Supporting Information

Pd-Catalyzed Asymmetric Allylic Alkylations via C-H Activation of *N*-Allyl Imines with Glycinates

Barry M. Trost*, Xiaoxun Li

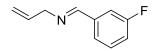
Department of Chemistry, Stanford University, Stanford, California, 94305-5080, United States

Contents:

Exp	perimentals:	page
I.	General	S3
II.	Preparation of Starting Materials	S4
III.	Reaction Optimization	S6
IV.	General Method for Asymmetric Allylic Alkylations	. S10
V.	General Method for Three-component Asymmetric Allylic Alkylation	S35
VI.	General Method for Synthesis of Vicinal Diamines	S43
VII.	Structural Derivatization of AAA products	S47
VIII	References	S55
IX.	NMR Spectra	S56

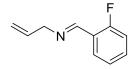
I. General: All reactions were performed in flame- or oven-dried glassware with magnetic stirring under nitrogen or argon atmosphere using freshly distilled solvents. THF was distilled over sodium and CH₂Cl₂ was obtained from a solvent purification system (activated alumina). All commercial reagents were used without purification unless otherwise noted. Air and moisture sensitive liquids and solutions were transferred via stainless steel syringe or cannula and introduced into the reaction vessel through rubber septa. Thin-layer chromatography was performed on EMD silica gel 60 F₂₅₄ plates (0.25 mm); visualization of the developed chromatogram was performed by fluorescence quenching and staining with aqueous ceric ammonium molybdate, p-anisaldehyde, or potassium permanganate. Organic solutions were concentrated by rotary evaporation below 40 °C at ca. 25 mm Hg. Chromatographic purification of products was accomplished using forced-flow chromatography on Silicycle silica gel (particle size 0.040-0.063 µm). All isolated and characterized compounds were >95% pure as judged by ¹H NMR spectroscopic analysis. Melting points were determined on a Thomas Hoover Capillary Melting Point Apparatus and are uncorrected. ¹H and ¹³C NMR spectroscopy were performed on a Varian Mercury NMR operating at 400 and 100 MHz, respectively. Chemical shifts are reported in ppm relative to the residual protiated solvent (CDCI₃: δ_{H} = 7.26 ppm, δ_{C} = 77.26 ppm); all ¹³C NMR spectra are proton decoupled. Data for ¹H are reported in terms of chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, m = multiplet), coupling constant, and integration; data for 13 C are reported in terms of chemical shift. Infrared spectroscopic data was recorded as thin films on sodium chloride plates on a Thermo Scientific Nicolet IR100 FT-IR spectrometer. High-resolution mass spectrometry (HRMS) was measured on a Bruker micrOTOF-Q II electronspray ionization (ESI) mass spectrometer by the Vincent Coates Foundation Mass Spectrometry Laboratory at Stanford University. Mass peaks are reported in m/zunits.

II. Preparation of starting materials:


Imines: Imines **1a**, **1b**, **1c**, **1d**, **1e**, **1f**, **1g**, **1h**, **1k**, **1l**, **1m**, **1p** and **1q** were prepared according to the reported literature.¹

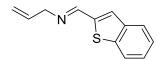
General method for synthesis of imines:

allyl amine

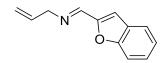

$$R < O \xrightarrow{MgSO_4, CH_2Cl_2} R < N$$

To a stirred solution of aldehyde (10.0 mmol, 1.0 equiv.) in CH_2Cl_2 (12 mL) was added MgSO₄ (1.0 g) followed by allyl amine (0.82 mL, 628 mg, 11.0 mmol, 1.1 equiv.). After 24 h, the reaction was filtered through a sintered glass funnel. Solvent was removed *in vacuo*, and the residue was kept under high vacuum for 3 h. The crude material was sufficiently clean (>95% purity by NMR) and was directly used for oxidative C-H activation.

(E)-N-allyl-1-(3-fluorophenyl)methanimine (1i)


colorless oil. IR: (neat) 3076, 2823, 1648, 1586 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 8.27 (s, 1H), 7.47-7.52 (m, 2H), 7.35-7.40 (m, 1H), 7.11 (tdd, *J* = 8.5, 3.0, 1.0 Hz, 1H), 6.02-6.10 (m, 1H), 5.24 (dd, *J* = 17.0, 1.5 Hz, 1H), 5.17 (dd, *J* = 10.0, 1.5 Hz, 1H), 4.26 (dd, *J* = 5.5, 1.5 Hz, 2H). ¹³C NMR (125 MHz, d-CDCl₃) δ 163.2 (d, *J* = 245 Hz), 160.8, 138.7 (d, *J* = 7.1 Hz), 135.8, 130.3 (d, *J* = 7.6 Hz), 124.5, 117.9 (d, *J* = 25.1 Hz), 116.5, 114.4 (d, *J* = 22 Hz), 63.6. HRMS (ESI+) calcd. for C10H10FN [M+H] 164.0797, found 164.0795.

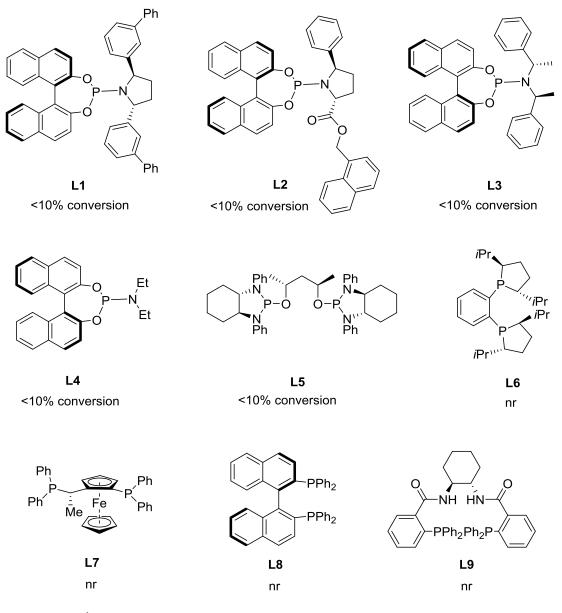
(E)-N-allyl-1-(2-fluorophenyl)methanimine (1j)


colorless oil. IR: (neat) 3078, 2824, 1650, 1586, 1450 cm⁻¹; ¹H NMR (400 MHz, d-CDCl₃) δ 8.60 (s, 1H), 8.00 (td, *J* = 7.6, 2.0 Hz, 1H), 7.36-7.42 (m, 1H), 7.17 (t, *J* =

7.6 Hz, 1H), 7.07 (dd, J = 8.4, 2.0 Hz, 1H), 6.02-6.11 (m, 1H), 5.23 (dd, J = 17.2, 2.0 Hz, 1H), 5.16 (dd, J = 10.4, 1.6 Hz, 1H), 4.28 (dd, J = 6.4, 1.6 Hz, 2H). ¹³C NMR (100 MHz, d-CDCl₃) δ 162.5 (d, J = 250.9 Hz), 155.5 (d, J = 4.8 Hz), 135.9, 132.4 (d, J = 8.6 Hz), 127.9 (d, J = 2.9 Hz), 124.5 (d, J = 1.5 Hz), 124.0, 116.3 (d, J = 44.2 Hz), 115.9, 64.1. HRMS (ESI+) calcd. for C10H10FN [M+H] 164.0797, found 164.0799.

(E)-N-allyl-1-(benzo[b]thiophen-2-yl)methanimine (1n)

White solid, mp = 66-67 °C. IR: (neat) 2865, 2816, 1630, 1432 cm⁻¹; ¹H NMR (300 MHz, d-CDCl₃) δ 8.51 (s, 1H), 7.80-7.88 (m, 2H), 7.56 (s, 1H), 7.36-7.44 (m, 2H), 6.04-6.17 (m, 1H), 5.25-5.32 (m, 1H), 5.20-5.24 (m, 1H), 4.32 (dd, *J* = 5.7, 1.5 Hz, 2H). ¹³C NMR (75 MHz, d-CDCl₃) δ 156.1, 142.9, 140.8, 139.5, 135.6, 128.0, 126.3, 124.8, 124.7, 123.0, 116.7, 63.3.


(E)-N-allyl-1-(benzofuran-2-yl)methanimine (10)

colorless oil. IR: (neat) 3084, 2884, 2821, 1648, 1450 cm⁻¹; ¹H NMR (400 MHz, d-CDCl₃) δ 8.26 (s, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.27 (dd, *J* = 8.0, 6.4 Hz, 1H), 7.07 (s, 1H), 6.06-6.16 (m, 1H), 5.27 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.20 (dd, *J* = 10.0, 1.6 Hz, 1H), 4.32 (dd, *J* = 6.0, 1.2 Hz, 2H). ¹³C NMR (100 MHz, d-CDCl₃) δ 155.8, 152.8, 151.2, 135.4, 127.9, 126.7, 123.6, 122.2, 117.1, 112.3, 111.3, 64.1. HRMS (ESI+) calcd. for C12H11NO [M+Na] 208.0738, found 208.0733.

Glycinate nucleophiles: Glycinate benzophenone imines were prepared according to reported literatures.²

III. Reaction optimization:

No desired product was observed with phosphoramidite ligands or phosphine ligands in our initial studies as shown in **Figure 1**.

nr = no reaction

Figure 1. Initial ligands screening

We were also interested in improving enantioselectivity by varying glycinate nucleophiles. With DIOP as the standard ligand, a number of glycinates were screened (**Figure 2**). In fact, the two halves of the glycinate structure is of paramount importance. Changing from *N*-dibenzylidene glycinate (**2a**) to *N*-benzylidene glycinate (**2e**) resulted in the decrease of enantioselectivity indicating the importance of bulky aromatic imine substitution for maintaining high level of enantio-induction. Moreover,

fine tuning of the ester moiety of glycinates found that the presence of sterically less demanding substituents were beneficial for enantioselectivity. The highest enantioselectivity (85:15 er) was obtained upon using methyl glycinate (**2b**) as the nucleophile. Surprisingly, replacing methyl ester with cyano group (**2b** vs **2g**) resulted in lower enantioselectivity and poor diastereoselectivity. Further study showed that sterically more demanding substituents on imines, such as 3,5-dimethylphenyl or 2-naphthyl groups, did not have significant impact on the enantioselectivity (**2h** and **2i** vs **2b**).

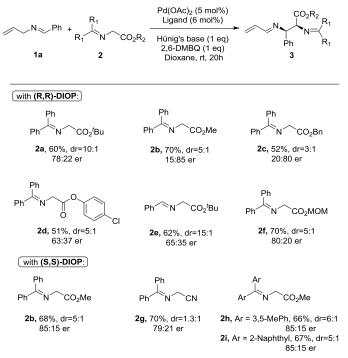


Figure 2. Screening of the glycinates

Efforts to improve the enantioselectivity then shifted to examine the solvent effect (**Table 1**) with dioxane being the standard (**Table 1**, entry 1). Shifting to THF and DME, similar ethereal solvents, showed some differences (entries 2 and 3). Notably, DME improved the diastereoselectivity while maintaining yield and enantioselectivity. When the medium was changed to DCM, however, a complex mixture was observed (entry 4). Aromatic solvents turned out to be generally beneficial for this transformation. A slightly higher enantioselectivity was obtained with toluene as the solvent (entry 6, 87:13 er). Importantly, full conversion was maintained. Although xylene and mesitylene were better solvents in terms of enantioselectivity, reaction conversions were typically poor even after a prolonged reaction time (entry 8 and 9). In an attempt to increase the reaction conversion, a combination of toluene and mesitylene (1:1 mixture) was also examined (entry 10). Although similar enantiomeric excess of the product was obtained, no beneficial effect on either the reaction conversion or the diastereoselectivity was observed.

Table 1. Solvent screening^a

o No	Ph ∠Ph + │∖		₂ (5 mol%) P (6 mol%)		CO ₂ Me
1a	Ph N 2b	2,6-DM	Hünig's base (1 eq) 2,6-DMBQ (1 eq) Dioxane, rt, 20h		Ph Ph 3b
Entry	Solvent	Conversion ^c	Yield ^b	dr ^c	er^{d}
1	Dioxane	100%	70%	5:1	85:15
2	THF	100%	65%	4:1	85:15
3	DME	100%	68%	6:1	84:16
4	DCM	100%	messy	-	-
5	Benzene	100%	62%	4:1	85:15
6	Toluene	100%	67%	5:1	87:13
7	2-ClPh	100%	61%	4:1	86:14
8 ^e	Xylene	52%	35%	5:1	88:12
9 ^e	Mes	47%	38%	5:1	90:10
10 ^e	Tol/Mes	51%	33%	4:1	86:14
	(1:1)				

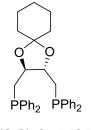
^aReaction conditions: **1a** (0.1 mmol), **2b** (0.1 mmol), Pd(OAc)2 (5 mol%), Ligand (6 mol%), Hunig's base (0.1 mmol), 2,6-DMBQ (0.1 mmol), dioxane, rt, 15-20h. ^bIsolated yield. ^cDetermined by ¹H-NMR. ^dDetermined by chiral HPLC. ^e40h.

With toluene as the most effective solvent for this reaction, other reaction parameters, such as temperature and concentration, were further examined (**Table 2**). The reaction was sensitive to temperature. Lowering the temperature from room temperature to 4° C, higher diastereoselectivity and enantioselectivity was observed (entry 2), at the expense of conversion. Increasing the concentration to 0.5 M provided 3b in 49% conversion (entry 3). At 0.8 M and 1.0 M, the reaction also proceeded to 50% conversion, although the isolated yield decreased (entry 4 and 5). Notably in those cases, the enantiomeric excess of the product was maintained (90:10 er). Although this seemed a promising line of inquiry, prolonging the reaction time while maintaining this relatively high reaction concentration of 0.8 M did not significantly improve the isolated yield of **3b** but the diastereoselectivity decreased (entry 6). The asymmetric allylic alkylation proceeded with almost complete conversion after 70h, and afforded **3b** in 58% yield and 89:11 er (entry 7).

o Ni	Ph Ph J	Ph Ph Ph CO_2Me 2b		.c) ₂ (5 mol%) IOP (6 mol%)	-	CO₂Me N• ↓ Ph
1a	Ph N			Hünig's base (1 eq) 2,6-DMBQ (1 eq) toluene, 20h		Ph Ph 3b
Entry	Tempt	Conver		Yield ^b	dr ^c	er ^d
	&concen					
1	rt, 0.3M	100	o %	67%	5:1	87:13

Table 2. Temperature and concentration optimization^a

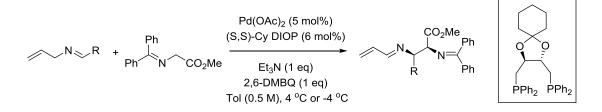
2	4°C, 0.3M	32%	25%	9:1	90:10
3	4°C, 0.5M	49%	40%	8:1	90:10
4	4°C, 0.8M	50%	36%	8:1	89:11
5	4°C, 1.0M	52%	32%	8:1	89:11
6 ^e	4°C, 0.8M	88%	54%	5:1	89:11
7 ^e	4°C, 0.5M	95%	58%	5:1	89:11


^aReaction conditions: **1a** (0.1 mmol), **2b** (0.1 mmol), Pd(OAc)2 (5 mol%), Ligand (6 mol%), Hunig's base (0.1 mmol), 2,6-DMBQ (0.1 mmol), dioxane, rt, 15-20h. ^bIsolated yield. ^cDetermined by ¹H-NMR. ^dDetermined by chiral HPLC. ^e70h.

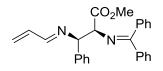
We examined this transformation with a variety of secondary and tertiary amines (**Table 3**). Triethylamine (entry 2) were remarkably more effective than N,N-diisopropylethyl amine (entry 1) giving the desired product in 65% yield and 90:10 er with full conversion. When N-methylpyrolidine (entry 3), an amine that, with two conformationally-restricted substituents, has less steric bulk than either triethylamine or *N*,*N*-diisopropylethylamine was employed, **3b** was obtained in 85% conversion and 87:13 er. A collection of secondary amines were also examined. With diisopropylamine, the reaction progressed to 80% and produced **3b** in 51% yield (NMR, entry 4). No conversion was observed with morpholine as the base (entry 5). When pyridine was employed, low conversion was obtained (entry 6). No desired product was observed when either DBU (entry 7) or inorganic base, K₂CO₃ (entry 8), were tested. These results suggest the steric demands, rather than the electronics or basicity of the amine, are crucial to both catalyst turnover and enantioinduction. **Table 3**. Bases screening^a

N	Ph Ph + .	Pd(OAc) ₂ (5 (S,S) DIOP (<	CO ₂ Me	
1a	Ph N CO ₂ Me		eq) (1 eq) C, 32h	∽ ↑ N—(Ph Pr 3b		
Entry	Base	Conver	Yield ^b	dr ^c	er ^d	
		sion ^c				
1	<i>i</i> Pr ₂ NEt	70%	45%	5:1	90:10	
2	Et ₃ N	100%	65%	6:1	90:10	
3	<i>N</i> -Me	85%	55%	3:1	87:13	
	Pyrolidine					
4	iPr2NH	80%	51%	5:1	90:10	
5	Morpholine	trace	-	-	-	
6	Pyridine	30%	19%	5:1	89:11	
7	DBU	100%	trace	-	-	
8	K ₂ CO ₃	61%	trace	-	-	

^aReaction conditions: **1a** (0.1 mmol), **2b** (0.1 mmol), Pd(OAc)2 (5 mol%), Ligand (6 mol%), Hunig's base (0.1 mmol), 2,6-DMBQ (0.1 mmol), dioxane, rt, 15-20h. ^bIsolated yield. ^cDetermined by ¹H-NMR. ^dDetermined by chiral HPLC.

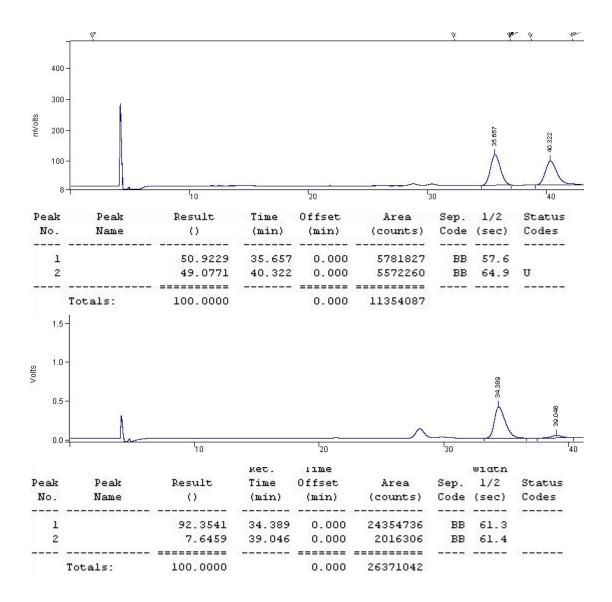

DIOP ligands: DIOP ligands were prepared according to established procedures.³

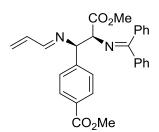
(S,S)-Cy DIOP

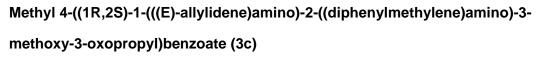

(2S,3S)-2,3-bis((diphenylphosphaneyl)methyl)-1,4-dioxaspiro[4.5]decane^{3c} White solid, mp = 86-88 °C. α_D^{25} = +25.2 (*c* = 2.0, CHCl₃). ¹H NMR (500 MHz, d-CDCl₃) δ 7.43-7.48 (m, 8H), 7.33-7.36 (m, 12H), 3.98-4.01 (m, 2H), 2.37-2.46 (m, 4H), 1.57-1.60 (m, 4H), 1.44-1.54 (m, 4H), 1.33 (q, *J* = 6.0 Hz, 2H). ¹³C NMR (125 MHz, d-CDCl₃) δ 138.8 (dd, *J* = 15.6, 12.5 Hz), 133.0 (dd, *J* = 19.1, 8.3 Hz),128.5-128.8 (m), 109.6, 79.5 (dd, *J* = 14.8, 8.0 Hz), 37.0, 32.6, 32.5, 25.3, 24.0. ³¹P NMR (161 MHz, d-CDCl₃) δ -21.6 ppm.

IV. General method for asymmetric allylic alkylations:

General procedure for the Pd-catalyzed asymmetric allylic alkylation involving π -allyl intermediate: An oven dried Pyrex microwave vial was charged with Pd(OAc)₂ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and was sealed with a rubber septa. The vial was evacuated and filled with nitrogen three times in an interval of 10 min. In a separate sealed nitrogen flushed vial, glycinate (0.5 mmol) and *N*-allyl imine (0.5 mmol) were taken in freshly distilled toluene (1 ml). The solution was cannulated to the microwave vial with

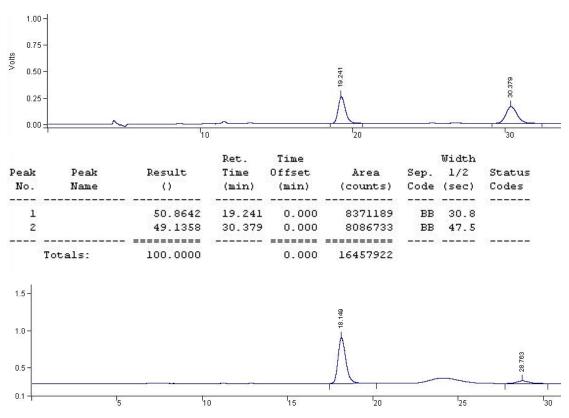

palladium catalyst. Et₃N (50 mg, 0.5 mmol) was added to the resulting turbid solution and was allowed to stir at 4 °C or -4 °C for 35-60h. Upon completion (monitored by crude NMR), solvent was removed in vacuo and the residue was purified by flash chromatography over silica gel (pre-neutralized with 3% Et₃N in Hexanes), eluting with EtOAc / hexanes/ Et₃N, to give the product.

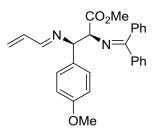



Methyl (2S,3R)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3-phenyl propanoate (3b)

The reaction was performed with *N*-allyl imine (72.5 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 36 h at 4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (129 mg, 65%) as a colorless oil. α_D^{25} = -33.7 (*c* = 1.0, CHCl₃). IR: (neat) 3017, 2936, 1708, 1622, 1599, 1348 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 8.06 (d, *J* = 9.0 Hz, 1H), 7.61 (dd, *J* = 8.5, 1.5 Hz, 2H), 7.45-7.47 (m, 3H), 7.39-7.42 (m, 1H), 7.32-7.35 (m, 4H), 7.27-7.29 (m, 2H), 7.23-7.25 (m, 1H), 7.08-7.10 (m, 2H), 6.51-6.58 (m, 1H), 5.73 (d, *J* = 10.5 Hz, 1H), 5.67 (d, *J* = 17.5 Hz, 1H), 4.91 (d, *J* = 8.0 Hz, 1H), 4.58 (d, *J* = 8.0 Hz, 1H), 3.54 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.3, 170.9, 164.7, 140.2, 139.8, 137.1, 136.5, 130.6, 129.1, 128.9, 128.6, 128.5, 128.3, 128.3, 128.2, 127.9, 127.8, 78.0, 72.0, 52.2. HRMS (ESI+) calcd. for C26H24N2O2 [M+Na] 419.1736, found 419.1723.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 100/1/0.1, 254 nm absorbance). Major enantiomer (tR = 34.4 min), minor enantiomer (tR = 39.0 min): er = 92:8.

