Supplementary Information

Potent Mechanism-Based Sirtuin-2-Selective Inhibition by an In-Situ-Generated Occupant of the Substrate-Binding Site, "Selectivity Pocket" and NAD ${ }^{+}$-Binding Site

Paolo Mellini, ${ }^{a}$ Yukihiro Itoh, ${ }^{a}$ Hiroki Tsumoto, ${ }^{\text {b }}$ Ying Li, ${ }^{a}$ Miki Suzuki, ${ }^{a}$ Natsuko Tokuda, ${ }^{\text {c }}$ Taeko Kakizawa, ${ }^{\text {d }}$ Yuri Miura, ${ }^{\text {b }}$ Jun Takeuchi, ${ }^{\text {c }}$ Maija Lahtela-Kakkonen ${ }^{e}$ and Takayoshi Suzuki*af

[^0]Contents Page
Supplementary Figures
Fig. S1, S2 Structural overlay of SIRT2/6 and the SIRT2 apo structure, as S3 well as SIRT2/6 and SIRT2/5/NAD ${ }^{+}$.
Fig. S3 Deacetylation mechanism catalyzed by sirtuins and inhibition S4 mode of thioacetyl-based inhibitors including 36.
Fig. S4 $\quad I_{50}$ curves of $\mathbf{6}, \mathbf{1 7}, \mathbf{2 6}, \mathbf{3 6}$, UKU10363, and 5. S5
Fig. S5 Evaluation of the interference of $\mathbf{2 6}$ and $\mathbf{3 6}$ with the Developer S6
II reaction on the SIRTs assay.
Fig. S6 HPLC stability of $\mathbf{3 6}$ under SIRTs assay conditions. S7
Fig. S7 MALDI-TOF blank spectra carried out for the detection of the 36-ADP-ribose conjugate.-S9
Fig. S8 Growth inhibition effect of 6, 26, 36, and EX-527 (9) in MCF- S11
7 cancer cells.
Supplementary Table Page
Table S1 Data collection and refinement for the 6-SIRT2 crystal S12 structure.
Page
Supplementary Methods
SIRT assays. S13-S14
Cell assays. S14-
Crystallization, data collection and figures preparation S16S16
Chemical synthesis of $\mathbf{1 0 - 4 2}$.
S34
HPLC chromatograms for 17-19, 26-28, 36, 41 and 42. S35-
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra for $\mathbf{1 7 - 1 9}, \mathbf{2 6}-28,36,41$ and 42. S38-
References S56S55

Supplementary Figures

Fig. S1 Superimposition of SIRT2/6 with the SIRT2 apo structure (PDB: 3ZGO). The α-helix and the connection loop shift induced by $\mathbf{6}$ are highlighted in the magnified window on the right, wherein $\mathbf{6}$ is colored in black.

Fig. S2 Superimposition of SIRT2/6 with the $\mathbf{5} / \mathrm{NAD}^{+}$(PDB: 4RMG) structure. Only the inhibitor binding mode is shown.

A

B

Fig. S3 Deacetylation mechanism catalyzed by sirtuins and inhibition mode of thioacetyl-based inhibitors, including 36. (A) Simplified deacetylation mechanism catalyzed by sirtuins, ${ }^{1,2}$ (B) inhibition mechanism on SIRT1 by a general substrate-competitive thioacetyl-based inhibitor; ${ }^{3}$ (C) proposed SIRT2 inhibition mechanism by 36.

Fig. S4 IC 50 curves for compounds 6, 17, 26, 36, UKU 10363 and 5 on SIRT1-3. (A) SIRT1, 36, and UKU10363; (B) SIRT2, 36, UKU10363, and 6; (C) SIRT2, 26, 5, and 17; (D) SIRT3, 36, and UKU10363. Fluor de Lys assay; values were calculated from three independent determinations, which afforded a total of 21 data points.

BML-AK556 instruction manual available with SIRT2 Fluorimetric Drug Discovery Kit provided by Enzo Life Sciences, was used as guideline to test the potential interference of SIRT2 inhibitors with the Fluor de Lys Developer II or the fluorescence signal. 26 and $\mathbf{3 6}(10 \mu \mathrm{~L})$ in buffer/DMSO were added to selected wells (buffer/DMSO and buffer/DMSO/compound were added to the control and blank wells, respectively), followed by $40 \mu \mathrm{~L}$ of a solution containing the deacetylated standard (final concentration: $5 \mu \mathrm{M}$). After gentle mixing, the reaction was started upon addition of $50 \mu \mathrm{~L}$ of the Developer II solution to all wells except for the blank. Fluorescence readings were obtained from $0-$ 30 min at $30^{\circ} \mathrm{C}$ using a Victor X3 plate reader ($\lambda_{\mathrm{ex}}=355 \mathrm{~nm}, \lambda_{\mathrm{em}}=460 \mathrm{~nm}$). Compound $\mathbf{6}$ and SirReal2 (5) were used as negative controls.

	Buffer	Cpd *	Developer II	Deac. standard
Blank	$50 \mu \mathrm{~L}$	$10 \mu \mathrm{~L}$	-	$40 \mu \mathrm{~L}$
Reaction	-	$10 \mu \mathrm{~L}$	$50 \mu \mathrm{~L}$	$40 \mu \mathrm{~L}$
*Control blank contains DMSO/buffer				

Fig. S5 Evaluation of the interference of $\mathbf{2 6}$ and $\mathbf{3 6}$ with the Developer II reaction on the SIRTs assay. Values were calculated from two independent determinations \pm SD.

HPLC stability of 36 under SIRTs assay conditions

Compound $36(10 \mu \mathrm{~L}, 0.5 \mathrm{mM}$) in DMSO/buffer (50 mM Tris $/ \mathrm{HCl}, \mathrm{pH}=8.0,137 \mathrm{mM} \mathrm{NaCl}, 2.7$ $\mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM} \mathrm{MgCl} 2$) was added to selected wells, followed by $40 \mu \mathrm{~L}$ of buffer ($50 \mathrm{mM} \mathrm{Tris} / \mathrm{HCl}$, $\mathrm{pH}=8.0,137 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM} \mathrm{MgCl} 2$). The obtained solution was incubated at $30^{\circ} \mathrm{C}$ and 250 rpm for $0,50,100,150$, and 200 min . At the end of each incubation time, the wells were diluted with $\mathrm{CH}_{3} \mathrm{CN}(50 \mu \mathrm{~L}$, HPLC grade). The entire volume ($100 \mu \mathrm{~L}$) was transferred to a Cosmospin filter $\mathrm{H}(0.45 \mu \mathrm{~m})$ and $20 \mu \mathrm{~L}$ of the filtrate were injected in the HPLC instrument. Column: COSMOSIL 5C18-ARII ($4.6 \times 150 \mathrm{~mm}$). Gradient: 0.1% TFA B, $0-20 \mathrm{~min}$ ($10-90 \%$); 20-30 min (90%), $30-40 \mathrm{~min}(90-10 \%)$. The peak area was determined at 220 nm .
Blank
mAU

0 min
nAU

50 min
nAU

100 min

mAU

150 min

200 min
mAU

Fig. S6 HPLC stability of compound $\mathbf{3 6}$ under SIRTs assay conditions.

Fig. S7 MALDI-TOF blank spectra for the detection of the 36-ADP-ribose conjugate. MALDI-TOF mass spectrometric detection of the ADP-ribose conjugate formed by $\mathbf{3 6}$ and NAD^{+}in the absence of (A) SIRT2; (B) NAD ${ }^{+}$, and (C) 36.

Fig. S8 Growth inhibition effect of 6, 26, 36 and EX-527 (9) in MCF-7 breast cancer cells. \%Growth was evaluated after 72 h of treatment at different concentrations of $\mathbf{6}, \mathbf{2 6}, \mathbf{3 6}$ and 9 . The error bars represent the SD of three independent experiments.

Supplementary Table

Table S1. Data collection and refinement for the SIRT2/6 crystal structure

Data collection			
Space group	P2221		
Cell dimension (A)			
$a, b, c(\AA)$	50.8503	57.9804	124.5321
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90	90	90
Resolution (\AA)	42.43-2.30	(2.38-2.30)	
$\mathrm{R}_{\text {merge }}$	0.076	(0.280)	
$l / \sigma l$	12.3	(4.7)	
Completeness (\%)	94.9	(97.4)	
Redundancy	4.90	(4.94)	
Refinement			
Resolution (A)	42.43-2.30		
No. of reflections	79310	(16183)	
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}$ (\%)	25.6/25.2		
No. of atoms			
Protein	2291		
Compound 6	25		
Zn^{2+}	1		
Water	136		
B-factor (\AA^{2})			
Protein	35.683		
Compound	39.212		
Zn^{2+}	47.400		
Water	40.482		
r.m.s. deviation			
Bond length (Å)	0.011		
Bond angles (${ }^{\circ}$)	2.1		

Supplementary Methods

SIRT1-3 and SIRT5 Assays

Fluor de Lys assays were performed according to the method described in the Biomol kit sheets AK555, 556, 557, and 513. The assays were carried out using acetylated substrates at concentrations of $25 \mu \mathrm{M}$ (BML-KI177-0005 for SIRT1 and BML-KI179-0005 for SIRT2 and SIRT3) or $10 \mu \mathrm{M}$ (BML-KI590-0050 for SIRT5); SIRT1 0.5-1 U/well (BML-SE239-0100), SIRT2 4-6 U/well (BML SE-251-0500), SIRT3 3-4 U/well (BML-SE270-0500), SIRT5 8 U/well (BML-SE555-9090), and NAD ${ }^{+}$ 1 mM for SIRT1, SIRT2, and SIRT5, 1.8 mM for SIRT3; Developer II solution (BML-KI1761250)/nicotinamide 1 mM (BML-KI283-0500) and sirtuin buffer (all provided as part of the kit). DMSO (purchased from Nacalai) was used at 2% to reach the final volume per well. $10 \mu \mathrm{~L}$ of compound in buffer/DMSO were added quickly to the selected wells (buffer/DMSO was added to the control and blank wells), followed by $25 \mu \mathrm{~L}$ of a buffer solution containing the substrate $/ \mathrm{NAD}^{+}$. After gentle mixing, the reaction was started by adding $15 \mu \mathrm{~L}$ of the diluted enzyme ($15 \mu \mathrm{~L}$ of buffer was added to the blank wells). The reaction mixtures were incubated for 3 h at $30^{\circ} \mathrm{C}$ (no rpm). Thereafter, $50 \mu \mathrm{~L}$ of a stop solution containing Fluor de Lys Developer II/nicotinamide were added to all wells and the fluorescence was measured for $0-30 \mathrm{~min}$ at $30^{\circ} \mathrm{C}$ using a Victor X 3 plate reader ($\lambda_{\mathrm{ex}}=355$ $\mathrm{nm} ; \lambda_{\mathrm{em}}=460 \mathrm{~nm}$). IC50 values were determined from three independent measurements affording a total of 21 data points. All data points were included in the IC50 calculation using GraFit 7.0.3, in which three independent curves were generated. Under the same assay conditions, 6, UKU10363, and SirReal2 (5) were profiled and used as the internal standards.

Time-dependent inhibition of SIRT2 with 36

This assay was carried out using the SIRT2 acetylated substrate at a concentration of $130 \mu \mathrm{M}$ (BML-KI179-0005), SIRT2 4 U/well (BML SE-251-0500), and NAD ${ }^{+} 1 \mathrm{mM}$; Developer II solution (BML-KI176-1250)/nicotinamide 1 mM (BML-KI283-0500) and sirtuin buffer (all provided as part of the kit). DMSO (purchased from Nacalai) was used at 2% to reach the final volume per well. $10 \mu \mathrm{~L}$ of compound in buffer/DMSO were added quickly to the selected wells (buffer/DMSO was added to the control and blank wells), followed by $25 \mu \mathrm{~L}$ of a buffer solution containing the substrate $/ \mathrm{NAD}^{+}$. After gentle mixing, the reaction was started by adding $15 \mu \mathrm{~L}$ of the diluted enzyme ($15 \mu \mathrm{~L}$ of buffer was added to the blank wells). The reaction mixtures were incubated for $0,30,60,90$, and 120 min (for the 0 min wells, Developer II was added immediately) at $30^{\circ} \mathrm{C}$ directly in the plate reader. After the respective time, $50 \mu \mathrm{~L}$ of a stop solution containing Fluor de Lys Developer II/nicotinamide were
added to the wells and the fluorescence was measured for $0-20$ min at $30^{\circ} \mathrm{C}$ using a Victor X3 plate reader ($\lambda_{\mathrm{ex}}=355 \mathrm{~nm} ; \lambda_{\mathrm{em}}=460 \mathrm{~nm}$). The results were plotted using GraFit 7.0.3.

