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Phonons’ cartesian displacements and their decomposition.

A molecular system made by N interacting particles can be described in the harmonic approximation
assuming the potential energy surface U to be well described by its Taylor expansion around the T = 0K

equilibrium position. In this circumstance the potential energy U reads

U(~X) =
1
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∑
i j

3

∑
st

∂ 2Eel

∂Xis∂X jt
∆Xis∆X jt , (1)

where Eel is the adiabatic electronic energy and ∆Xis = Xis−X◦is are the 3N cartesian displacements with
respect to the equilibrium X◦is configuration, where i spans the atom indexes and s=x,y,z. This system can

still be mapped on a set of 3N decoupled 1D harmonic oscillators by introducing the normal mode of
vibration. We first start defining mass-weighted cartesian coordinates ua =

√
mi∆Xis, where the single

index a=3(i-1)+s runs over the 3N degrees of freedom. Diagonalizing the force-constant matrix of the
energy second-order derivatives H it is possible to define normal mode of vibrations qa and their

frequencies ωa:
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where given H eigenvectors Lab and eigenvalues diag(H)aa
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mi∆Xis , with b = 3(i−1)+ s (3)

h̄ωa =
√

diag(H)aa . (4)

The inverse transformation that defines the cartesian displacement associated to a unit-less normal mode
q̄a amount of displacement is therefore

∆Xis = L̄abq̄a =

√
h̄

miωa
Labq̄a , with b = 3(i−1)+ s . (5)

Cartesian displacements so obtained can now be decomposed in three contributions: translational,
rotational and internal displacements. To do that we followed the procedure outlined by Neto et al.1,

where Eckart-Sayvets conditions are imposed on molecular atomic displacements through a self-consistent
numerical procedure. The first step of this procedure consists in the definition of translational (T α ) and
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rotational (θ α ) displacements. This new set of coordinates however makes the metric tensor different from
the identity matrix and both covariant and controvariant coordinates must be employed. The Einstein

convention on repeated indexes will be used in the rest of the section.

T α =
(

∂T α

∂Xis

)
0
∆Xis =

mi

Mtot
∆Xis = ∆XBs (6)

θ
α =

(
∂θ α

∂Xis

)
0
∆Xis = mi(Iαβ )

−1
0 Mα

st (X
◦
it −X◦Bt)∆Xis , (7)

where (Iαβ )0 is inertia tensor calculated in the centre of mass cartesian reference system and Mα , with
α = 1−3, are infinitesimal rotation matrices around the cartesian axis α:

M1 =

∣∣∣∣∣∣
0 0 0
0 0 −1
0 1 0

∣∣∣∣∣∣ , M2 =

∣∣∣∣∣∣
0 0 1
0 0 0
−1 0 0

∣∣∣∣∣∣ , M3 =

∣∣∣∣∣∣
0 −1 0
1 0 0
0 0 0

∣∣∣∣∣∣ . (8)

In this framework, atomic positions with respect to the centre of mass xis = Xis−XBs can be calculated
from the initial ones x◦is = X◦is−X◦Bs by summing the pure internal contributions ∆X int

is and rotating the
resulting coordinates:

xis = Λst(x◦it +∆X int
it ) (9)

Λ = E+ sin(ψ)Mξ +(1− cos(ψ))Mξ Mξ , (10)

where Λ express a general rotation of an angle ψ around a vector ξ .
The amount of rotation in terms of Λ and translations can be determined by imposing the Eckart-Sayvets

conditions to the internal displacements, that read

(
∂qα

∂Xis

)
∆X int

is = 0 , α = traslational or rotational coordinate (11)

This set of equations impose the independence of internal and external degrees of freedom, requiring that
the projection of one set of coordinates onto the other is null. Indeed the term in parenthesis is nothing but

the Jacobian matrix that transforms the complete set of 3N coordinates into the 6 external coordinates.
Eqs.7 can then be used to compute the translational and rotational contribution of the full ∆Xis

displacements, then the internal ones can be computed by difference through Eq. 9:

∆X int
is = Λ

−1
st xit− x◦is , (12)

where Λ can be calculated employing Eq. 10 and the relations

ψ =
√

θ αθ α , Mξ =
θ α

ψ
Mα (13)

This process should be cycled using the calculated ∆X int
is as new input displacements in Eq. 11 until the

equation get verified. This procedure has been used to compute the amplitude of local translation, local
rotation and internal vibrations of a single [(tpaPh)Fe]−1 molecule inside its crystal, as showed in the main

text. To do so, we inserted in Eq. 11 only the 3N cartesian displacements corresponding to this specific
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molecule coming from normal modes, which instead describe the vibrational motion of all the
primitive-cell atoms. These quantities differ from the usually defined acoustic, librational and optical

modes of a lattice as the latter are defined as translations, rotation and internal vibrations of all the atoms
inside the unit-cell, with no particular distinction among inter/intra molecular motions.

To summarize, one starts with the normal modes provided by the DFT calculation. Next, by applying the
projector technique to the normal mode cartesian displacements ∆X tot

is of Eq. 5, one ends up with three
additional kind of cartesian displacements: ∆X int

is , ∆X rot
is , and ∆X trasl

is . By separately plugging these
cartesian displacements in Eq. 4 one can define the normal modes projection onto the translational,

rotational and intra-molecular space
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For completeness we here also report in Fig. 1 the contributions of acoustic, librational and optic motions
as function of frequency. As expected, acoustic motions are absent at any frequency as we are looking only

at Γ-point vibrations.
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Fig. 1 Amplitude of acoustic, librational and optical motions for each normal mode and displayed as function of modes frequency.

The internal cartesian displacements have been further analysed in terms of internal coordinates, namely
bending and stretching motions, involving the first coordination shell atoms. Figs.2 and 3 report the

contribution of N-Fe stretching and NFeN bending motions to normal modes as function of frequency,
respectively.

1–8 | 3



−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0 1000 2000 3000 4000

D
is
p
la
ce
m
en
t
A
m
p
li
tu
d
e
(Å
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Fig. 2 Amplitude of stretching motions involving the central iron atoms and the first coordination shell N-ligands for each normal mode and
displayed as function of modes frequency.
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Fig. 3 Amplitude of bending motions involving the central iron atoms and the first coordination shell N-ligands for each normal mode and
displayed as function of modes frequency. Two different plots have been used to distinguish those bending involving (left panel) or not (right

panel) the axial N-ligand (N4).
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Spin-Phonon coupling coefficients calculation.

Spin-phonon coupling coefficients are defined as the first order derivatives of the spin Hamiltonian
parameters with respect to the normal mode of vibrations ∂Di j/∂qα

2. The strategy we employed to
compute them starts with the evaluation of the numerical D tensor derivatives with respect to the cartesian
coordinates of [(tpaPh)Fe]−1. To do that we scanned one coordinate Xis +δXis at the time with steps δXis

equal to ±0.0025, ±0.002, ±0.0015, ±0.001 and ±0.00075. The resulting points have then been
interpolated with a second order polynomial expression in order to estimate the linear terms, that

correspond to the ∂Di j/∂Xks coefficients. Here we would like to report a few examples to show the details
of the method. Fig. 4 reports the scanning of the six independent D elements along the x component of the

iron atom.
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Fig. 4 Red circles correspond to the D anisotropy tensor independent elements D11, D12, D13, D22, D23 and D33 calculated along the x
direction of the iron atom. The straight blue line corresponds to the second order polynomial fit function.