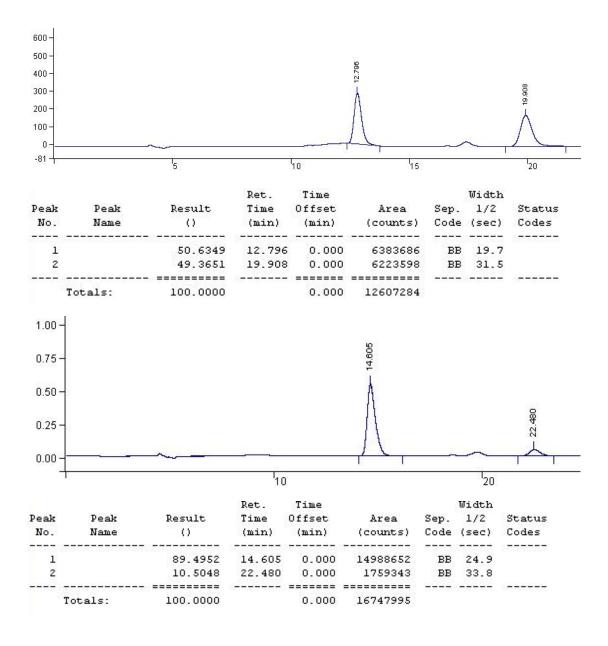


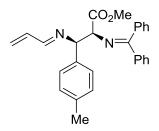

The reaction was performed with *N*-allyl imine (101.6 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), $Pd(OAc)_2$ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et_3N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 40 h at -4°C. After removing the solvent, purification by flash

chromatography (EtOAC / hexanes /Et₃N = 10/90/1) gave product (170 mg, 75%) as a colorless oil. α_D^{25} = -85.7 (*c* = 1.0, CHCl₃). IR: (neat) 3058, 2951, 1723, 1611, 1435 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 8.02 (d, *J* = 9.0 Hz, 1H), 7.93 (d, *J* = 8.5 Hz, 2H), 7.57 (d, *J* = 8.5 Hz, 2H), 7.42-7.44 (m, 3H), 7.36-7.40 (m, 3H), 7.29-7.32 (m, 2H), 7.03-7.05 (m, 2H), 6.48-6.56 (m, 1H), 5.73 (d, *J* = 10.5 Hz, 1H), 5.66 (d, *J* = 17.5 Hz, 1H), 4.93 (d, *J* = 7.5 Hz, 1H), 4.53 (d, *J* = 7.5 Hz, 1H), 3.87 (s, 3H), 3.51 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 170.6, 167.1, 165.2, 145.4, 139.6, 137.0, 136.3, 130.7, 129.8, 129.5, 129.1, 128.9, 128.6, 128.3, 128.2, 128.1, 128.1, 77.5, 71.2, 52.3. HRMS (ESI+) calcd. for C28H26N2O4 [M+Na] 477.1790, found 477.1771.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 20/1/0.1, 254 nm absorbance). Major enantiomer (tR = 18.1 min), minor enantiomer (tR = 28.7 min): er = 92:8.

			Ret.	Time			Width	
Peak	Peak	Result	Time	Offset	Area	Sep.	1/2	Status
No.	Name	0	(min)	(min)	(counts)	Code	(sec)	Codes
								3000000
1		92.0109	18.149	0.000	19624650	BB	29.3	
2		7.9891	28.763	0.000	1703957	BB	45.3	
	Totals:	100.0000		0.000	21328607			

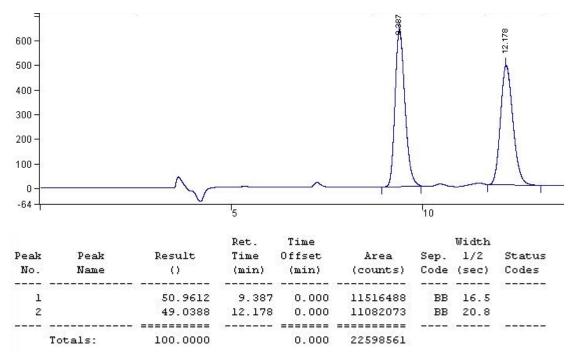


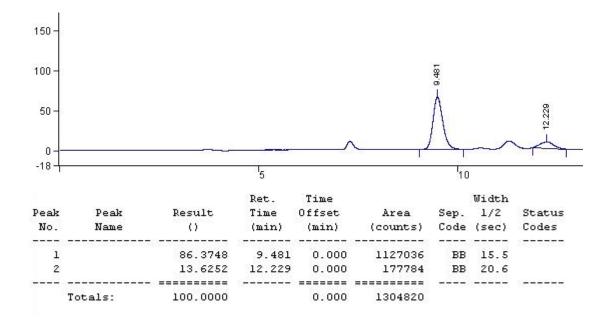


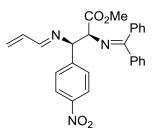
(4-methoxyphenyl)propanoate (3d)

The reaction was performed with *N*-allyl imine (87.6 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 40 h at 4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (149 mg, 70%) as a colorless oil. α_D^{25} = -51.6 (*c* = 2.0, CHCl₃). IR: (neat) 3059, 2950, 1741, 1611, 1511 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 7.98 (d, *J* = 9.0 Hz, 1H), 7.55 (d, *J* = 8.5 Hz, 2H), 7.41-7.43 (m, 3H), 7.34-7.37 (m, 1H), 7.28-7.32 (m, 2H), 7.20 (d, *J* = 9.0 Hz, 2H), 7.06-7.08 (m, 2H), 6.77 (d, *J* = 8.5 Hz, 2H), 6.43-6.50 (m, 1H), 5.67 (d, *J* = 10.0 Hz, 1H), 5.62 (d, *J* = 17.0 Hz, 1H), 4.80 (d, *J* = 8.0 Hz, 1H), 4.50 (d, *J* = 8.0 Hz, 1H), 3.73 (s, 3H), 3.50 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.2, 171.0, 164.4, 159.1, 139.9, 137.2, 136.5, 132.3, 130.6, 129.3, 129.1, 128.9, 128.6, 128.3, 128.2, 127.8, 113.9, 77.4, 72.1, 55.4, 52.2. HRMS (ESI+) calcd. for C27H26N2O3 [M+Na] 449.1841, found 449.1834.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 20/1/0.1, 254 nm absorbance). Major enantiomer (tR = 14.6 min), minor enantiomer (tR = 22.5 min): er = 89.5 :10.5.

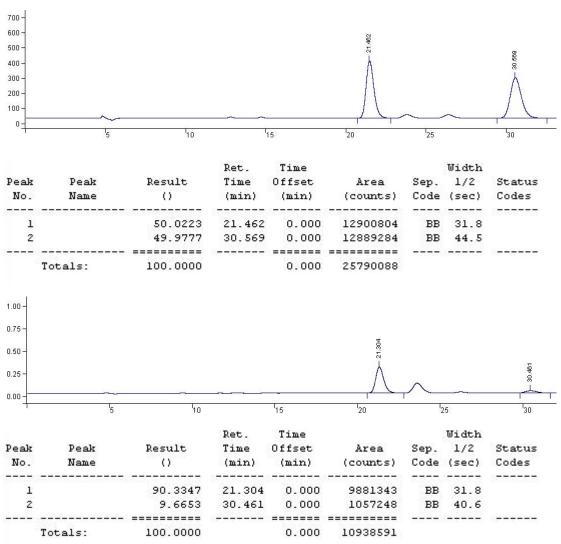

Methyl (2S,3R)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3-

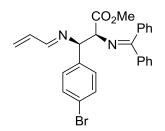

(4-methylphenyl)propanoate (3e)


The reaction was performed with *N*-allyl imine (87.6 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), $Pd(OAc)_2$ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in

toluene (1.0 mL) for 40 h at 4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (127 mg, 62%) as a colorless oil. α_D^{25} = -55.2 (*c* = 1.0, CHCl₃). IR: (neat) 3056, 3026, 1742, 1645, 1621, 1446 cm⁻¹; ¹H NMR (400 MHz, d-CDCl₃) δ 8.01 (d, *J* = 8.8 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.42-7.44 (m, 3H), 7.35-7.38 (m, 1H), 7.28-7.33 (m, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 7.04-7.10 (m, 4H), 6.45-6.54 (m, 1H), 5.68 (d, *J* = 10.0 Hz, 1H), 5.63 (d, *J* = 17.2 Hz, 1H), 4.84 (d, *J* = 8.0 Hz, 1H), 4.54 (d, *J* = 8.0 Hz, 1H), 3.52 (s, 3H), 2.27 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.2, 171.0, 164.5, 139.9, 137.3, 137.2, 137.1, 136.5, 130.5, 129.2, 129.1, 128.8, 128.5, 128.3, 128.1, 128.1, 127.8, 77.7, 72.1, 52.1, 21.3. HRMS (ESI+) calcd. for C27H26N2O2 [M+Na] 433.1881, found 433.1886.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 20/1/0.1, 254 nm absorbance). Major enantiomer (tR = 9.5 min), minor enantiomer (tR = 12.2 min): er = 86 :14.

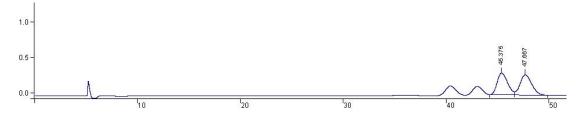

Methyl (2S,3R)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3-

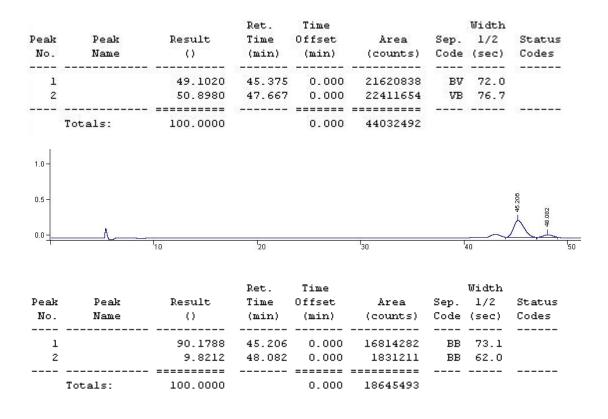

(4-nitrophenyl)propanoate (3f)

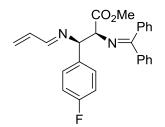
The reaction was performed with *N*-allyl imine (95.1 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 72 h at -20°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (154 mg, 70%) as a colorless oil. α_D^{25} = -77.1 (*c* = 1.0, CHCl₃). IR: (neat) 3057, 1741, 1646, 1599, 1521 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) major diastereomer: δ 8.10 (d, *J* = 9.0 Hz, 2H), 8.00 (d, *J* = 8.5 Hz, 1H), 7.54 (d, *J* = 9.0 Hz, 2H), 7.50 (d, *J* = 9.0 Hz, 2H), 7.42-7.43 (m, 3H), 7.34-7.37 (m, 1H), 7.27-7.30 (m, 2H), 7.04-7.06 (m, 2H), 6.44-6.52 (m, 1H), 5.72 (d, *J* = 10.0 Hz, 1H), 5.66 (d, *J* = 17.0 Hz, 1H), 4.91 (d, *J* = 8.0 Hz, 1H), 4.33 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 9.0 Hz, 2H), 7.62 (d, *J* = 8.5 Hz, 2H), 7.42-7.47 (m, 3H), 7.36-7.37 (m, 1H), 7.27-7.30 (m, 2H), 7.04-7.06 (m, 2H), 6.42-6.47 (m, 1H), 5.83 (d, *J* = 8.5 Hz, 1H), 7.68 (d, *J* = 9.0 Hz, 2H), 7.04-7.06 (m, 2H), 6.42-6.47 (m, 1H), 5.83 (d, *J* = 8.5 Hz, 1H), 7.27-7.30 (m, 2H), 7.04-7.06 (m, 2H), 6.42-6.47 (m, 1H), 5.83 (d, *J* = 8.5 Hz, 1H), 7.27-7.30 (m, 2H), 7.04-7.06 (m, 2H), 6.42-6.47 (m, 1H), 5.83 (d, *J* = 8.5 Hz, 1H), 7.27-7.30 (m, 2H), 7.04-7.06 (m, 2H), 6.42-6.47 (m, 1H), 5.83 (d, *J* = 8.5 Hz, 1H), 7.27-7.30 (m, 2H), 7.04-7.06 (m, 2H), 6.42-6.47 (m, 1H), 5.83 (d, *J* = 8.5 Hz, 1H), 7.27-7.30 (m, 2H), 7.04-7.06 (m, 2H), 6.42-6.47 (m, 1H), 5.83 (d, *J* = 8.5 Hz, 1H), 7.27-7.30 (m, 2H), 7.04-7.06 (m, 2H), 6.42-6.47 (m, 1H), 5.83 (d, *J* = 8.5 Hz, 2H), 7.42-7.47 (m, 3H), 7.36-7.37 (m, 1H), 7.27-7.30 (m, 2H), 7.04-7.06 (m, 2H), 6.42-6.47 (m, 1H), 5.83 (d, *J* = 8.5 Hz, 2H), 7.42-7.47 (m, 3H), 7.36-7.37 (m, 1H), 7.27-7.30 (m, 2H), 7.04-7.06 (m, 2H), 6.42-6.47 (m, 1H), 5.83 (d, *J* = 8.5 Hz, 7.5 (m, 7H), 7.50 (m, 7H),

= 10.0 Hz, 1H), 5.75 (d, J = 17.0 Hz, 1H), 5.03 (d, J = 8.5 Hz, 1H), 4.63 (d, J = 8.5 Hz, 1H), 3.70 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 173.0, 170.4, 165.6, 147.8, 147.5, 139.4, 136.8, 136.2, 130.9, 129.3, 129.1, 128.9, 128.7, 128.3, 128.2, 128.1, 123.7, 77.0, 71.6, 52.4. HRMS (ESI+) calcd. for C26H23N3O4 [M+Na] 464.1586, found 464.1578.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 20/1/0.1, 254 nm absorbance). Major enantiomer (tR = 21.3 min), minor enantiomer (tR = 30.5 min): er = 90 :10.

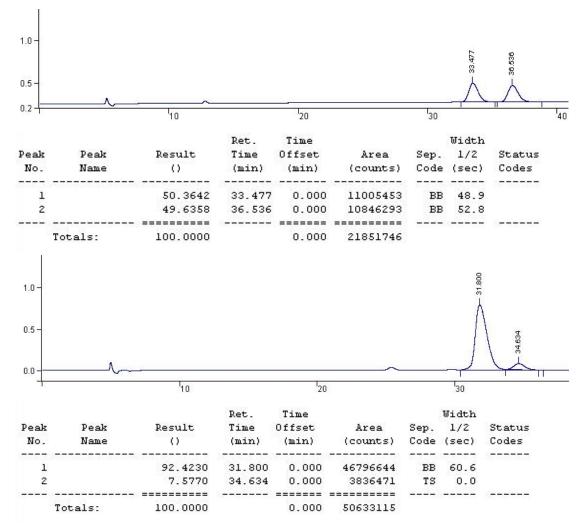


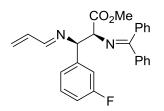

Methyl (2S,3R)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3-


(4-bromophenyl)propanoate (3g)

The reaction was performed with *N*-allyl imine (111.0 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 42 h at -4 °C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (200 mg, 84%) as a colorless oil. α_D^{25} = -102 (*c* = 3.0, CHCl₃). IR: (neat) 3057, 2950, 1742, 1621, 1487, 1446 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 8.02 (d, *J* = 9.0 Hz, 1H), 7.59 (d, *J* = 9.0 Hz, 2H), 7.43-7.47 (m, 4H), 7.36-7.38 (m, 1H), 7.29-7.34 (m, 3H), 7.24-7.25 (m, 1H), 7.11 (d, *J* = 8.0 Hz, 1H), 7.02-7.05 (m, 2H), 6.48-6.55 (m, 1H), 5.73 (d, *J* = 10.0 Hz, 1H), 5.66 (d, *J* = 17.0 Hz, 1H), 4.85 (d, *J* = 8.0 Hz, 1H), 4.51 (d, *J* = 8.0 Hz, 1H), 3.56 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 170.7, 165.2, 142.6, 139.6, 137.0, 136.3, 131.6, 131.3, 130.8, 130.0, 129.1, 129.0, 128.6, 128.1, 126.9, 122.5, 77.1, 71.7, 52.3. HRMS (ESI+) calcd. for C26H23BrN2O2 [M+H] 475.1013, found 475.1016.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 150/1/0.1, 254 nm absorbance). Major enantiomer (tR = 45.2 min), minor enantiomer (tR = 48.0 min): er = 90 :10.

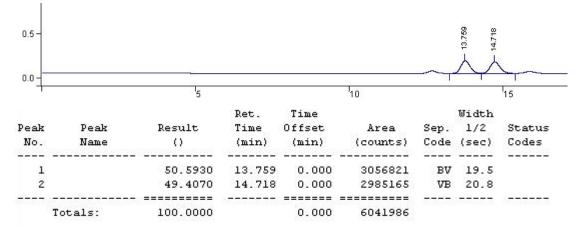

Methyl (2S,3R)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3-

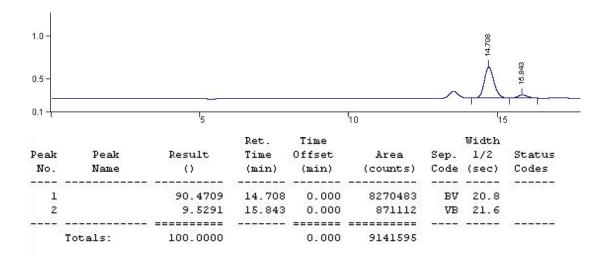

(4-fluorophenyl)propanoate (3h)

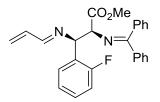
The reaction was performed with *N*-allyl imine (81.6 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 42 h at -4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (149 mg, 72%) as a colorless oil. α_D^{25} = -62.4 (*c* = 1.0, CHCl₃). IR: (neat) 3058, 1742, 1604, 1508 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 8.01 (d, *J* = 9.0 Hz, 1H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.43-7.45 (m, 3H), 7.35-7.38 (m, 1H), 7.28-7.32 (m, 4H), 7.09 (dd, *J* = 7.5, 2.0 Hz, 2H), 6.94 (t, *J* = 8.5 Hz, 2H), 6.43-6.52 (m, 1H), 5.70 (d, *J* = 10.5 Hz, 1H), 5.64 (d, *J* = 17.0 Hz, 1H), 4.82 (d, *J* = 8.0 Hz, 1H), 4.35 (d, *J* = 8.0 Hz, 1H), 3.51 (s, 3H). ¹³C NMR (125

MHz, CDCl₃) δ 172.5, 170.8, 164.8, 162.3 (d, *J* = 244 Hz), 139.7, 137.0, 136.4, 136.0, 130.7, 129.8 (d, *J* = 8.0 Hz), 129.1, 128.8, 128.6, 128.3, 128.1, 127.9, 115.2 (d, *J* = 21.3 Hz), 77.1, 72.0, 52.2. HRMS (ESI+) calcd. for C26H23FN2O2 [M+Na] 437.1641, found 437.1638.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 100/1/0.1, 254 nm absorbance). Major enantiomer (tR = 31.8 min), minor enantiomer (tR = 34.6 min): er = 92.5 :7.5.

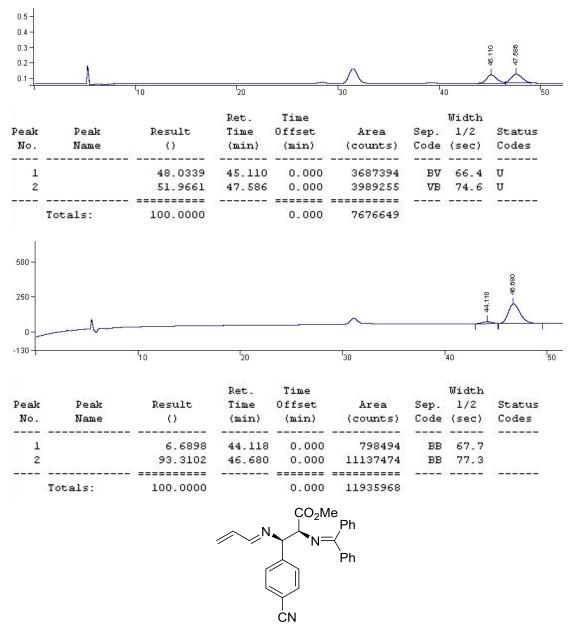



Methyl (2S,3R)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3-


(3-fluorophenyl)propanoate (3i)

The reaction was performed with *N*-allyl imine (81.6 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 42 h at -4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (155 mg, 75%) as a colorless oil. α_D^{25} = -52.5 (*c* = 2.0, CHCl₃). IR: (neat) 3061, 2952, 1742, 1619, 1446, 1325 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 8.05 (d, *J* = 9.0 Hz, 1H), 7.60 (d, *J* = 8.5 Hz, 2H), 7.46-7.48 (m, 3H), 7.39-7.41 (m, 1H), 7.32-7.35 (m, 2H), 7.22-7.26 (m, 1H), 7.07-7.12 (m, 4H), 6.91-6.94 (m, 1H), 6.50-6.56 (m, 1H), 5.75 (d, *J* = 10.5 Hz, 1H), 5.68 (d, *J* = 17.5 Hz, 1H), 4.89 (d, *J* = 8.0 Hz, 1H), 4.53 (d, *J* = 7.5 Hz, 1H), 3.59 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 170.7, 165.0, 162.8 (d, *J* = 244 Hz), 142.8, 139.7, 137.0, 136.4, 130.7, 130.0 (d, *J* = 8.0 Hz), 129.1, 128.9, 128.6, 128.3, 128.2, 123.9 (d, *J* = 2.5 Hz), 115.3 (d, *J* = 21.8 Hz), 114.7 (d, *J* = 21 Hz), 76.8, 71.8, 52.2. HRMS (ESI+) calcd. for C26H23FN2O2 [M+Na] 437.1641, found 437.1638.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 20/1/0.1, 254 nm absorbance). Major enantiomer (tR = 14.7 min), minor enantiomer (tR = 15.8 min): er = 90.5 :9.5.