SIRT2 substrate competition analysis for 36

The assay follows in general the same procedure reported for the SIRT2 assay (vide supra), except for the following changes: reaction time $=45 \mathrm{~min} ;\left[\mathrm{NAD}^{+}\right]=2 \mathrm{mM}$; [substrate $]=50,80,150$, or $300 \mu \mathrm{M}$.

Mass spectrometric detection of the ADP-ribose conjugate

Reactions were conducted for 5 min at $37^{\circ} \mathrm{C}$ in $5 \mu \mathrm{~L}$ containing $1.9 \mu \mathrm{M}$ SIRT2 (SignalChem), 500 $\mu \mathrm{M} \mathrm{NAD}^{+}$or 6-AE-NAD ${ }^{+}$(BIOLOG Life Science Institute), and 1 mM 36 , as well as 40 mM sodium phosphate buffer ($\mathrm{pH}=7.0$), containing $240 \mathrm{mM} \mathrm{NaCl}, 120 \mathrm{mM}$ imidazole, 0.08 mM PMSF, 0.2 mM DTT, 20% glycerol, and 2% DMSO. Controls were measured in the absence of compounds or the enzyme. The reaction mixtures were diluted with $5 \mu \mathrm{~L}$ of water and purified using $\mathrm{ZipTip}-\mu \mathrm{C}_{18}$ (Millipore). The fraction eluted with $2 \mu \mathrm{~L}$ of 50% acetonitrile containing α-cyano-4-hydroxycinnamic acid at a concentration of $5 \mathrm{mg} / \mathrm{mL}$ was directly subjected to MALDI-TOF MS analysis. MALDITOF mass spectra were acquired on an AB SCIEX TOF/TOF™ 5800 (AB SCIEX) in reflectron negative ion mode.

Cell cultures

MCF-7 cells (RIKEN BRC via the National Bio-Resource Project of MEXT, Japan) were cultured in DMEM (high glucose; Nacalai, \#08489-45) containing 10% fetal bovine serum (FBS; SIGMA, \#172012-500ML), an antibiotic-antimycotic mixed stock solution (Nacalai, \#09366-44), an Lglutamine stock solution (Nacalai, \#16948-04), or a sodium pyruvate solution (Nacalai, \#06977-34) at $37{ }^{\circ} \mathrm{C}$ in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ in air. Human breast cancer MDA-MB-231 cells (American type culture collection, ATCC) were cultured at $37{ }^{\circ} \mathrm{C}$ in Leibovitz's L-15 medium containing 2 mM of glutamine, 10% FBS, and a penicillin and streptomycin mixture. The Neuro-2a (N2a) cell line was obtained from the Japanese Collection of Research Bioresources (JCRB) Cell Bank. The N2a cell culture was performed according to previously reported procedures. ${ }^{4}$

Cell growth assay

MCF-7 and MDA-MB-231 cells were plated in 96-well plates (initial density: 1×10^{3} cells per well) and incubated at $37^{\circ} \mathrm{C}$. After 24 h , test compound solutions ($50 \mu \mathrm{~L} /$ well) of varying concentrations in medium (DMEM and Leibovitz's L-15 for MCF-7 and MDA-MB-231 cells respectively) for were added to the cells at $37{ }^{\circ} \mathrm{C}$ under $5 \% \mathrm{CO}_{2}$ in air and left to react for 72 h . Thereafter, the mixtures were treated with $10 \mu \mathrm{~L}$ of AlamarBlue ${ }^{\circledR}$ (AbD Serotec, \#BUF012A), incubation was continued at $37{ }^{\circ} \mathrm{C}$ for 3 h . The fluorescence in each well was measured with an ARVOTM X3 microplate reader $\left(\lambda_{\mathrm{ex}}=540 \mathrm{~nm} ; \lambda_{\mathrm{em}}=590 \mathrm{~nm}\right)$. With the obtained fluorescence readings, it was possible to calculate the percentage of cell growth.

Western Blotting

MDA-MB- 231 cells (5×10^{5} cells $/ 2 \mathrm{~mL} /$ dish) were treated for 6 h with the test compounds at the indicated concentrations in the cell culture medium, before the cells were collected and extracted with SDS buffer. The protein concentrations of the lysates were determined using a BCA protein assay. Equivalent amounts of protein from each lysate were resolved in 5-20\% SDS-polyacrylamide gels and transferred onto PVDF membranes. After blocking with TBS-T containing 5\% skimmed milk, the transblotted membranes were probed with the rabbit monoclonal H3K9Ac antibody (CST, \#9649) (1:1000 dilution), rabbit polyclonal H3 antibody (Abcam, \#ab1791) (1:200000 dilution), mouse monoclonal acetyl- α-tubulin antibody (Sigma, \#T6793) (1:2000 dilution), or mouse monoclonal α tubulin antibody (Sigma, \#T8203) (1:2000 dilution) in TBS-T containing 5\% skimmed milk. The probed membranes were washed three times with TBS-T, incubated with ECL rabbit IgG, HRPlinked whole antibody (GE Healthcare Life Sciences, \#NA934) (1:2500 dilution), ECL mouse IgG, or HRP-linked whole antibody (GE Healthcare Life Sciences, \#NA931) (1:2500 or 1:10000 dilution), and washed again three times with TBS-T. The immunoblots were visualized by enhanced chemiluminescence with the ImmobilonTM Western Chemiluminescent HRP Substrate (Millipore, \#WBKLS0500).

Neurite outgrowth assay

N 2 a cells were plated at a concentration of $1 \times 10^{4} \mathrm{cell} / \mathrm{mL}$ in DMEM including high glucose, 10% FBS, $100 \mathrm{U} / \mathrm{mL}$ penicillin, and $100 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ humidified atmosphere. For the differentiation study, the medium was changed to DMEM supplemented with 2% FBS. After incubation with or without 36 for 72 h , the cell morphology was examined using a microscope (Olympus CKX41) and further analyzed with the Photomeasure software (Kenis Ltd.). The
differentiated cells were defined as those with at least one neurite that was longer than twice the diameter of the cell body. The results are expressed as the percentage of differentiated cells relative to the total number of counted cells. These experiments were carried out in triplicate. One-way ANOVA and Dunnett's post hoc tests were used to determine the significance among the groups.

Crystallization, data collection and figures preparation

Crystals of the purified SIRT2Tm protein (34-356) in complex with 6 (final concentration: 10 $\mathrm{mg} / \mathrm{mL}$) were obtained using 0.1 M Bis-Tris buffer ($\mathrm{pH}=5.5$) and $15 \%(\mathrm{w} / \mathrm{v})$ PEG 5000 MME at $16^{\circ} \mathrm{C}$. X-ray diffraction data were collected at 100 K on the BL41XU beamline at Spring-8 (Hyogo, Japan) and processed using HKL2000 (HKL Research). Structure refinements were carried out using Discovery Studio (BIOVIA). Figures were prepared with UCSF Chimera 1.10.2, a visualization system for exploratory research and analysis. ${ }^{5}$

Chemical synthesis of 10-42

General. The chemical reagents and solvents used in this study were of commercially available high purity. Reagents and solvents were purchased from Sigma Aldrich, Wako Pure Chemical Industries, and TCI Tokyo Chemical Industry CO, LTD. Organic solvents were dried over anhydrous sodium sulfate. Compound $\mathbf{6}$ and UKU10363 were prepared according to procedures reported by Suzuki et al. ${ }^{6}$ and Mellini et al., ${ }^{7}$ respectively. SirReal2 (5) ${ }^{8}$ and EX-527 (9) ${ }^{9}$ were purchased from Sigma Aldrich. NMR spectra were recorded on a Bruker Avance 300 AV (Bruker Biospin, Swizerland) spectrometer operating at $300.1 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ or $75.5 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$. The chemical shift values are reported as $\delta(\mathrm{ppm})$ relatively to TMS (tetramethylsilane) as the internal reference $(\delta=0)$, whereby coupling constants are given in Hz. Positive/negative LRMS ion mass spectra were recorded on a Bruker HCTPlus. The purity of all tested compounds was determined by HPLC using a Shimadzu UFLC (SPDM20A UV detector, DGU-20A3R degassing unit, LC-20AD solvent delivery unit and CBM-20A system) and a C18 column (Inert Sustain, $4.6^{*} 150,5 \mu \mathrm{M}$), UV detection ($\lambda=220$ or 254 nm), and a flow of $1 \mathrm{~mL} / \mathrm{min}$. HPLC conditions: eluent $\mathrm{A}: \mathrm{H}_{2} \mathrm{O}$ containing 0.1% TFA; eluent B: acetonitrile
containing 0.1% TFA. Gradient: B: 0 to $20 \mathrm{~min}, 10-90 \%$; 20 to $30 \mathrm{~min}, 90 \% ; 30$ to $40 \mathrm{~min}, 90-10 \%$. Melting points were determined using a Yanako Micro Melting Point apparatus. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-SX102A mass spectrometer.

Scheme S1. ${ }^{a}$

${ }^{a}$ Reagents and conditions: a) $\mathrm{Pd}_{2} \mathrm{dba}_{3}, 2$-dicyclohexylphosphino-2', 4 ', 6^{\prime} '-triisopropyl biphenyl (XPhos), $\mathrm{K}_{2} \mathrm{CO}_{3}$, t BuOH , reflux, 18 h ; b) THF: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}, \mathrm{LiOH}$, rt, overnight, then 1 N aqueous HCl to establish $\mathrm{pH}=2 ; \quad \mathrm{c}, \mathrm{a}$ ") dry DMF, amine, EDCI• HCl , anhydrous HOBT, TEA, N_{2} flow, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 15-17 \mathrm{~h}$; a^{\prime}) dry acetone, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{~N}_{2}$ atmosphere, reflux 48 h ; b") 2-propanol, 37% aqueous HCl , triisopropylsilane, rt to $50^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Scheme S2. ${ }^{\text {. }}$

${ }^{\text {a }}$ Reagents and conditions: a) dry DMF, TEA, COMU, alaninamide hydrochloride, rt, $5 \mathrm{~h}, \mathrm{~N}_{2}$ flow; b) dry DCM, 4 N HCl in dioxane, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 200 \mathrm{~min}$; c, a^{\prime}) dry DMF, carboxylic acid or amine, EDCI• HCl , anhydrous HOBT, TEA, N_{2} flow, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 8.5-20 \mathrm{~h} ; \mathrm{b}^{\text {') }}$ THF: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}, \mathrm{LiOH}, \mathrm{rt}, 150 \mathrm{~min}$, then 1 N aqueous HCl to establish pH $=2$.

Scheme S3. ${ }^{a}$

${ }^{a}$ Reagents and conditions: a) EtOAc, TEA, rt 16 h ; b) dry DCM, 4 N HCl in dioxane, $0{ }^{\circ} \mathrm{C}$ to $\mathrm{rt}, 280 \mathrm{~min}$; c, h) dry DMF, acid, EDCI $\cdot \mathrm{HCl}$, anhydrous HOBT, TEA, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 5-25 \mathrm{~h}$; d) dry toluene, Lawesson's reagent, $60^{\circ} \mathrm{C}, 6 \mathrm{~h}$; e) THF: $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}, \mathrm{LiOH}, \mathrm{rt}, 4 \mathrm{~h}$, then 1 N aqueous HCl to establish $\mathrm{pH}=2$; f) dry DMF, TEA, COMU, alaninamide hydrochloride, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 22 \mathrm{~h}, \mathrm{~N}_{2}$ flow; g) 2-propanol, $37 \% \mathrm{HCl}$, triisopropylsilane, rt to $50{ }^{\circ} \mathrm{C}, 160$ min.

