## SUPPORTING INFORMATION

## Nb<sub>2</sub>©Au<sub>6</sub>: A Molecular Wheel with a Short Nb=Nb Triple Bond Coordinated by an Au<sub>6</sub> Ring and Reinforced by $\sigma$ Aromaticity

Tian Jian, Ling Fung Cheung, Joseph Czekner, Teng-Teng Chen, Gary V. Lopez, Wei-Li Li, and Lai-Sheng Wang\* Department of Chemistry, Brown University, Providence, Rhode Island 02912 (USA)



**Figure S1**. Photoelectron spectra of Nb<sub>2</sub>Au<sub>6</sub><sup>-</sup> at a) 616.86 nm (2.0099 eV), b) 610.55 nm (2.0307 eV), c) 603.38 nm (2.0548 eV), and d) 589.58 nm (2.1029 eV) obtained from the VMI PES apparatus.



**Figure S2**. Relative energies of the low-lying isomers of  $Nb_2Au_6^-$  within 1.5 eV at the PW91, PBE0 (in square brackets), CCSD (in braces) and CCSD(T) (in angle brackets) levels.



Figure S3. The four lowest-lying isomers of Nb<sub>2</sub>Au<sub>6</sub> at the levels of PW91 and PBE0 (in brackets).



Figure S4. Valence canonical molecular orbital contours for the  $D_{6h}$  Nb<sub>2</sub>Au<sub>6</sub><sup>-</sup> structure at the PBE0 level.



**Figure S5.** Comparison between the 193 nm spectrum of  $Nb_2Au_6^-$  with the simulated spectra of isomers I and II at the PW91/Def2-TZVPPD level.



**Figure S6.** Comparison between the 193 nm spectrum of  $Nb_2Au_6^-$  with the simulated spectra of isomers I and II at the BP86/Def2-TZVPPD level.



**Figure S7.** Comparison between the 193 nm spectrum of Nb<sub>2</sub>Au<sub>6</sub><sup>-</sup> with the simulated spectra of isomer I at PBE0/Def2-TZVPPD and TPSSh/Def2-TZVPPD levels.

**Table S1.** The energy difference between isomers I and II of  $Nb_2Au_6^-$  calculated at various levels of theory.

| Method               |                  | Most Stable Isomer | $\Delta E(II-I) (eV)$ |  |
|----------------------|------------------|--------------------|-----------------------|--|
|                      | PW91             | II                 | -0.039                |  |
| GGA                  | PBE              | II                 | -0.031                |  |
|                      | BP86             | II                 | -0.057                |  |
| Hybrid-GGA           | Hybrid-GGA B3PB6 |                    | -0.015                |  |
| Meta-GGA             | TPSS             | II                 | -0.004                |  |
| Hybrid-GGA           | PBE0             | Ι                  | 0.035 <sup>a</sup>    |  |
| Hybrid-Meta-GGA      | TPSSh            | Ι                  | 0.031 <sup>a</sup>    |  |
| Long-range corrected | LC-ωPBE          | Ι                  | 0.133 <sup>a</sup>    |  |
| Post-HF              | CCSD             | Ι                  | 0.029 <sup>a</sup>    |  |
|                      | CCSD(T)          | Ι                  | 0.066 <sup>a</sup>    |  |

<sup>a</sup> Isomer II does not meet the convergence criteria of geometric optimization at these levels, the energy difference is obtained by single-point energy calculations using PW91/Def2-TZVPPD structures.

**Table S2.** The first VDEs of isomers I, II, III, IV and V of  $Nb_2Au_6^-$  computed at the PW91 and PBE0 levels. All energies are in eV. Experimental first ADE and VDE: 1.9969(4) eV

|        | PW91                |                     | PBE0                |                     |
|--------|---------------------|---------------------|---------------------|---------------------|
| Isomer | 1 <sup>st</sup> VDE | 1 <sup>st</sup> ADE | 1 <sup>st</sup> VDE | 1 <sup>st</sup> ADE |
| Ι      | 2.02                | 2.01                | 1.79                | 1.77                |
| II     | 2.33                | 2.05                | N.A.                | N.A.                |
| III    | 2.99                | 2.00                | N.A.                | N.A.                |
| IV     | 3.00                | 2.57                | N.A.                | N.A.                |
| V      | 2.81                | 2.54                | 2.53                | 2.28                |

|                        |                 | PW91                          | PBE0                          |  |
|------------------------|-----------------|-------------------------------|-------------------------------|--|
| Mode                   | Symmetry        | Frequency (cm <sup>-1</sup> ) | Frequency (cm <sup>-1</sup> ) |  |
| $\nu_1$                | E <sub>2u</sub> | 24                            | 26                            |  |
| $\nu_2$                | $B_{2g}$        | 32                            | 35                            |  |
| v <sub>3</sub>         | $E_{1g}$        | 48                            | 68                            |  |
| $\nu_4$                | E <sub>2g</sub> | 71                            | 72                            |  |
| $\nu_5$                | $B_{1u}$        | 71                            | 73                            |  |
| $\nu_6$                | $A_{2u}$        | 76                            | 77                            |  |
| $\nu_7$                | $E_{1u}$        | 81                            | 83                            |  |
| v <sub>8</sub>         | A <sub>1g</sub> | 121                           | 121                           |  |
| <b>v</b> 9             | $E_{2g}$        | 131                           | 130                           |  |
| $v_{10}$               | $B_{2u}$        | 143                           | 142                           |  |
| $\nu_{11}$             | $E_{1u}$        | 163                           | 166                           |  |
| <b>v</b> <sub>12</sub> | A <sub>1g</sub> | 423                           | 460                           |  |

**Table S3.** Calculated vibrational frequencies for the  $D_{6h}$  global minimum of Nb<sub>2</sub>Au<sub>6</sub> at PW91 and PBE0 levels. The totally symmetric vibrational modes are in boldface.

**Table S4.** Calculated bond orders and charges of  $D_{\infty h}$  Nb<sub>2</sub>,  $D_{6h}$  Au<sub>6</sub>, and  $D_{6h}$  Nb<sub>2</sub>Au<sub>6</sub> at the PBE0/Def2-TZVP level.

|                                 | Mayer Bond order |       | NPA Charge |        | Mulliken Charge |        |       |
|---------------------------------|------------------|-------|------------|--------|-----------------|--------|-------|
|                                 | Nb-Nb            | Nb-Au | Au-Au      | Nb     | Au              | Nb     | Au    |
| Nb <sub>2</sub>                 | 5.07             | NA    | NA         | 0      | NA              | 0      | NA    |
| Au <sub>6</sub>                 | NA               | NA    | 0.55       | NA     | 0               | NA     | 0     |
| Nb <sub>2</sub> Au <sub>6</sub> | 3.61             | 0.50  | 0.22       | -0.195 | 0.065           | -0.457 | 0.152 |