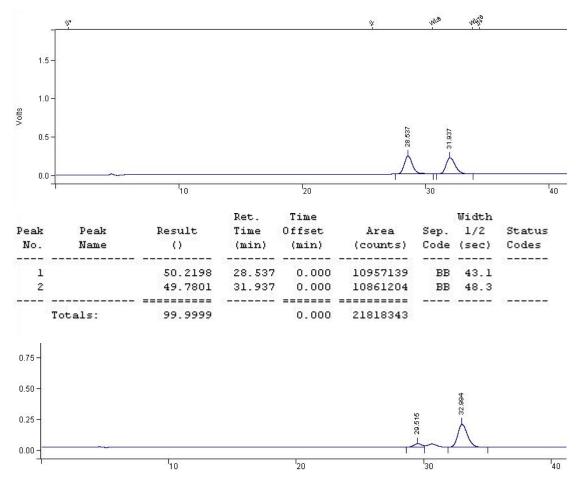


Methyl (2S,3R)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3-

(2-fluorophenyl)propanoate (3j)

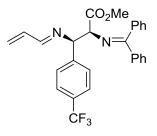
The reaction was performed with *N*-allyl imine (81.6 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 42 h at -4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (157 mg, 76%) as a colorless oil. α_D^{25} = -35.3 (*c* = 1.0, CHCl₃). IR: (neat) 3059, 2951, 1742, 1644, 1621, 1490 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 8.09 (d, *J* = 9.0 Hz, 1H), 7.60 (d, *J* = 8.5 Hz, 2H), 7.44-7.45 (m, 4H), 7.38-7.41 (m, 1H), 7.31-7.34 (m, 2H), 7.18-7.21 (s, 1H), 7.08 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.03-7.06 (m, 2H), 6.96-7.00 (m, 1H), 6.53-6.60 (m, 1H), 5.76 (d, *J* = 10.5 Hz, 1H), 5.70 (d, *J* = 17.5 Hz, 1H), 5.28 (d, *J* = 7.5 Hz, 1H), 4.68 (d, *J* = 7.0 Hz, 1H), 3.61 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 170.7, 165.7, 160.2 (d, *J* = 244 Hz), 139.7, 137.1, 136.4, 130.6, 130.2 (d, *J* = 2.5 Hz), 129.2, 129.1, 128.9, 128.6, 128.5, 128.3 (d, *J* = 3.3 Hz), 128.1, 127.3 (d, *J* = 13.3 Hz), 124.3, 115.4 (d, *J* = 22.1 Hz), 71.6, 70.0 (d, *J* = 16.3 Hz), 52.3. HRMS (ESI+) calcd. for C26H23FN2O2 [M+Na] 437.1641, found 437.1628.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 100/1/0.1, 254 nm absorbance). Minor enantiomer (tR = 44.1 min), major enantiomer (tR = 46.7 min): er = 7 :93.


Methyl (2S,3R)-3-(((E)-allylidene)amino)-3-(4-cyanophenyl)-2

-((diphenylmethylene)amino)propanoate (3k)

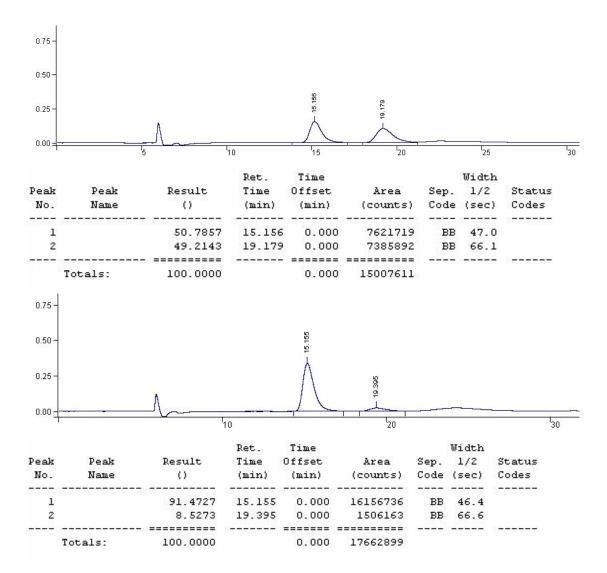
The reaction was performed with *N*-allyl imine (84.1 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), $Pd(OAc)_2$ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in

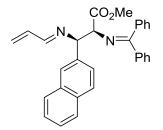

toluene (1.0 mL) for 40 h at -4 °C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (147 mg, 70%) as a colorless oil. α_D^{25} = -77.7 (*c* = 2.0, CHCl₃). IR: (neat) 3054, 2228, 1741, 1606, 1576 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 8.02 (d, *J* = 9.0 Hz, 1H), 7.54-7.57 (m, 4H), 7.43-7.45 (m, 5H), 7.31-7.37 (m, 1H), 7.30-7.33 (m, 2H), 7.03-7.05 (m, 2H), 6.46-6.52 (m, 1H), 5.75 (d, *J* = 10.0 Hz, 1H), 5.67 (d, *J* = 17.0 Hz, 1H), 4.91 (d, *J* = 7.5 Hz, 1H), 4.48 (d, *J* = 7.5 Hz, 1H), 3.54 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 170.4, 165.5, 145.8, 139.4, 136.8, 136.2, 132.3, 130.8, 129.2, 129.1, 129.1, 128.8, 128.7, 128.2, 128.1, 119.0, 111.5, 77.3, 71.5, 52.4. HRMS (ESI+) calcd. for C27H23N3O2 [M+Na] 444.1670, found 444.1682.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 20/1/0.1, 254 nm absorbance). Minor enantiomer (tR = 29.5 min), major enantiomer (tR = 33.0 min): er = 11.5 :88.5.

S25

			Ret.	Time			Width	
Peak	Peak	Result	Time	Offset	Area	Sep.	1/2	Status
No.	Name	0	(min)	(min)	(counts)	Code	(sec)	Codes
1		11.5250	29.515	0.000	1268972	BB	46.2	
2		88.4750	32.994	0.000	9741600	BB	49.3	
22222								
	Totals:	100.0000		0.000	11010572			

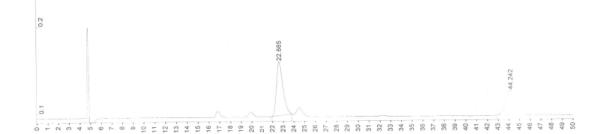


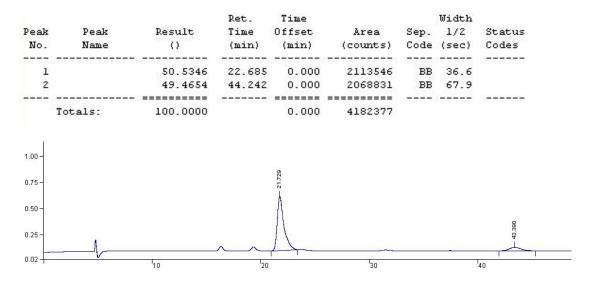

Methyl (2S,3R)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3-

(4-trifluromethylphenyl)propanoate (3I)

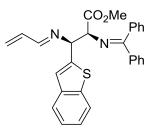
The reaction was performed with *N*-allyl imine (106.2 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 72 h at -4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (167 mg, 72%) as a colorless oil. α_D^{25} = -83.4 (*c* = 1.0, CHCl₃). IR: (neat) 3062, 2952, 1743, 1651, 1618, 1326 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 8.03 (d, *J* = 9.0 Hz, 1H), 7.57-7.59 (m, 2H), 7.49-7.52 (m, 2H), 7.43-7.45 (m, 3H), 7.35-7.38 (m, 2H), 7.32 (d, *J* = 7.5 Hz, 2H), 7.27-7.30 (m, 1H), 7.04-7.06 (m, 2H), 6.47-6.54 (m, 1H), 5.73 (d, *J* = 10.5 Hz, 1H), 5.67 (d, *J* = 17.5 Hz, 1H), 4.93 (d, *J* = 7.5 Hz, 1H), 4.53 (d, *J* = 7.5 Hz, 1H), 3.53 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 170.6, 165.3, 144.4, 139.6, 137.0, 136.9, 136.3, 135.6, 130.8, 129.9 (d, *J* = 32 Hz), 129.1, 128.7, 128.6, 128.2, 128.1 (d, *J* = 5 Hz), 125.4, 124.1 (d, *J* = 267 Hz), 77.3, 71.7, 52.3. HRMS (ESI+) calcd. for C27H23F3N2O2 [M+Na] 487.1593, found 487.1604.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 0.8 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 100/1/0.1, 254 nm absorbance). Major enantiomer (tR = 15.1 min), minor enantiomer (tR = 19.4 min): er = 91.5 :8.5.

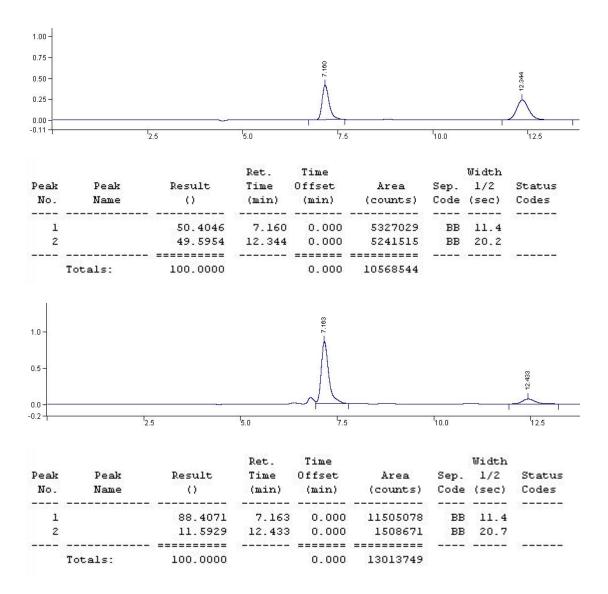

Methyl (2S,3R)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3-

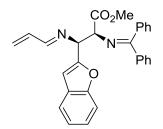

(naphthalene-2-yl)propanoate (3m)

The reaction was performed with *N*-allyl imine (97.6 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), $Pd(OAc)_2$ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 40 h at 4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (167 mg, 75%) as a


colorless oil. α_D^{25} = -70.5 (*c* = 1.0, CHCl₃). IR: (neat) 3057, 2950, 1741, 1621, 1446 cm⁻¹; ¹H NMR (400 MHz, d-CDCl₃) δ 8.08 (d, *J* = 9.2 Hz, 1H), 7.75-7.77 (m, 3H), 7.72-7.74 (m, 1H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.40-7.45 (m, 6H), 7.36-7.38 (m, 1H), 7.29-7.33 (m, 2H), 7.04-7.07 (m, 2H), 6.49-6.55 (m, 1H), 5.72 (d, *J* = 10.4 Hz, 1H), 5.66 (d, *J* = 17.2 Hz, 1H), 5.04 (d, *J* = 8.0 Hz, 1H), 4.66 (d, *J* = 8.0 Hz, 1H), 3.46 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.4, 170.9, 164.9, 139.8, 137.7, 137.1, 136.5, 133.5, 133.1, 131.1, 130.6, 129.2, 128.9, 128.6, 128.3, 128.2, 128.2, 128.1, 127.8, 127.2, 126.3, 126.1, 126.0, 78.1, 71.9, 52.2. HRMS (ESI+) calcd. for C30H26N2O2 [M+Na] 469.1892, found 469.1882.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 40/1/0.1, 254 nm absorbance). Major enantiomer (tR = 21.7 min), minor enantiomer (tR = 43.4 min): er = 90 :10.

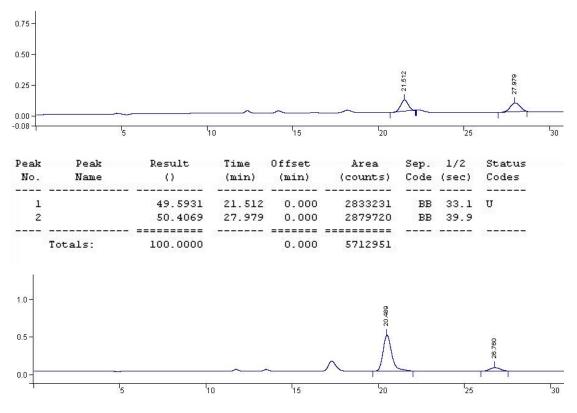

			Ret.	Time			Width	
Peak	Peak	Result	Time	Offset	Area	Sep.	1/2	Status
No.	Name	0	(min)	(min)	(counts)	Code	(sec)	Codes
						2.377		
1		90.2635	21.729	0.000	21758568	BB	37.4	
2		9.7365	43.390	0.000	2347048	BB	67.7	
	Totals:	100.0000		0.000	24105616			



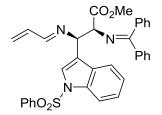
Methyl (2S,3S)-3-(((E)-allylidene)amino)-3-(benzo[b]thiophen-2-yl)-2-((diphenyl methylene)amino)propanoate (3n)

The reaction was performed with *N*-allyl imine (99.8 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 62 h at 4 °C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (138 mg, 61%) as a colorless oil. α_D^{25} = -49.5 (*c* = 1.0, CHCl₃). IR: (neat) 3057, 2950, 1741, 1645, 1620 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 8.10 (d, *J* = 9.0 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.66-7.68 (m, 2H), 7.47-7.49 (m, 3H), 7.42-7.47 (m, 1H), 7.35-7.38 (m, 2H), 7.28-7.32 (m, 2H), 7.23 (s, 1H), 7.17-7.19 (m, 2H), 6.56-6.62 (m, 1H), 5.78 (d, *J* = 10.5 Hz, 1H), 5.73 (d, *J* = 17.5 Hz, 1H), 5.37 (d, *J* = 7.5 Hz, 1H), 4.68 (d, *J* = 7.5 Hz, 1H), 3.64 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 170.6, 165.4, 143.9, 140.0, 139.6, 139.4, 136.9, 136.2, 130.7, 129.2, 128.9, 128.6, 128.2, 128.1, 124.2, 124.1, 123.5, 122.4, 121.6, 72.9, 71.8, 52.4. HRMS (ESI+) calcd. for C28H24N2O2S [M+Na] 475.1441, found 475.1451.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 20/1/0.1, 254 nm absorbance). Major enantiomer (tR = 7.2 min), minor enantiomer (tR = 12.4 min): er = 88.5 :11.5.


Methyl (2S,3S)-3-(((E)-allylidene)amino)-3-(benzofuran-2-yl)-2

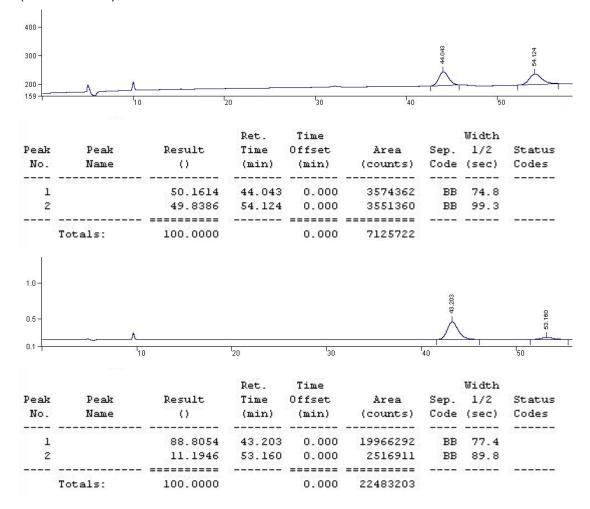
-((diphenylmethylene)amino)propanoate (30)


The reaction was performed with *N*-allyl imine (92.6 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), $Pd(OAc)_2$ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 50 h at 4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (144 mg, 66%) as a

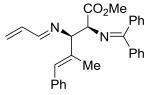
colorless oil. α_D^{25} = -58.2 (*c* = 1.0, CHCl₃). IR: (neat) 3058, 1742, 1622, 1454 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 8.13 (d, *J* = 9.0 Hz, 1H), 7.59-7.61 (m, 2H), 7.49-7.51 (m, 1H), 7.46-7.47 (m, 3H), 7.38-7.42 (m, 2H), 7.31-7.34 (m, 2H), 7.19-7.24 (m, 2H), 7.16-7.18 (m, 2H), 6.62 (s, 1H), 6.55-6.60 (m, 1H), 5.79 (d, *J* = 11.0 Hz, 1H), 5.75(d, *J* = 17.5 Hz, 1H), 5.14 (d, *J* = 8.0 Hz, 1H), 4.66 (d, *J* = 8.0 Hz, 1H), 3.65 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 170.6, 166.7, 155.6, 155.0, 139.8, 136.9, 136.2, 130.7, 129.2, 129.0, 128.9, 128.7, 128.3, 128.3, 128.2, 124.1, 122.8, 121.0, 111.5, 104.6, 71.1, 68.8, 52.5. HRMS (ESI+) calcd. for C28H25N2O3 [M+H] 437.1865, found 437.1860.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 20/1/0.1, 254 nm absorbance). Major enantiomer (tR = 20.5 min), minor enantiomer (tR = 26.8 min): er = 89 :11.

			Ret.	Time			Width	
Peak	Peak	Result	Time	Offset	Area	Sep.	1/2	Status
No.	Name	0	(min)	(min)	(counts)	Code	(sec)	Codes
			37.57.77.57		8 0.000.000000000 8			37.7.7.7.7.7
1		89.7737	20.489	0.000	16704058	BB	31.5	
2		10.2263	26.760	0.000	1902784	BB	40.3	
	Totals:	100.0000		0.000	18606842			



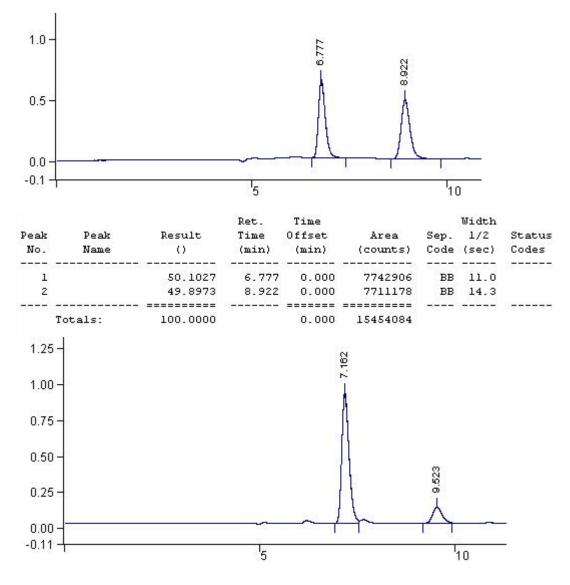
Methyl (2S,3R)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3


-(1-(phenylsulfonyl)-1H-indol-3-yl)propanoate (3p)

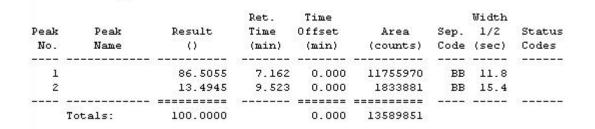
The reaction was performed with *N*-allyl imine (170.0 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 42 h at 4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 8/92/1) gave product (178 mg, 62%) as a colorless oil. α_D^{25} = -79.3 (*c* = 2.0, CHCl₃). IR: (neat) 3058, 1741, 1650, 1619, 1447 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 8.03 (d, *J* = 9.0 Hz, 1H), 7.90 (d, *J* = 8.5 Hz, 1H), 7.81 (dd, *J* = 8.5, 1.0 Hz, 2H), 7.59 (dd, *J* = 8.5, 1.5 Hz, 2H), 7.54 (s, 1H), 7.42-7.46 (m, 2H), 7.34-7.36 (m, 3H), 7.25-7.32 (m, 6H), 7.08 (t, *J* = 8.0 Hz, 1H), 6.90 (d, *J* = 7.0 Hz, 2H), 6.47-6.54 (m, 1H), 5.71 (d, *J* = 10.5 Hz, 1H), 5.63 (d, *J* = 17.5 Hz, 1H), 5.13 (d, *J* = 7.5 Hz, 1H), 4.55 (d, *J* = 7.5 Hz, 1H), 3.47 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 169.2, 165.1, 139.7, 138.2, 137.2, 136.1, 135.2, 133.8, 133.5, 130.7, 129.4, 129.3, 129.2, 128.8, 128.4, 128.2, 128.1, 127.0, 124.8, 124.4, 123.3, 121.7, 120.7, 113.5, 69.8, 69.7, 52.2. HRMS (ESI+) calcd. for C34H29N3O4S [M+Na] 598.1776, found 598.1771.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N =

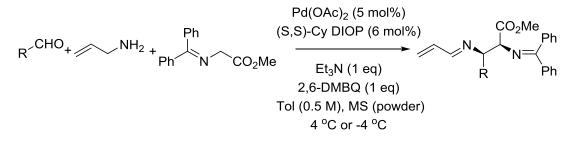
20/1/0.1, 254 nm absorbance). Major enantiomer (tR = 43.2 min), minor enantiomer (tR = 53.2 min): er = 89 :11.

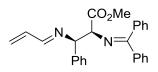

Methyl (2S,3R,E)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-4

-methyl-5-phenylpent-4-enoate (3q)


The reaction was performed with *N*-allyl imine (91.8 mg, 0.5 mmol), methyl glycinate (126 mg, 0.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), (S,S)-Cy DIOP (16.2 mg, 0.03 mmol), 2,6-dimethylbenzoquinone (70 mg, 0.5 mmol) and Et₃N (50 mg, 0.5 mmol) in toluene (1.0 mL) for 72 h at 4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (162 mg, 74%) as a colorless oil. α_D^{25} = -36.8 (*c* = 2.0, CHCl₃). IR: (neat) 3056, 2950, 1742, 1614, 1492

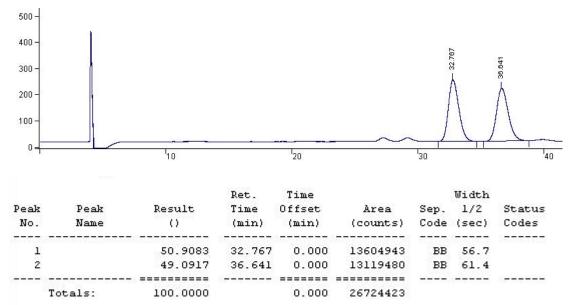
cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 8.05 (d, *J* = 9.0 Hz, 1H), 7.60-7.62 (m, 2H), 7.46-7.48 (m, 3H), 7.39-7.41 (m, 1H), 7.30-7.35 (m, 5H), 7.23-7.25 (m, 2H), 7.20-7.22 (m, 2H), 6.50-6.57 (m, 2H), 5.76 (d, *J* = 10.0 Hz, 1H), 5.70 (d, *J* = 17.0 Hz, 1H), 4.61 (d, *J* = 7.5 Hz, 1H), 4.42 (d, *J* = 7.5 Hz, 1H), 3.70 (s, 3H), 1.87 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 171.3, 164.7, 139.9, 137.7, 137.4, 137.2, 136.5, 130.5, 129.2, 129.1, 128.9, 128.6, 128.3, 128.2, 128.2, 128.1, 127.9, 126.6, 82.3, 69.3, 52.3, 15.2. HRMS (ESI+) calcd. for C29H28N2O2 [M+Na] 459.2033, found 459.2043.

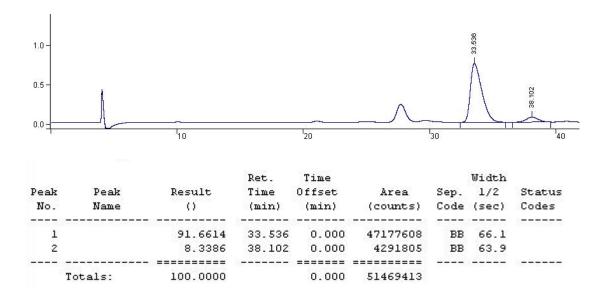

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 20/1/0.1, 254 nm absorbance). Major enantiomer (tR = 7.2 min), minor enantiomer (tR = 9.5 min): er = 86.5 :13.5.

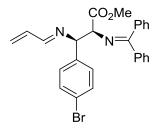

S34

V. General procedure for the three-component AAA reactions:

An oven dried Pyrex microwave vial was charged with $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), (S,S)-Cy DIOP (10.1 mg, 0.018 mmol), 2,6-dimethylbenzoquinone (42 mg, 0.3 mmol) and molecular sieve (4 Å, 120 mg) was sealed with a rubber septa. The vial was evacuated and filled with nitrogen three times in an interval of 10 min. In a separate sealed nitrogen flushed vial, aldehyde (0.3 mmol), allyl amine (0.3 mmol) and glycinate **2e** (0.3 mmol) were dissolved in freshly distilled toluene (0.6 ml). The solution was cannulated to the microwave vial with palladium catalyst. Et₃N (30 mg, 0.3 mmol) was added to the resulting turbid solution and was allowed to stir at 4 °C or -4 °C for 35-60h. Upon completion (monitored by crude NMR), solvent was removed in vacuo and the residue was purified by flash chromatography over silica gel (pre-neutralized with 3% Et₃N in Hexanes), eluting with EtOAc / hexanes/ Et₃N, to give the product.