Scheme S4. ${ }^{a}$

${ }^{a}$ Reagents and conditions: a) dry toluene, Lawesson's reagent, $60^{\circ} \mathrm{C}$, 210 min ; b) 2-propanol, 37% HCl , triisopropylsilane, rt to $50^{\circ} \mathrm{C}, 120 \mathrm{~min}$; c) dry DMF, 39 or $\mathbf{4 0}$, EDCI $\cdot \mathrm{HCl}$, anhydrous HOBT, TEA, N_{2} flow, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 15-17 \mathrm{~h}$.

Synthesis of 10-42

1-bromo-3-phenethoxybenzene (10). $\mathrm{K}_{2} \mathrm{CO}_{3}(4.70 \mathrm{~g}, 34 \mathrm{mmol})$ and (2-bromoethyl)benzene (4.59 $\mathrm{mL}, 34 \mathrm{mmol})$ were added to a solution of 3-bromophenol ($2.0 \mathrm{~g}, 11.5 \mathrm{mmol}$) in dry acetone (8 mL). The reaction was stirred overnight under an N_{2} atmosphere while being heated to reflux. Stirring was then continued for 48 h at rt . Thereafter, the resulting inorganic precipitate was filtered off and the solvent evaporated. The thus obtained yellow oily residue was purified by column chromatography on silica Kieselgel 60 with n-hexane:EtOAc (40/1) as the eluent to afford a colorless oil ($2.98 \mathrm{~g}, 10.7$ $\mathrm{mmol}, 93.5 \%) . \mathrm{R} f=0.26$ (n-hexane $: \mathrm{EtOAc}=40: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=7.30-7.18(\mathrm{~m}$ overlap, 4H), 7.13-7.07 (m overlap, 2H), 6.94-6.91(m, 1H), $4.19(\mathrm{t}, 2 \mathrm{H}, J=6.80 \mathrm{~Hz}), 3.00(\mathrm{t}, 2 \mathrm{H}, J=6.80$ Hz). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=159.37,138.08,131.07,128.85,128.21,126.21,123.35,122.04$, 117.30, 113.87, 68.38, 34.73.

General procedure for the synthesis of 11 and 12. Example: tert-butyl [2-oxo-2(propylamino)ethyl]carbamate (11). Propylamine (0.47 mL , 5.7 mmol$)$, $\quad \mathrm{N}$-(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride (EDCI $\left.\cdot \mathrm{HCl}\right)(1.62 \mathrm{~g}, 8.5 \mathrm{mmol})$, anhydrous 1-hydroxybenzotriazole (HOBT) ($1.15 \mathrm{~g}, 8.5 \mathrm{mmol}$), and triethylamine (TEA) (3.48 mL , $25 \mathrm{mmol})$ were added to a solution of Boc-Gly-OH ($1.0 \mathrm{~g}, 5.7 \mathrm{mmol}$) in dry DMF (12 mL) in an ice bath. The reaction was stirred under an N_{2} atmosphere for 15 h , before brine (50 mL) was added and the reaction mixture was extracted with EtOAc $(4 \times 50 \mathrm{~mL})$. The combined organic phases were washed with a saturated aqueous NaHCO_{3} solution $(40 \mathrm{~mL})$ and brine $(40 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography on silica using EtOAc: n-hexane (1:1), followed by EtOAc as the eluent to furnish a waxy solid ($1.01 \mathrm{~g}, 4.6 \mathrm{mmol}, 81.9 \%$). $\mathrm{R} f=0.17$ (n-hexane:EtOAc $=1: 1$) visualized with phosphomolybdic acid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=7.69(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 6.87(\mathrm{t}, 1 \mathrm{H}, J=6.04 \mathrm{~Hz}), 3.49(\mathrm{~d}$, $2 \mathrm{H}, J=6.04 \mathrm{~Hz}), 3.04-2.98(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.33(\mathrm{~m}$ overlap, 11 H$), 0.83(\mathrm{t}, 3 \mathrm{H}, J=7.36 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-$ NMR (DMSO- d_{6}): $\delta=169.05,155.73,77.94,43.27,40.24,28.15,20.69,11.26$. ESI-MS $(\mathrm{m} / \mathrm{z}): 217.1$ $[\mathrm{M}+\mathrm{H}]^{+}, 239.2[\mathrm{M}+\mathrm{Na}]^{+}$(Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$; Molecular Weight: 216.2774).
tert-Butyl [2-oxo-2-(pentylamino)ethyl]carbamate (12). Waxy solid (1.34 g, $5.5 \mathrm{mmol}, 96.5 \%$). Rf $=0.27$ (n-hexane:EtOAc $=1: 1$) visualized with phosphomolybdic acid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ DMSO- $\left.d_{6}\right): \delta=$ $7.67(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 6.87(\mathrm{t}, 1 \mathrm{H}, J=5.85 \mathrm{~Hz}), 3.47(\mathrm{~d}, 2 \mathrm{H}, J=6.23 \mathrm{~Hz}), 3.07-3.00(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.32(\mathrm{~m}$ overlap, 11 H$), 1.31-1.18(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{t}, 3 \mathrm{H}, J=7.18 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=168.98,155.70$, 77.91, 43.26, 38.38, 28.77, 28.50, 28.12, 21.8, 13.80. ESI-MS (m / z): $245.2[\mathrm{M}+\mathrm{H}]^{+}, 267.2[\mathrm{M}+$ $\mathrm{Na}]^{+}$(Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$; Molecular Weight: 244.3306).

General procedure for the synthesis of 13 and 14. Example: 2-amino- N-propylacetamide hydrochloride 13. Triisopropylsilane ($0.25 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{1 1}$ (0.2 $\mathrm{g}, 0.92 \mathrm{mmol})$ in 2-propanol $(7 \mathrm{~mL})$, followed by 37% aqueous $\mathrm{HCl}(0.21 \mathrm{~mL})$. Then the reaction mixture was warmed to $50^{\circ} \mathrm{C}$. After 20 min and $40 \mathrm{~min}, 0.21 \mathrm{~mL}$ of 37% aqueous HCl were added, and the solution was stirred for 1 h at $50^{\circ} \mathrm{C}$. Thereafter, 2-propanol was removed under reduced pressure and the sticky residue washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL}), \mathrm{EtOAc}(2 \times 5 \mathrm{~mL})$, and $\mathrm{Et}_{2} \mathrm{O}(3 \times 5$ $\mathrm{mL})$ to afford a light white solid $(0.106 \mathrm{~g}, 0.69 \mathrm{mmol}, 75.5 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=8.48(\mathrm{t}, 1 \mathrm{H}$, $J=5.10 \mathrm{~Hz}), 8.18(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.10-3.04(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, 3 \mathrm{H}, J=7.37$ Hz). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- $d 6$): $\delta=165.58,40.45,40.00,22.13$, 11.37. ESI-MS $(\mathrm{m} / \mathrm{z}): 117.3[\mathrm{M}+\mathrm{H}]^{+}$ (Chemical Formula: $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$; Molecular Weight: 116.1616).

2-Amino- N -pentylacetamide hydrochloride (14). From 12 ($0.22 \mathrm{~g}, 0.92 \mathrm{mmol}$). White solid (0.10 $\mathrm{g}, 0.55 \mathrm{mmol}, 60.1 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): 8.45(\mathrm{t}, 1 \mathrm{H}, J=5.29 \mathrm{~Hz}), 8.15(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H})$, 3.13-3.06 (m, 2H), 1.44-1.37 (m, 2H), 1.29-1.25 (m, overlap, 4H), $0.86(\mathrm{t}, 3 \mathrm{H}, J=6.99 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-$ NMR (DMSO- d_{6}): $\delta=165.53,40.01,38.62,28.50(2 \mathrm{C}), 21.76,13.83$. ESI-MS $(\mathrm{m} / \mathrm{z}): 145.2[\mathrm{M}+\mathrm{H}]^{+}$ (Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$; Molecular Weight: 144.2147).

Methyl 2-[(3-phenethoxyphenyl)amino]benzoate (15). A mixture of methyl-2-aminobenzoate $(0.59 \mathrm{~mL}, 4.5 \mathrm{mmol}), 10(1.05 \mathrm{~g}, 3.8 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.73 \mathrm{~g}, 5.3 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba} 3(0.32 \mathrm{~g}, 0.35 \mathrm{mmol})$ and XPhos $(0.36 \mathrm{~g}, 0.76 \mathrm{mmol})$ in $t-\mathrm{BuOH}(20 \mathrm{~mL})$ under a flow of N_{2} flow was heated to reflux for 18 h . Then, EtOAc (40 mL) was added and the resulting suspension filtered. The obtained solution was evaporated and the residue purified by column chromatography on silica Kieselgel 60 using n^{-}
hexane: $\operatorname{EtOAc}(35 / 1)$ as the eluent to afford a brownish oil ($1.28 \mathrm{~g}, 3.68 \mathrm{mmol}, 96.9 \%) . \mathrm{R} f=0.24\left(n^{-}\right.$ hexane: $\mathrm{EtOAc}=35: 1) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=9.44(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.18(\mathrm{~m}$ overlap, 8 H$)$, 6.84-6.78 (m overlap, 2H), 6.75-6.70(m, 1H), $6.63(\mathrm{dd}, 1 \mathrm{H}, J=8.12,0.57 \mathrm{~Hz}), 4.14(\mathrm{t}, 2 \mathrm{H}, J=7.18$ $\mathrm{Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{t}, 2 \mathrm{H}, J=7.18 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=168.90,159.84,147.69,142.10$, $138.23,134.10,131.61,130.03,129.02,128.50,126.51,117.26,114.69,114.49,112.14,109.68$, 108.58, 68.72, 51.78, 35.80. ESI-MS $(\mathrm{m} / \mathrm{z}): 348.2$ (Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{3}$; Molecular Weight: 347.4070).

2-[(3-phenethoxyphenyl)amino]benzoic acid (16). A solution of $\mathrm{LiOH}(1.1 \mathrm{~g}, 26 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(8$ $\mathrm{mL})$ was added to a solution of $\mathbf{1 5}(1.20 \mathrm{~g}, 3.4 \mathrm{mmol})$ in THF: $\mathrm{MeOH}(16 \mathrm{~mL} / 8 \mathrm{~mL})$ and the reaction mixture was stirred at room temperature overnight. Then, the solvent volume was halved under vacuum and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added, before $\mathrm{pH}=2$ was established using a 1 N aqueous HCl solution. The product was extracted with EtOAc $(4 \times 60 \mathrm{~mL})$ and the combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$. The oily residue was washed with n-hexane $(2 \times 3 \mathrm{~mL})$ in order to remove any unreacted ester to afford a light yellow solid ($1.1 \mathrm{~g}, 3.3 \mathrm{mmol}, 97 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMSO}-d 6): \delta=13.05$ (s br, 1H), 9.57 (s br, 1H), 7.88 (dd, 1H, $J=7.93,1.70 \mathrm{~Hz}$), 7.41-7.36 (m, 1H), 7.33-7.17 (m overlap, $7 \mathrm{H}), 6.81-6.75(\mathrm{~m}$ overlap, 3 H$), 6.61(\mathrm{dd}, 1 \mathrm{H}, J=7.55,2.27 \mathrm{~Hz}), 4.17(\mathrm{t}, 2 \mathrm{H}, J=6.80 \mathrm{~Hz}), 3.01(\mathrm{t}$, $2 \mathrm{H}, J=6.80 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=169.88,159.49,146.73,141.91,138.38,134.09,131.85$, $130.20,128.93,128.28,126.24,117.59,114.31,113.34,112.96,109.27,107.23,68.13,34.95$. ESIMS (m / z): $331.9[\mathrm{M}-\mathrm{H}]^{-} ; 334.1[\mathrm{M}+\mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{3}$; Molecular Weight: 333.3805).

