Hz, 1H, minor isomer), 5.02-5.00 (m, 1H, major isomer), 4.96-4.92 (m, 1H, both isomers), 4.84 (d, J = 11.2 Hz, 1H, minor isomer), 4.77 (d, J = 11.6 Hz, 1H, major isomer), 4.68 (d, J = 11.6 Hz, 1H, major isomer), 4.63 (d, J = 11.6 Hz, 1H, major isomer), 4.58 (d, J = 11.7 Hz, 1H, major isomer), 4.58 (s, 2H, minor isomer), 4.35 (t, J = 5.8 Hz, 1H, major isomer), 4.58 (s, 2H, minor isomer), 4.35 (t, J = 5.8 Hz, 1H, major isomer), 4.31 (d, J = 6.5 Hz, 1H, major isomer), 4.16 (dd, J = 3.4, 9.3 Hz, 1H, minor isomer), 3.97 (dd, J = 6.7, 9.1 Hz, 1H, minor isomer), 1.26 (s, 9H, major isomer), 1.23 (s, 9H, minor isomer); ¹³C NMR (100 MHz, CDCl3): δ 177.0, 176.9, 144.4, 144.0, 138.1, 138.0, 137.8, 137.6, 132.1, 131.9, 128.7, 128.5, 128.5, 128.4, 128.4, 128.2, 128.1, 128.1, 128.0, 127.9, 127.8, 127.6, 122.1, 122.0, 100.2, 99.8, 86.9, 86.6, 84.0, 82.8, 76.8, 76.2, 75.1, 74.3, 72.6, 72.2, 71.7, 70.8, 70.3, 63.7, 61.4, 38.9, 38.8, 27.1, 27.0; HRMS (ESI) calcd. for [C₃₃H₃₄O₅Na]⁺, 533.2304; found 533.2303.

1-((1R,2S,5R)-2-benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-phenyl-metha none (2a): Compound was prepared following the general procedure C, 1a (46.9 mg, 0.1 mmol), 2a was obtained (25.7 mg, 81%) as colorless oil after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = 6.9$; (c = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.81-7.78 (m, 7.81-78 2H), 7.61-7.55 (m 4H), 7.39-7.28 (m, 4H), 6.70 (ddd, J = 1.3, 4.3, 9.6 Hz, 1H), 6.70 (dd, J = 2.2, 9.6 Hz, 1H), 5.58 (ddd, J = 2.1, 3.6, 9.8 Hz, 1H), 5.22 (t, J = 1.9 Hz, 1H), 5.15 (d, J = 4.2 Hz, 1H), 4.71 (s, 2H), 3.60 (d, J = 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 190.3, 155.8, 139.1, 138.2, 137.6, 137.2, 133.0, 128.8, 128.6, 128.5, 127.8, 122.9, 84.2, 77.5, 70.0, 68.7; HRMS (ESI) calcd. for [C₂₁H₁₈O₃Na]⁺ 341.1154; found 341.1147.

1-((1R,2S,5R)-2-benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-(4-methoxyph enyl)-methanone (2b): Compound was prepared following the general procedure C, 1b (49.8 mg, 0.1 mmol), 2b was obtained (31.0 mg, 89 %) as a white solid after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). m. p. 101-102 °C; $[\alpha]_D^{22} = -64.7$; (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.84-7.81 (m, 2H), 7.40-7.28 (m, 5H), 6.96-6.93 (m, 2H), 6.71 (ddd, *J* = 1.3, 4.3, 9.8 Hz, 1H), 6.63 (d, *J* = 2.2 Hz), 5.58 (ddd, *J* = 2.2, 3.6, 9.8 Hz, 1H), 5.21 (t, *J* = 4.0 Hz, 1H), 5.11 (d, *J* = 9.7 Hz, 1H), 4.71 (s, 2H), 3.88 (s, 3H), 3.61 (dd, *J* = 0.7, 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 188.9, 163.6, 155.8, 138.2, 137.8, 137.5, 131.1, 129.9, 128.5, 128.4, 127.7, 127.0, 122.7, 113.8, 84.1, 77.7, 70.0, 68.9, 55.5; HRMS (ESI) calcd. for [C₂₂H₂₀O₄Na]⁺ 371.1259; found 371.1257.

1-((1R,2S,5R)-2-benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-(*p*-tolyl)-meth anone (2c): Compound was prepared following the general procedure C, 1c (48.2 mg, 0.1 mmol), 2c was obtained (27.3 mg, 82%) as colorless oil after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = -58.3.$; (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.72 (d, *J* = 7.9 Hz, 2H), 7.40-7.30 (m, 5H), 7.26 (d, *J* = 7.9 Hz, 2H), 6.70 (dd, *J* = 1.3, 4.3 Hz, 1H), 6.66 (d, *J* = 2.2 Hz, 1H), 5.58 (ddd, *J* = 2.2, 4.8, 13.0 Hz, 1H), 5.21 (t, *J* = 2.0 Hz, 1H), 5.13 (d, *J* = 4.3 Hz, 1H), 4.71 (s, 2H), 3.60 (dd, *J* = 0.7, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 189.0, 155.8, 143.9, 138.4, 138.2, 137.7, 134.6, 129.2, 128.9, 128.4, 127.7, 127.7, 122.8, 84.1, 77.5, 70.0, 68.8, 21.6; HRMS (ESI) calcd. for [C₂₂H₂₀O₃Na]⁺ 355.1310; found 355.1309.

1-((1R,2S,5R)-2-benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-(4-trifluorome thyl-phenyl)-methanone (2d): Compound was prepared following the general procedure C, 1d (53.6 mg, 0.1 mmol), 2d was obtained (24.3 mg, 63%) as a white solid after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). m. p. 88-90 °C; $[\alpha]_D^{22} = -12.1$; (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.39-7.27 (m, 5H), 6.73 (d, *J* = 2.2 Hz, 1H), 6.68 (ddd, *J* = 1.1, 4.2, 9.8 Hz, 1H), 5.60 (ddd, *J* = 2.2, 3.5, 9.8 Hz), 5.23 (t, *J* = 2.0 Hz, 1H), 5.17 (d, *J* = 4.2 Hz, 1H), 4.71 (s, 2H), 3.60 (d, *J* = 3.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 189.2, 155.6, 140.4, 140.1, 138.0, 137.2, 134.3 (q, *J*_(C-F) = 32.6 Hz), 129.1,

128.5, 127.8, 127.8, 125.7 (q, $J_{(C-F)} = 3.7$ Hz), 124.5 (q, $J_{(C-F)} = 271.6$ Hz), 123.2, 84.2, 77.3, 70.1, 68.6; HRMS (ESI) calcd. for $[C_{22}H_{17}O_3F_3Na]^+$ 409.1027; found 409.1027.

1-((1R,2S,5R)-2-benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-(4-fluorophen yl)-methanone (2e): Compound was prepared following the general procedure C, 1e (48.6 mg, 0.1 mmol), 2e was obtained (22.5 mg, 67%) as colorless oil after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). [α]_D²² = -74.1; (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.87-7.81 (m, 2H), 7.40-7.28 (m, 5H), 7.17-7.11 (m, 2H), 6.71-6.67 (m, 2H), 5.58 (ddd, *J* = 2.2, 3.6, 9.8 Hz, 1H), 5.21 (t, *J* = 4.2 Hz, 1H), 5.13 (d, *J* = 4.3 Hz, 1H), 4.71 (s, 2H), 3.60 (d, *J* = 3.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 188.8, 167.0, 164.4, 155.6, 138.9, 138.1, 137.5, 133.5, 133.4, 131.4, 131.3, 128.5, 127.8, 122.9, 115.9, 115.6, 84.2, 77.5, 70.0, 68.7; HRMS (ESI) calcd. for [C₂₁H₁₇FO₅Na]⁺, 359.1059; found 359.1069.