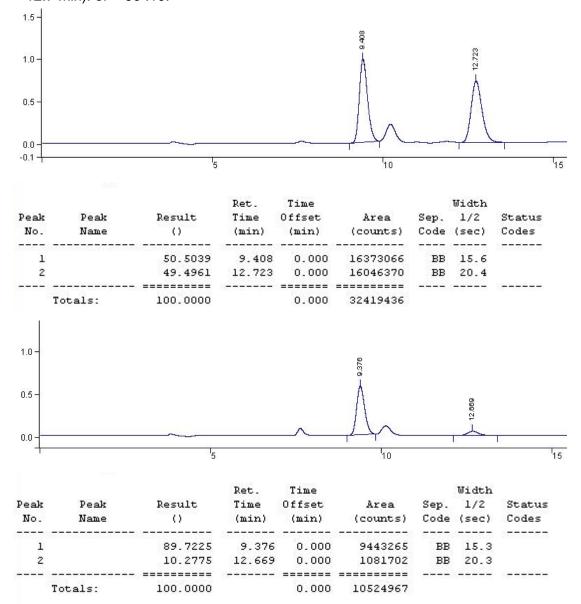

Methyl (2S,3R)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3-phenyl propanoate (6a)

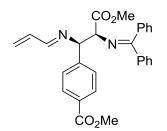

The reaction was performed with allyl amine (17.1 mg, 0.3 mmol), benzaldehyde (31.8 mg, 0.3 mmol), methyl glycinate (75.3 mg, 0.3 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol),


(S,S)-Cy DIOP (10.1 mg, 0.018 mmol), 2,6-dimethylbenzoquinone (40.8 mg, 0.3 mmol), Et₃N (30.3 mg, 0.3 mmol) and molecular sieve (4 Å, 120 mg) in toluene (0.6 mL) for 36 h at 4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (69 mg, 58%) as a colorless oil. α_D^{25} = -32.4 (*c* = 1.0, CHCl₃). ¹H NMR (500 MHz, d-CDCl₃) δ 8.06 (d, *J* = 9.0 Hz, 1H), 7.61 (dd, *J* = 8.5, 1.5 Hz, 2H), 7.45-7.47 (m, 3H), 7.39-7.42 (m, 1H), 7.32-7.35 (m, 4H), 7.27-7.29 (m, 2H), 7.23-7.25 (m, 1H), 7.08-7.10 (m, 2H), 6.51-6.58 (m, 1H), 5.73 (d, *J* = 10.5 Hz, 1H), 5.67 (d, *J* = 17.5 Hz, 1H), 4.91 (d, *J* = 8.0 Hz, 1H), 4.58 (d, *J* = 8.0 Hz, 1H), 3.54 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.3, 170.9, 164.7, 140.2, 139.8, 137.1, 136.5, 130.6, 129.1, 128.9, 128.6, 128.5, 128.3, 128.3, 128.2, 127.9, 127.8, 78.0, 72.0, 52.2.

The analytical data of the compound **6a** was in complete agreement with compound **3b**.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 100/1/0.1, 254 nm absorbance). Major enantiomer (tR = 33.5 min), minor enantiomer (tR = 38.1 min): er = 92:8.

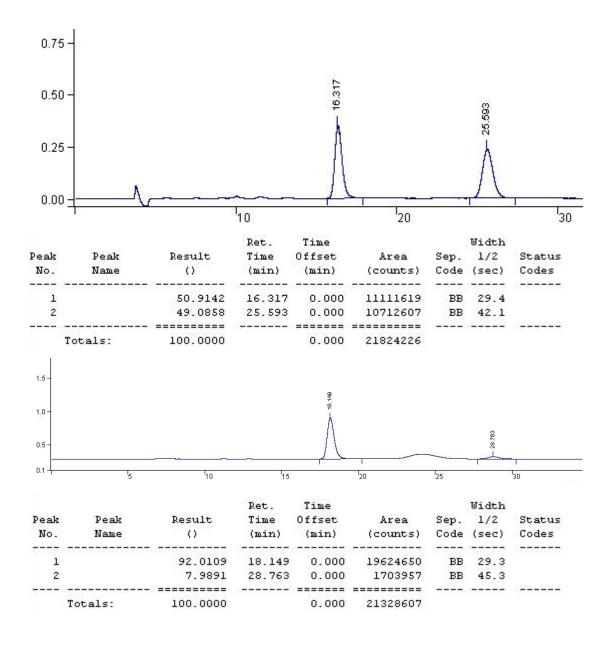

Methyl (2S,3R)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3-

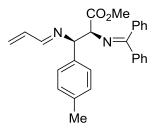

(4-bromophenyl)propanoate (6b)

The reaction was performed with allyl amine (17.1 mg, 0.3 mmol), 4-bromobenzaldehyde (55.5 mg, 0.3 mmol), methyl glycinate (75.3 mg, 0.3 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), (S,S)-Cy DIOP (10.1 mg, 0.018 mmol), 2,6-dimethylbenzoquinone (40.8 mg, 0.3 mmol), Et₃N (30.3 mg, 0.3 mmol) and molecular sieve (4 Å, 120 mg) in toluene (0.6 mL) for 42 h at -4 °C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (99.8 mg, 70%) as a colorless oil. α_D^{25} = -101.2 (*c* = 3.0, CHCl₃). ¹H NMR (500 MHz, d-CDCl₃) δ 8.02 (d, *J* = 9.0 Hz, 1H), 7.59 (d, *J* = 9.0 Hz, 2H), 7.45-7.47 (m, 3H), 7.39-7.41 (m, 3H), 7.32-7.35 (m, 2H), 7.21 (d, *J* = 7.5 Hz, 2H), 7.08-7.10 (m, 2H), 6.48-6.58 (m, 1H), 5.73 (d, *J* = 10.0 Hz, 1H), 5.66 (d, *J* = 17.0 Hz, 1H), 4.85 (d, *J* = 8.0 Hz, 1H), 4.51 (d, *J* = 8.0 Hz, 1H), 3.58 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 170.7, 165.2, 142.6, 139.6, 137.0, 136.3, 131.6, 131.3, 130.8, 130.0, 129.1, 129.0, 128.6, 128.1, 126.9, 122.5, 77.1, 71.7, 52.3. The analytical data of the compound 6b was in complete agreement with compound

3g.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 20/1/0.1, 254 nm absorbance). Major enantiomer (tR = 9.4 min), minor enantiomer (tR = 12.7 min): er = 90 :10.

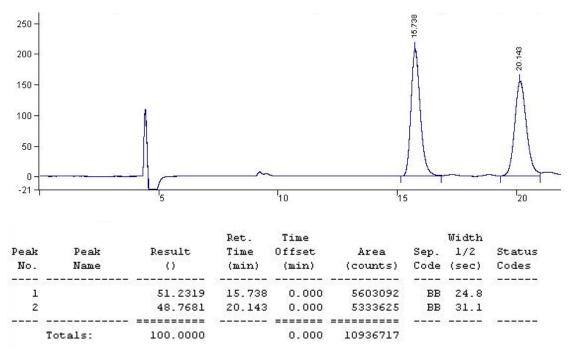


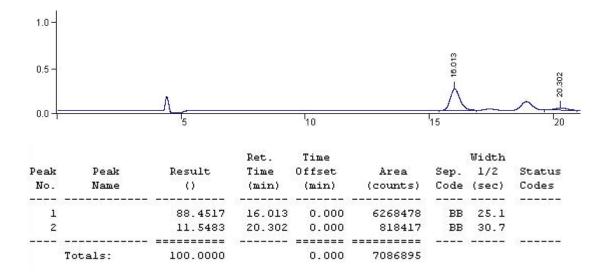

Methyl 4-((1R,2S)-1-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3methoxy-3-oxopropyl)benzoate (6c)

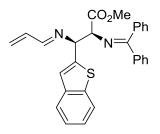
The reaction was performed with allyl amine (17.1 mg, 0.3 mmol), methyl 4-formylbenzoate (49.3 mg, 0.3 mmol), methyl glycinate (75.3 mg, 0.3 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), (S,S)-Cy DIOP (10.1 mg, 0.018 mmol), 2,6-dimethylbenzoquinone (40.8 mg, 0.3 mmol), Et₃N (30.3 mg, 0.3 mmol) and molecular sieve (4 Å, 120 mg) in toluene (0.6 mL) 40 h at -4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 10/90/1) gave product (87.3 mg, 68%) as a colorless oil. α_D^{25} = -95.9 (*c* = 2.0, CHCl₃). ¹H NMR (500 MHz, d-CDCl₃) δ 8.05 (d, *J* = 9.0 Hz, 1H), 7.95 (d, *J* = 8.5 Hz, 2H), 7.60 (d, *J* = 8.5 Hz, 2H), 7.44-7.46 (m, 3H), 7.39-7.43 (m, 3H), 7.31-7.35 (m, 2H), 7.05-7.08 (m, 2H), 6.51-6.59 (m, 1H), 5.75 (d, *J* = 10.5 Hz, 1H), 5.69 (d, *J* = 17.5 Hz, 1H), 4.96 (d, *J* = 7.5 Hz, 1H), 4.55 (d, *J* = 7.5 Hz, 1H), 3.90 (s, 3H), 3.54 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 170.6, 167.1, 165.2, 145.4, 139.6, 137.0, 136.3, 130.7, 129.8, 129.5, 129.1, 128.9, 128.6, 128.3, 128.2, 128.1, 128.1, 77.5, 71.2, 52.3.

The analytical data of the compound **6c** was in complete agreement with compound **3c**.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 20/1/0.1, 254 nm absorbance). Major enantiomer (tR = 18.1 min), minor enantiomer (tR = 28.8 min): er = 92:8.

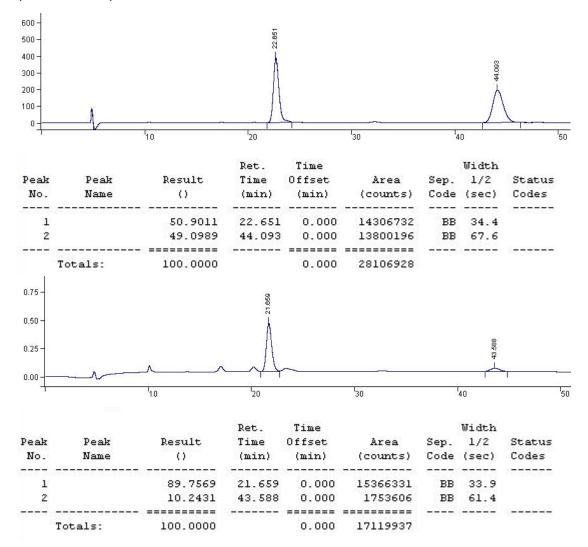

Methyl (2S,3R)-3-(((E)-allylidene)amino)-2-((diphenylmethylene)amino)-3-


(4-methylphenyl)propanoate (6d)

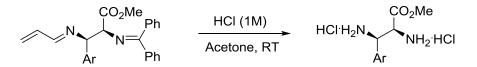

The reaction was performed with allyl amine (17.1 mg, 0.3 mmol), 4-methylbenzaldehyde (36.1 mg, 0.3 mmol), methyl glycinate (75.3 mg, 0.3 mmol), $Pd(OAc)_2$ (3.4 mg, 0.015 mmol), (S,S)-Cy DIOP (10.1 mg, 0.018 mmol), 2,6-dimethylbenzoquinone (40.8 mg, 0.3 mmol), Et₃N (30.3 mg, 0.3 mmol) and molecular sieve (4 Å, 120 mg) in toluene (0.6 mL) for 40 h at 4°C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes /Et₃N = 5/95/1) gave product (64 mg, 52%) as a colorless oil. α_D^{25} = -55.4 (*c* = 1.0, CHCl₃). ¹H NMR (400 MHz, d-CDCl₃) δ 8.01 (d, *J* = 8.8 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.42-7.44 (m, 3H), 7.35-7.38 (m, 1H), 7.28-7.33 (m, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 7.04-7.10 (m, 4H), 6.45-6.54 (m, 1H), 5.68 (d, *J* = 10.0 Hz, 1H), 5.63 (d, *J* = 17.2 Hz, 1H), 4.84 (d, *J* = 8.0 Hz, 1H), 3.52 (s, 3H), 2.27 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.2, 171.0, 164.5, 139.9, 137.3, 137.2, 137.1, 136.5, 130.5, 129.2, 129.1, 128.8, 128.5, 128.3, 128.1, 128.1, 127.8, 77.7, 72.1, 52.1, 21.3.

The analytical data of the compound **6d** was in complete agreement with compound **3e**.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 40/1/0.1, 254 nm absorbance). Major enantiomer (tR = 16.0 min), minor enantiomer (tR = 20.3 min): er = 88.5 :11.5.



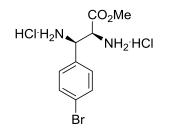
Methyl (2S,3S)-3-(((E)-allylidene)amino)-3-(benzo[b]thiophen-2-yl)-2-((diphenyl methylene)amino)propanoate (6e)


The reaction was performed with allyl amine (17.1 0.3 mmol), mg, benzo[b]thiophene-2-carboxaldehyde (48.7 mg, 0.3 mmol), methyl glycinate (75.3 mg, 0.3 mmol), Pd(OAc)₂ (3.4 mg, 0.015 mmol), (S,S)-Cy DIOP (10.1 mg, 0.018 mmol), 2,6-dimethylbenzoquinone (40.8 mg, 0.3 mmol), Et₃N (30.3 mg, 0.3 mmol) and molecular sieve (4 Å, 120 mg) in toluene (0.6 mL) for 62 h at 4 °C. After removing the solvent, purification by flash chromatography (EtOAC / hexanes $/Et_3N = 5/95/1$) gave product (82 mg, 60%) as a colorless oil. $\alpha_D^{25} = -43.4$ (c = 1.0, CHCl₃). ¹H NMR (400 MHz, d-CDCl₃) δ 8.05 (d, J = 8.8 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H) 1H), 7.62-7.65 (m, 2H), 7.42-7.44 (m, 3H), 7.38-7.43 (m, 1H), 7.31-7.34 (m, 2H), 7.23-7.30 (m, 3H), 7.13-7.15 (m, 2H), 6.56-6.62 (m, 1H), 5.74 (d, J = 10.0 Hz, 1H), 5.68 (d, J = 17.2 Hz, 1H), 5.30 (d, J = 7.6 Hz, 1H), 4.61 (d, J = 7.6 Hz, 1H), 3.60 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 170.6, 165.4, 143.9, 140.0, 139.6, 139.4, 136.9, 136.2, 130.7, 129.2, 128.9, 128.6, 128.2, 128.1, 124.2, 124.1, 123.5, 122.4, 121.6, 72.9, 71.8, 52.4.

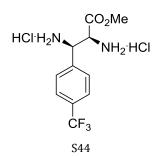
The analytical data of the compound **6e** was in complete agreement with compound **3n**.

Enantiomeric excess was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 40/1/0.1, 254 nm absorbance). Major enantiomer (tR = 21.7 min), minor enantiomer (tR = 43.6 min): er = 90 :10.

VI. General method for synthesis of vicinal diamino derivatives:


To a solution of 1-aza diene (0.3 mmol) in acetone (3 ml) was added HCI (1M, 1.2 mmol) dropwised at 0 $^{\circ}$ C. The reaction mixture was stirred at room temperature for 1 h.

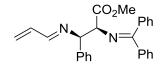
The acetone was removed in vacuo and the residue was washed with Et_2O (3 ml) twice. The residue was dried in vacuo to afford the product as a solid.



Methyl (2S,3R)-2,3-diamino-3-phenylpropanoate dihydrochloride (7a)

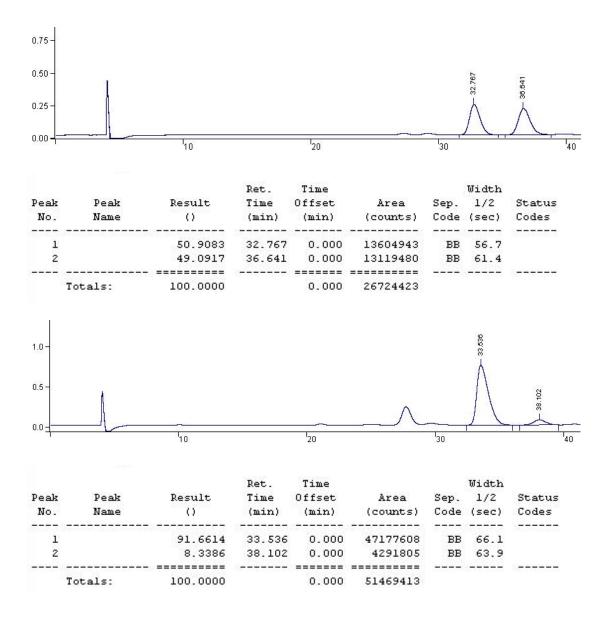
Light yellow solid, 74 mg, 92% yield, Mp = 202-204 °C. α_D^{25} = +11.0 (free amine, *c* = 1.0, CHCl₃). IR: (neat) 3644, 3331, 3263, 1754, 1528, 1422 cm⁻¹; ¹H NMR (500 MHz, d-DMSO) δ 9.57 (br, 3H), 9.26 (br, 3H), 7.54-7.56 (m, 2H), 7.46-7.48 (m, 3H), 5.04 (d, *J* = 7.5 Hz, 1H), 4.82 (d, *J* = 7.5 Hz, 1H), 3.63 (s, 3H). ¹³C NMR (125 MHz, d-DMSO) δ 166.4, 131.4, 129.9, 128.9, 128.2, 54.5, 54.3, 53.4. HRMS (ESI+) calcd. for C10H16Cl2N2O2 [M-2HCl+H] 195.1132, found 195.1128.

Methyl (2S,3R)-2,3-diamino-3-(4-bromophenyl)propanoate dihydrochloride (7b) white solid, 93 mg, 90% yield, Mp = 214-217 °C. α_D^{25} = +18.6 (free amine, *c* = 1.0, CHCl₃). IR: (neat) 3648, 3255, 2069, 1742, 1522 cm⁻¹; ¹H NMR (500 MHz, d-CD₃OD) δ 7.75 (d, *J* = 8.5Hz, 2H), 7.49 (d, *J* = 8.5Hz, 2H), 5.15 (d, *J* = 4.5 Hz, 1H), 4.97 (d, *J* = 4.5 Hz, 1H), 3.98 (s, 3H). ¹³C NMR (125 MHz, d- CD₃OD) δ 167.2, 134.1, 131.4, 130.2, 126.1, 55.3, 54.8, 54.6. HRMS (ESI+) calcd. for C10H15BrCl2N2O2 [M-2HCI+H] 273.0231, found 273.0233.

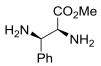

(2S,3R)-2,3-diamino-3-(4-trifluromethylphenyl)propanoate

dihydrochloride (7c)

Methyl


Light yellow solid, 90 mg, 90% yield, Mp = 221-225 °C. α_D^{25} = +17.4 (free amine, *c* = 1.0, CHCl₃). IR: (neat) 3661, 3355, 2078, 1740, 1536 cm⁻¹; ¹H NMR (500 MHz, d-CD₃OD) δ 7.89 (d, *J* = 8.0Hz, 2H), 7.81 (d, *J* = 8.0Hz, 2H), 5.32 (d, *J* = 5.0 Hz, 1H), 5.06 (d, *J* = 5.0 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (125 MHz, d- CD₃OD) δ 167.1, 135.5, 133.5 (q, *J* = 32 Hz), 130.5 (d, *J* = 12 Hz), 127.8, 125.1 (d, *J* = 271 Hz), 55.4, 54.9, 54.7. HRMS (ESI+) calcd. for C11H15F3Cl2N2O2 [M-2HCl+H] 263.1001, found 263.1002.

Preparation of the product 3b in gram scale:



An oven dried Pyrex microwave vial was charged with $Pd(OAc)_2$ (56 mg, 0.25 mmol), (S,S)-Cy DIOP (162 mg, 0.3 mmol), 2,6-dimethylbenzoquinone (700 mg, 5 mmol) and was sealed with a rubber septa. The vial was evacuated and filled with nitrogen three times in an interval of 10 min. In a separate sealed nitrogen flushed vial, methyl glycinate (1.25 g, 5 mmol) and *N*-allyl imine (750 mg, 5 mmol) were taken in freshly distilled toluene (10 ml). The solution was cannulated to the microwave vial with palladium catalyst. Et₃N (500 mg, 5 mmol) was added to the resulting turbid solution and was allowed to stir at 4 °C for 40 h. Upon completion (monitored by crude NMR), solvent was removed in vacuo and the residue was purified by flash chromatography over silica gel (pre-neutralized with 3% Et₃N in Hexanes), eluting with EtOAc / hexanes/ Et₃N, to give the product **3b** 1.33 g in 67% yield.

Enantiomeric excess was determined by using HPLC. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: Hept/*i*-PrOH/Et₃N = 100/1/0.1, 254 nm absorbance). Major enantiomer (tR = 33.5 min), minor enantiomer (tR = 38.1 min): er = 92:8.

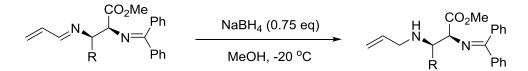
Determination of relative and absolute configuration of AAA products:

The relative stereochemistry of both diastereomers were determined by comparing the ¹H NMR spectra of diamines **7a** with the ones obtained from literature.⁴ The free diamines were obtained by dissolving the diaminium salts in 1 N NaOH solution and extraction with CH₂Cl₂ for three times.

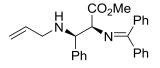
Major diastereomer: ¹H NMR (500 MHz, d-CDCl₃) δ 7.28-7.36 (m, 5H), 4.30 (d, *J* = 4.5 Hz, 1H), 3.67 (s, 3H), 3.65 (d, *J* = 4.5 Hz, 1H),1.71 (brs, 4H). ¹³C NMR (125 MHz,

d-CDCl₃) δ 174.6, 142.8, 128.7, 127.6, 126.9, 61.0, 58.4, 52.3.

The spectra data of the compound was in complete agreement with the literature of *cis*-diamine.^{4a}


Minor diastereomer: ¹H NMR (500 MHz, d-CDCl₃) δ 7.28-7.36 (m, 5H), 4.25 (d, *J* = 6.0 Hz, 1H), 3.71 (d, *J* = 6.0 Hz, 1H), 3.70 (s, 3H).

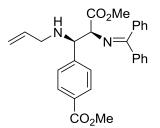
The spectra data of the compound was in complete agreement with the literature of *trans*-diamine.^{4b}


The absolute configuration was established by its optical rotation of α_D^{25} = +11.0° (*c*= 1.0, CHCl₃, 92:8 er) which agrees with that reported for the *S*,*R*-isomer α_D^{25} = +16.0° (*c*= 1.0, CHCl₃, >99%ee).⁵

VII. Structural Derivatization of AAA products

General procedure for reduction with NaBH₄:

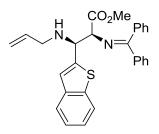
To a solution of 1-aza diene (0.3 mmol) in MeOH (1.5 ml) was added NaBH₄ (8.6 mg, 0.21 mmol) at -20 °C. The reaction mixture was stirred for 15 min. The methanol was removed in vacuo and the residue was washed with DCM (3 ml) twice. The dichloromethane solution was dried in vacuo and purified by flashing chromatography.