General procedure for the synthesis of 17, 18 and 19. Example: \boldsymbol{N}-(2-amino-2-oxoethyl)-2-[(3phenethoxyphenyl)amino]benzamide (17). Glycinamide hydrochloride ($0.026 \mathrm{~g}, 0.24 \mathrm{mmol}$), EDCI $\cdot \mathrm{HCl}(0.069 \mathrm{~g}, 0.36 \mathrm{mmol})$, anhydrous $\operatorname{HOBT}(0.048 \mathrm{~g}, 0.36 \mathrm{mmol})$, and TEA $(0.15 \mathrm{~mL}, 1.08$ $\mathrm{mmol})$ were added sequentially under a flow of N_{2} to a solution of $\mathbf{1 6}(0.08 \mathrm{~g}, 0.24 \mathrm{mmol})$ in dry DMF (3 mL) in an ice bed. The reaction was stirred for 17 h , after which brine ($\sim 30 \mathrm{~mL}$) was added
and the product was extracted with EtOAc $(4 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica Kieselgel 60 using EtOAc: n-hexane (8:2), followed by EtOAc as the eluent to furnish a white solid ($0.052 \mathrm{~g}, 0.13 \mathrm{mmol}, 55.6 \%$). $\mathrm{Rf}=0.18$ (EtOAc:n-hexane $=8: 2)$. m.p. $131-133{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=9.55(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{t}, 1 \mathrm{H}, J=5.85 \mathrm{~Hz}), 7.68(\mathrm{~d}$, $1 \mathrm{H}, J=7.55 \mathrm{~Hz}$), 7.41-7.15 (m overlap, 9H), 7.07 (s br, 1 H), 6.87-6.82 (m, 1H), 6.74-6.69 (m overlap, $2 \mathrm{H}), 6.54(\mathrm{dd}, 1 \mathrm{H}, J=8.12,1.89 \mathrm{~Hz}), 4.17(\mathrm{t}, 2 \mathrm{H}, J=6.80 \mathrm{~Hz}), 3.80(\mathrm{~d}, 2 \mathrm{H}, J=5.85 \mathrm{~Hz}), 3.02(\mathrm{t}$, $2 \mathrm{H}, J=6.80 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{MeOD}+6 \%\right.$ DMSO- d_{6}): $\delta=174.36,171.70,161.28,145.78,144.59$, $139.9,133.23,131.10,130.05,129.90,129.43,127.38,120.65,119.76,117.27,113.35,109.35$, 107.25, 69.77, 43.41, 36.68. ESI-MS $(\mathrm{m} / \mathrm{z}): 390.4[\mathrm{M}+\mathrm{H}]^{+}$. HPLC: purity 98.88% at $254 \mathrm{~nm}, t_{\mathrm{R}}=$ 18.33 min. HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}, 389.17395$; found, 389.17387.
N-[2-Oxo-2-(propylamino)ethyl]-2-[(3-phenethoxyphenyl)amino]benzamide (18). 16 (0.08 g , $0.24 \mathrm{mmol}), \mathbf{1 3}(0.037 \mathrm{~g}, 0.24 \mathrm{mmol}), \mathrm{EDCI} \cdot \mathrm{HCl}(0.069 \mathrm{~g}, 0.36 \mathrm{mmol})$, anhydrous HOBT (0.048 g , 0.36 mmol), and TEA ($0.15 \mathrm{~mL}, 1.08 \mathrm{mmol}$). Purification by column chromatography on silica Kieselgel 60 using EtOAc: n-hexane (1:1) as the eluent to furnish a colorless sticky solid (0.046 g , $0.106 \mathrm{mmol}, 44.4 \%) . \mathrm{R} f=0.17$ (EtOAc: n-hexane $=1: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=9.54(\mathrm{~s}, 1 \mathrm{H}), 8.72$ $(\mathrm{t}, 1 \mathrm{H}, J=5.85 \mathrm{~Hz}), 7.90(\mathrm{t}, 1 \mathrm{H}, J=5.67 \mathrm{~Hz}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=7.37 \mathrm{~Hz}), 7.38-7.15$ (m overlap, 8 H), 6.88-6.82 (m, 1H), 6.74-6.69 (m overlap, 2H), $6.54(\mathrm{dd}, 1 \mathrm{H}, J=7.74,1.89 \mathrm{~Hz}), 4.16(\mathrm{t}, 2 \mathrm{H}, J=6.80$ $\mathrm{Hz}), 3.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.85 \mathrm{~Hz}), 3.06-3.00(\mathrm{~m}$ overlap 4 H$), 1.47-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, 3 \mathrm{H}, J=7.37$ Hz). ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{MeOD}): \delta=171.86,171.71,161.30,145.79,144.72,139.85,133.23,131.04,130.00$, $129.85,129.39,127.35,120.88,119.89,117.57,113.28,109.37,107.22,69.81,43.89,42.22,36.71$, 23.58 , 11.61. ESI-MS $(\mathrm{m} / \mathrm{z}): 432.5[\mathrm{M}+\mathrm{H}]^{+}$. HPLC purity 98.94% at $254 \mathrm{~nm}, t_{\mathrm{R}}: 20.63 \mathrm{~min}$. HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3}$, 431.22090; found, 431.22004.
N-[2-Oxo-2-(pentylamino)ethyl]-2-[(3-phenethoxyphenyl)amino]benzamide (19). 16 (0.08 g, $0.24 \mathrm{mmol}), 14(0.043 \mathrm{~g}, 0.24 \mathrm{mmol}), \mathrm{EDCI} \cdot \mathrm{HCl}(0.069 \mathrm{~g}, 0.36 \mathrm{mmol})$, anhydrous HOBT $(0.048 \mathrm{~g}$,
$0.36 \mathrm{mmol})$, and TEA ($0.15 \mathrm{~mL}, 1.08 \mathrm{mmol}$). Purification by column chromatography on silica Kieselgel 60 using EtOAc: n-hexane (1:1) as the eluent to furnish a colorless sticky solid (0.074 g , $0.16 \mathrm{mmol}, 62.2 \%) . \mathrm{R} f=0.25(\mathrm{EtOAc}: n$-hexane $=1: 1) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=9.56(\mathrm{~s}, 1 \mathrm{H}), 8.71$ $(\mathrm{t}, 1 \mathrm{H}, J=6.04 \mathrm{~Hz}), 7.88(\mathrm{t}, 1 \mathrm{H}, J=5.48 \mathrm{~Hz}), 7.69(\mathrm{~d}, 1 \mathrm{H}, J=8.31 \mathrm{~Hz}), 7.38-7.15(\mathrm{~m}$ overlap, 8 H$)$, 6.88-6.82 (m, 1H), 6.74-6.68 (m overlap, 2H), $6.53(\mathrm{dd}, 1 \mathrm{H}, J=8.12,1.89 \mathrm{~Hz}), 4.16(\mathrm{t}, 2 \mathrm{H}, J=6.80$ Hz), $3.81(\mathrm{~d}, 2 \mathrm{H}, J=5.67 \mathrm{~Hz}), 3.08-2.99(\mathrm{~m}$ overlap, 4 H$), 1.44-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.20(\mathrm{~m}$ overlap, $4 \mathrm{H}), 0.84(\mathrm{t}, 3 \mathrm{H}, J=6.99 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{MeOD}): \delta=171.82,171.61,161.27,145.81,144.64,139.80$, 133.22, 131.01, 129.97, 129.81, 129.37, 127.32, 120.70, 119.82, 117.48, 113.30, 109.37, 107.27, 69.77, $43.91,40.44,36.69,30.07,30.03,23.32,14.29$. ESI-MS $(\mathrm{m} / \mathrm{z}): 460.5[\mathrm{M}+\mathrm{H}]^{+}$. HPLC: purity 99.35% at $254 \mathrm{~nm}, t_{\mathrm{R}}: 22.27 \mathrm{~min}$. HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3}, 459.25220$; found, 459.25316.

Benzyl tert-butyl ((S)-6-\{[(S)-1-amino-1-oxopropan-2-yl]amino\}-6-oxohexane-1,5-

 diyl)dicarbamate (20). TEA (2.83 mL, 20.3 mmol) and (1-Cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-carbenium hexafluorophosphate (COMU) (1.49 $\mathrm{g}, 3.48 \mathrm{mmol})$ were added to a solution of Z-Lys(Boc)-OH ($1.11 \mathrm{~g}, 2.9 \mathrm{mmol}$) in DMF (12 mL) under a flow of N_{2}, and the mixture was stirred for 1 min . Thereafter, L-alaninamide hydrochloride $(0.4 \mathrm{~g}$, 3.2 mmol) was added and the solution was stirred for 5 h at rt under a flow of N_{2}. Then, the reaction was quenched by adding brine (40 mL), before the obtained precipitate was filtered off and consecutively washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, and $\mathrm{Et}_{2} \mathrm{O}$ $(5 \times 10 \mathrm{~mL})$. Compound 20 was obtained as a white solid ($1.20 \mathrm{~g}, 2.7 \mathrm{mmol}, 94 \%$). $\mathrm{R} f=0.47$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=9: 1\right.$ visualized with ninhydrin) ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=7.86(\mathrm{~d}, 1 \mathrm{H}, J=7.55 \mathrm{~Hz})$, $7.44-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.00(\mathrm{~s}$ br, 1 H$), 6.76(\mathrm{t}, 1 \mathrm{H}, J=5.29 \mathrm{~Hz}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.23-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.97-$ $3.90(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.84(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.18\left(\mathrm{~m}\right.$ overlap, 19H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=174.03$, $171.42,156.00,155.53,136.99,128.29,127.71,127.58,77.31,65.36,54.76(2 \mathrm{C}), 47.83,31.43$, 28.24(2C), 22.76, 18.41. ESI-MS $(\mathrm{m} / \mathrm{z}): 451.4[\mathrm{M}+\mathrm{H}]^{+}, 473.4[\mathrm{M}+\mathrm{Na}]^{+}$(Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{3} 4 \mathrm{~N}_{4} \mathrm{O} 6$; Molecular Weight: 450.5286).
Benzyl ((S)-6-amino-1-\{[(S)-1-amino-1-oxopropan-2-yl]amino\}-1-oxohexan-2-yl)carbamate

 hydrochloride (21). HCl in dioxane ($4 \mathrm{~N}, 3.51 \mathrm{~mL}$) was slowly added to a stirred suspension of $\mathbf{2 0}$ $(1.0 \mathrm{~g}, 2.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17.5 \mathrm{~mL})$, which was cooled in an ice bed. The reaction was then warmed to room temperature, where stirring was continued for 200 min . Thereafter, the solvents were evapored and the resulting residue washed with $\mathrm{CHCl}_{3}: \mathrm{Et}_{2} \mathrm{O}(1: 1,4 \times 10 \mathrm{~mL})$ to give a light yellow solid ($0.85 \mathrm{~g}, 2.2 \mathrm{mmol}, 100 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=7.99-7.86$ (m overlap, 4H), 7.44-7.30 (m, $6 \mathrm{H}), 7.02(\mathrm{~s}$ br, 1 H$), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.23-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.94(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.77-$ $1.75(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.19(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=174.20,171.36,155.99,136.98,128.32$, $127.75,127.61,65.41,54.54,48.01,38.44,31.10,26.42,22.30,18.39$. ESI-MS $(\mathrm{m} / \mathrm{z}): 351.2[\mathrm{M}+$ $\mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4}$; Molecular Weight: 350.4127).Methyl 2-[2-(phenylamino)benzamido]acetate (22). Compound 22 was prepared following the coupling procedure described for 17: N-phenylanthranilic acid ($0.6 \mathrm{~g}, 2.8 \mathrm{mmol}$), DMF (7 mL), glycine methyl ester ($0.35 \mathrm{~g}, 2.8 \mathrm{mmol})$, $\mathrm{EDCI} \cdot \mathrm{HCl}(0.8 \mathrm{~g}, 4.2 \mathrm{mmol})$, anhydrous HOBT ($0.57 \mathrm{~g}, 4.2$ $\mathrm{mmol})$, and TEA ($1.75 \mathrm{~mL}, 13 \mathrm{mmol}$); reaction time: 8.5 h ; extracted with EtOAc $(4 \times 50 \mathrm{~mL})$ and washed once with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. Purification by column chromatography on silica Kieselgel 60 using n-hexane:EtOAc (7:3) as the eluent to furnish a light yellow solid ($0.62 \mathrm{~g}, 2.2 \mathrm{mmol}, 78.6 \%$). $\mathrm{R} f=0.32$ (n-hexane:EtOAc $=7: 3$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMSO}-d 6): \delta$ $=9.64(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{t}, 1 \mathrm{H}, J=5.67 \mathrm{~Hz}), 7.69(\mathrm{dd}, 1 \mathrm{H}, J=7.93,1.32 \mathrm{~Hz}), 7.38-7.27(\mathrm{~m}$ overlap, 4 H$)$, $7.17(\mathrm{dd}, 2 \mathrm{H}, J=7.37,1.13 \mathrm{~Hz}), 7.01-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{td}, 1 \mathrm{H}, J=7.93,1.51 \mathrm{~Hz}), 4.0(\mathrm{~d}, 2 \mathrm{H}, J=$ 5.85 Hz), $3.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=170.25,169.22,144.64,141.21,132.24,129.34$, $128.80,121.98,119.77,117.89,117.41,114.73,51.71,41.02$. ESI-MS $(\mathrm{m} / z): 285.1[\mathrm{M}+\mathrm{H}]^{+}$ (Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$; Molecular Weight: 284.3098).