1-((1R,2S,5R)-2-benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-cyclohexyl-me thanone (2f): Compound was prepared following the general procedure C, 1f (47.4 mg, 0.1 mmol), 2f was obtained (25.3 mg, 78%) as a white solid after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). m. p. 84-86 °C; $[\alpha]_D^{22} = 52.1$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.27 (m, 5H), 6.81 (d, J = 2.3 Hz,

1H), 6.54 (dd, J = 1.3, 9.8 Hz, 1H), 5.53 (ddd, J = 2.1, 4.3, 9.8 Hz), 5.13 (t, J = 2.0 Hz, 1H), 5.01 (d, J = 4.3 Hz, 1H), 4.70 (s, 2H), 3.61 (dd, J = 0.7, 4.2 Hz, 1H), 2.82-2.76 (m, 2H), 1.82-1.68 (m, 5H), 1.48-1.17 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 199.9, 156.1, 138.2, 137.3, 136.0. 128.5, 127.7. 123.0, 83.7, 76.3, 69.9, 69.0, 47.4, 29.7, 28.6, 25.8, 25.7, 25.5; HRMS (ESI) calcd. for $[C_{21}H_{24}O_3Na]^+$ 347.1623; found 347.1622.

1-((1R,2S,5R)-2-benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)pentan-1-one

(2g): Compound was prepared following the general procedure C, 1g (44.8 mg, 0.1 mmol), 2g was obtained (21.5 mg, 72%) as colorless oil after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = 65.7$; (c = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.40-7.27 (m, 5H), 6.81 (d, J = 2.3 Hz, 1H), 6.54 (ddd, J = 1.4, 4.3, 9.8 Hz, 1H), 5.54 (ddd, J = 2.1, 3.6, 9.8 Hz, 1H), 5.12 (t, J = 2.0 Hz, 1H), 5.02 (d, J = 4.3 Hz, 1H), 4.70 (s, 2H), 3.61 (dd, J = 0.87, 3.5 Hz, 1H), 2.64 (td, J = 0.8, 7.1 Hz, 2H), 1.65-1.55 (m, 2H), 1.39-1.26 (m, 2H), 0.91 (t, J = 9.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.6, 157.1, 138.2, 137.2, 136.5, 128.4, 127.7, 123.1, 83.7, 76.2, 69.9, 69.0, 39.0, 26.3, 22.3, 13.8; HRMS (ESI) calcd. for [C₁₉H₂₂O₃Na]⁺ 321.1467; found 321.1470.

1-((1R,2S,5R)-2-benzyloxyl-8-oxabicyclo[3.2.1]octa-3,6-dien-6-yl)ethan-1-one

(2h): Compound was prepared following the general procedure C, 1h (40.6 mg, 0.1 mmol), 2h was obtained (17.8 mg, 69%) as colorless oil after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = 59.5$; (c = 6.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.28 (m, 5H), 6.84 (d, J = 2.3 Hz, 1H), 6.54 (ddd, J = 1.4, 4.3, 9.8 Hz, 1H), 5.55 (ddd, J = 2.1, 3.6, 9.8 Hz, 1H), 5.13 (t, J = 4.1 Hz, 1H), 5.03 (d, J = 4.2 Hz, 1H), 4.70 (s, 2H), 3.62 (dd, J = 0.8, 3,6 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.8, 157.4, 138.2, 137.8, 137.1, 128.5, 127.8, 123.2, 83.7, 76.0, 70.0, 69.0, 26.8; HRMS (ESI) calcd. for [C₁₆H₁₆O₃Na]⁺, 279.0997; found 279.0995.

1-((1R,2S,5R)-2-benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-(cyclohex-1-en -1-yl)-methanone (2i): Compound was prepared following the general procedure C, 1i (47.2 mg, 0.1 mmol), 2i was obtained (20.9 mg, 65%) as a white solid after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). m. p. 113-115 °C; $[\alpha]_D^{22} = -15.7$ (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.28 (m, 10H), 6.82-6.80 (m, 1H), 6.64 (ddd, *J* = 1.0, 4.2, 9.8 Hz, 1H), 6.50 (d, *J* = 2.1 Hz, 1H), 5.54 (ddd, *J* = 2.2, 3.5, 9.8 Hz, 1H), 5.13 (t, *J* = 2.0 Hz, 1H), 4.95 (d, *J* = 4.2 Hz, 1H), 4.70 (s, 2H), 3.59 (d, *J* = 3.3 Hz, 1H), 2.48-2.43 (m, 1H), 2.27-2.24 (m 2H), 2.11-2.06 (m, 1H), 1.70-1.62 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): 191.6, 155.3, 142.2, 139.0, 138.3, 138.1, 135.6, 128.4, 127.8, 127.7, 122.5, 83.9, 77.7, 69.9, 68.9, 26.1, 23.3, 21.8, 21.6; HRMS (ESI) calcd. for [C₂₁H₂₃O₃]⁺, 323.1647; found 323.1642.

1-((1R,2S,5R)-2-benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-(4-*t*Bu-cyclohe x-1-en-1-yl)-methanone (2j): Compound was prepared following the general procedure C, 1j (52.8 mg, 0.1 mmol), 2i was obtained (22.5 mg, 62%) as a white solid after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). ¹H NMR (300 MHz, CDCl₃): δ 7.38–7.28 (m, 5H), 6.82 (s, 1H), 6.68–6.60 (dd, *J* = 4.0, 9.7 Hz,1H), 6.50 (d, *J* = 2.3 Hz, 1H), 5.54 (dt, *J* = 10.0, 2.7 Hz, 1H), 5.13 (d, *J* = 2.3 Hz, 1H), 4.95 (d, *J* = 4.2 Hz, 1H), 4.70 (s, 2H), 3.59 (d, *J* = 3.7 Hz, 1H), 2.37-2.27 (m, 2H), 2.11-1.93 (m, 2H), 1.33-1.25 (m, 2H), 1.19-1.09 (m, 1H), 0.89 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): 191.6, 155.2, 142.5, 139.0, 138.3, 138.0, 135.5, 128.5, 127.8, 127.7, 122.5, 83.9, 77.7, 69.9, 68.9, 43.4, 32.2, 27.8, 27.1, 25.4, 23.3; HRMS (ESI) calcd. for [C₂₅H₃₁O₃]⁺, 379.2273; found 379.2270.

1-((1R,2S,5R)-2-benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-(cycloocten-1en-1-yl)-methanone (2k): Compound was prepared following the general procedure C, 1k (50.0 mg, 0.1 mmol), 2k was obtained (24.5 mg, 58%) as a white solid after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.46–7.26 (m, 5H), 6.76 (t, J = 8.3 Hz, 1H), 6.65 (ddd, J = 9.8, 4.3, 1.4 Hz, 1H), 6.45 (d, J = 2.2 Hz, 1H), 5.55 (ddd, J = 9.7, 3.6, 2.1 Hz, 1H), 5.12 (t, J = 2.2 Hz, 1H), 4.95 (d, J = 4.2 Hz, 1H), 4.70 (s, 2H), 3.59 (d, J = 3.7 Hz, 1H), 2.53–2.31 (m, 4H), 1.61-1.60 (m, 4H), 1.51-1.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): 192.0, 155.7, 145.1, 142.3, 138.3, 138.0, 135.6, 128.4, 127.7, 127.7, 122.5, 83.9, 77.8, 69.9, 69.0, 29.4, 29.0, 27.4, 26.5, 26.2, 24.7; HRMS (ESI) calcd. for $[C_{23}H_{27}O_3]^+$, 351.1960; found 351.1964.