Methyl (2S,3R)-3-(allylamino)-2-((diphenylmethylene)amino)-3-

Phenylpropanoate (8a)

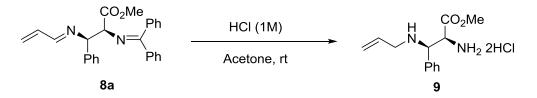
Colorless oil. 74 mg, 62% yield. α_D^{25} = -79.7 (*c*= 1.2, CHCl₃). IR: (neat) 3361, 3061, 2952, 1741, 1448 cm⁻¹; ¹H NMR (400 MHz, d-CDCl₃) δ 7.64 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.39-7.41 (m, 1H), 7.32-7.36 (m, 3H), 7.27-7.32 (m, 3H), 7.22-7.25 (m, 2H), 7.15-7.18


(m, 2H), 6.60 (d, J = 6.8 Hz, 2H), 5.82-5.92 (m, 1H), 5.09-5.15 (m, 1H), 5.04-5.07 (m, 1H), 4.44 (d, J = 4.8 Hz, 1H), 4.17 (d, J = 4.8 Hz, 1H), 3.64 (s, 3H), 3.20-3.26 (m, 1H), 2.99-3.05 (m, 1H). ¹³C NMR (125 MHz, d-CDCl₃) δ 172.2, 171.6, 140.5, 139.3, 137.3, 136.2, 130.7, 129.1, 128.6, 128.5, 128.4, 128.3, 128.1, 127.6, 127.4, 115.8, 71.6, 64.4, 52.2, 49.6. HRMS (ESI+) calcd. for C26H26N2O2 [M+Na] 421.1870, found 421.1882.

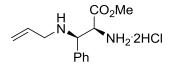
Methyl 4-((1R,2S)-1-(allylamino)-2-((diphenylmethylene)amino)-3-

methoxy-3-oxopropyl)benzoate (8b)

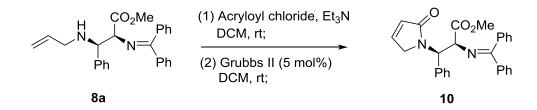
Colorless oil. 82 mg, 63% yield. α_D^{25} = -93.8 (*c*= 1.0, CHCl₃). IR: (neat) 3364, 3002, 2951, 1724, 1440 cm⁻¹; ¹H NMR (500 MHz, d-CDCl₃) δ 7.95 (d, *J* = 8.5 Hz, 2H), 7.65 (dd, *J* = 8.5, 3.5 Hz, 2H), 7.47-7.52 (m, 1H), 7.42-7.45 (m, 1H), 7.35-7.38 (m, 3H), 7.30-7.32 (m, 3H), 6.64 (d, *J* = 7.0 Hz, 2H), 5.84-5.92 (m, 1H), 5.11-5.15 (m, 1H), 5.07-5.10 (m, 1H), 4.52 (d, *J* = 5.5 Hz, 1H), 4.21 (d, *J* = 5.5 Hz, 1H), 3.92 (s, 3H), 3.68 (s, 3H), 3.23-3.27 (m, 1H), 3.01-3.06 (m, 1H). ¹³C NMR (125 MHz, d-CDCl₃) δ 172.6, 171.3, 167.2, 146.3, 139.1, 137.0, 136.0, 130.9, 129.7, 129.3, 129.1, 128.8, 128.6, 128.3, 128.2, 127.5, 116.1, 71.2, 64.1, 52.4, 52.3, 49.7. HRMS (ESI+) calcd. for C28H28N2O4 [M+H] 457.2122, found 457.2113.



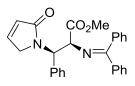
Methyl (2S,3S)-3-(allylamino)-3-(benzo[b]thiophen-2-yl)-2-((diphenylmethylene) amino)propanoate (8c)


Colorless oil. 79 mg, 58% yield. α_D^{25} = -77.1 (*c*= 1.0, CHCl₃). IR: (neat) 3338, 3060, 2918, 1741, 1625 cm⁻¹; ¹H NMR (400 MHz, d-CDCl₃) δ 7.71-7.75 (m, 3H), 7.66 (dd, *J*

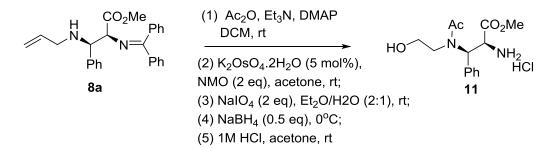
= 7.2, 1.2 Hz, 1H), 7.42-7.45 (m, 1H), 7.38-7.40 (m, 2H), 7.34-7.36 (m, 1H), 7.30-7.33 (m, 3H), 7.27-7.29 (m, 1H), 7.23-7.26 (m, 1H), 6.89 (d, J = 6.8 Hz, 2H), 5.82-5.92 (m, 1H), 5.15-5.19 (m, 1H), 5.08-5.11 (m, 1H), 4.75 (d, J = 4.0 Hz, 1H), 4.38 (d, J = 4.0 Hz, 1H), 3.68 (s, 3H), 3.31-3.36 (m, 1H), 3.10-3.15 (m, 1H). ¹³C NMR (100 MHz, d-CDCl₃) δ 173.3, 171.2, 146.5, 140.2, 139.5, 139.3, 137.1, 136.2, 130.9, 129.4, 128.8, 128.7, 128.3, 127.6, 124.2, 124.0, 123.4, 122.6, 122.5, 116.3, 70.8, 60.4, 52.5, 49.5. HRMS (ESI+) calcd. for C28H26N2O2S [M+H] 455.1788, found 455.1779.


Derivatization procedure for product 8a:

To a solution of 1-aza diene **8a** (40mg, 0.1 mmol) in acetone (1 ml) was added HCl (1M, 0.4 mmol) dropwised at 0 °C. The reaction mixture was stirred at room temperature for 1 h. The acetone was removed in vacuo and the residue was washed with Et_2O (3 ml) twice. The residue was dried in vacuo to afford the product as a white solid.



Methyl (2S,3R)-3-(allylamino)-2-amino-3-phenylpropanoate dihydrochloride (9) White solid, 22 mg, 95% yield, Mp = 210-212 °C. α_D^{25} = +15.0 (free amine, *c*= 0.2, CHCl₃). IR: (neat) 3318, 2921, 2853, 1737, 1450 cm⁻¹; ¹H NMR (500 MHz, d-CD₃OD) δ 7.57-7.62 (m, 3H), 7.45-7.47 (m, 2H), 5.99-6.07 (m, 1H), 5.56 (d, *J* = 10.0 Hz, 1H), 5.49 (d, *J* = 17.0 Hz, 1H), 5.03 (d, *J* = 4.5 Hz, 1H), 4.94 (d, *J* = 5.0 Hz, 1H), 3.98 (s, 3H). ¹³C NMR (125 MHz, d-CD₃OD) δ 167.3, 132.7, 131.4, 130.2, 128.7, 128.2, 126.0, 61.0, 54.6, 50.6. HRMS (ESI+) calcd. for C13H18CIN2O2 [M-2HCI+H] 235.1441, found 235.1441.

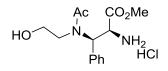

To a solution of allyl amine substrate **8a** (40 mg, 0.1 mmol) in DCM (1 ml) was added acryloyl chloride (9 mg, 0.1 mmol) dropwised at 0 °C. The reaction mixture was stirred at room temperature for 1 h. The reaction mixture was filtered through a short pad of silica gel and washed with DCM (5 ml). The solvent was removed in vacuo and the residue was used directly for the next step.

To a solution of the above residue in degassed DCM (3 ml) was added Grubbs II cat (4.2 mg, 0.005 mmol) under argon protection. The reaction mixture was stirred at room temperature for 6h. The reaction mixture was filtered through a short pad of Celite and washed with DCM (5 ml). The residue was dried in vacuo and purified by flashing chromatography.

Methyl (2S,3R)-2-((diphenylmethylene)amino)-3-(2-oxo-2,5-dihydro-1H-pyrrol -1-yl)-3-phenylpropanoate (10)

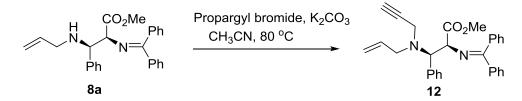
Colorless oil, 31 mg, 73% yield over two steps. α_D^{25} = -98.6 (*c*= 1.0, CHCl₃). IR: (neat) 3059, 2922, 1742, 1689, 1621, 1445 cm⁻¹; ¹H NMR (400 MHz, d-CDCl₃) δ 7.55 (dd, *J* = 8.4, 1.6 Hz, 2H), 7.44 (dd, *J* = 5.6, 1.2 Hz, 2H), 7.38-7.40 (m, 1H), 7.30-7.34 (m, 2H), 7.22-7.26 (m, 4H), 7.14-7.17 (m, 2H), 7.04-7.06 (m, 1H), 7.01-7.03 (m, 2H), 6.16 (d, *J* = 6.0 Hz, 1H), 6.06 (d, *J* = 5.6 Hz, 1H), 4.85 (d, *J* = 6.0 Hz, 1H), 4.31 (dt, *J* = 20.8, 2.0 Hz, 1H), 3.99 (dt, *J* = 20.4, 2.0 Hz, 1H), 3.62 (s, 3H). ¹³C NMR (100 MHz, d-CDCl₃) δ 172.6, 171.7, 170.9, 144.1, 139.7, 137.9, 135.9, 130.8, 129.3, 129.3, 128.8, 128.8, 128.4, 128.1, 127.9, 127.3, 68.0, 57.1, 52.6, 52.1. HRMS (ESI+) calcd. for C27H24N2O3 [M+H] 425.1860, found 425.1849.

To a solution of allyl amine substrate **8a** (40 mg, 0.1 mmol) in CH_2Cl_2 (0.5 ml) was added acetic anhydride (15 mg, 0.15 mmol), DMAP (1.2 mg, 0.01 mmol) and Et_3N (30 mg, 0.3 mmol) at rt. The reaction mixture was stirred at rt for 6h. Water was added to the reaction mixture and it was extracted with EtOAc (10ml X 3). The organic layers were dried by Na_2SO_4 and evaporated under vacuum, and the residue was used for the next step.

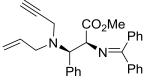

A solution of $K_2OsO_4.2H_2O$ (2 mg, 0.005 mmol) and NMO (23.4 mg, 0.2 mmol) in water (0.1 ml) was added dropwise to a solution of **8a** acetate in acetone (1 ml). The reaction was stirred for 4h at rt. $Na_2S_2O_4$ (1ml, 2M solution) was added, the mixture was stirred for 30 min and then filtered through a pad of Celite, the solvent was removed in vacuo.

The crude product was dissolved in Et_2O/H_2O (1ml, 2:1). NalO₄ (43 mg, 0.2 mmol) was added, and the reaction mixture was vigorously stirred for 1h at rt. Water (5 ml) and EtOAc (5 ml) was added, the aqueous layer was separated and extracted with EtOAc (3 X 5 ml). The organic layers were dried by Na₂SO₄ and concentrated in vacuo.

To a solution of the crude residue in MeOH (0.5 ml) was added $NaBH_4$ (2 mg, 0.05 mmol) at 0 °C. The reaction mixture was stirred for 5 min. The methanol was removed in vacuo and the residue was washed with DCM (3 ml) twice. The residue was dried in vacuo.

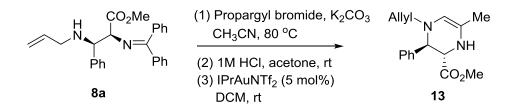

The residue was dissolved in acetone (1 ml) was added HCI (1M, 0.4 mmol) dropwised at 0 °C. The reaction mixture was stirred at room temperature for 1 h. The acetone was removed in vacuo and the residue was washed with Et_2O (3 ml) twice. The residue was dried in vacuo to afford the product as a white solid.

S51

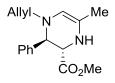


Methyl (2S,3R)-2-amino-3-(N-(2-hydroxyethyl)acetamido)-3-phenylpropanoate (11)

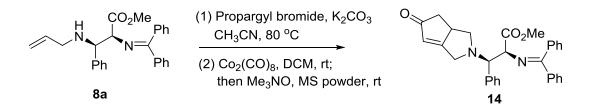
White solid, mp = 200-202 °C. 17 mg, 55% yield over five steps. α_D^{25} = 13.8 (*c*= 1.0, CHCl₃). IR: (neat) 3296, 3060, 2950, 2816, 1740, 1623, 1446 cm⁻¹; ¹H NMR (500 MHz, d-CD₃OD) δ 7.48-7.54 (m, 5H), 5.14 (d, *J* = 7.0 Hz, 1H), 4.76 (d, *J* = 7.0 Hz, 1H), 3.79-3.84 (m, 2H), 3.65 (s, 3H), 3.05-3.09 (m, 2H), 2.09 (s, 3H). ¹³C NMR (125 MHz, d-CD₃OD) δ 174.3, 170.1, 131.9, 131.5, 130.6, 129.9, 68.9, 65.9, 64.2, 57.3, 56.0, 22.4. HRMS (ESI+) calcd. for C14H20N2O4 [M-HCI+Na] 303.1321, found 303.1311.


To a solution of allyl amine substrate **8a** (40 mg, 0.1 mmol) in CH₃CN (0.5 ml) was added propargyl bromide (30 mg, 80% wt in toluene, 0.2 mmol) and K₂CO₃ (70 mg, 0.5 mmol) at rt. The reaction mixture was stirred at 80 °C overnight. The reaction mixture was cooled to rt and quenched with water (5 ml). The reaction mixture was then extracted with ethyl acetate (5 ml) three times. The organic layers were dried with Na₂SO₄, and removed in vacuo and the residue was purified by flashing chromatography.

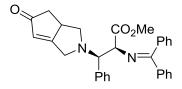
Methyl (2S,3R)-3-(allyl(prop-2-yn-1-yl)amino)-2-((diphenylmethylene)amino) -3-phenylpropanoate (12)


Colorless oil, 37 mg, 85% yield. α_D^{25} = -63.1 (*c*= 1.0, CHCl₃). IR: (neat) 3296, 3060, 2950, 2816, 1740, 1623, 1446 cm⁻¹; ¹H NMR (400 MHz, d-CDCl₃) δ 7.67-7.69 (m, 2H),

7.33-7.41 (m, 6H), 7.19-7.24 (m, 5H), 6.96 (d, J = 5.6 Hz, 2H), 5.74-5.84 (m, 1H), 5.21 (d, J = 17.2 Hz, 1H), 5.13 (d, J = 8.4 Hz, 1H), 4.65 (d, J = 6.4 Hz, 1H), 4.57 (d, J = 6.8 Hz, 1H), 3.55 (s, 3H), 3.51-3.54 (m, 1H), 3.35-3.39 (m, 1H), 2.98-3.07 (m, 2H), 2.12 (t, J = 2.4 Hz, 1H). ¹³C NMR (100 MHz, d-CDCl₃) δ 171.4, 171.4, 140.0, 137.5, 136.6, 136.2, 130.5, 129.5, 129.3, 128.8, 128.5, 128.3, 128.2, 128.2, 127.7, 117.7, 80.6, 72.5, 68.9, 67.3, 53.7, 52.2, 39.9. HRMS (ESI+) calcd. for C29H28N2O2 [M+H] 437.2224, found 437.2215.


To a solution of **12** (33 mg, 0.08 mmol) in acetone (1 ml) was added HCI (1M, 0.4 mmol) dropwised at 0 $^{\circ}$ C. The reaction mixture was stirred at room temperature for 1 h. The acetone was removed in vacuo and the residue was washed with Et₂O (3 ml) twice. The residue was dried in vacuo to afford the product as a white solid. The free amine was obtained by dissolving the diamine salts in 1 N NaOH solution and extraction with DCM for three times.

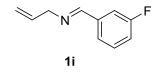
To a solution of free amine (16 mg, 0.07 mmol) in DCM (0.3 ml) was added the $IPrAuNTf_2$ (3 mg, 0.0035 mmol) at rt. The reaction mixture was stirred at rt for 6h. The solvent was removed under vacuum and the residue was purified by flashing chromatography.



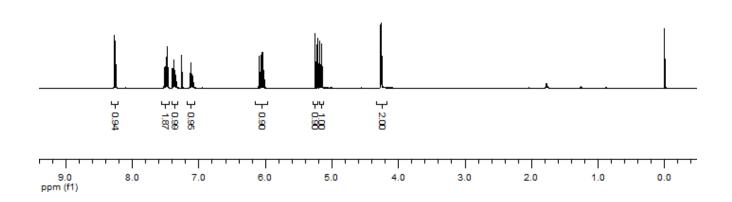
Methyl

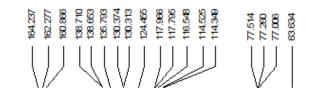
(2S,3R)-4-allyl-6-methyl-3-phenyl-1,2,3,4-tetrahydropyrazine-2-carboxylate (13) Colorless oil, 14 mg, 56% yield over three steps. α_D^{25} = +33 (*c*= 1.0, CHCl₃). IR: (neat) 2921, 2852, 1745, 1674, 1643 cm⁻¹; ¹H NMR (300 MHz, d-CDCl₃) δ 7.36-7.41 (m, 3H), 7.16 (dd, *J* = 7.2, 1.5 Hz, 2H), 5.65-5.78 (m, 1H), 5.23 (d, *J* = 10.2 Hz, 1H), 5.14 (d, *J* = 17.1 Hz, 1H), 5.01 (d, J = 2.1 Hz, 1H), 4.85 (d, J = 1.5 Hz, 1H), 4.72-4.79 (m, 1H), 3.80 (s, 3H), 3.22 (d, J = 8.1 Hz, 1H), 3.17 (d, J = 6.9 Hz, 1H), 2.40 (d, J = 0.9 Hz, 3H). ¹³C NMR (125 MHz, d-CDCl₃) δ 169.7, 166.5, 156.7, 137.2, 131.8, 129.4, 128.7, 126.6, 119.5, 65.7, 59.2, 53.3, 47.5, 21.8. HRMS (ESI+) calcd. for C16H20N2O2 [M+H] 273.1525, found 273.1530.

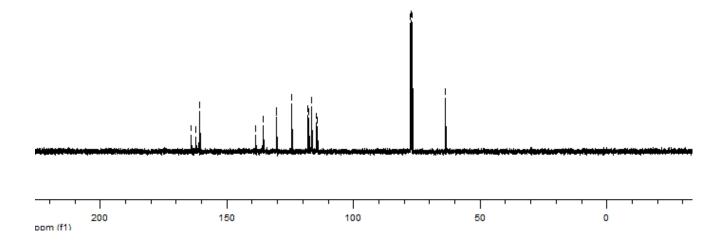
To a solution of **12** (33 mg, 0.08 mmol) in DCM (1 ml) was added $Co_2(CO)_8$ (28 mg, 0.08 mmol) at rt. The reaction mixture was stirred at room temperature for 2 h. The starting material was consumed as checked by TLC. To the reaction mixture was added the MS powder (4 Å, 50 mg), followed by Me₃NO (37 mg, 0.5 mmol) at rt. The reaction mixture was vigorously stirred for 6h. The mixture was filtered through a small pad of Celite and washed with DCM (10 ml). The solvent was removed under vacuum and the residue was purified by flashing chromatography.

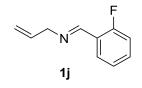

Methyl (2S,3R)-2-((diphenylmethylene)amino)-3-(5-oxo-3,3a,4,5-tetrahy drocyclopenta[c]pyrrol-2(1H)-yl)-3-phenylpropanoate (14)

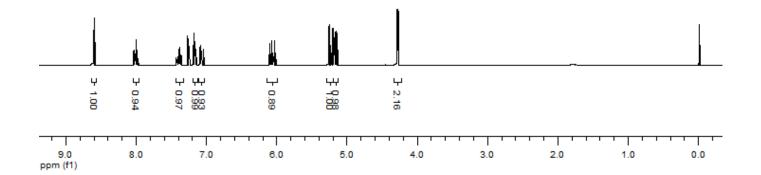
Colorless oil, 30 mg, 65% yield over two steps. α_D^{25} = -72.1 (*c*= 1.0, CHCl₃). IR: (neat) 2920, 1738, 1709, 1627, 1236 cm⁻¹; dr =1:1, ¹H NMR (500 MHz, d-CDCl₃) δ 7.87-7.89 (m, 4H), 7.61-7.65 (m, 5H), 7.56-7.59 (m, 5H), 7.51-7.54 (m, 2H), 7.46-7.48 (m, 8H), 7.40-7.42 (m, 2H), 7.21-7.22 (m, 2H), 6.99-7.01 (m, 2H), 6.07 (s, 1H), 6.02 (s, 1H), 4.82 (d, *J* = 6.5 Hz, 1H), 4.68 (s, 2H), 4.65 (d, *J* = 7.0 Hz, 1H), 4.35 (d, *J* = 12.5 Hz, 1H), 3.90-3.95 (m, 2H), 3.81 (s, 3H), 3.73 (s, 3H), 3.65 (d, *J* = 12.5 Hz, 1H), 3.46-3.50 (m, 1H), 3.33-3.37 (m, 1H), 3.28-3.30 (m, 1H), 3.25-3.26 (m, 1H), 2.76-2.81 (m, 1H),

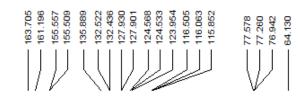

2.67-2.72 (m, 1H), 2.42-2.45 (m, 1H), 2.26-2.32 (m, 1H), 2.16-2.20 (m, 1H), 2.07-2.11 (m, 1H). ¹³C NMR (125 MHz, d-CDCl₃) δ 210.0, 209.9, 186.9, 186.8, 171.8, 171.6, 171.5, 171.3, 139.8, 138.6, 137.6, 136.1, 136.1, 130.8, 130.7, 130.3, 129.3, 129.2, 129.2, 129.0, 128.9, 128.8, 128.6, 128.5, 128.5, 128.4, 128.4, 128.3, 128.1, 128.0, 127.9, 124.3, 124.2, 70.4, 70.0, 69.9, 69.8, 56.1, 55.2, 52.4, 52.2, 51.9, 51.5, 46.0, 45.6, 40.5, 40.3. HRMS (ESI+) calcd. for C30H28N2O3 [M+H] 465.2173, found 465, 2164.