2-[2-(Phenylamino)benzamido]acetic acid (23). Compound 23 was prepared following the procedure reported for 16: $22(0.5 \mathrm{~g}, 1.7 \mathrm{mmol})$, $\mathrm{THF}: \mathrm{MeOH}(6.25 \mathrm{~mL} / 3.12 \mathrm{~mL}), \mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.51$ $\mathrm{g}, 12 \mathrm{mmol}$), and $\mathrm{H}_{2} \mathrm{O}(3.12 \mathrm{~mL})$; reaction time: 4 h . The obtained white solid ($0.44 \mathrm{~g}, 1.6 \mathrm{mmol}$,
95%) was used in the next step without further purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=9.65(\mathrm{~s}, 1 \mathrm{H})$, $8.88(\mathrm{t}, 1 \mathrm{H}, J=5.67 \mathrm{~Hz}), 7.70(\mathrm{dd}, 1 \mathrm{H}, J=7.74,1.32 \mathrm{~Hz}), 7.34-7.27(\mathrm{~m}$, overlap, 4H), 7.18-7.15(m, $2 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{td}, 1 \mathrm{H}, 7.93,1.70 \mathrm{~Hz}), 3.91(\mathrm{~d}, 2 \mathrm{H}, J=5.85 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO$\left.d_{6}\right): \delta=171.24,169.12,144.48,141.29,132.08,129.35,128.77,121.89,119.65,117.92,117.85$, 114.70, 41.06. ESI-MS $(m / z): 271.1[\mathrm{M}+\mathrm{H}]^{+} ; 268.9[\mathrm{M}-\mathrm{H}]^{-}$(Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$; Molecular Weight: 270.2833).

Methyl 2-\{2-[(3-phenethoxyphenyl)amino]benzamido\}acetate (24). Compound 24 was prepared following the coupling procedure reported for 17 : $16(0.2 \mathrm{~g}, 0.6 \mathrm{mmol})$, glycine methyl ester hydrochloride ($0.075 \mathrm{~g}, 0.6 \mathrm{mmol})$, EDCI• $\mathrm{HCl}(0.172 \mathrm{~g}, 0.9 \mathrm{mmol})$, anhydrous HOBT ($0.12 \mathrm{~g}, 0.9$ mmol), and TEA ($0.38 \mathrm{~mL}, 2.7 \mathrm{mmol}$). Purification by column chromatography on silica Kieselgel 60 using EtOAc: n-hexane (3:7) as the eluent to furnish a sticky solid ($0.22 \mathrm{~g}, 0.5 \mathrm{mmol}, 83.3 \%$). Rf $=0.29($ EtOAc: n-hexane $=3: 7) .{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMSO}-d 6): \delta=9.57(\mathrm{~s}, 1 \mathrm{H}), 8.99(\mathrm{t}, 1 \mathrm{H}, J=5.48 \mathrm{~Hz})$, $7.70(\mathrm{~d}, 1 \mathrm{H}, J=8.88 \mathrm{~Hz}), 7.39-7.16$ (m overlap, 8 H), 6.88-6.83 (m, 1H), 6.74-6.69 (m overlap, 2H), $6.56(\mathrm{dd}, 1 \mathrm{H}, J=8.31,1.89 \mathrm{~Hz}), 4.17(\mathrm{t}, 2 \mathrm{H}, J=6.80 \mathrm{~Hz}), 4.00(\mathrm{~d}, 2 \mathrm{H}, J=5.67 \mathrm{~Hz}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $3.02(\mathrm{t}, 2 \mathrm{H}, J=6.80 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{MeOD}): \delta=172.15,171.94,161.30,145.98,144.48,139.85$, 133.30, 131.04, 130.00, 129.74, 129.39, 127.35, 120.25, 119.65, 117.19, 113.54, 109.50, 107.47, 69.81, 52.66, 42.16, 36.71. ESI-MS $(m / z): 405.1[\mathrm{M}+\mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$; Molecular Weight: 404.4584).

2-\{2-[(3-Phenethoxyphenyl)amino]benzamido\}acetic acid (25). Compound 25 was prepared following the procedure reported for 16: $24(0.16 \mathrm{~g}, 0.39 \mathrm{mmol})$, THF/MeOH ($2 \mathrm{~mL} / 1 \mathrm{~mL}$), $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.12 \mathrm{~g}, 2.77 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$; reaction time: 150 min ; light yellow sticky solid $(0.130 \mathrm{~g}, 0.33 \mathrm{mmol}, 85.3 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=9.58(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{t}, 1 \mathrm{H}, J=5.85 \mathrm{~Hz}), 7.68$ $(\mathrm{d}, 1 \mathrm{H}, J=7.55 \mathrm{~Hz}), 7.38-7.15(\mathrm{~m}$ overlap, 8 H$), 6.88-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.69$ (m overlap, 2H), 6.55 $(\mathrm{dd}, 1 \mathrm{H}, J=8.31,2.08 \mathrm{~Hz}), 4.17(\mathrm{t}, 2 \mathrm{H}, J=6.80 \mathrm{~Hz}), 3.90(\mathrm{~d}, 2 \mathrm{H}, J=5.85 \mathrm{~Hz}), 3.01(\mathrm{t}, 2 \mathrm{H}, J=6.80$ Hz). ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{MeOD}): \delta=173.33,171.88,161.25,145.84,144.47,139.82,133.19,131.01,129.99$,
$129.73,129.38,127.33,120.46,119.64,117.10,113.50,109.42,107.40,69.77,42.07,36.68$. ESIMS (m/z): $391.1\left[\mathrm{M}+\mathrm{H}^{+} ; 389.0[\mathrm{M}-\mathrm{H}]^{-}\left(\right.\right.$Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$; Molecular Weight: 390.4318).

Benzyl $\{(S)$-1-\{[(S)-1-amino-1-oxopropan-2-yl]amino\}-1-oxo-6-(2-\{2-[(3-phenethoxyphenyl) amino]benzamidołacetamido)hexan-2-yl\}carbamate (26). Compound 26 was prepared following the coupling procedure reported for 17: $25(0.07 \mathrm{~g}, 0.18 \mathrm{mmol})$, DMF (3 mL), $\mathbf{2 1}(0.07 \mathrm{~g}, 0.18 \mathrm{mmol})$, EDCI $\cdot \mathrm{HCl}(0.052 \mathrm{~g}, 0.27 \mathrm{mmol})$, anhydrous $\mathrm{HOBT}(0.036 \mathrm{~g}, 0.27 \mathrm{mmol})$, and TEA $(0.11 \mathrm{~mL}, 0.81$ mmol); reaction time: 20 h ; purification by column chromatography on silica Kieselgel 60 using EtOAc: $\mathrm{MeOH}(13 / 1)$ as the eluent to furnish a white solid $(0.041 \mathrm{~g}, 0.057 \mathrm{mmol}, 31.7 \%) . \mathrm{R} f=0.27$ (EtOAc: $\mathrm{MeOH}=13: 1$). m.p. $143-145{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=9.56(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{t}, 1 \mathrm{H}, J=$ $5.85 \mathrm{~Hz}), 7.90-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, 1 \mathrm{H}, J=8.50 \mathrm{~Hz}), 7.43-7.15$ (m overlap, 15H), $6.99(\mathrm{~s} \mathrm{br}, 1 \mathrm{H})$, 6.87-6.81 (m, 1H), 6.73-6.68 (m, overlap 2H), $6.53(\mathrm{dd}, 1 \mathrm{H}, J=8.31,1.89 \mathrm{~Hz}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.22-$ 4.14 (m overlap, 3 H), 3.96-3.93(m, 1H), $3.82(\mathrm{~d}, 2 \mathrm{H}, J=5.85 \mathrm{~Hz}), 3.04-2.99$ (m overlap, 4H), 1.641.09 (m overlap, 9H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (MeOD): $\delta=177.39,174.54,171.87,171.76,161.31,158.59,145.79$, $144.75,139.86,138.08,133.22,131.05,130.00,129.88,129.45,129.39,129.00,128.85,127.35$, $120.95,119.92,117.60,113.34,109.40,107.27,69.83,67.75,56.52,49.98,43.90,40.03,36.71,32.63$, 29.84, 23.94, 18.19. ESI-MS (m / z): $723.4[\mathrm{M} \mathrm{+} \mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{7}$; Molecular Weight: 722.8292). HPLC: purity 98.3% at $254 \mathrm{~nm}, t_{\mathrm{R}}: 18.67 \mathrm{~min}$.

Benzyl

((S)-1-\{[(S)-1-amino-1-oxopropan-2-yl]amino\}-1-oxo-6-\{2-[2-(phenylamino)benzamido]acetamido\}hexan-2-yl)carbamate (27). Compound 27 was prepared following the coupling procedure reported for $\mathbf{1 7}: \mathbf{2 1}(0.15 \mathrm{~g}, 0.39 \mathrm{mmol}), \mathrm{DMF}(4 \mathrm{~mL}), \mathbf{2 3}(0.105 \mathrm{~g}$, $0.39 \mathrm{mmol}), \mathrm{EDCI} \cdot \mathrm{HCl}(0.11 \mathrm{~g}, 0.58 \mathrm{mmol})$, anhydrous $\mathrm{HOBT}(0.078 \mathrm{~g}, 0.58 \mathrm{mmol})$, and TEA (0.24 $\mathrm{mL}, 1.7 \mathrm{mmol}$); reaction time: 18 h ; purification by column chromatography on silica Kieselgel 60 using EtOAc:MeOH (12:1) as the eluent to furnish a yellow solid that was subsequently triturated with boiling EtOAc. Upon cooling at rt , the collected solid was washed with petroleum ether and
dried to afford a light yellow solid ($0.12 \mathrm{~g}, 0.2 \mathrm{mmol}, 51.3 \%$). $\mathrm{R} f=0.27$ (EtOAc:MeOH $=12: 1$). m.p. $181-183{ }^{\circ} \mathrm{C}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=9.62(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{t}, 1 \mathrm{H}, J=5.67 \mathrm{~Hz}), 7.95-7.86(\mathrm{~m}$ overlap, $2 \mathrm{H}), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=7.74 \mathrm{~Hz}), 7.44-7.28(\mathrm{~m}$ overlap, 11 H$), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.94$ (m overlap, $2 \mathrm{H}), 6.93(\mathrm{td}, 1 \mathrm{H}, J=7.93,1.70 \mathrm{~Hz}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~d}$, $2 \mathrm{H}, J=5.67 \mathrm{~Hz}), 3.09-3.0(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.18(\mathrm{~m}$ overlap, 9 H$) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=174.08$, $171.42,168.95,168.54,155.98,144.24,141.49,136.99,131.86,129.32,128.94,128.29,127.70$, $127.58,121.75,119.52,118.64,117.97,114.80,65.37,59.70,54.66,47.84,42.35,31.46,28.73,22.84$, 18.39. ESI-MS $(\mathrm{m} / \mathrm{z}): 603.4[\mathrm{M}+\mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{6}$; Molecular Weight: 602.6807). HPLC: purity 99.11% at $254 \mathrm{~nm}, t_{\mathrm{R}}: 16.00 \mathrm{~min}$.