1-((1R,2S,5R)-2-benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-2-methylprop-2en-1-one (2l): Compound was prepared following the general procedure C, 1l (43.2 mg, 0.1 mmol), 2l was obtained (19.7 mg, 70%) as a white solid after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). m. p. 93-95 °C; $[\alpha]_D^{22} = -21.7$; (*c* = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.38-7.27 (m, 5H), 6.63 (dd, *J* = 1.0, 9.8 Hz, 1H), 6.62 (d, *J* = 2.2 Hz, 1H), 5.84 (s, 1H), 5.80 (s, 1H), 5.56 (ddd, *J* = 2.2, 3.5, 9.8 Hz, 1H), 5.14 (t, *J* = 4.1 Hz, 1H), 4.99 (d, *J* = 4.3 Hz, 1H), 4.70 (s, 2H), 3.60-3.59 (d, *J* = 3.4 Hz, 1H), 1.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.0, 155.3, 144.0, 138.2, 137.7, 137.4, 128.5, 127.8, 125.9, 122.8, 83.9, 77.2, 70.0. 68.8, 17.8; HRMS (ESI) calcd. for [C₁₈H₁₉O₃]⁺, 283.1334; found 283.1329.

2-en-1-one (2m): Compound was prepared following the general procedure C, **1m** (46.0 mg, 0.1 mmol), **2m** was obtained (21.7 mg, 70%) as a white solid after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.30–7.27 (m, 5H), 6.93 (dd, J = 15.6, 6.8 Hz, 1H), 6.82 (d, J = 2.3 Hz, 1H), 6.59 (ddd, J = 9.8, 4.3, 1.4 Hz, 1H), 6.42 (dd, J = 15.6, 1.4 Hz, 1H), 5.54 (ddd, J = 9.8, 3.7, 2.1 Hz, 1H), 5.15 (t, J = 2.2 Hz, 1H), 5.06 (d, J = 4.3 Hz, 1H), 4.70 (s, 2H), 3.61 (dd, J = 3.7, 1.4 Hz, 1H), 2.49 (dqd, J = 13.5, 6.8, 1.4 Hz, 1H), 1.08 (d, J = 6.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): 185.9, 157.5, 155.0, 138.2, 137.3, 136.5, 128.4, 127.7, 127.7, 123.0, 123.0, 83.8, 76.5, 69.9, 69.0, 31.3, 21.3, 21.2; HRMS (ESI) calcd. for [C₂₀H₂₃O₅]⁺, 311.1647; found 311.1643.

1-((1R,2S,5R)-2-methoxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-phenyl-methan one (2n): Compound was prepared following the general procedure C, 1n (31.6 mg, 0.1 mmol), 2n was obtained (18.9 mg, 78%) as colorless oil after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = -9.4$; (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.81-7.78 (m, 2H), 7.60-7.54 (m, 1H), 7.48-7.43 (m, 2H), 6.71 (d, *J* = 2.2 Hz, 1H), 6.67 (ddd, *J* = 1.3, 4.3, 9.8 Hz, 1H), 5.54 (ddd, *J* = 2.2, 3.6, 9.8 Hz, 1H), 5.17 (t, *J* = 2.0 Hz, 1H), 5.11 (d, *J* = 4.3 Hz, 1H), 3.45 (s, 3H), 3.39 (dd, *J* = 0.6, 3.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 190.3, 155.7, 139.2, 137.6, 137.2, 133.0, 128.8, 128.6, 122.6, 83.6, 77.4, 70.6, 55.8; HRMS (ESI) calcd. for [C₁₅H₁₀O₃Na]⁺, 265.0841; found 265.0842.

1-((1R,2S,5R)-2-methoxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-(4-methoxyphe nyl)-methanone (2o): Compound was prepared following the general procedure C, 1o (34.6 mg, 0.1 mmol), 2o was obtained (21.8 mg, 80%) as a white solid after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). m. p. 80-81 °C; $[\alpha]_D^{22} = -70.9$; (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.84 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.70 (dd, *J* = 4.2 Hz, 9.8 Hz, 1H), 6.65 (d, *J* = 2.1 Hz, 1H), 5.56 (dt, *J* = 2.5 Hz, 9.8 Hz, 1H), 5.17 (s, 1H), 5.09 (d, *J* = 4.2 Hz, 1H), 3.88 (s, 3H), 3.47 (s, 3H), 3.41 (d, *J* = 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 189.0, 163.7, 155.8, 137.9, 137.5, 131.2, 130.0, 122.3, 113.8, 83.6, 77.7, 70.7, 55.7, 55.5; HRMS (ESI) calcd. for [C₁₆H₁₆O₄Na]⁺, 295.0946; found 295.2952.

1-((1R,2S,5R)-2-methoxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)pentan-1-one (2p): Compound was prepared following the general procedure C, 1p (29.6 mg, 0.1 mmol), 2p was obtained (16.9 mg, 73%) as colorless oil after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = 46.7$; (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 6.83 (d, *J* = 2.9 Hz, 1H), 6.53 (ddd, *J* = 1.3, 4.3, 9.8 Hz, 1H), 5.52 (ddd, *J* = 2.2, 3.6, 9.8 Hz, 1H), 5.08 (t, *J* = 2.1 Hz, 1H), 5.00 (d, *J* = 4.2 Hz, 1H), 3.46 (s, 3H), 3.41 (dd, *J* = 0.6, 3.5 Hz, 2.66-2.63 (m, 2H), 1.64-1.56 (m, 2H), 1.33 (d, *J* = 7.6 Hz, 2H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 196.6, 157.1, 137.3, 136.6, 121.7, 83.1, 76.2, 70.8, 55.7, 39.1, 26.3, 22.3, 13.8; HRMS (ESI) calcd. for [C₁₃H₁₈O₃Na]⁺, 254.1154; found 245.1161.

1-((1R,2S,5R)-2-methoxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)ethan-1-one (2q): Compound was prepared following the general procedure C, 1q (25.4 mg, 0.1 mmol), 2q was obtained (12.1 mg, 67%) as colorless oil after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = 6.8$; (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 6.86 (d, *J* = 2.3 Hz, 1H), 6.53 (ddd, *J* = 1.0, 4.2, 9.8 Hz, 1H), 5.53 (ddd, *J* = 2.2, 3.4, 9.8 Hz), 5.09 (t, *J* = 2.0 Hz, 1H), 5.01 (d, *J* = 4.3 Hz, 1H), 3.46 (s, 3H), 3.42 (d, *J* = 3.2 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.7, 157.4, 137.8, 137.1, 122.8, 83.1, 76.0, 70.7, 55.7, 26.8; HRMS (ESI) calcd. for [C₁₀H₁₂O₃Na]⁺, 203.0684; found 203.0683.