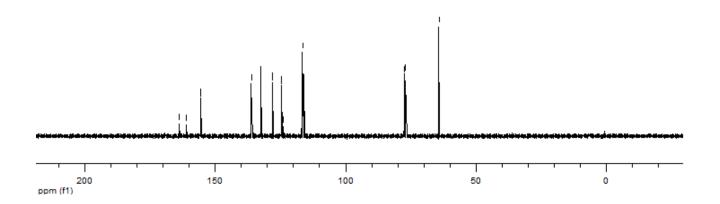

VIII. References:

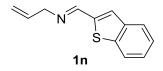

- (a) Trost, B. M.; Mahapatra, S.; Hansen, M. *Angew. Chem. Int. Ed.* 2015, *54*, 6032 and references cited in. (b) Ickes, A. R.; Ensign, S. C.; Gupta, A. K.; Hull, K. L. *J. Am. Chem. Soc.* 2014, *136*, 11256. (c) Coulthard, G.; Unsworth, W. P.; Taylor, R. J. K. *Tetrahedron Lett.* 2015, 3113. (d) Georg, G. I.; Kant, J.; He, P.; Ly, A. M.; Lampe, L. *Tetrahedron Lett.* 1988, 2409.
- (a) O'Donnell, M. J.; Polt, R. L. J. Org. Chem., **1982**, 47, 2663. (b) Danner, P.;
 Bauer, M.; Phukan, P.; Maier, M. E. Eur. J. Org. Chem. **2005**, 317.
- (a) Dang, T. P.; Kagan, H. B. *Chem. Commun.*, **1971**, 481. (b) Kagan, H. B.; Dang,
 T. P. *J. Am. Chem. Soc.* **1972**, *94*, 6429. (c) Koschker, P.; Kahny, M.; Breit, B. *J. Am. Chem. Soc.* **2015**, *137*, 3131.
- (a) Viso, A.; Fernández de la Pradilla, R.; López-Rodríguez, M. L.; García, A.; Flores, A.; Alonso, M. J. Org. Chem. 2004, 69, 1542. (b) Cremonesi, G.; Dalla Croce, P.; Gallanti, M.; La Rosa, C. Tetrahedron 2014, 70, 2054.
- Arai, T.; Mishiro, A.; Matsumura, E.; Awata, A.; Shirasugi, M. Chem. Eur. J. 2012, 18, 11219.