Benzyl ((S)-1-\{[(S)-1-amino-1-oxopropan-2-yl]amino\}-6-(2-benzamidoacetamido)-1-oxohexan-

2-yl)carbamate (28). Compound 28 was prepared following the coupling procedure reported for $\mathbf{1 7}$: $21(0.13 \mathrm{~g}, 0.36 \mathrm{mmol})$, dry DMF (4 mL), hippuric acid ($0.064 \mathrm{~g}, 0.36 \mathrm{mmol}), \mathrm{EDCI} \cdot \mathrm{HCl}(0.1 \mathrm{~g}, 0.54$ $\mathrm{mmol})$, anhydrous HOBT ($0.073 \mathrm{~g}, 0.54 \mathrm{mmol}$), and TEA ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}$); reaction time: 16 h ; purification by column chromatography on silica Kieselgel 60 using EtOAc:MeOH (8.5:1.5) as the eluent, followed by flash chromatography ($\mathrm{DCM} \rightarrow \mathrm{DCM}: \mathrm{MeOH}, 15: 1$) to obtain a white solid (0.025 $\mathrm{g}, 0.047 \mathrm{mmol}, 13 \%) . \mathrm{R} f=0.34$ ($\mathrm{EtOAc}: \mathrm{MeOH}=8.5: 1.5$) visualized with phosphomolybdic acid. m.p. 206-208 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d 6): $\delta=8.67(\mathrm{t}, 1 \mathrm{H}, J=5.85 \mathrm{~Hz}$), 7.90-7.86 (m overlap, 4H), 7.57-7.41 (m overlap, 4H), 7.36-7.30 (m overlap, 6H), $6.99(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.24-4.15(\mathrm{~m}$, $1 \mathrm{H}), 4.00-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.85 \mathrm{~Hz}), 3.08-3.01(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.15$ (m overlap, 9 H$)$. ${ }^{13} \mathrm{C}-$ NMR (DMSO- d_{6}): $\delta=174.07,171.42,168.63,166.40,155.99,137.01,134.09,131.23,128.31$, $128.20,127.72,127.59,127.32,65.38,54.69,47.85,42.62,38.43,31.48,28.76,22.85,18.40$. ESIMS $(\mathrm{m} / \mathrm{z}): 512.3[\mathrm{M}+\mathrm{H}]^{+}, 534.3[\mathrm{M}+\mathrm{Na}]^{+}$(Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{6}$; Molecular Weight: 511.5701). HPLC: purity 96.97% at $254 \mathrm{~nm}, t_{\mathrm{R}}: 12.32 \mathrm{~min}$.
of Z-Lys(Boc)-OH ($4.11 \mathrm{~g}, 10.8 \mathrm{mmol}$) in EtOAc (66 mL). The solution was stirred for 1 min , before 2-bromoacetophenone ($2.28 \mathrm{~g}, 11.3 \mathrm{mmol}$) was added. After 16 h , the reaction was diluted with EtOAc (100 mL) and the obtained suspension washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The reaction mixture was extracted with EtOAc $(4 \times 70 \mathrm{~mL})$ and the combined organic layers were washed with brine and a saturated aqueous solution of NaHCO_{3}, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent removed under reduced pressure. The solid residue was washed with $\mathrm{Et}_{2} \mathrm{O}(4 \times 10 \mathrm{~mL})$ and dried to give a white solid (5.02 $\mathrm{g}, 10.6 \mathrm{mmol}, 98.8 \%) . \mathrm{R} f=0.64(n$-hexane: $\mathrm{EtOAc}=1: 1) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=7.97(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.55 \mathrm{~Hz}), 7.80(\mathrm{~d}, 1 \mathrm{H}, J=7.74 \mathrm{~Hz}), 7.70(\mathrm{t}, 1 \mathrm{H}, J=7.55 \mathrm{~Hz}), 7.56(\mathrm{t}, 2 \mathrm{H}, J=7.55 \mathrm{~Hz}), 7.40-7.29$ $(\mathrm{m}, 5 \mathrm{H}), 6.79(\mathrm{t}, 1 \mathrm{H}, J=5.48 \mathrm{~Hz}), 5.60(\mathrm{~d}, 1 \mathrm{H}, J=16.81 \mathrm{~Hz}), 5.48(\mathrm{~d}, 1 \mathrm{H}, J=16.81 \mathrm{~Hz}), 5.05(\mathrm{~s}$, $2 H), 4.18-4.11(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.85(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.34(\mathrm{~m}$, $13 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=192.41,171.91,156.02,155.46,136.78,133.81,133.74,128.76(2 \mathrm{C})$, $128.21,127.65,127.59,77.23,66.56,65.40,53.75,30.43,28.94,28.13(2 C), 22.62$. ESI-MS (m / z): $499.4[\mathrm{M}+\mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7}$; Molecular Weight: 498.5681).
(S)-2-Oxo-2-phenylethyl 6-amino-2-\{[(benzyloxy)carbonyl]amino\}hexanoate hydrochloride (30). HCl in dioxane ($4 \mathrm{~N}, 16.5 \mathrm{~mL}$) was slowly added to a stirred solution of $29(4.90 \mathrm{~g}, 10.4 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$, which was cooled in an ice bed. The reaction was then warmed to room temperature, where stirring was continued for 280 min . Thereafter, the solvents were evaporated and the residue washed twice with $\mathrm{CHCl}_{3}: \mathrm{Et}_{2} \mathrm{O} 1: 1(4 \times 40 \mathrm{~mL})$ to give a white solid $(3.82 \mathrm{~g}, 8.78 \mathrm{mmol}$, $82.8 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=7.98-7.82$ (m overlap, 6 H), $7.67(\mathrm{t}, 1 \mathrm{H}, J=7.37 \mathrm{~Hz}), 7.55(\mathrm{t}, 1 \mathrm{H}$, $J=7.37 \mathrm{~Hz}), 7.36,7.31(\mathrm{~m}, 5 \mathrm{H}), 5.60(\mathrm{~d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 5.47(\mathrm{~d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 5.03(\mathrm{~s}, 2 \mathrm{H})$, 4.19-4.12 (m, 1H), 2.78-2.73 (m, 2H), 1.91-1.65 (m overlap, 2H), 1.61-1.42 (m overlap, 4 H). ${ }^{13} \mathrm{C}-$ NMR (DMSO- d_{6}): $\delta=192.58,171.95,156.16,136.86,133.97,133.81,128.90(2 \mathrm{C}), 128.35,127.79$, 127.71, 66.77, 65.55, 53.75, 38.37, 30.26, 26.41, 22.39. ESI-MS $(\mathrm{m} / \mathrm{z}): 399.2[\mathrm{M}+\mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}$; ; Molecular Weight: 398.4522).
butoxycarbonyl)amino]acetamido\}hexanoate (31). Boc-Gly-OH (1.50 g, 8.5 mmol), EDCI•HCl $(2.44 \mathrm{~g}, 12.75 \mathrm{mmol})$, anhydrous $\operatorname{HOBT}(1.72 \mathrm{~g}, 12.75 \mathrm{mmol})$, and TEA ($5.3 \mathrm{~mL}, 38 \mathrm{mmol}$) were added to a solution of $\mathbf{3 0}(3.72 \mathrm{~g}, 8.5 \mathrm{mmol})$ in dry DMF (30 mL), which was cooled in an ice bed. The reaction was stirred under an atmosphere of N_{2} for 25 h . Thereafter, brine (50 mL) was added and the reaction mixture extracted with EtOAc $(5 \times 70 \mathrm{~mL})$. The combined organic phases were washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and brine $(40 \mathrm{~mL})$, before they were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The residue was purified by flash chromatography on silica (EtOAc: n-hexane, $1: 1 \rightarrow \mathrm{EtOAc}$) to furnish a white solid (3.87 g , $6.9 \mathrm{mmol}, 76.7 \%) . \mathrm{R} f=0.61 \mathrm{EtOAc} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=7.96(\mathrm{~d}, 2 \mathrm{H}, J=7.18 \mathrm{~Hz}), 7.80-7.67$ (m overlap, 3H), 7.56 (t, 2H, $J=7.37 \mathrm{~Hz}$), 7.38-7.31 (m overlap, 5 H), 6.86 (t, $1 \mathrm{H}, J=5.85 \mathrm{~Hz}$), 5.60 $(\mathrm{d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 5.47(\mathrm{~d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, 2 \mathrm{H}, J=6.04$ $\mathrm{Hz}), 3.12-3.01(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.38(\mathrm{~m}$ overlap, 13 H$) .{ }^{13} \mathrm{C}-$ NMR (DMSO- d_{6}): $\delta=192.53,172.04,169.00,156.12,155.71,136.88,133.94,133.81,128.88$, 128.32, 127.77 (3C), $77.94,66.69,65.50,53.80,43.23,38.19,30.53,28.65,28.15,22.81$. ESI-MS $(m / z): 556.4[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{8}$; Molecular Weight: 555.6194).

(S)-2-Oxo-2-phenylethyl

2-\{[(benzyloxy)carbonyl]amino\}-6-\{2-[\{tert-

butoxycarbonyl)amino]ethanethioamido\}hexanoate (32). 31 ($2.0 \mathrm{~g}, 3.6 \mathrm{mmol}$) and Lawesson's reagent $(0.72 \mathrm{~g}, 1.8 \mathrm{mmol})$ were added to a dried reaction tube under a flow of argon, followed by dry toluene (40 mL). The suspension was warmed to $60^{\circ} \mathrm{C}$ and stirred for 6 h under an atmosphere of argon. Thereafter, all volatiles were evaporated under reduced pressure and the residue directly purified by flash chromatography on silica (n-hexane $\rightarrow n$-hexane:EtOAc, 1:1) to provide a colorless sticky solid ($2.06 \mathrm{~g}, 3.6 \mathrm{mmol}, 100 \%) . \mathrm{R} f=0.37$ (EtOAc: n-hexane $=1: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMSO}-d 6): \delta=$ 9.73 (pseudo s, 1H), $7.97(\mathrm{~d}, 2 \mathrm{H}, J=7.18 \mathrm{~Hz}), 7.81(\mathrm{~d}, 1 \mathrm{H}, J=7.74 \mathrm{~Hz}), 7.73-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{t}$, $2 \mathrm{H}, J=7.36 \mathrm{~Hz}), 7.41-7.30(\mathrm{~m}$ overlap, 5 H), $7.04(\mathrm{t}, 1 \mathrm{H}, J=5.67 \mathrm{~Hz}), 5.60(\mathrm{~d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz})$, $5.47(\mathrm{~d}, 1 \mathrm{H}, J=17.0 \mathrm{~Hz}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.21-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, 2 \mathrm{H}, J=5.85 \mathrm{~Hz}), 3.60-3.50(\mathrm{~m}$,
$2 H), 1.94-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.39(\mathrm{~m}$ overlap, 11 H$) .{ }^{13} \mathrm{C}-$ NMR (DMSO- d_{6}): $\delta=199.17,192.52,172.01,156.12,155.54,136.87,133.94,133.82,128.87$, $128.32,127.77$ (3C), $78.33,66.70,65.50,53.78,50.91,44.54,30.54,28.11,26.67,22.87$. ESI-MS $(m / z): 572.3[\mathrm{M}+\mathrm{H}]^{+}, 594.3[\mathrm{M}+\mathrm{Na}]^{+}$(Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$; Molecular Weight: 571.6850).
(S)-2-\{[(Benzyloxy)carbonyl]amino\}-6-\{2-[(tert-
butoxycarbonyl)amino]ethanethioamido\}hexanoic acid (33). Compound 33 was prepared following the procedure reported for $\mathbf{1 6}: \mathbf{3 2}(2.0 \mathrm{~g}, 3.5 \mathrm{mmol})$, $\mathrm{THF}: \mathrm{MeOH}(25 \mathrm{~mL} / 12.5 \mathrm{~mL})$, and a solution of $\mathrm{LiOH}(1.02 \mathrm{~g}, 24 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(12.5 \mathrm{~mL})$; reaction time: 4 h ; purification by column chromatography on silica Kieselgel 60 using DCM:MeOH:AcOH (20:1:0.5) as the eluent to furnish a yellow sticky solid ($1.06 \mathrm{~g}, 2.3 \mathrm{mmol}, 66.8 \%) . \mathrm{R} f=0.27(\mathrm{DCM}: \mathrm{MeOH}: \mathrm{AcOH}=20: 1: 0.5) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $d 6$): $\delta=12.5(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 9.68(\mathrm{~s}$ br, 1 H$), 7.53(\mathrm{~d}, 1 \mathrm{H}, J=7.93 \mathrm{~Hz}), 7.43-7.13$ (m overlap, $6 \mathrm{H}), 7.03-6.98(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 3.95-3.86$ (m overlap, 3H), 3.59-3.45 (m, 2H), 1.74-1.49 (m overlap, 4 H), 1.41-1.29 (m overlap, 10H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\right.$ DMSO- $\left.d_{6}\right): \delta=199.20,173.88,156.17,155.56$, $137.02,128.31,127.77,127.68,78.38,65.39,53.78,50.91,44.58,30.46,28.13,26.71,23.03$. ESIMS (m / z): $452.0[\mathrm{M}-\mathrm{H}]^{-} ; 454.3[\mathrm{M}+\mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$; Molecular Weight: 453.5523).