1-((1R,2S,5R)-2-methoxymethoxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-phenyl -methanone (2r): Compound was prepared following the general procedure C, 1r (37.6 mg, 0.1 mmol), 2r was obtained (21.2 mg, 78%) as colorless oil after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = -31.8$; (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.82-7.79 (m, 2H), 7.61-7.56 (m, 1H), 7.42-7.44 (m, 2H), 6.72 (d, *J* = 2.2 Hz, 1H), 6.67 (dd, *J* = 1.6 Hz, 4.3 Hz, 9.8 Hz, 1H), 5.54 (ddd, *J* = 2.1, 3.7, 9.8 Hz, 1H), 5.18 (t, J = 2.0 Hz, 1H), 5.13 (d, J = 4.3 Hz, 1H), 4.80 (s, 2H), 3.70 (d, J = 3.7 Hz, 1H), 3.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 190.3, 156.1, 138.8, 137.3, 137.1, 133.0, 128.8, 128.6, 123.0, 95.5. 84.7, 77.4, 67.9, 55.6; HRMS (ESI) calcd. for [C₁₆H₁₆O₄Na]⁺, 295.0946; found 295.0949.

1-((1R,2R,5R)-2-benzyloxyl-8-oxabicyclo[3.2.1]octa-3,6-dien-6-yl)-1-phenyl-meth anone (*epi*-2a): Compound was prepared following the general procedure C, *epi*-1a, (46.8 mg, 0.1 mmol), *epi*-2a was obtained (16.9 mg, 53%) as colorless oil after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = -57.3$; (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 7.7 Hz, 2H), 7.59-7.55 (m, 1H), 7.48-7.44 (m, 2H), 7.35-7.28 (m, 5H), 6.61 (d, *J* = 1.9 Hz, 1H), 6.58 (dd, *J* = 4.0, 10.4 Hz, 1H), 5.52 (d, *J* = 9.8 Hz, 1H), 5.36 (d, *J* = 6.2 Hz, 5.00 (d, J = 3.8 Hz, 1H), 4.63 (d, *J* = 11.8 Hz, 1H), 4.54 (d, *J* = 11.9 Hz, 1H), 4.41 (d, *J* = 6.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 190.3, 155.0, 140.3, 137.8, 137.3, 135.3, 132.8, 128.9, 128.5, 128.4, 128.0, 127.7, 124.1, 82.3, 77.9, 72.0, 69.6; HRMS (ESI) calcd. for [C₂₁H₁₈O₃Na]⁺, 341.1154; found 341.1169.

1-((1S,2R,5S)-2(benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-phenyl-metha none (*ent* -2a): Compound was prepared following the general procedure C, *ent*

-1a(46.8 mg, 0.1 mmol), *ent* -2a was obtained (25.4 mg, 80%) as colorless oil after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = 66.5$; (*c* = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.81-7.79 (m, 2H), 7.60-7.56 (m, 1H), 7.48-7.45 (m, 2H), 7.39-7.27 (m, 5H), 6.70 (ddd, *J* = 1.2, 4.3, 9.8 Hz, 1H), 6.70 (d, *J* = 2.1 Hz, 1H), 5.63 (ddd, *J* = 2.2, 3.6, 9.8 Hz, 1H), 5.22 (d, *J* = 2.0 Hz, 1H), 5.15 d, *J* = 4.3 Hz, 1H), 4.71 (s, 2H), 3.60-3.59 (dd, *J* = 0.4, 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 190.3, 155.7, 139.1, 138.1, 137.6, 137.2, 133.0, 128.8, 128.6, 128.4, 127.7, 122.9, 84.2, 77.4, 70.0, 68.8; HRMS (ESI) calcd. for [C₂₁H₁₈O₃Na]⁺, 341.1154; found 341.1152.

1-((1S,2R,5S)-2-benzyloxyl-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)-1-(4-methoxyphe nyl)-methanone (*ent* -2b): Compound was prepared following the general procedure C, *ent* -1b (49.8 mg, 0.1 mmol), *ent*-2b was obtained (28.9 mg, 83%) as a white solid after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). m. p. 97-99 °C; $[\alpha]_D^{22} = 52.0$; (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.84-7.80 (m, 2H), 7.40-7.28 (m, 5H), 6.97-6.92 (m, 2H), 6.71 (ddd, *J* = 1.3, 4.3, 9.8 Hz, 1H), 6.63 (d, *J* = 2.2 Hz, 1H), 5.57 (ddd, *J* = 2.2, 3.6, 9.8 Hz, 1H), 5.21(t, *J* = 4.1 Hz, 1H), 5.11(d, *J* = 4.3 Hz, 1H), 4.71 (s, 2H), 3.87 (s, 3H), 3.61 (dd, *J* = 0.66, 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 189.0, 163.6, 155.8, 138.2, 137.8, 137.5, 131.1, 129.4, 128.4, 127.8, 127.7, 122.7, 113.8, 84.2, 77.7, 70.0, 68.9, 55.5; HRMS (ESI) calcd. for [C₂₂H₂₀O₄Na]⁺,

1-((1S,2R,5S)-2-benzyloxy-8-oxabicyclo[3.2.1]oct-3,6-dien-6-yl)pentan-1-one (*ent* -2g): Compound was prepared following the general procedure C, *ent* -1g (44.8 mg, 0.1 mmol), *ent* -2g was obtained (21.5 mg, 72%) as colorless oil after flash chromatography on silica (4:1, *n*-Hexane/EtOAc). $[\alpha]_D^{22} = -48.8$; (*c* = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.39-7.27 (m, 5H), 6.81-6.81 (d, *J* = 2.3 Hz, 1H), 6.54 dd, *J* = 1.3, 4.3 Hz, 9.8 Hz, 1H), 5.54(dd, *J* = 2.2, 3.6, 9.8 Hz, 1H), 5.12(t, *J* = 2.1 Hz, 1H), 5.2(d, *J* = 4.3 Hz, 1H), 4.70 (s, 2H), 3.61 (dd, *J* = 0.8, 3.5 Hz, 1H), 2.64 (td, *J* = 2.5, 7.3 Hz, 1H), 1.63-1.56 (m, 2H), 1.36-1.29 (m, 2H), 0.92-0.89 (t, *J* = 7.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 196.6, 157.1, 138.2, 137.2, 136.5, 128.4, 127.7, 123.1, 83.7, 76.2, 70.0, 69.0, 39.0, 26.3, 22.3, 13.8; HRMS (ESI) calcd. for [C₁₉H₂₂O₃Na]⁺, 321.1467; found 321.1468.

(4aR,4bS,5R,6S,9R,9aR,10aR)-6-(benzyloxy)-9a-hydroxy-decahydro-5,9-epoxybe nzo[a]azulen-10(2H)-one (3i): Compound was prepared following the general procedure D, 2i (17.0 mg, 0.05 mmol), 3i was obtained (13.3 mg, 78%) as a colorless oil after flash chromatography on silica (2:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.39–7.27 (m, 5H), 6.30 (ddd, J = 9.8, 4.6, 1.1 Hz, 1H), 5.97 (ddd, J = 9.8, 4.1, 1.9 Hz, 1H), 4.70 (d, J = 12.1 Hz, 1H), 4.67 (d, J = 12.1 Hz, 1H), 4.44 (s, 1H),

4.20 (d, *J* = 4.6 Hz, 1H), 3.67 (d, *J* = 4.1 Hz, 1H), 3.01 (t, *J* = 6.5 Hz, 1H), 2.68 (s, 1H), 2.31-2.24 (m, 1H), 2.16 (d, *J* = 13.6 Hz, 1H), 1.87 (s, 1H), 1.83 (d, *J* = 15.0 Hz, 1H), 1.65-1.62 (m, 1H), 1.49-1.41 (m, 1H), 1.17–1.03 (m, 2H), 0.97–0.0.86 (m, 1H); ¹³C NMR (100 MHz, CDCl₃):δ 218.1, 138.3, 133.8, 128.5, 127.7, 124.1, 89.5, 86.0, 73.7, 70.4, 51.1, 47.8, 41.1, 31.3, 24.7, 21.9, 21.7.