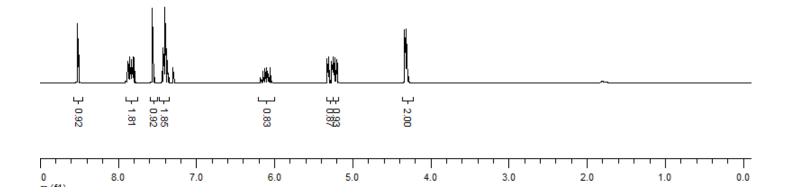


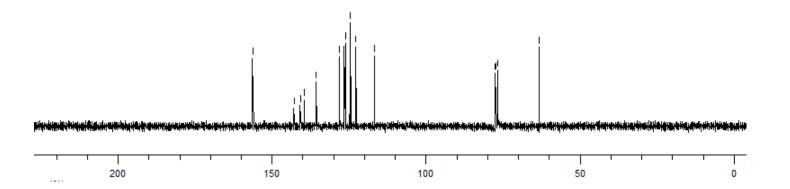

1

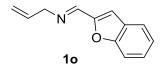


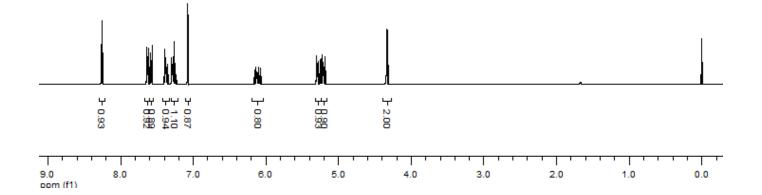


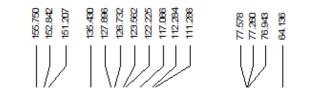


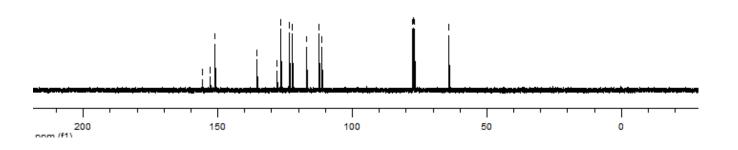

Т

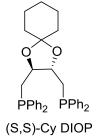


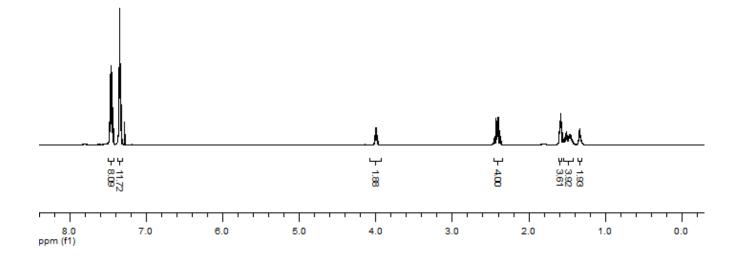

Т

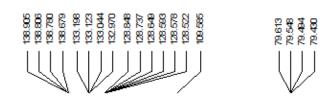




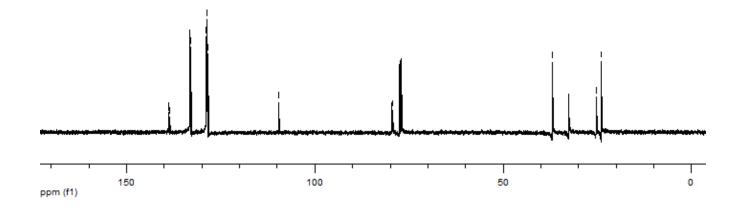


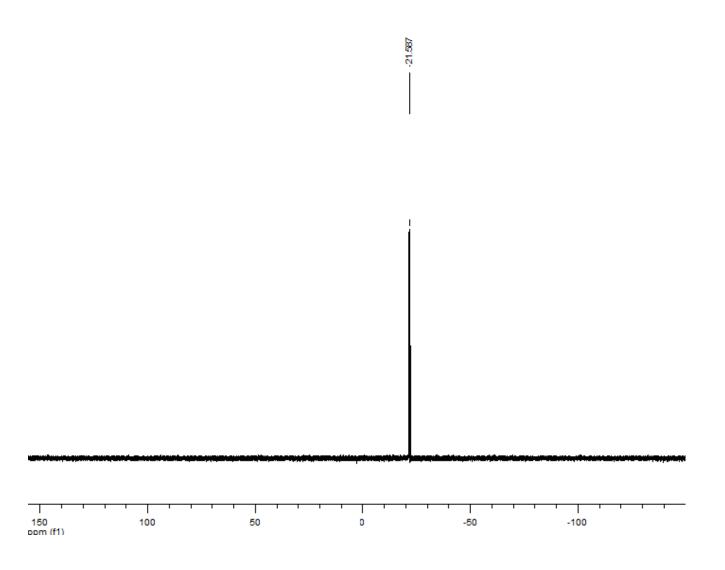


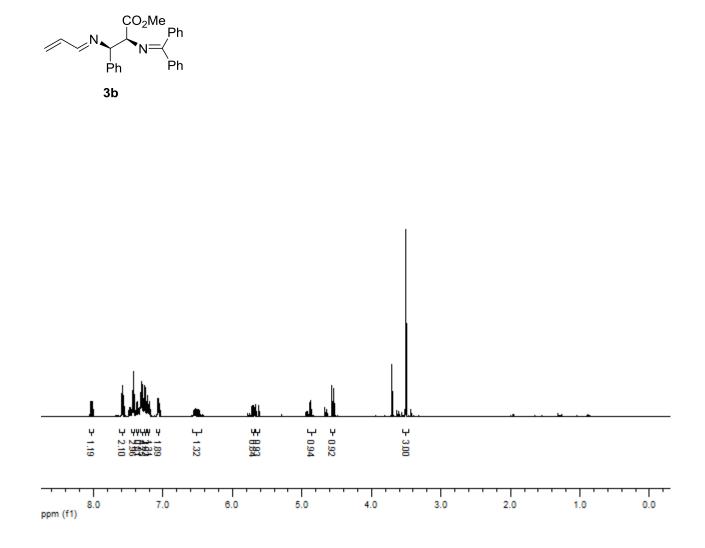


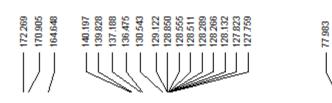


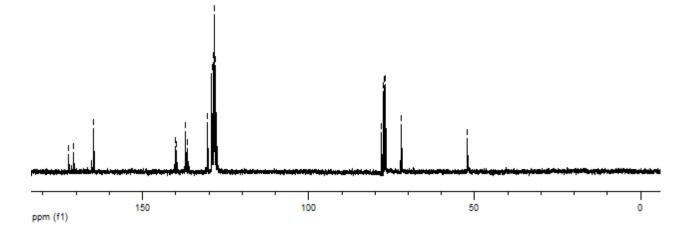
Т

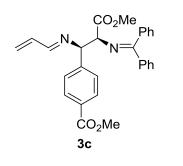


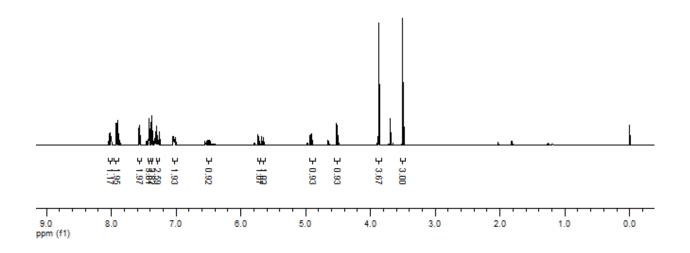


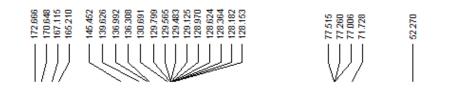


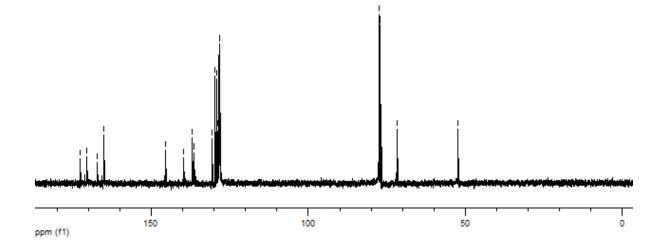


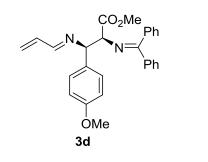


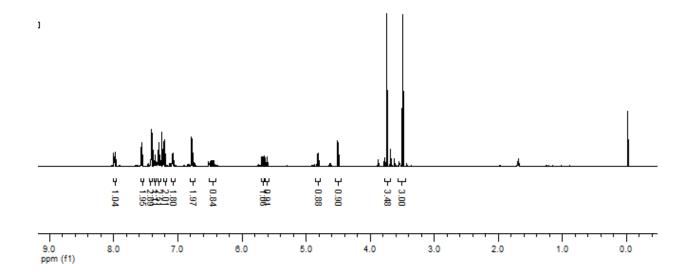


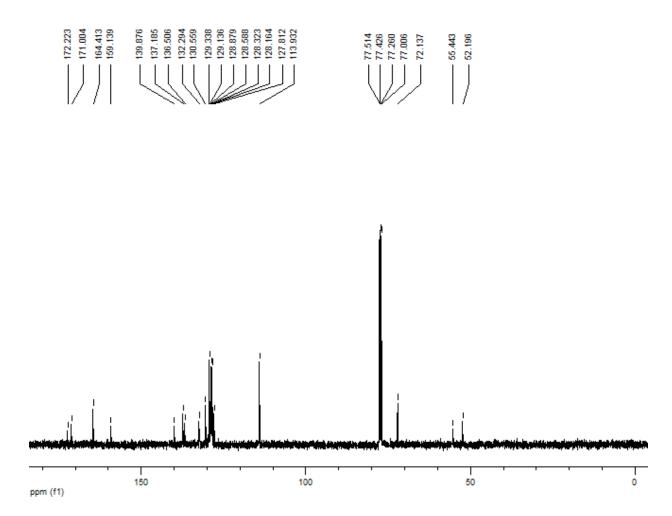


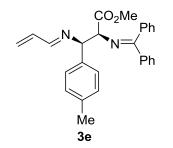


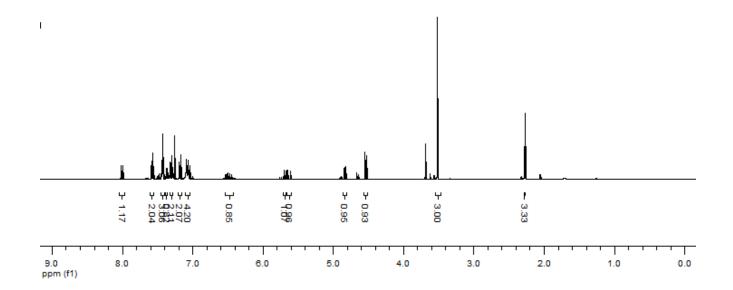

52.124

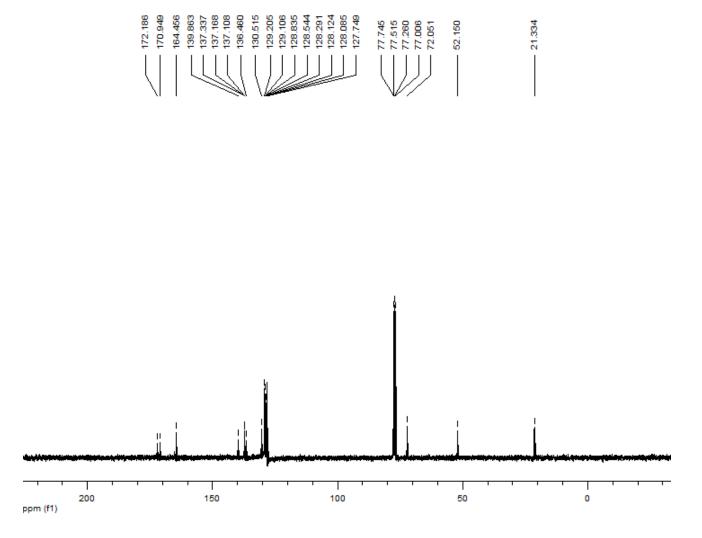


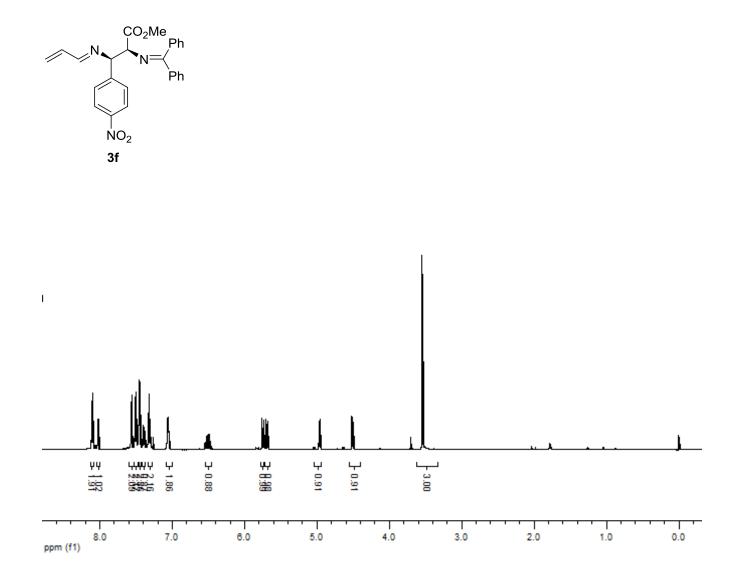


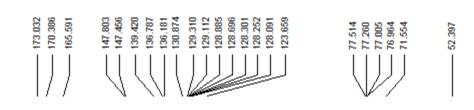


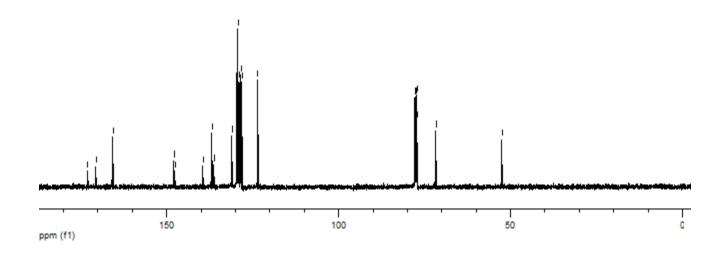


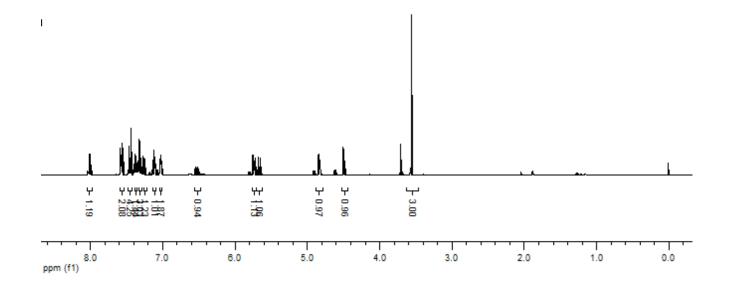


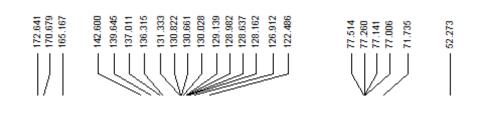


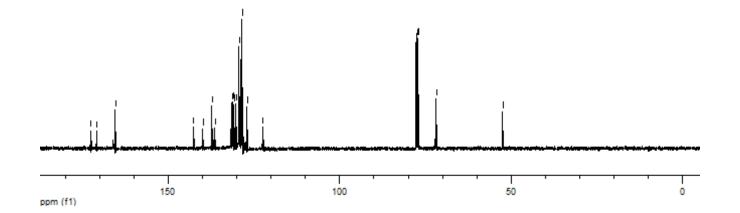


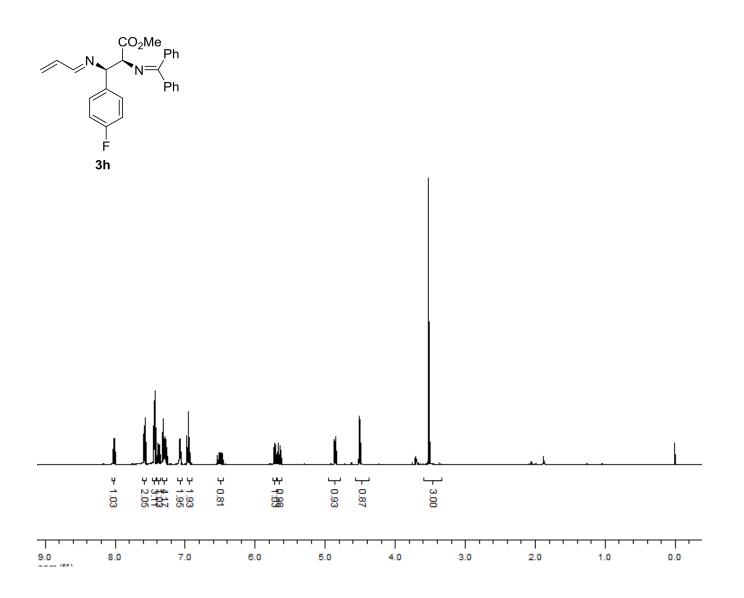


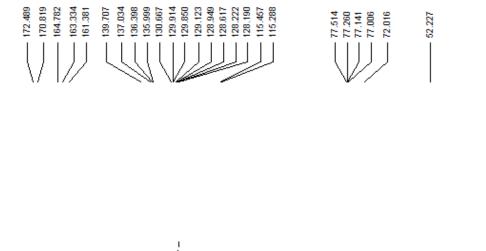


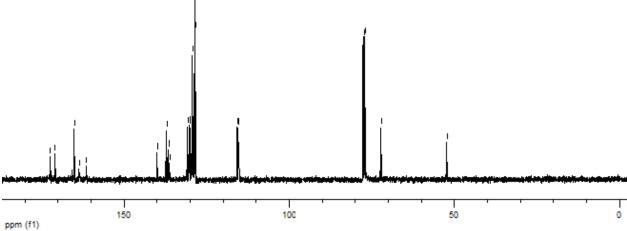


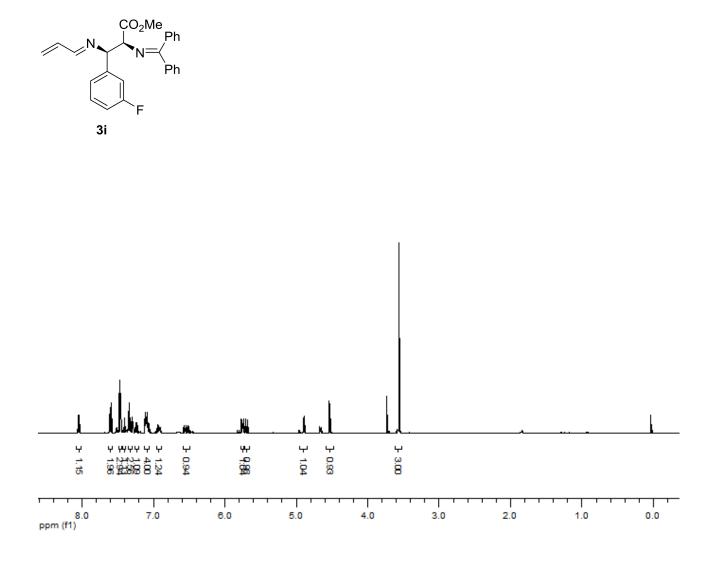

S75

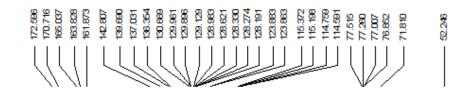


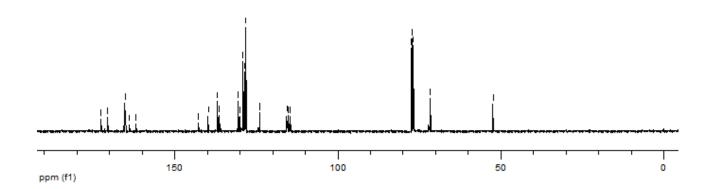


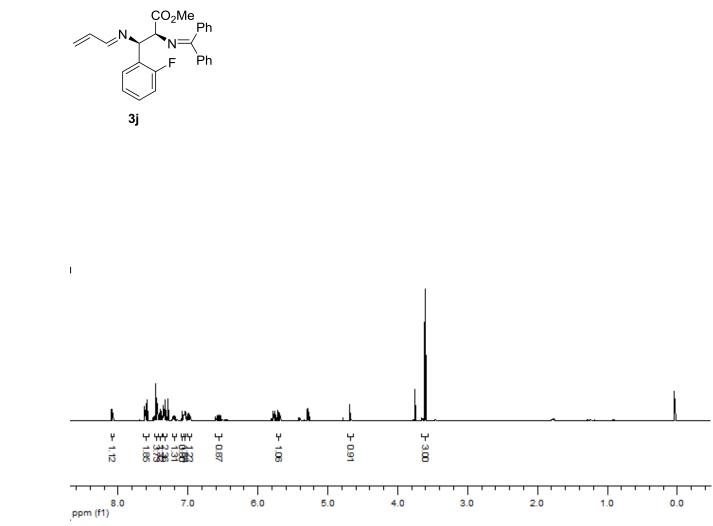


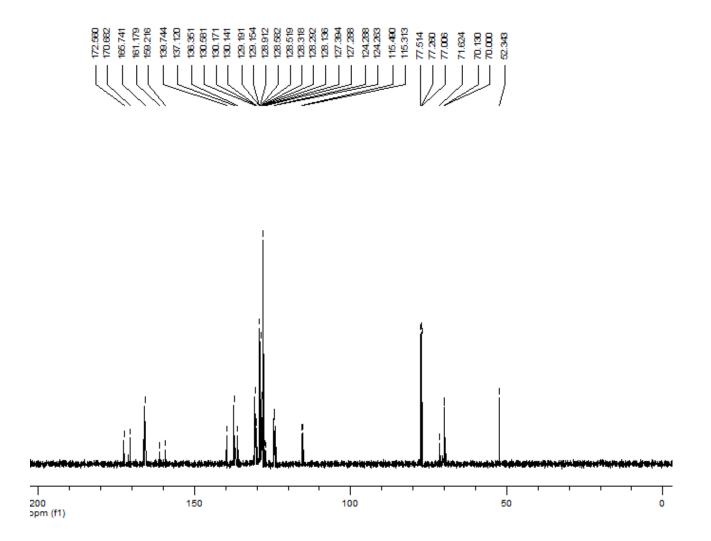


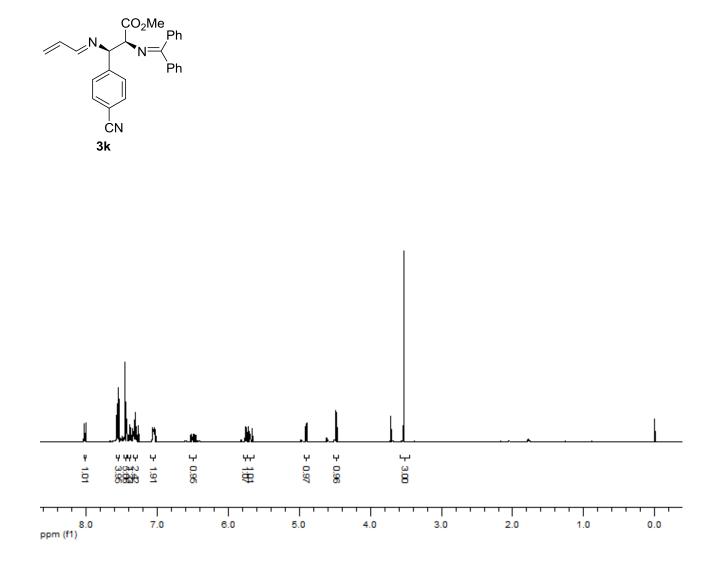


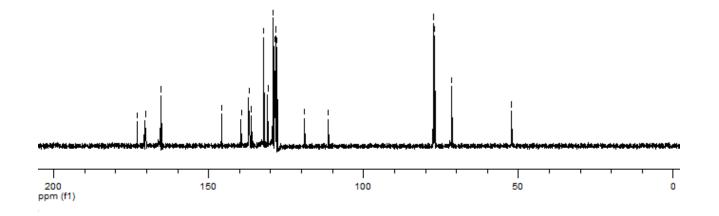


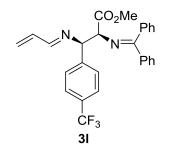

1

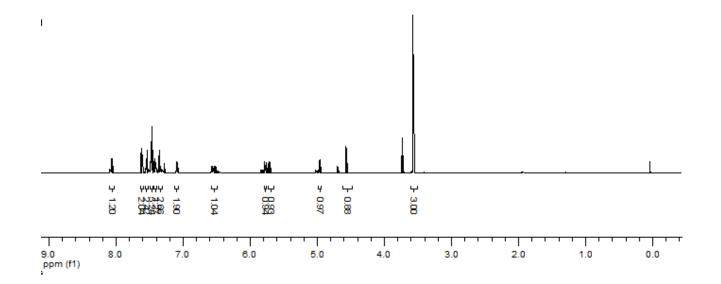


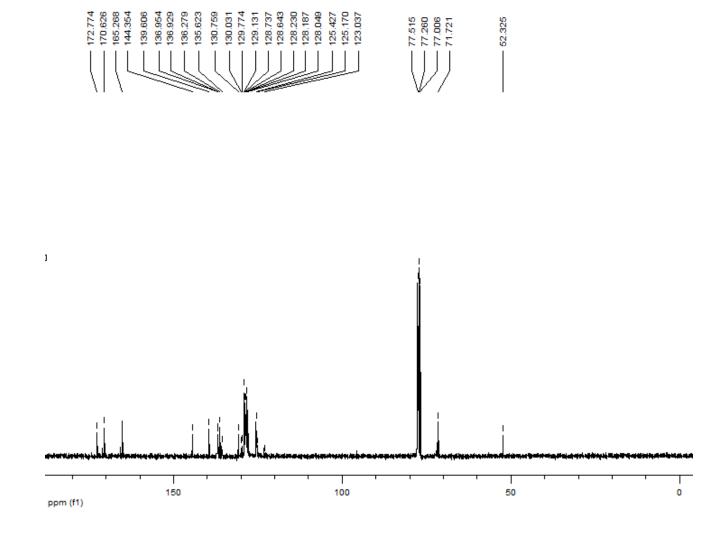



1

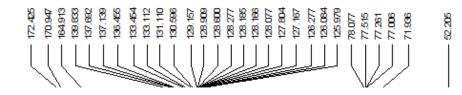


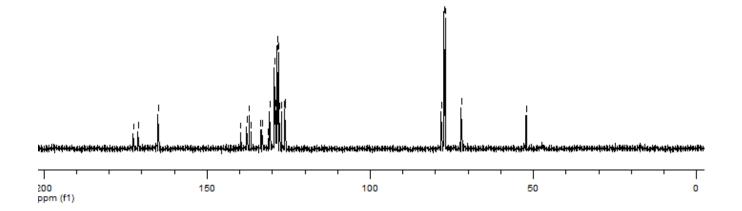


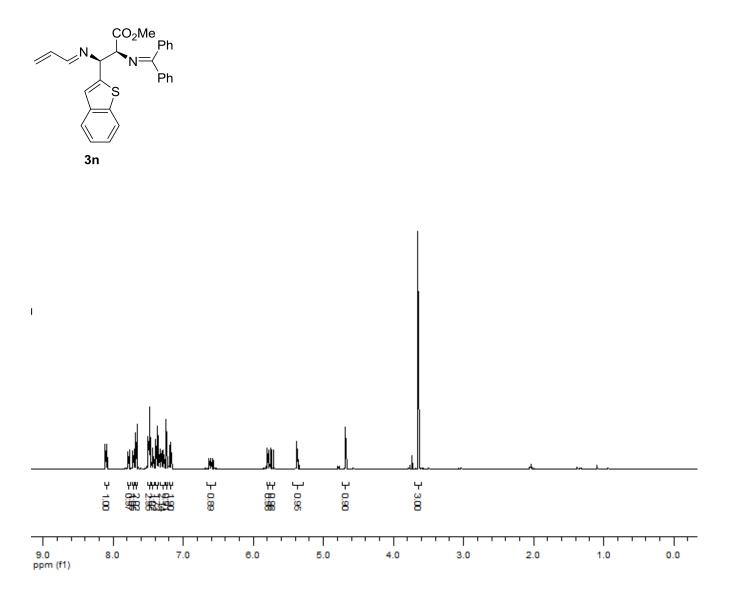


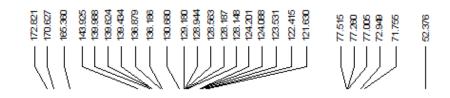


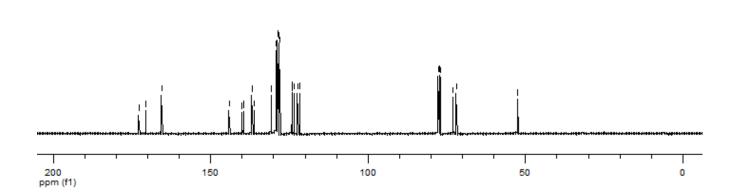


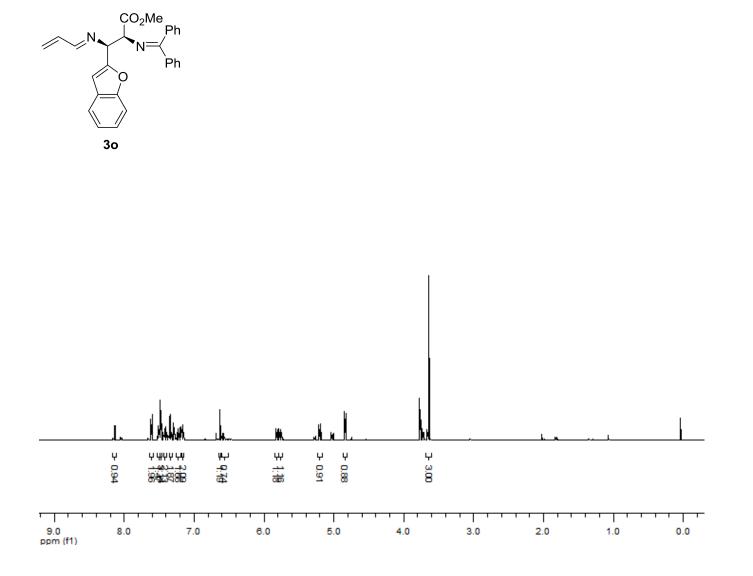


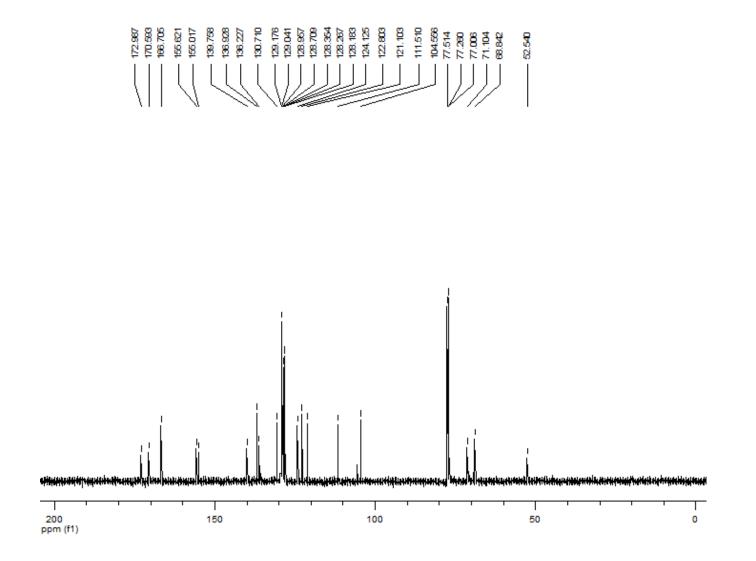


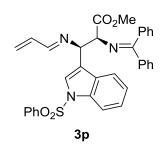


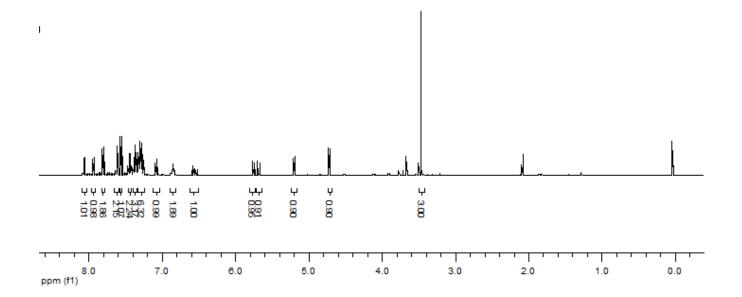


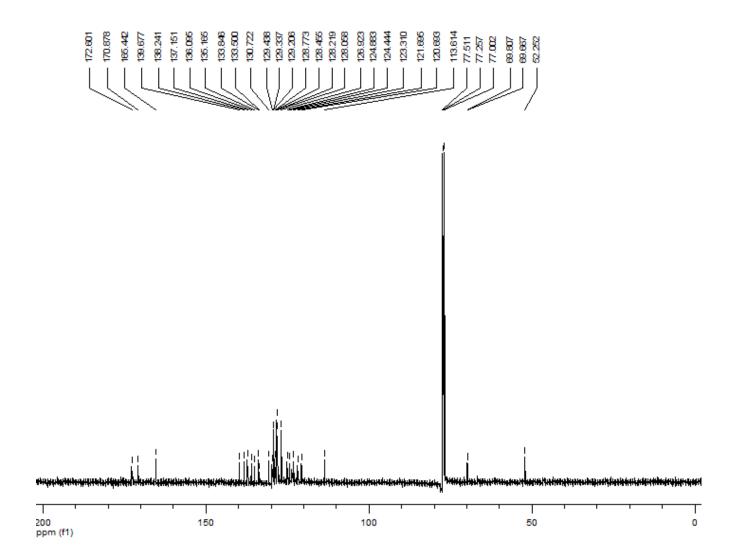


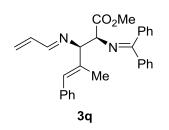


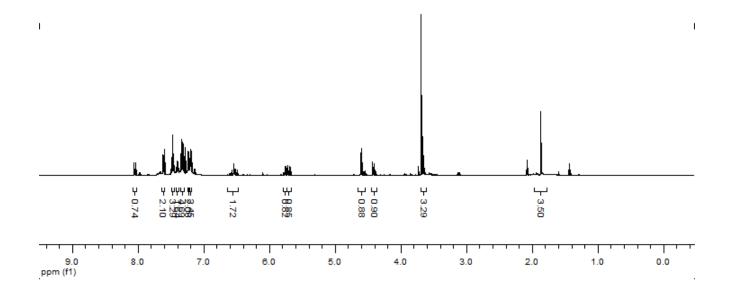


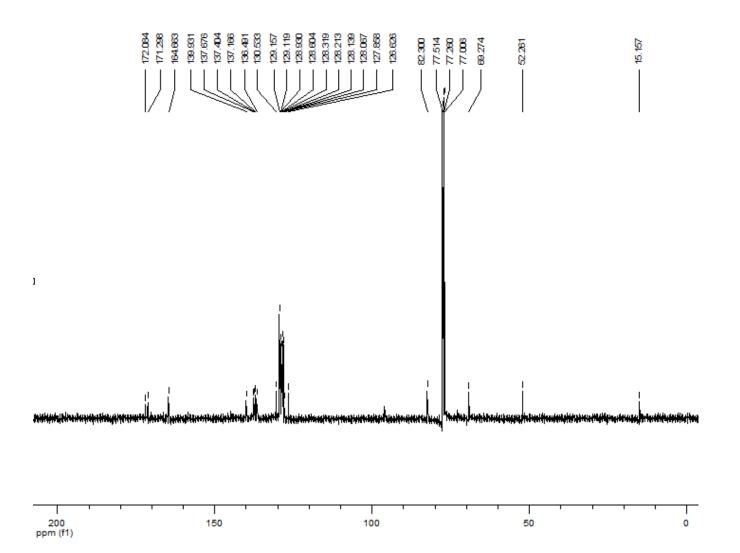

1

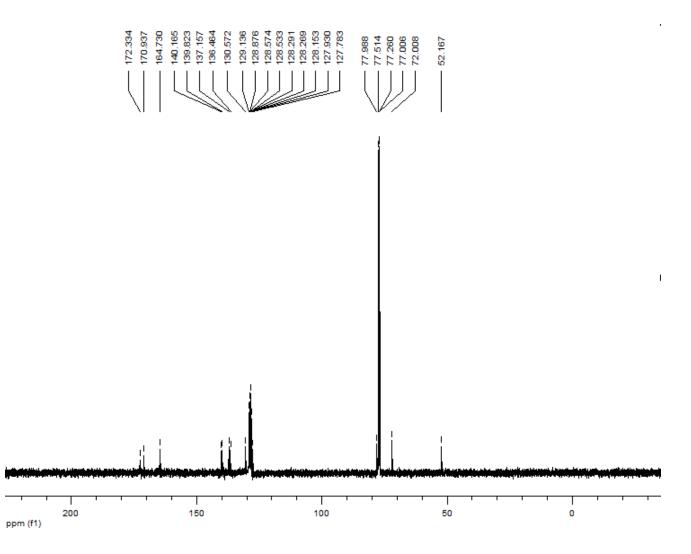


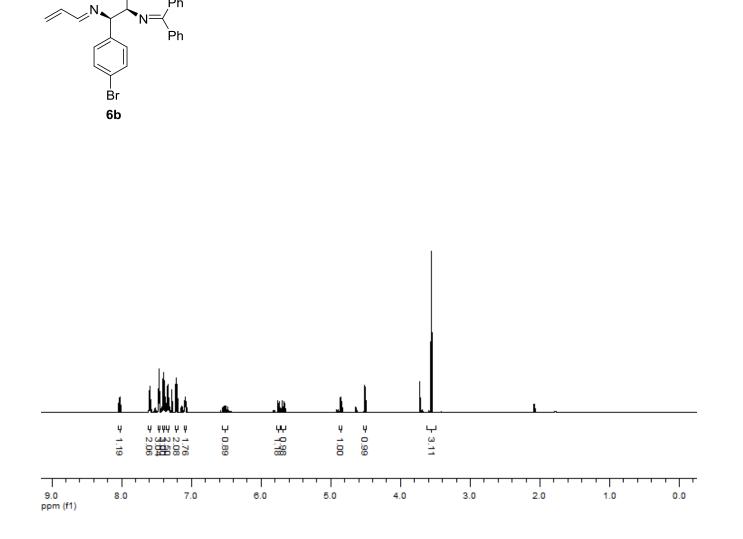


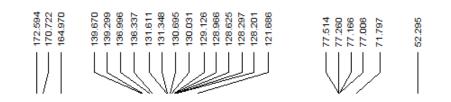




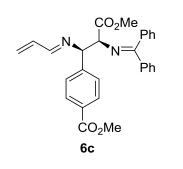


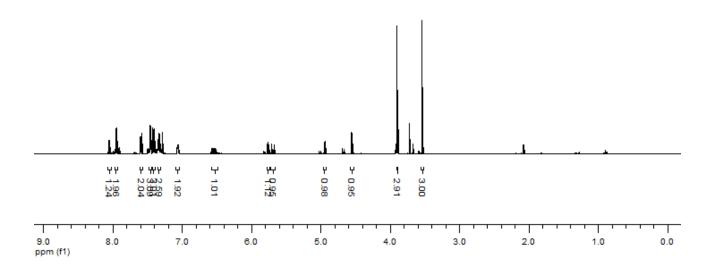


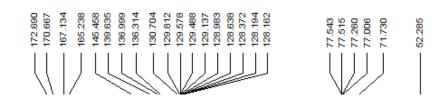


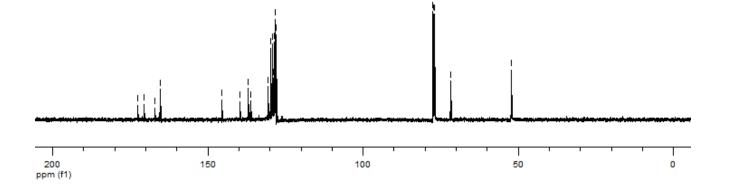


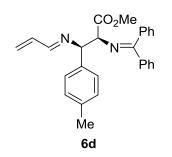
$$\mathbb{A} \xrightarrow{\mathsf{CO}_2\mathsf{Me}}_{\mathsf{Ph}} \mathbb{A} \xrightarrow{\mathsf{Ph}}_{\mathsf{Ph}} \mathbb{A}$$