Benzyl

((S)-1-\{[(S)-1-amino-1-oxopropan-2-yl]amino\}-6-[2-(tert-
butoxycarbonylamino)ethanethioamido]-1-oxoexan-2-yl)carbamate (34). COMU ($0.56 \mathrm{~g}, 1.32$ $\mathrm{mmol})$ and TEA $(0.92 \mathrm{~mL}, 6.6 \mathrm{mmol})$ were sequentially added to a solution of $\mathbf{3 3}(0.5 \mathrm{~g}, 1.1 \mathrm{mmol})$ in dry DMF (5 mL), which was cooled in an ice bed. The reaction mixture was stirred under a N_{2} flow for 1 min , before L-alaninamide hydrochloride $(0.15 \mathrm{~g}, 1.21 \mathrm{mmol})$ was added, and stirring at room temperature was continued for 22 h . Thereafter, brine (30 mL) was added, and the reaction mixture was extracted with $\mathrm{EtOAc}(4 \times 50 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, before all volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica

Kieselgel 60 using DCM:MeOH (20:1) as the eluent to furnish a light yellow solid ($0.37 \mathrm{~g}, 0.7 \mathrm{mmol}$, $64.2 \%) . \mathrm{R} f=0.20(\mathrm{DCM}: \mathrm{MeOH}=20: 1) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=9.69(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=$ 7.55 Hz), 7.44-7.31 (m, overlap, 7H), 7.04-7.00 (m, overlap, 2H), $5.02(\mathrm{~s}, 2 \mathrm{H}), 4.22-4.15(\mathrm{~m}, 1 \mathrm{H})$, 4.02-3.95 (m, 1H), $3.87(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.85 \mathrm{~Hz}), 3.55-3.43(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.45(\mathrm{~m}$ overlap, 4H), 1.441.27 (m overlap, 11 H), $1.20(\mathrm{~d}, 3 \mathrm{H}, J=6.99 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=199.13,174.06,171.36$, $155.97,155.52,136.98,128.29,127.70,127.58,78.33,65.37,54.62,50.86,47.83,44.71,31.44,28.11$, 26.77, 22.87, 18.40. ESI-MS $(\mathrm{m} / \mathrm{z})$: $524.3[\mathrm{M}+\mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}$; Molecular Weight: 523.6455).

Benzyl ((S)-1-\{[(S)-1-amino-1-oxopropan-2-yl]amino\}-6-(2-aminoethanethioamido)-1-

 oxohexan-2-yl)carbamate hydrochloride (35). Compound 35 was prepared following the cleavage procedure described for $\mathbf{1 3}: 34(0.25 \mathrm{~g}, 0.47 \mathrm{mmol})$, 2-propanol (8.7 mL), triisopropylsilane (0.13 $\mathrm{mL}, 0.62 \mathrm{mmol})$, and a 37% aqueous solution of $\mathrm{HCl}(3 \times 0.26 \mathrm{~mL})$. A light yellow solid was obtained ($0.174 \mathrm{~g}, 0.38 \mathrm{mmol}, 79.3 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta=10.54(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 8.21(\mathrm{~s}$ br, 3H), $7.91(\mathrm{~d}, 1 \mathrm{H}$, $J=7.55 \mathrm{~Hz}), 7.47-7.31(\mathrm{~m}$, overlap, 7 H$), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.94$ $(\mathrm{m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.53-3.48(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.99 \mathrm{~Hz}), 1.70-1.47$ (m overlap, 4H), 1.42-1.30(m, 2H), $1.21(\mathrm{~d}, 3 \mathrm{H}, J=6.99 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=193.74,174.15,171.32,155.95,136.99,128.29$, 127.70, 127.57, 65.36, 54.58, 47.93, 45.95, 45.19, 31.39, 26.51, 22.89, 18.39. ESI-MS (m / z) : 424.3 $[\mathrm{M}+\mathrm{H}]^{+}\left(\right.$Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O} 4 \mathrm{~S}$; Molecular Weight: 423.5297).
Benzyl

$[(S)-1-\{[(S)-1-a m i n o-1-o x o p r o p a n-2-y l] a m i n o\}-1-o x o-6-(2-\{2-[(3-$ phenethoxyphenyl)amino]benzamido\}ethanethioamido)hexan-2-yl]carbamate (36). Compound $\mathbf{3 6}$ was prepared following the coupling procedure reported for $\mathbf{1 7 : ~} \mathbf{1 6}(0.08 \mathrm{~g}, 0.24 \mathrm{mmol})$, dry DMF $(4 \mathrm{~mL}), 35(0.11 \mathrm{~g}, 0.24 \mathrm{mmol}), \mathrm{EDCI} \cdot \mathrm{HCl}(0.069 \mathrm{~g}, 0.36 \mathrm{mmol})$, anhydrous HOBT ($0.049 \mathrm{~g}, 0.36$ mmol), and TEA ($0.15 \mathrm{~mL}, 1.08 \mathrm{mmol}$); reaction time: 330 min ; purification by column chromatography on silica Kieselgel 60 with $\mathrm{DCM}: \mathrm{MeOH}(30: 1)$ as the eluent to furnish a light yellow solid ($0.08 \mathrm{~g}, 0.11 \mathrm{mmol}, 45.1 \%$). $\mathrm{R} f=0.18(\mathrm{DCM}: \mathrm{MeOH}=30: 1)$. m.p. $126-128{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$
(DMSO- d_{6}): $\delta=9.88(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 9.54(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{t}, 1 \mathrm{H}, J=4.72 \mathrm{~Hz}), 7.87(\mathrm{~d}, 1 \mathrm{H}, J=7.37 \mathrm{~Hz})$, $7.76(\mathrm{~d}, 1 \mathrm{H}, J=7.55 \mathrm{~Hz}), 7.44-7.15(\mathrm{~m}$ overlap, 15 H$), 6.99(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.68$ (m overlap, 2H), $6.54(\mathrm{dd}, 1 \mathrm{H}, J=8.12,1.70 \mathrm{~Hz}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.25-4.15$ (m overlap, 5H), 4.00-3.93 $(\mathrm{m}, 1 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{t}, 2 \mathrm{H}, J=6.80 \mathrm{~Hz}), 1.70-1.46(\mathrm{~m}$ overlap, 4 H$), 1.41-1.29(\mathrm{~m}, 2 \mathrm{H})$, $1.20(\mathrm{~d}, 3 \mathrm{H}, J=7.18 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=198.72,174.05,171.34,168,79,159.42,155.98$, $144.08,142.87,138.37,137.00,131.98,130.08,128.89$ (2C), 128.29, 128.25, 127.70, 127.58, 126.20, $118.87,118.25,115.51,111.70,108.02,105.47,68.03,65.38,54.62,49.52,47.84,44.96,38.72,34.91$, 26.76, 22.94, 18.41. ESI-MS $(\mathrm{m} / \mathrm{z})$: $739.6[\mathrm{M}+\mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}_{40} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O} 6 \mathrm{~S}$; Molecular Weight: 738.8948). HPLC: purity 98.28% at $254 \mathrm{~nm}, t_{\mathrm{R}}: 20.75 \mathrm{~min}$.

General procedure for the synthesis of 37 and 38. Example of tert-Butyl (2-(propylamino)-2thioxoethyl)carbamate (37). $11(0.5 \mathrm{~g}, 2.3 \mathrm{mmol})$ was dissolved in dry toluene under argon flow, then Lawesson's reagent $(0.46 \mathrm{~g}, 1.15 \mathrm{mmol})$ was added. The reaction was left under stirring under argon atmosphere at $60^{\circ} \mathrm{C}$ for $3 \mathrm{~h}, 30 \mathrm{~min}$. After this time solvent was removed under reduced pressure and the residue purified by flash chromatography starting from n-Hexane: EtOAc (8:2) followed by n-Hexane: EtOAc (2:1) to provide a white solid ($0.538 \mathrm{~g}, 2.3 \mathrm{mmol}$, Yield 100%). $\mathrm{R} f=0.7 n$-Hexane: EtOAc (1:1) visualized with Phosphomolybdic acid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$: (DMSO-d $)$: $\delta=9.66$ (s br, 1 H), 7.04$6.99(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, 2 \mathrm{H}, J=6.04 \mathrm{~Hz}), 3.53-3.46(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{t}$, $3 \mathrm{H}, J=7.37 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=199.23,155.52,78.31,50.92,46.46,28.09,20.49,11.25$. ESI-MS (m / z): $233.2[\mathrm{M}+\mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$; Molecular Weight: 232.3430).
tert-Butyl (2-(pentylamino)-2-thioxoethyl)carbamate (38). White solid ($0.472 \mathrm{~g}, 1.8 \mathrm{mmol}, 78.8 \%$). $\mathrm{R} f=0.8 n$-Hexane: EtOAc (1:1) visualized with Phosphomolybdic acid. ${ }^{1} \mathrm{H}$-NMR: (DMSO-d6): $\delta=$ $9.63(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, 2 \mathrm{H}, J=5.85 \mathrm{~Hz}), 3.56-3.49(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 2 \mathrm{H})$, 1.39-1.24 (m overlap, 13H), $0.87\left(\mathrm{t}, 3 \mathrm{H}, J=6.99 \mathrm{~Hz}\right.$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}): $\delta=199.05,155.49$, 78.28, 50.91, 44.68, 28.44, 28.06, 26.77, 21.76, 13.74. ESI-MS (m/z): $261.3[\mathrm{M}+\mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$; Molecular Weight: 260.3962).