(4aR,4bS,5R,6S,9R,9aR,10aR)-6-(benzyloxy)-3-(tert-butyl)-9a-hydroxy-decahydr o-5,9-epoxybenzo[a]azulen-10(2H)-one (3j): Compound was prepared following the general procedure D, 2j (19.0 mg, 0.05 mmol), 3j was obtained (11.8 mg,

61%) as a colorless oil after flash chromatography on silica (2:1, *n*-Hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.29 (m, 5H), 6.30 (ddd, J = 10.0, 5.0, 4.0 Hz, 1H), 5.97 (ddd, J = 10.0, 4.5, 2.0 Hz, 1H), 4.70 (d, J = 12.0 Hz, 1H), 4.67 (d, J = 12.0Hz, 1H), 4.45 (s, 1H), 4.20 (d, J = 4.5 Hz, 1H), 3.67 (d, J = 4.0 Hz, 1H), 2.98 (t, J = 6.5 Hz, 1H), 2.67 (s, 1H), 2.32–2.25 (m, 2H), 1.90-1.86 (m, 2H), 1.67–1.41 (m, 2H), 0.94–0.81 (m, 1H), 0.79 (s, 9H), 0.67–0.58 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 218.2, 138.3, 133.8, 128.5, 127.7, 124.1, 89.5, 86.0, 73.7, 70.5, 51.3, 47.7, 46.7, 42.1, 32.8, 32.3, 27.3, 23.1, 22.4; HRMS (ESI) calcd. for $[C_{25}H_{33}O_4]^+$, 397.2379; found 397.2383.

(1R,4S,5R,5aS,5bR,11aR,12aR)-4-(benzyloxy)-12a-hydroxy-dodecahydro-1,5-epo xycycloocta[a]azulen-12(1H)-one (3k): Compound was prepared following the general procedure D, 2k (17.5 mg, 0.05 mmol), 3k was obtained (13.2 mg, 72%) as a colorless oil after flash chromatography on silica (2:1, *n*-Hexane/EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.28 (m, 5H), 6.30 (dd, *J* = 10.0, 4.6 Hz, 1H), 5.98 (ddd, *J* = 9.8, 4.2, 1.8 Hz, 1H), 4.72 (s, 2H), 4.43 (s, 1H), 4.22 (d, *J* = 4.6 Hz, 1H), 3.70 (d, *J* = 4.1 Hz, 1H), 2.83 (t, *J* = 0.8 Hz 1H), 2.52-2.50 (m, 2H), 1.99–1.93 (m, 2H), 1.78-1.72 (m, 3H), 1.68–1.59 (m, 2H), 1.51–1.46 (m, 2H), 1.42–1.36 (m, 3H), 1.31 – 1.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 219.7, 138.3, 133.7, 128.5, 127.8, 124.2, 88.4, 87.2, 73.8, 70.5, 55.4, 52.6, 44.5, 33.2, 30.4, 26.1, 26.0, 24.7, 21.3; HRMS (ESI) calcd. for [C₂₃H₂₉O₄]⁺, 369.2066; found 369.2069.

(3R,3aS,4R,5S,8R,8aR)-5-(benzyloxy)-8a-hydroxy-3-isopropyl-hexahydro-4,8-ep oxyazulen-1(2H)-one (3m): Compound was prepared following the general procedure D, 2m (15.5 mg, 0.05 mmol), 3m was obtained (5.3 mg, 32%) as a colorless oil after flash chromatography on silica (2:1, *n*-Hexane/EtOAc). ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.28 (m, 5H), 6.29 (dd, *J* = 10.0, 5.0 Hz, 1H), 6.00–5.98 (m, 1H), 4.68 (s, 2H), 4.38 (s, 1H), 4.32 (d, *J* = 4.5 Hz, 1H), 3.69 (d, *J* = 4.0 Hz, 1H),

2.78 (dd, J = 17.0, 8.5 Hz, 1H), 2.45–2.40 (m, 2H), 2.13 (s, 1H), 1.99 (t, J = 8.0 Hz, 1H), 1.65-1.60 (m, 1H), 0.90 (dd, J = 16.5, 6.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 218.2, 138.2, 133.5, 128.5, 127.8, 124.6, 89.6, 87.7, 76.9, 73.2, 70.4, 51.2, 46.7, 41.7, 32.8, 20.2, 19.7; HRMS (ESI) calcd. for $[C_{20}H_{25}O_4]^+$, 329.1753; found 329.1755.

Section D: Experimental Procedures and Characterization of Substrates and Products for Mechanistic Studies

Procedure for synthesis of substrate 1a' for ¹⁸O labeling experiment:

To a solution of acetyl chloride (471.0 mg, 0.34 mL, 6.0 mmol) in Schlenk tube, $H_2^{18}O$ was added dropwise *via* syringe under nitrogen at -20 °C. The reaction was stirred at room temperature for 30 min, then the tube was cooled to 0 °C and PCl₃ (268 mg, 2.0 mmol) was added. The reaction mixture was stirred at room temperature for 1h and then 2 mL anhydrous CH_2Cl_2 was added. The upper layer organic solvent was taken and added to solution of pyridine and propargylic alcohol (171 mg, 0.4 mmol) in anhydrous CH_2Cl_2 . The reaction was stirred for 4 h. The mixture was diluted with $CH_2Cl_2(10 \text{ mL})$, washed with H_2O (5 mL), saturated NaHCO₃ solution (5 mL) and brine (5 mL). The organic layer was dried over Na₂SO₄ and filtered. Evaporation and flash chromatography on silica gel (8:1, *n*-Hexane/EtOAc) afforded the propargylic acetate **1a-¹⁸O** (125 mg, 66%) as a 1:1.1 mixture of diastereomers about the propargylic position. ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.28 (m, 15H, both isomers), 6.49-6.47 (dd, J = 1.6, 8.1 Hz, 1H, major isomer), 6.45-6.43 (m, 1H, minor isomer), 6.24-6.22 (d, J = 6.1 Hz, 1H, minor isomer), 6.19-6.18 (d, J = 2.9 Hz, 1H, major isomer), 5.04-5.01 (dd, J = 1.4, 4.6 H, 1H, minor isomer), 5.00-4.96 (d, J =14.8 Hz, 1H, major isomer), 4.96-4.93 (dd, J = 2.9, 8.2 Hz, 1H, major isomer), 4.86-4.82 (d, J = 14.7 Hz, 1H, major isomer), 4.80-4.77 (d, J = 15.5 Hz, 1H, minor isomer), 4.71-4.56 (m, 2H, both isomers), 4.37-4.30 (m, 1H, both isomers), 4.17-4.13 (dd, J = 3.8, 13.2 Hz, 1H, major isomer), 4.10-4.05 (m, 1H, both isomers), 4.00-3.95(dd, J = 9.2, 13.2 Hz, 1H, major isomer), 2.15 (s, 3H, major isomer), 2.13 (s, 3H, minor isomer); 13 C NMR (100 MHz, CDCl₃): δ 169.5, 169.5, 144.3, 144.0, 138.0, 138.0, 137.8, 137.5, 132.1, 131.9, 128.8, 128.8, 128.5, 128.5, 128.4, 128.4, 128.3, 128.2, 128.2, 128.0, 128.0, 127.8, 127.8, 127.7, 127.6, 121.8, 121.9, 100.5, 100.0, 87.4, 86.8, 83.8, 82.2, 77.4, 76.9, 75.4, 74.6, 72.6, 72.2, 71.8, 70.8, 70.3, 64.1, 61.7, 20.9; HRMS (ESI) calcd. for [C₃₅H₃₀O₅¹⁸ONa]⁺, 493.1877; found 493.1504. MS analysis of the products obtained indicated an isotopic composition about 38% (Supplementary Figure 1)