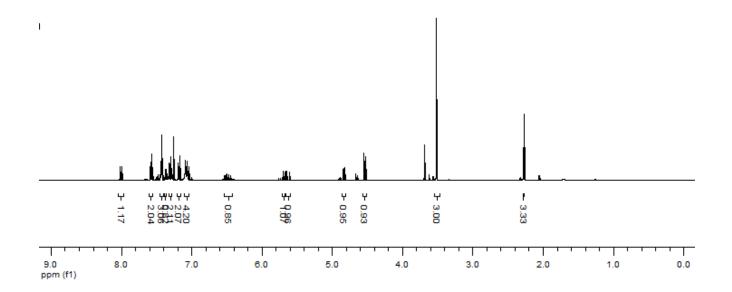


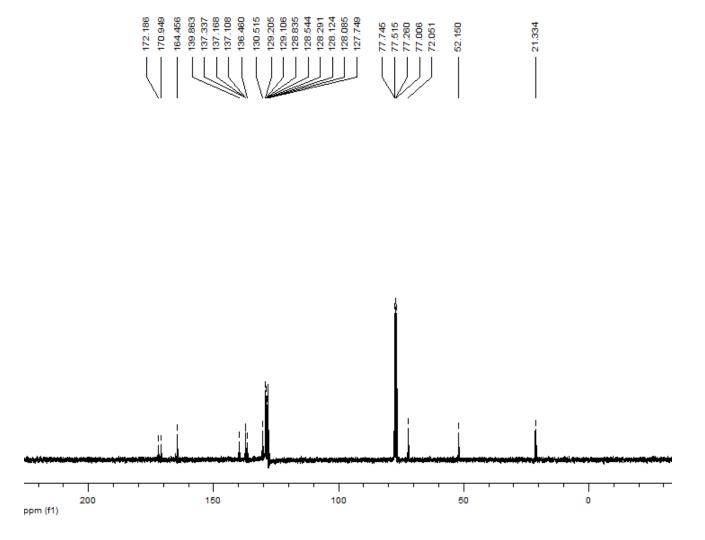

CO₂Me ′ _ Ph

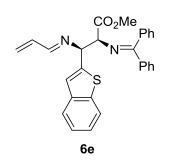


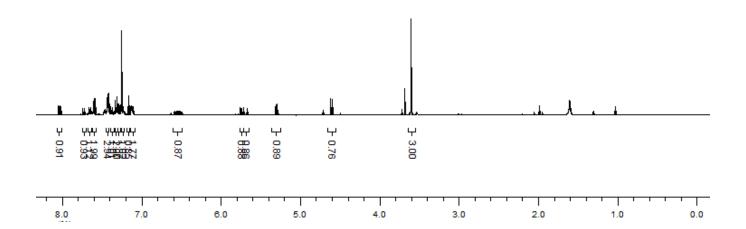

Т

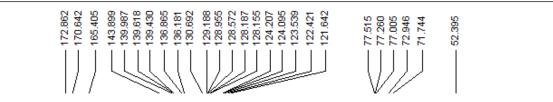


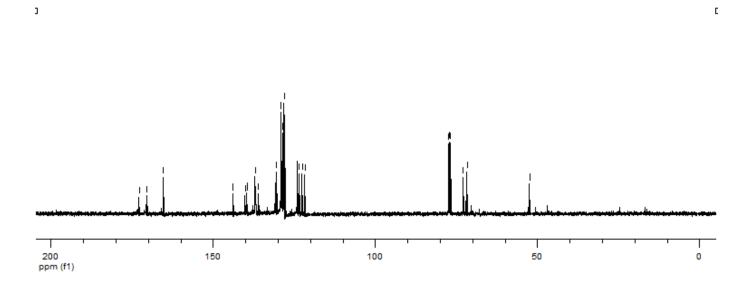


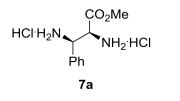


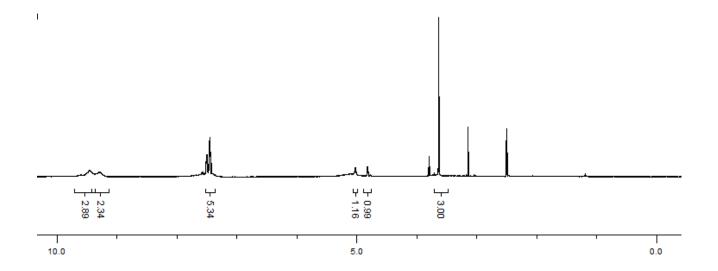




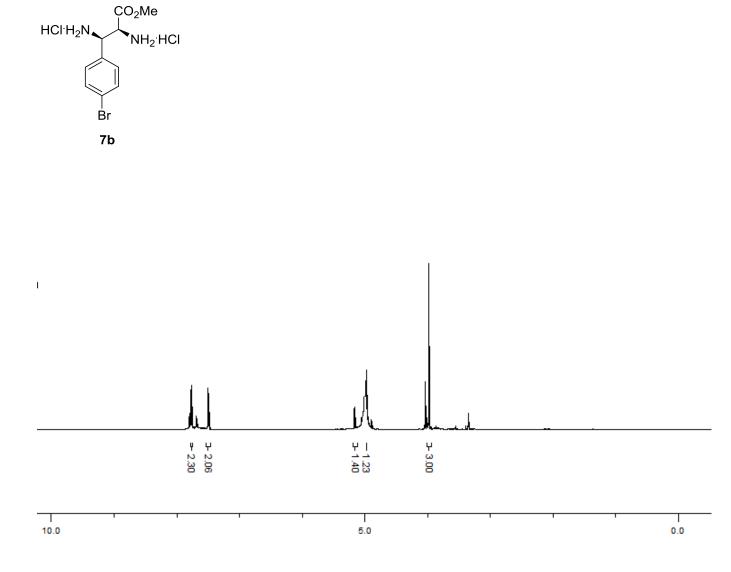


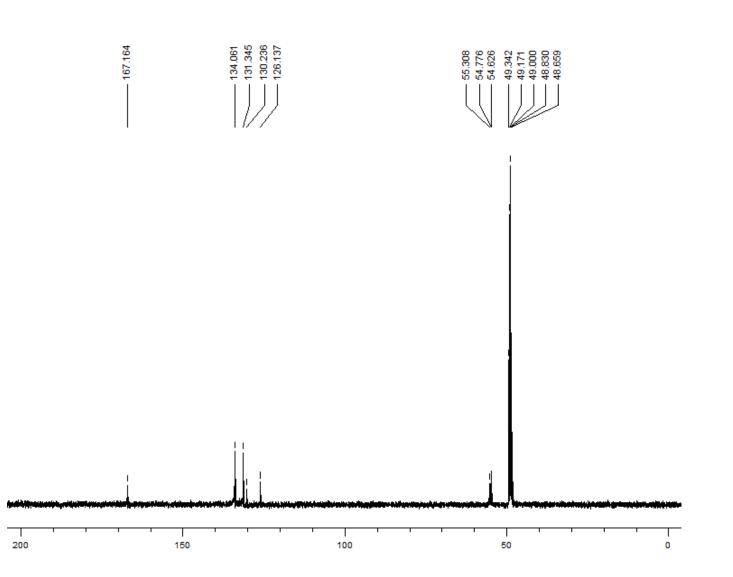


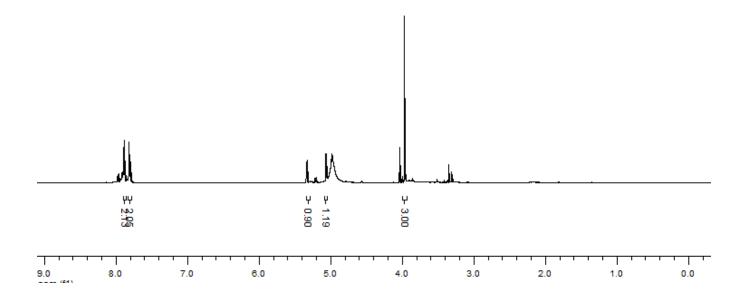


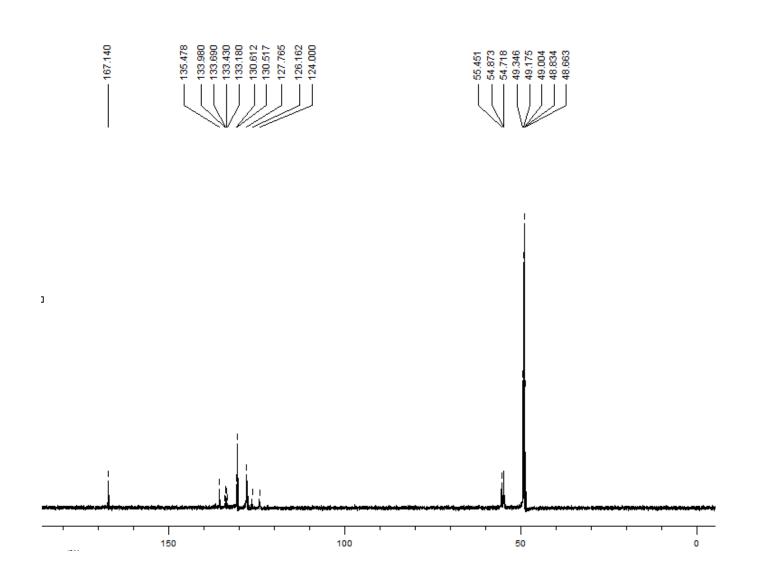


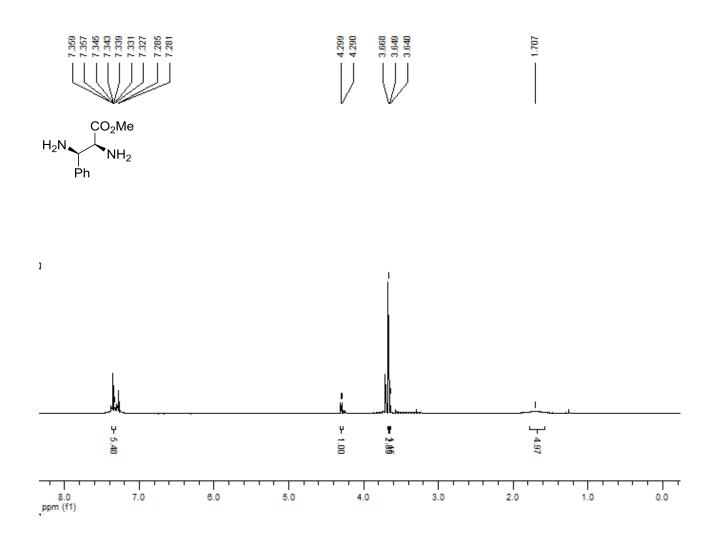


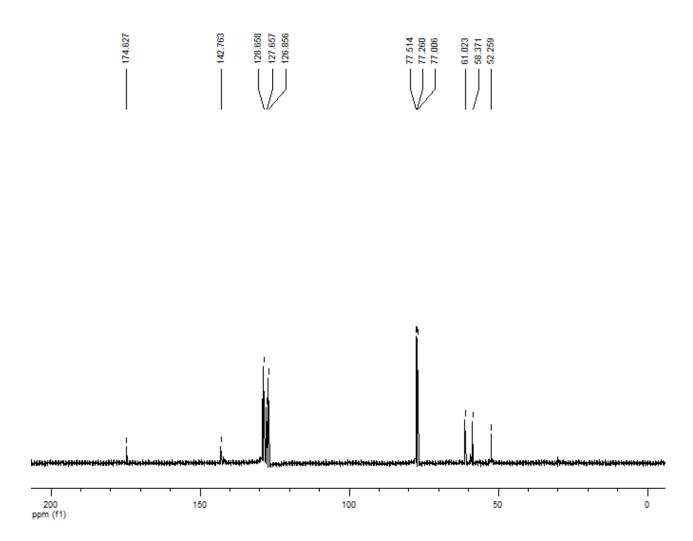


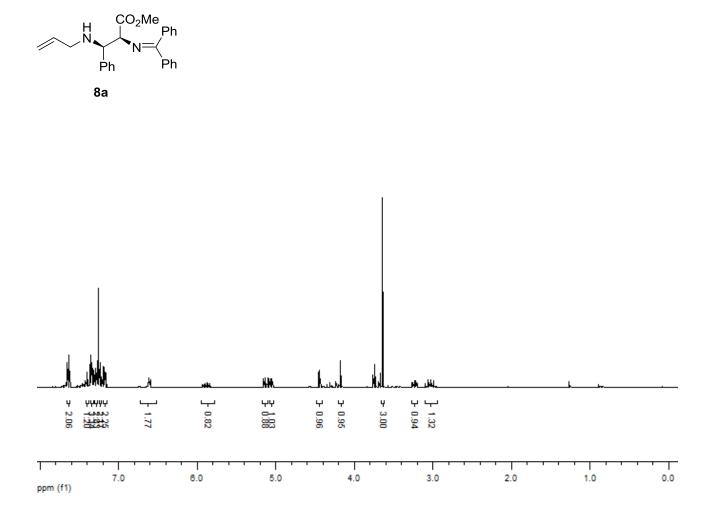


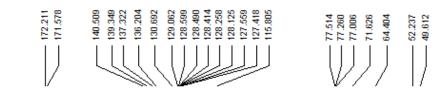


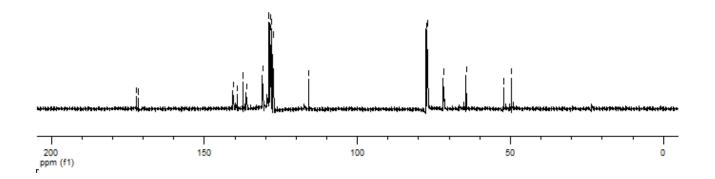


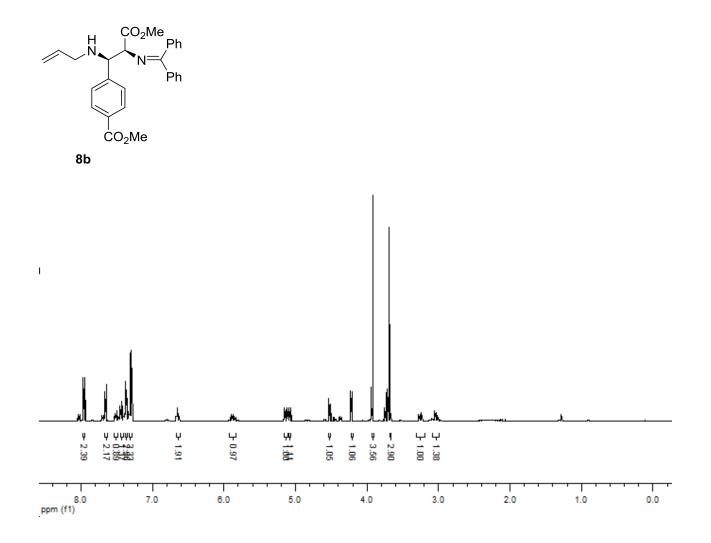


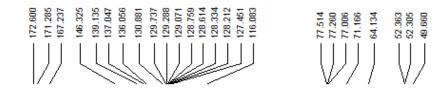


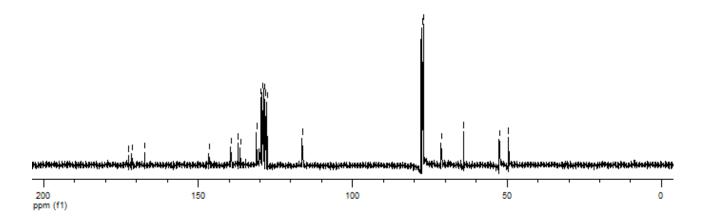


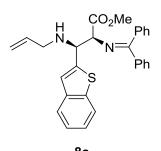


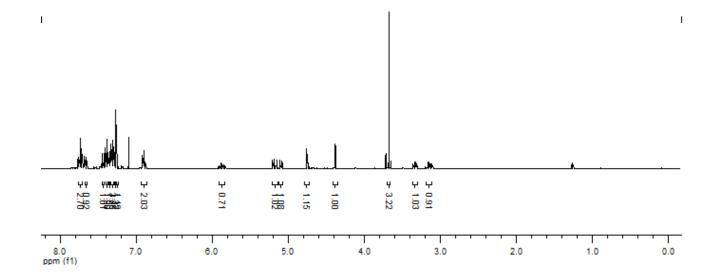


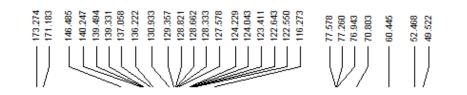


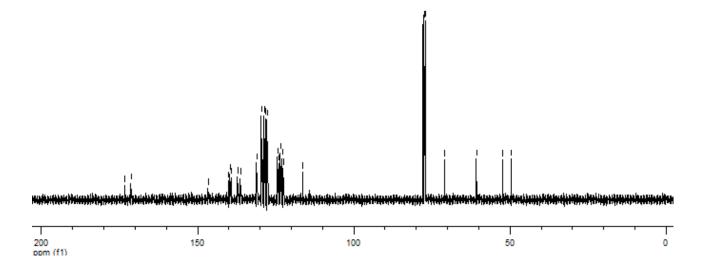


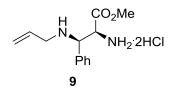


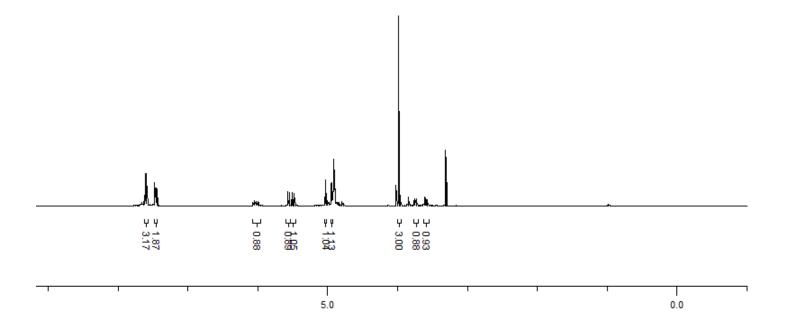

3

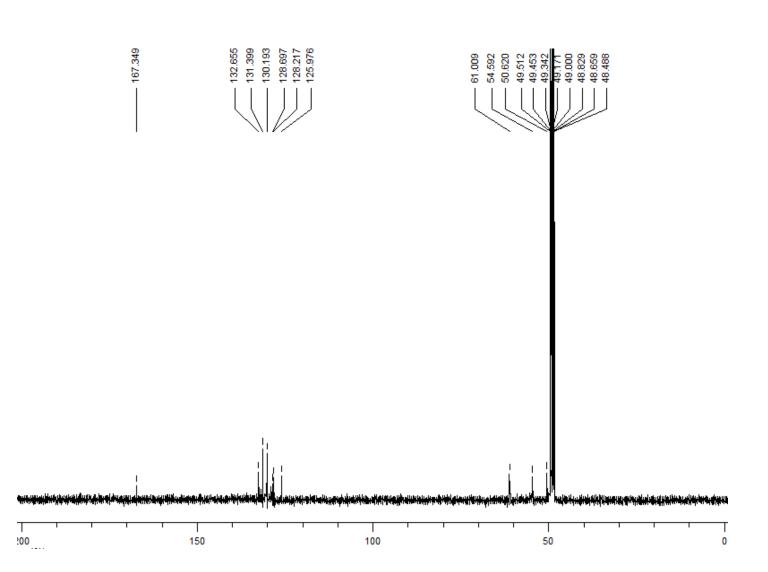


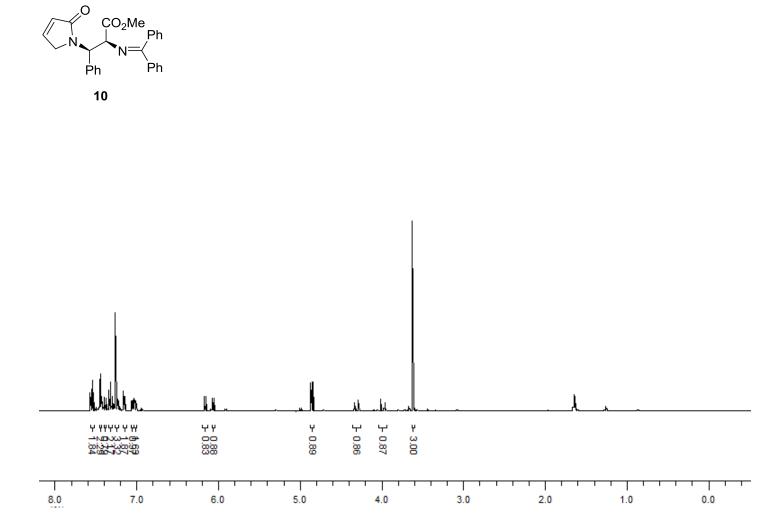


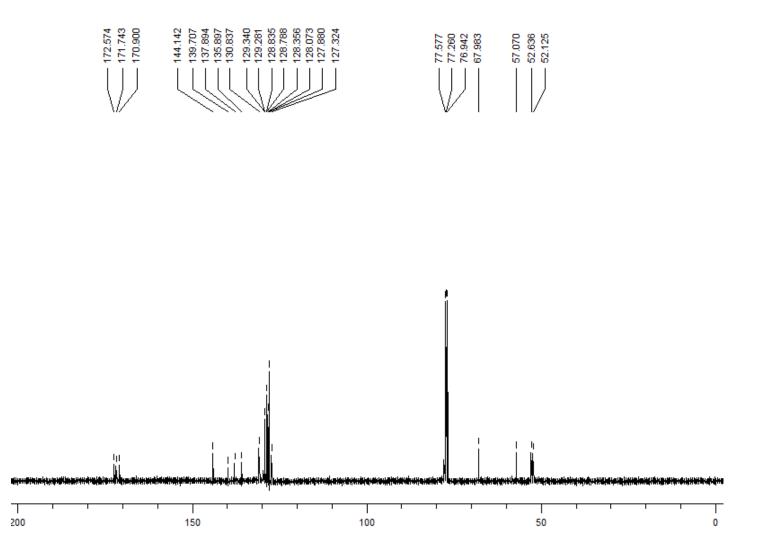


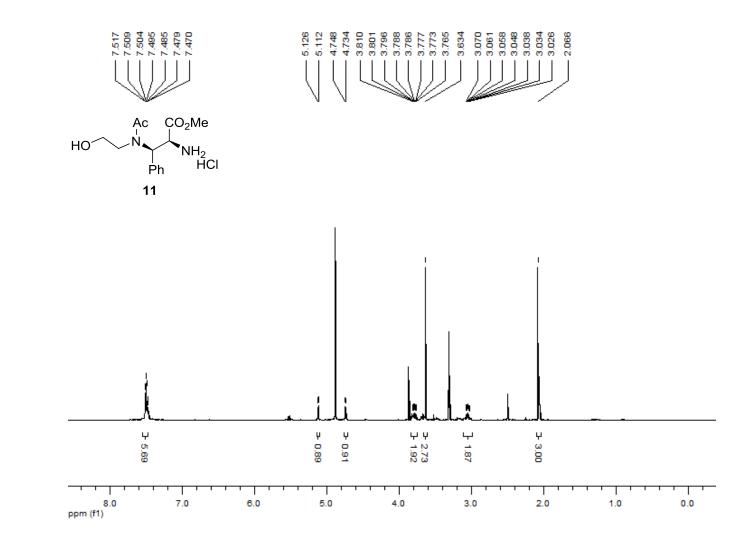


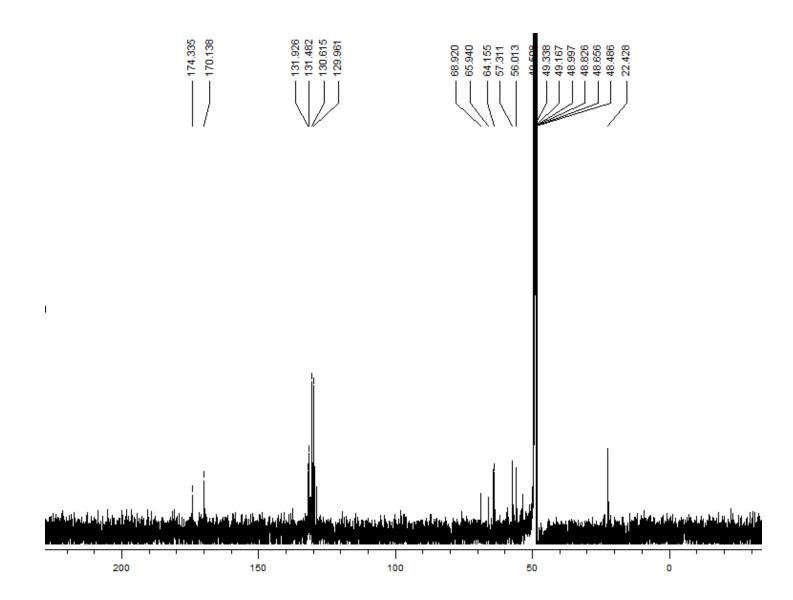


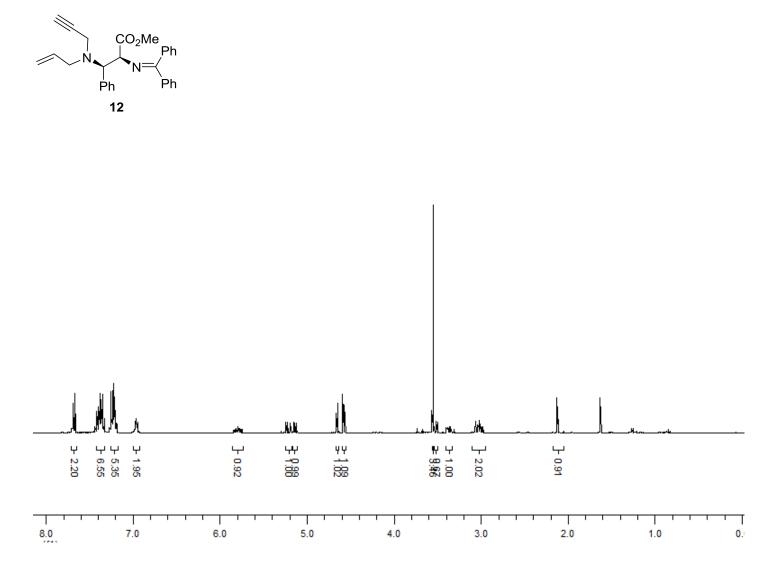


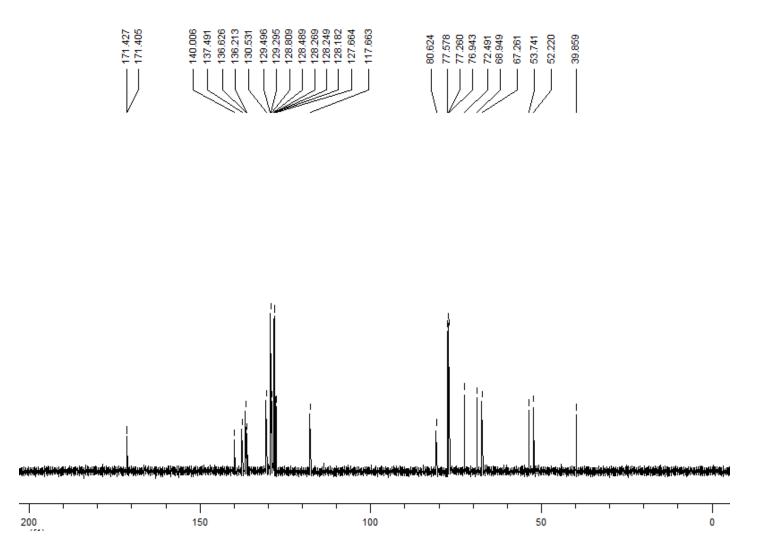











,0