It is interesting to note how, in the case of iron coordinates derivatives, the second order component of the
polynomial expression is fundamental to obtain a good fitting. This is not true however for all the other
elements and for atoms outside the first coordination shell a linear expression is enough to obtain a good

regression. The breaking down of a first order perturbation theory for large displacements of the first
coordination shell clearly comes from the fact that spin-phonon coupling interaction is magnified in

proximity of the iron d-shell electrons. For the same reason, increasing the distance between the displaced
atom and iron, the value of spin-phonon coupling decreases and its evaluation become more affected by

numerical noise. We decided to exclude D derivatives with an error on the linear term higher than 5%. As
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an extreme example of excluded contribution, Fig. 5 reports the scanning of D elements along the y
coordinate of a pyrrolide carbon not directly bounded to the nitro atom. Finally, the cartesian derivatives of
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Fig. 5 Red circles correspond to D13 anisotropy tensor element calculated along the x direction of a carbon atom belonging to the pyrrolide
group. The straight blue line corresponds to the second order polynomial fit function. Due to the evident large numerical noise we excluded

this contribution from the analysis and considered it equal to zero.

the anisotropy tensor D have then been projected on the basis of normal modes by means of their cartesian
coordinates definition in Eq. 5.
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∑
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∂Di j

∂Xis
with b = 3(i−1)+ s (17)

This procedure for the computation of ∂Di j/∂qa has a double advantage. The first one regards the number
of CASSCF calculations needed. Assuming the electronic structure of a single [(tpaPh)Fe]− units to be

independent from the other molecules in the crystal, the calculation of the D tensor derivatives can be done
directly on a single molecule without periodic boundary conditions2. The number of independent

displacements for a given molecule corresponds to its 3N degrees of freedom but the number of normal
modes instead grow like the number of the primitive cell degrees of freedom, which is generally much

larger than 3N. Moreover, Eq.17 can be used also to compute all the separate contributions to spin-phonon
coupling coefficients by simply replacing L̄ba with its own projection on specific displacements, calculated
as explained in the previous section. This last step can be taken as many times as one wants as there are no
additional computational costs beyond the ∂Di j/∂Xis coefficients and phonons calculation already done.

Fig. 6 reports the comparison between the spin-phonon coupling coefficients computed with the just
outlined procedure and those obtained by the direct differentiation with respect to the unit-cell normal

modes2. The two calculations show only minor differences, validating the consistency of both
calculations.

One final remark regarding the possibility to project the spin-phonon coupling coefficients in the basis set
of internal coordinates. To accomplish that the weighting coefficients of Eq. 17 must be chosen as
(∂Xis/∂qn), where qns represent controvariant internal coordinates such as stretchings bendings and

torsions. The qns are defined as function of cartesian coordinates and therefore the coefficients (∂Xis/∂qn)
can be otbained by inversion of the Wilson’s matrix Gn,is = (∂qn/∂Xis). Although these coefficients are

mathematically well defined this procedure hides a potential inconsistency. Indeed, due to the
non-orthogonality of internal coordinates, this coefficients depends on the definition of the basis itself. For
instance the computed derivative of a bending angle coordinate with respect to cartesian coordinates will
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Fig. 6 Comparison between the spin-phonon coupling coefficients calculated by differentiation of cartesian coordinates (left panel) and by
differentiation with respect to the normal modes (right panel).

be different depending on the set of 3N-6 internal parameters used to define the intra-molecular basis set.
A possible solution to this problem regards the factorization of the metric tensor of the internal coordinates
in order to define a new set of internal orthogonal parameter3. However, doing so the chemically intuitive
picture in terms of stretchings and bending would be lost as one would be scanning the D tensor along a

non-trivial combination of them. Consequently, we decided to keep working we the usual internal
molecular coordinates and proceed as follows. Since we are interested in the Iron first coordination shell
we selected three atoms at the time and compute the (∂Xis/∂qn) coefficients for the two stretchings and
one bending. Doing so we obtain one ∂Di j/∂qn coefficients for each bending and three coefficients for
each stretching, which have been avaraged among them. Using the smallest possible number of internal

vectors at the time is then possible to reduce the uncerteinity on the computed coefficients due to the
non-orthogonality issue. It must be stressed that the order of magnitude of the ∂Di j/∂qn coefficients is
conserved within different basis sets. However, the correctness of this approach should be found in the

coherence of the data presented in the main text.
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