To solution of Ph₃PAuCl (2.5 mg, 5 mol %) and AgSbF₆ (3.4 mg, 10 mol %) in distilled CH₂Cl₂ (1 mL) was added the solution of proparglylic acetate **1a-¹⁸O** (47.0 mg, 0.1 mmol) in distilled CH₂Cl₂ (1 mL). The reaction was stirred at room temperature until the starting material completely consumed. The mixture was filtered through a plug of silica and concentrated *in vacuo*. Purification of the residue by flash chromatography on silica gel (4:1, *n*-Hexane/EtOAc) afforded the product **2a-¹⁸O** (23.6 mg, 76% yield) as colorless oil. ¹H NMR (500 MHz, CDCl₃): δ 7.81-7.79 (m, 2H), 7.60-7.56 (m, 1H), 7.48-7.45 (m, 2H), 7.39-7.33 (m, 4H), 7.30-7.27 (m, 1H) 6.72-6.68 (ddd, J = 1.3, 4.3, 9.8 Hz, 1H), 6.70-6.69 (d, J = 2.1 Hz, 1H), 5.60-5.56 (ddd, J = 2.1, 3.6, 9.8 Hz, 1H); 5.22-5.21 (t, J = 2.0 Hz, 1H); 5.15-5.14 (d, J = 4.3 Hz, 1H), 4.71 (s, 2H), 3.60-3.59 (dd, J = 0.6, 3.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 190.3, 190.3, 155.8, 139.2, 138.1, 137.6, 137.2, 133.0, 128.8, 128.6, 128.5, 127.8, 122.9, 84.2, 70.0, 68.8; HRMS (ESI) calcd. for [C₂₁H₁₈O₂¹⁸ONa]⁺, 343.1196; found 343.0901. MS analysis of the products obtained indicated an isotopic composition about 39% (**Supplementary Figure 2**).

 $H_2^{18}O$ (700 µL, 39.0 mmol) was added to benzoic acid (215 mg, 11.8 mmol) in Schlenk tube under nitrogen and the reaction mixture was stirred at 130 °C for 5 days.

After cooling to room temperature, the water was removed under vacuum by oil pump. The ¹⁸O labeled benzoic acid was identical to the ¹H NMR spectrum and MS of the known compound matched that as reported.

A Schlenk tube was charged with propargylic alcohol (222 mg, 0.68 mmol), ¹⁸O labeled benzoic acid (100 mg, 0.82 mmol), PPh₃ (231 mg, 0.88 mmol) and anhydrous THF (10 mL). The reaction mixture was treated with the diethyl azodicarboxylate (142 mg. 123 μL) *via* syringe at 0 °C and stirred at room temperature overnight. The solvent was removed *in vacuo* and the product was purified by flash chromatography (10:1, *n*-Hexane/EtOAc) providing 133.2 mg (48% yield) of the doubly ¹⁸O labeled benzoate **1s'-¹⁸O** as colourless oil. The fully protected propargylic benzoate derivative (133.2 mg, 0.24 mmol) was dissolved in 1M THF solution of TBAF (3.0 ml, 3 mmol) and stirred for 4 h. The mixture was concentrated *in vacuo* and the product was purified by flash chromatography (8:1, *n*-Hexane/EtOAc) providing 101.6 mg (96% yield) of the ¹⁸O labeled propargylic alcohol as a colourless oil.

To a mixture of the ¹⁸O labeled propargylic alcohol (101.6 mg, 0.23 mmol) in CH_2Cl_2 (4 mL), pyridine (158 mg, 2 mmol) and benzoate chloride (30.7 mg, 0.4 mmol) were added and the mixture was stirred for 4 h. The mixture was then diluted with CH_2Cl_2 (5 mL), washed with H_2O (3 mL), saturated NaHCO₃ solution (3 mL) and brine (3 mL). The organic layer was dried over Na₂SO₄ and filtered. Evaporation of solvent and flash chromatography on silica gel (8:1, *n*-Hexane/EtOAc) afforded the ¹⁸O labeled propargylic benzoate **1s**-¹⁸O (118.4 mg, 94% yield) as a light yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 8.13-8.10 (m, 2H, both isomers), 7.61-7.57 (m, 1H,

both isomers), 7.48-7.42 (m, 4H, both isomers), 7.38-7.27 (m, 12H, both isomers), 6.53-6.52 (dd, J = 1.0, 6.1 Hz, 1H, major isomer), 6.50-6.48 (m, 1H, minor isomer), 6.48-6.47 (d, J = 6.1 Hz, 1H, minor isomer); 6.44-6.43 (d, J = 3.4 Hz, 1H, major isomer), 5.07-5.05 (dd, J = 3.5, 6.2 Hz, 1H, minor isomer), 5.04-5.01 (d, J = 11.2 Hz, 1H, major isomer), 4.99-4.97 (dd, J = 2.2, 6.1 Hz, 1H, major isomer), 4.91-4.88 (d, J = 11.2 Hz, 1H, major isomer), 4.82-4.79 (d, J = 11.5 Hz, 1H, minor isomer), 4.70-4.57 (m, 3H, both isomers), 4.49-4.45 (td, J = 0.9, 5.9 Hz, 1H, minor isomer), 4.37-4.35 (dt, J = 1.8, 4.8 Hz, 1H, major isomer), 4.35-4.32 (dd, J = 3.4, 9.4 Hz, 1H, major isomer), 4.19-4.17 (m, 1H, minor isomer), 4.15-4.13 (m, 1H, minor isomer), 4.10-4.06 (dd, J =6.6, 9.4 Hz, 1H, major isomer); ¹³C NMR (100 MHz, CDCl₃): 165.2, 165.2, 165.1, 165.1, 144.4, 144.2, 138.0, 138.0, 137.8, 137.5, 133.3, 133.2, 132.1, 132.0, 130.0, 130.0, 129.6, 129.5, 128.8, 128.5, 128.4, 128.4, 128.4, 128.4, 128.4, 128.3, 128.1, 128.14, 127.9, 127.8, 127.7, 127.7, 121.9, 121.9, 100.4, 100.0, 87.4, 87.0, 83.8, 82.5, 77.4, 76.4, 75.1, 74.3, 72.9, 72.7, 70.8, 70.5, 64.5, 64.5, 62.4, 62.4; HRMS (ESI) calcd. for $[C_{35}H_{30}O_5^{18}ONa]^+$, 555.2033; found 555.2044. MS analysis of the products obtained indicated an isotopic composition about 43% (Supplementary Figure 3a).