General procedure for the synthesis of 39 and 40. Example of 2-Amino-Npropylethanethioamide hydrochloride (39). To a solution of $\mathbf{3 7}(0.21 \mathrm{~g}, 0.92 \mathrm{mmol})$. in 2-propanol (7 mL), triisopropylsilane ($0.25 \mathrm{~mL}, 1.2 \mathrm{mmol}$) was added, followed by $\mathrm{HCl} 37 \%(0.21 \mathrm{~mL})$ under stirring, then warmed at $50^{\circ} \mathrm{C}$. After 20 min and 40 min a portion of $\mathrm{HCl} 37 \%$ was added (each portion 0.21 mL). When the total amount of HCl in the reaction flask was 0.63 mL , the solution was maintained for 1 h at $50^{\circ} \mathrm{C}$ under stirring. After this time 2-propanol was removed under reduced pressure and the sticky residue washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL}), \mathrm{EtOAc}(2 \mathrm{x} 5 \mathrm{~mL})$, and $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 5 \mathrm{~mL})$ providing the product as light white solid ($0.12 \mathrm{~g}, 0.71 \mathrm{mmol}, 77.2 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$: $\left(\mathrm{DMSO}-d^{6}\right): \delta=$ $10.84(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 8.33(\mathrm{~s} \mathrm{br}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.18 \mathrm{~Hz}), 1.67-1.55(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}$, $3 \mathrm{H}, \mathrm{J}=7.55 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=193.80,47.16,45.92,20.36,11.53$. ESI-MS $(\mathrm{m} / \mathrm{z}): 133.2$ $[\mathrm{M}+\mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}$; Molecular Weight: 132.2272).

2-Amino-N-pentylethanethioamide hydrochloride (40). From 38 ($0.24 \mathrm{~g}, 0.92 \mathrm{mmol}$). White solid ($0.08 \mathrm{~g}, 0.41 \mathrm{mmol}, 44.2 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~\left(\mathrm{DMSO}-d^{6}\right): 10.64$ (s br, 1 H), 8.30 (s br, 3H), 3.80 ($\mathrm{s} \mathrm{br}, 2 \mathrm{H}$), $3.52(\mathrm{t}, 2 \mathrm{H}, J=7.18 \mathrm{~Hz}), 1.64-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.27(\mathrm{~m}$ overlap 4 H$), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.18 \mathrm{~Hz})$. ${ }^{13}$ C-NMR (DMSO- d_{6}): $\delta=194.82,46.99,46.80,30.21,28.22,23.33,14.23$. ESI-MS $(m / z): 161.2[\mathrm{M}$ $+\mathrm{H}]^{+}$(Chemical Formula: $\mathrm{C}^{7} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}$; Molecular Weight: 160.2803).

2-((3-Phenethoxyphenyl)amino)-N-(2-(propylamino)-2-thioxoethyl)benzamide (41). 16 (0.08 g , $0.24 \mathrm{mmol}), 39(0.040 \mathrm{~g}, 0.24 \mathrm{mmol}), \mathrm{EDCI} \cdot \mathrm{HCl}(0.069 \mathrm{~g}, 0.36 \mathrm{mmol})$, anhydrous HOBT (0.048 g , $0.36 \mathrm{mmol})$, and TEA ($0.15 \mathrm{~mL}, 1.08 \mathrm{mmol}$). Purification by column chromatography, using silica Kieselgel 60 with EtOAc: n-hexane (2.3:7.7) as eluent phase to furnish a white solid ($0.081 \mathrm{~g}, 0.182$ mmol, 75.8%). $\mathrm{R} f=0.74$ (EtOAc: n-hexane 1:1). m.p. $123-125^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=9.87(\mathrm{~s}$ br, 1 H), 9.52 (s br, 1H), 8.89 (s br, 1 H), 7.76 (d, $1 \mathrm{H}, J=8.69 \mathrm{~Hz}$), 7.39-7.15 (m overlap, 8H), 6.89$6.84(\mathrm{~m}, 1 \mathrm{H})$, 6.73-6.67 (m overlap 2H), $6.55(\mathrm{dd}, 1 \mathrm{H}, J=7.55,1.70 \mathrm{~Hz}), 4.19-4.14$ (m overlap, 4H), $3.50(\mathrm{t}, 2 \mathrm{H}, J=7.18 \mathrm{~Hz}), 3.02(\mathrm{t}, 2 \mathrm{H}, J=6.80 \mathrm{~Hz}), 1.64-1.51(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, 3 \mathrm{H}, J=7.37 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-$ NMR (DMSO- d_{6}): $\delta=198.76,168.84,159.40,144.05,142.86,138.34,131.96,130.05,129.17$,
$128.87,128.22,126.18,118.88,118.22,115.51,111.61,107.96,105.41,68.00,49.67,46.64,34.89$, 20.48, 11.29. ESI-MS (m / z): $448.5[\mathrm{M}+\mathrm{H}]^{+}$. HPLC: purity 99.36% at $254 \mathrm{~nm}, t_{\mathrm{R}}: 22.98 \mathrm{~min}$. HRMS (EI) calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, 447.19805; found, 447.19616.
\boldsymbol{N}-(2-(Pentylamino)-2-thioxoethyl)-2-((3-phenethoxyphenyl)amino)benzamide (42). $\mathbf{1 6}$ (0.08 g , $0.24 \mathrm{mmol}), 40(0.047 \mathrm{~g}, 0.24 \mathrm{mmol}), \mathrm{EDCI} \cdot \mathrm{HCl}(0.069 \mathrm{~g}, 0.36 \mathrm{mmol})$, anhydrous HOBT $(0.048 \mathrm{~g}$, $0.36 \mathrm{mmol})$, and TEA $(0.15 \mathrm{~mL}, 1.08 \mathrm{mmol})$. Purification by column chromatography on silica Kieselgel 60 with EtOAc: n-hexane (2:8) as eluent phase to furnish a white solid $(0.084 \mathrm{~g}, 0.177$ mmol, $73.8 \%) . \mathrm{R} f=0.85$ (EtOAc: n-hexane 1:1). m.p. $102-104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=9.85(\mathrm{~s}$ $\mathrm{br}, 1 \mathrm{H}), 9.54(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 8.89(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 7.76(\mathrm{~d}, 1 \mathrm{H}, J=6.99 \mathrm{~Hz}), 7.39-7.15(\mathrm{~m}$ overlap, 8 H$), 6.89-$ $6.84(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.67(\mathrm{~m}$ overlap, 2H), $6.55(\mathrm{dd}, 1 \mathrm{H}, J=7.74,1.89 \mathrm{~Hz}), 4.19-4.15(\mathrm{~m}$ overlap, 4 H$)$, $3.53(\mathrm{t}, 2 \mathrm{H}, J=7.37 \mathrm{~Hz}), 3.02(\mathrm{t}, 2 \mathrm{H}, J=6.80 \mathrm{~Hz}), 1.62-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.21$ (m overlap, 4H), $0.83(\mathrm{t}, 3 \mathrm{H}, J=6.80 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta=198.62,168.88,159.42,144.11,142.87,138.36$, $131.99,130.07,129.18,128.88,128.24,126.20,118.85,118.22,115.49,111.66,107.99,105.50$, 68.03, 49.72, 44.93, 34.92, 28.51, 26.80, 21.77, 13.77. ESI-MS $(\mathrm{m} / \mathrm{z}): 476.5[\mathrm{M}+\mathrm{H}]^{+}$. HPLC: purity 98.85% at 254 nm , $t_{\mathrm{R}}: 24.38 \mathrm{~min}$. HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, 475.22935; found, 475.22871.

HPLC chromatograms for 17-19, 26-28, 36, 41 and 42.
HPLC chromatogram for $\mathbf{1 7}$. Purity 98.88%; t_{R} : 18.33 min .

HPLC chromatogram for 18. Purity 98.94%; tr: 20.63min. mAU

HPLC chromatogram for 19. Purity 99.35%; t_{R} : 22.27 min .

HPLC chromatogram for 26. Purity 98.3%; t_{R} : 18.67 min .
mAU

HPLC chromatogram for 27. Purity 99.11%; $t_{\mathrm{R}}: 16.00 \mathrm{~min}$.
IU

HPLC chromatogram for 28. Purity 96.97%; $t_{\mathrm{R}}: 12.32 \mathrm{~min}$.
mAU

HPLC chromatogram for $\mathbf{3 6}$. Purity 98.28%; t_{R} : 20.75 min .
mAU

HPLC chromatogram for 41. Purity 99.36%, tr: 22.98 min

HPLC chromatogram for 42. Purity 98.85%, $t_{\text {R: }} 24.38$ min

${ }^{1} H$ and ${ }^{13} \mathrm{C}$-NMR spectra for 17-19, 26-28, 36, 41 and 42.
${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1 7}$ in DMSO-d d_{6} at 299.7 K

${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 7}$ in MeOD $+6 \% \mathrm{DMSO}-d_{6}$ at 301.2 K

${ }^{1}$ H NMR spectrum for $\mathbf{1 8}$ in DMSO- d_{6} at 299.6 K

${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 8}$ in MeOD at 301.7 K

${ }^{1}$ H NMR spectrum for 19 in DMSO- d_{6} at 299.6 K

${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 9}$ in MeOD at 302.8 K

${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{2 6}$ in MeOD at 301.3 K

 $\dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$

${ }^{13} \mathrm{C}$ NMR spectrum for 27 in DMSO- d_{6} at 300.9 K

$\begin{array}{llllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

${ }^{13} \mathrm{C}$ NMR spectrum for 28 in DMSO- d_{6} at 301.5 K

${ }^{1}$ H NMR spectrum for 36 in DMSO- d_{6} at 299.5 K

${ }^{13} \mathrm{C}$ NMR spectrum for 36 in DMSO- d_{6} at 301.7 K

${ }^{1} \mathrm{H}$ NMR spectrum for 41 in DMSO- $d 6$ at 300.0 K

${ }^{13}$ C-NMR spectra for 41 in DMSO- $d 6$ at 303.1 K

${ }^{1}$ H NMR spectrum for $\mathbf{4 2}$ in DMSO- d_{6} at 299.6 K

${ }^{13}$ C-NMR spectra for 42 in DMSO- $d 6$ at 303.0 K

References

(1) K. G. Hoff, J. L. Avalos, K. Sens and C. Wolberger, Structure, 2006, 14, 1231-1240.
(2) W.F. Hawse, K. G. Hoff, D. G. Fatkins, A. Daines, O. V. Zubkova, V. L. Schramm, W. Zheng and C. Wolberger, Structure, 2008, 16, 1368-1377.
(3) B. C. Smith and J. M. Denu, Biochemistry, 2007, 46, 14478-14486.
(4) S. Uchida, K. Hara, A. Kobayashi, K. Otsuki, H. Yamagata, T. Hobara, T. Suzuki, N. Miyata and Y. Watanabe, Neuron, 2011, 69, 359-372.
(5) E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin, J. Comput. Chem., 2004, 25, 1605-1612.
(6) T. Suzuki, M. N. A. Khan, H. Sawada, E. Imai, Y. Itoh, K. Yamatsuta, N. Tokuda, J. Takeuchi, T. Seko, H. Nakagawa and N. Miyata, J. Med. Chem., 2012, 55, 57605773.
(7) P. Mellini, T. Kokkola, T. Suuronen, H. S. Salo, L. Tolvanen, A. Mai, M. LahtelaKakkonen and E. M. Jarho, J. Med. Chem., 2013, 56, 6681-6695.
(8) T. Rumpf, M. Schiedel, B. Karaman, C. Roessler, B. J. North, A. Lehotzky, J. Oláh, K. I. Ladwein, K. Schmidtkunz, M. Gajer, M. Pannek, C. Steegborn, D. Sinclair, S. Gerhardt, J. Ovádi, M. Schutkowski, W. Sippl, O. Einsle, and M. Jung, Nat. Commun., 2015, 6, 6263.
(9) A. D. Napper, J. Hixon, T. McDonagh, K. Keavey, J.-F. Pons, J. Barker, W. T. Yau, P. Amouzegh, A. Flegg, E. Hamelin, R. J. Thomas, M. Kates, S. Jones, M. A. Navia, J. O. Saunders, P. S. DiStefano and R. Curtis, J. Med. Chem., 2005, 48, 8045-8054.

[^0]: ${ }^{a}$ Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.
 ${ }^{b}$ Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan.
 ${ }^{c}$ Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai Shimamoto-Cho, MishimaGun, Osaka 618-8585, Japan.
 ${ }^{d}$ Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan.
 ${ }^{e}$ School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
 ${ }^{f}$ CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

 * Correspondence: suzukit@koto.kpu-m.ac.jp