To solution of Ph₃PAuCl (2.5 mg, 5 mol %) and AgSbF₆ (3.4 mg, 10 mol %) in distilled CH₂Cl₂ (1 mL) was added the solution of ¹⁸O labeled propargylic benzoate **1p-¹⁸O** (53.4 mg, 0.1 mmol) in distilled CH₂Cl₂ (1 mL). The reaction was stirred at room temperature until the starting material completely consumed. The mixture was filtered through a plug of silica and concentrated *in vacuo*. Purification of the residue by flash chromatography on silica gel (4:1, *n*-Hexane/EtOAc) afforded the product **2a**

(25.2 mg, 80% yield) and ¹⁸O labeled benzyl benzoate **6-¹⁸O** (16.8 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.09-8.07 (m, 2H), 7.58-7.54 (m, 1H), 7.47-7.33 (m, 7H), 5.37 (s, 2H); ¹³C NMR (100 MHz, CDCl3): 166.4, 166.4, 136.1, 133.0, 130.1, 129.7, 128.6, 128.4, 128.2, 128.2, 66.7; HRMS (ESI) calcd. for [C₁₄H₁₂O¹⁸ONa]⁺, 237.0777; found 237.0849. MS analysis of the products obtained indicated an isotopic composition about 42% (**Supplementary Figure 3b**).

Section E: Preparation of 2,4-dinitrophenyl hydrazone S2a for Stereochemistry Identification

To a solution of ketone **3i** (15 mg, 0.045 mmol) in methanol (1 ml) was added *p*-TsOH (2 mg, 10 µmol) followed by the 2,4-dinitrophenyl hydrazine (15 mg, 0.074 mmol). The reaction was heated to reflux until the starting material completely consumed as indicated by TLC. The reaction was cooled to r.t. and the solvent was removed by rotary evaporation. Purification of the residue by flash chromatography on silica gel (4:1, *n*-Hexane/EtOAc) afforded the product **9** (18.8 mg, 82% yield). A crystal of S2a was generated with EA and an X-ray structure of **9** was obtained; ¹H NMR (400 MHz, CDCl₃): δ 11.03 (s, 1H), 9.13 (s, 2H), 8.30 (d, *J* = 9.3 Hz, 1H), 7.99 (dd, *J* = 18.1, 9.7 Hz, 1H), 7.47–7.26 (m, 5H), 6.44 (dd, *J* = 10.0, 4.6 Hz, 1H), 6.23–

6.09 (m, 1H), 4.78–4.64 (m, 2H), 4.59 (d, *J* = 4.6 Hz, 1H), 4.34 (s, 1H), 3.59 (d, *J* = 4.1 Hz, 1H), 3.16 (s, 1H), 2.42-2.31 (m, 2H), 2.23-2.14 (m, 2H), 2.08-2.00 (m, 1H), 1.77-1.74 (m, 3H), 1.41–1.21 (m, 3H).

Section E: X-ray Structure and Data for Compound 2b and 9

Table 1: Crystal data and structure refinement for 2b.

Chemical formula	$C_{22}H_{20}O_4$
Formula weight	348.38
Temperature	103(2) K
Wavelength	0.71073 Å
Crystal size	$0.040 \times 0.280 \times 0.300 \text{ mm}$
Crystal habit	colorless plate
Crystal system	Orthorhombic
Space group	P 21 21 21
Unit cell dimensions	a = 5.8597(6) Å
	b = 8.4350(8) Å
	c = 35.607(4) Å
Volume	1759.9(3) Å ³
Z	4
Density (calcdulated)	1.315 g/cm ³
Absorption coefficient	0.090 mm ⁻¹

F(000)	736
Theta range for data collection	2.29 to 25.35°
Index ranges	-6<=h<=6, -10<=k<=9, -42<=l<=42
Reflections collected	12377
Independent reflections	3111 [R(int) = 0.0420]
Coverage of independent reflections	97.60%
Absorption correction	multi-scan
Max. and min. transmission	0.9960 and 0.9740
Structure solution technique	direct methods
Structure solution program	SHELXS-97 (Sheldrick 2008)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2013 (Sheldrick, 2013)
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
Data / restraints / parameters	3111 / 0 / 236
Goodness-of-fit on F ²	1.089
Final R indices	2754 data; $I > 2\sigma(I) R1 = 0.0467$, wR2 =
	0.0946
	all data R1 = 0.0555, wR2 = 0.0978
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.0376P)^2+0.7934P]$
	where $P = (F_o^2 + 2F_c^2)/3$
Absolute structure parameter	0.3(6)
Largest diff. peak and	0.194 and -0.212 eÅ ⁻³

hole

R.M.S. deviation from $0.046 \text{ e}\text{\AA}^{-3}$ mean

 Table 2: Crystal data and structure refinement for 9.

Chemical formula	$C_{27}H_{28}N_4O_7$	
Formula weight	520.53 g/mol	
Temperature	103(2) K	
Wavelength	1.54178 Å	
Crystal size	0.100 x 0.120 x 0.200 mm	
Crystal habit	yellow block	
Crystal system	orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 5.5338(6) Å	$\alpha = 90^{\circ}$
	b = 16.6117(17) Å	$\beta = 90^{\circ}$
	c = 26.533(3) Å	$\gamma = 90^{\circ}$
Volume	2439.1(4) Å ³	
Z	4	
Density (calculated)	1.418 g/cm^3	
Absorption coefficient	0.864 mm^{-1}	
F(000)	1096	

Theta range for data collection	3.14 to 68.25°	
Reflections collected	4341	
Coverage of independent reflections	98.0%	
Absorption correction	Multi-Scan	
Max. and min. transmission	0.9190 and 0.8460	
Structure solution technique	direct methods	
Structure solution program	XT, VERSION 2014/5	
Refinement method	Full-matrix least-squares on F2	
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)	
Function minimized	$\Sigma w(Fo2 - Fc2)2$	
Data / restraints / parameters	4341 / 0 / 348	
Goodness-of-fit on F2	1.088	
Final R indices	4188 data; I> $2\sigma(I)$ R1 = 0.0471, wR2 = 0.1278	
	all data $R1 = 0.0520$, $wR2 = 0.1352$	
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.0611P)^{2}+2.8738P$] where P=($F_{o}^{2}+2F_{c}^{2}$)/3	
Absolute structure parameter	-0.09(10)	
Extinction coefficient	0.0042(7)	
Largest diff. peak and hole	0.265 and -0.256 $e^{\text{Å}^{-3}}$	
R.M.S. deviation from mean	0.064 eÅ ⁻	

Section F: Supplementary Figures

Supplementary Figure 1. Mass Spectrum of 1a-¹⁸O.

Supplementary Figure 2. Mass Spectrum of 2a-¹⁸O.

Supplementary Figure 3. Mass Spectrum of 1s-¹⁸O (a) and 6-¹⁸O (b).

Supplementary Figure 4. ¹H and ¹³C NMR spectrum for 8a.

lhz-1128213-OH, 1H, CDCl3, BBFO2 400Mhz

Supplementary Figure 5. ¹H and ¹³C NMR spectrum for 8b.

lhz0818-MOM-OH AV400 1H NMR

Supplementary Figure 6. ¹H and ¹³C NMR spectrum for 8c.

lhz-0514-triOBnOH-Glactal 1H NMR CDCl3 1

Supplementary Figure 7. ¹H and ¹³C NMR spectrum for 8d.

Supplementary Figure 8. ¹H and ¹³C NMR spectrum for 8e.

Supplementary Figure 9. ¹H and ¹³C NMR spectrum for 1a.

LHZ-123, 1H, BBFO 400, CDC13,

Supplementary Figure 10. ¹H and ¹³C NMR spectrum for 1b.

Supplementary Figure 11. ¹H and ¹³C NMR spectrum for 1c.

Supplementary Figure 12. ¹H and ¹³C NMR spectrum for 1d.

Supplementary Figure 13. ¹⁹F NMR spectrum for 1d.

Supplementary Figure 14. ¹H and ¹³C NMR spectrum for 1e.

lhz-205-OAc-Cy, Mar2014,1H,cdcl3,BBF01

Supplementary Figure 15. ¹H and ¹³C NMR spectrum for 1f.

Supplementary Figure 16. ¹H and ¹³C NMR spectrum for 1g.

Supplementary Figure 17. ¹H and ¹³C NMR spectrum for 1h.

lhz0205-cylenePE BBFO-1 CDCl3 1H NMR

Supplementary Figure 18. ¹H and ¹³C NMR spectrum for 1i.

lhz1206-6tBuPE AV400, 1H

Supplementary Figure 19. ¹H and ¹³C NMR spectrum for 1j.

lhz1206-8PE AV400, 1H

Supplementary Figure 20. ¹H and ¹³C NMR spectrum for 1k.

Supplementary Figure 21. ¹H and ¹³C NMR spectrum for 11-A.

Supplementary Figure 22. ¹H and ¹³C NMR spectrum for 11-B.

lhz1028-proPE CDC13 AV400 1H

Supplementary Figure 23. ¹H and ¹³C NMR spectrum for 1m.

Supplementary Figure 24. ¹H and ¹³C NMR spectrum for 1n.

Supplementary Figure 25. ¹H and ¹³C NMR spectrum for 10.

lhz0123337-OAc CDCl3 BBF01 1H NMR

Supplementary Figure 26. ¹H and ¹³C NMR spectrum for 1p.

Supplementary Figure 27. ¹H and ¹³C NMR spectrum for 1q.

lhz-0115351-OAc CDCl3 BBF01 1H NMR

Supplementary Figure 28. ¹H and ¹³C NMR spectrum for 1r.

lhz0217-OMeBnGalactalPE-a BBFO-1 CDCl3 1H NMR

Supplementary Figure 29. ¹H and ¹³C NMR spectrum for *epi*-1a-A.

lhz0217-OMeBnGalactalPE-b BBFO-1 CDCl3 1H NMR

Supplementary Figure 30. ¹H and ¹³C NMR spectrum for *epi*-1a-B.

Supplementary Figure 31. ¹H and ¹³C NMR spectrum for *ent*-1a.

Supplementary Figure 32. ¹H and ¹³C NMR spectrum for *ent*-1b.

lhz0213-nBuBnLPE BBFO-1 CDC13 1H NMR

Supplementary Figure 33. ¹H and ¹³C NMR spectrum for *ent*-1g.

lhz-0524triOBnBzPE, BBF01 400 CDCl3

Supplementary Figure 34. ¹H and ¹³C NMR spectrum for 1s.

Supplementary Figure 35. ¹H and ¹³C NMR spectrum for 1t.

lhz-105-1, 300MHz ,cdcl3

Supplementary Figure 36. ¹H and ¹³C NMR spectrum for 2a.

lhz0203-OMeproduct 1H NMR CDCl3 AV300MHz

Supplementary Figure 37. ¹H and ¹³C NMR spectrum for 2b.

lhz-207-MePh AV300 CDCl3 1H NMR

Supplementary Figure 38. ¹H and ¹³C NMR spectrum for 2c.

lhz-0517-triOBnCF3SF 13C NMR CDCl3 , BBFO2 400MHz

Supplementary Figure 39. ¹H and ¹³C NMR spectrum for 2d.

Supplementary Figure 40. ¹⁹F NMR spectrum for 2d.

lhz0210-FPhProduct 1H NMR CDCl3 AV300MHz

Supplementary Figure 41. ¹H and ¹³C NMR spectrum for 2e.

Supplementary Figure 42. ¹H and ¹³C NMR spectrum for 2f.

Supplementary Figure 43. ¹H and ¹³C NMR spectrum for 2g.

lhz-210-Mg, 1H, BBF02 400MHz, CDCl3, Mar-14

Supplementary Figure 44. ¹H and ¹³C NMR spectrum for 2h.

Supplementary Figure 45. ¹H and ¹³C NMR spectrum for 2i.

lhz1207-6tBuSF AV400, 1H

Supplementary Figure 46. ¹H and ¹³C NMR spectrum for 2j.
lhz0418-enY8SF, AV 400M Hz

Supplementary Figure 47. ¹H and ¹³C NMR spectrum for 2k.

Supplementary Figure 48. ¹H and ¹³C NMR spectrum for 2l.

Supplementary Figure 49. ¹H and ¹³C NMR spectrum for 2m.

lhz-147, 300MHz, CDCl3,

Supplementary Figure 50. ¹H and ¹³C NMR spectrum for 2n.

lhz0129358-PhOMe CDC13 BBF01 1H NMR

Supplementary Figure 51. ¹H and ¹³C NMR spectrum for 20.

Supplementary Figure 52. ¹H and ¹³C NMR spectrum for 2p.

Supplementary Figure 53. ¹H and ¹³C NMR spectrum for 2q.

lhz0119352 AV300 CDCl3 1H NMR

Supplementary Figure 54. ¹H and ¹³C NMR spectrum for 2r.

Supplementary Figure 55. ¹H and ¹³C NMR spectrum for *epi*-2a.

lhz102359-L, CDC13, AV500 MHz

Supplementary Figure 56. ¹H and ¹³C NMR spectrum for *ent*-2a.

lhz0216-OMePhBnLproduct 1H NMR CDCl3 AV300MHz

Supplementary Figure 57. ¹H and ¹³C NMR spectrum for *ent*-2b.

Supplementary Figure 58. ¹H and ¹³C NMR spectrum for *ent*-2g.

lhz0603-Naz6, BBF02, 1H NMR CDCl3

Supplementary Figure 59. ¹H and ¹³C NMR spectrum for 3i.

lhz0601-Naz6tBu CDC13 AV500 1H NMR

Supplementary Figure 60. ¹H and ¹³C NMR spectrum for 3j.

lhz-0603-Naz8, 1H, CDCl3, BBF01 400,

Supplementary Figure 61. ¹H and ¹³C NMR spectrum for 3k.

Supplementary Figure 62. ¹H and ¹³C NMR spectrum for 3m.

lhz1020-918-hydrazone CDCl3 AV400 1H

Supplementary Figure 63. ¹H spectrum for 9.

lhz0424-PhPEO18 1H NMR CDC13 AV300MHz

Supplementary Figure 64. ¹H and ¹³C NMR spectrum for 1a-¹⁸O.

lhz-0424-491-MKSF-018, AV 500MHz, CDC13

Supplementary Figure 65. ¹H and ¹³C NMR spectrum for 2a-¹⁸O.

Supplementary Figure 66. ¹H and ¹³C NMR spectrum for 1p-¹⁸O.

Supplementary Figure 67. ¹H and ¹³C NMR spectrum for 6-¹⁸O.