Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Impact of Structures of Macrocyclic Michael Acceptors on Covalent Proteasome Inhibition

Shun Kitahata^{a,b}, Fumika Yakushiji^{a,b} ,and Satoshi Ichikawa^{*a,b}

ichikawa@pharm.hokudai.ac.jp

^aFaculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.

^bCenter for Research and Education on Drug Discovery, Faculty of Pharmaceutical Science, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.

Table of contents

1)	Abbreviations	S 2
2)	General experimental methods	S2
3)	Experimental procedures and chemical data of compounds 5, 7, 8, 9, 10, 11, 12, 13, and 14	S3-S27
4)	Evaluation of <i>in vitro</i> β 5 proteasome inhibitory activity and determination of	S28-S32
	kinetic constants	
5)	Evaluation of anti-proliferation activity against Amo-1 cells	S33
6)	Conformational calculation	S34-S38
7)	¹ H and ¹³ C NMR spectra of compounds	S39-S105

1) Abbreviations

Boc: *tert*-butoxycarbonyl group DEAD: diethyl Azodicarboxylate DMAP: *N*,*N*-dimethyl-4-aminopyridine EDCI: 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride HOAt: 1-hydroxy-7-azabenzotriazole HOBt: 1-hydroxybenzotriazole monohydrate KHMDS: potassium bis(trimethylsilyl)amide NHS: *N*-hydroxysuccinimide Pf: 9-phenyl-9-fluorenyl Phe: phenylalanine PyBOP: 1H-benzotriazol-1-yloxy-tri(pyrrolidino)phosphonium hexafluorophosphate TMEDA: tetramethylethylenediamine

2) General experimental methods

All reactions except those carried out in aqueous phase were performed under argon atmosphere, unless otherwise noted. Materials were purchased from commercial suppliers and used without further purification, unless otherwise noted. Solvents were distilled according to the standard protocol. Isolated yields were calculated by weighing products. The weight of the starting materials and the products were not calibrated. Analytical thin layer chromatography (TLC) was performed on Merck silica gel 60F₂₅₄ plates. Normal-phase column chromatography was performed on Merck silica gel 5715 or Wakogel 60N. Flash column chromatography was performed on Kanto Chemical Silica Gel 60N (spherical, neutral, 40-50 µm). High-flash column chromatography was performed on YAMAZEN Hi-FlashTM colomn silica gel (40 µm) or Fuji Silysia Chromatorex MB/PSO (50-200 µm). ¹H NMR were measured in CDCl₃, DMSO- d_6 or methanol- d_4 solution, and reported in parts per million (δ) relative to tetramethylsilane (0.00 ppm) as internal standard using JEOL ECS400, ECX400, ECA500, unless otherwise noted. ¹³C NMR were measured in CDCl₃, DMSO- d_6 or methanol- d_4 solution, and referenced to residual solvent peaks of CDCl₃ (77.0 ppm), DMSO-*d*₆ (39.5 ppm) or methanol-*d*₄ (49.0 ppm) using JEOL ECS400, ECX400, ECA500. Coupling constant (J) was reported in hertz (Hz). Abbreviations of multiplicity were as follows; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br: broad. Data were presented as follows; chemical shift (multiplicity, integration, coupling constant). Assignment was based on ¹H–¹H COSY, HMBC and HMQC NMR spectra. Mass spectra were obtained on Waters MICRO MASS LCT-premier and the mass analyzer type used for the HRMS measurements was TOF. Optical rotation was measured on a Rudolph Research Analytical Autopol IV automatic polarimeter.

3) Experimental procedures and chemical data of compounds 5, 7, 8, 9, 10, 11, 12, 13, and 14

A solution of **S1** (710 mg, 2.9 mmol) and Na₂CO₃ (610 mg, 5.7 mmol) in dioxane (3 mL) and H₂O (5 mL) was added to a solution of diethylphosphonoacetic acid NHS ester (1.4 g, 5.8 mmol) in dioxane

(2 mL) at 0 °C, and the mixture was stirred at room temperature for 16 h. The mixture was partitioned between Et₂O and *sat. aq.* NaHCO₃. The aqueous phase was acidified with 1 M *aq.* HCl, and extracted with AcOEt. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo* to give a crude **S2**. A solution of the crude **S2**, L-valinol (520 µL, 4.60 mmol), HOBt·H₂O (630 mg, 4.6 mmol) and ^{*i*}Pr₂NEt (1.30 mL, 9.3 mmol) in DMF (16 mL) was treated with EDCI (720 mg, 4.6 mmol) at room temperature for 11 h. The mixture was partitioned between with AcOEt and H₂O. The organic phase was washed with 1 M *aq.* HCl, *sat. aq.* NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by hi-flash silica gel column chromatography (ϕ 2.6 × 10 cm, 0→2% MeOH/CHCl₃) to afford **S3** (860 mg, 1.7 mmol, 54% over 2 steps) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 6.92 (m, 1H, H-7), 6.42 (d, 1H, H-5', *J*_{5',1'} = 8.7 Hz), 5.39 (d, 1H, N*H*, *J*_{NH,2} = 7.8 Hz), 4.15 (m, 4H, CH₃CH₂O), 4.05 (m, 1H, H-2), 3.82 (m, 2H, H-2'), 3.71 (m, 1H, H-1'), 3.30 (m, 2H, H-6), 2.84 (d, 2H, H-1", *J* = 21.1 Hz), 1.86 (m, 1H, OH), 1.53-1.81 (m, 6H, H-3, H-4, H-5), 1.53 (m, 1H, H-3'), 1.43 (s, 9H, 'Bu), 1.33 (m, 6H, CH₃CH₂O), 0.95 (d, 3H, H-4', *J*_{4',3'} = 6.9 Hz), 0.94 (d, 3H, H-4', *J*_{4',3'} = 6.9 Hz). This is a known compound. ^{S3}

tert-Butyl [(5S,8S,E)-5-Isopropyl-2,7-dioxo-1,6-diazacyclododec-3-en-8-yl]carbamate (S4)

A solution of **S3** (820 mg, 1.6 mmol) in CH₂Cl₂ (16 mL) was treated with Dess-Martin periodinane (750 mg, 1.8 mmol) at room temperature for 1 h. Ethyl acetate, *sat. aq.* NaHCO₃, and *sat. aq.* Na₂S₂O₃ were added to the mixture, which was stirred for further 10 min. The organic phase was dried (Na₂SO₄), filtered, and concentrated *in vacuo* to afford a crude aldehyde. A solution of Zn(OTf)₂ (1.28 mg, 3.54 mmol), TMEDA (287 μ L, 3.54 mmol) in

THF (222 mL) was treated with Et₃N (896 µL, 6.44 mmol) at room temperature for 15 min. A solution of the crude aldehyde in THF (100 mL) was added to the mixture, which was stirred for 22 h. The mixture was concentrated *in vacuo* and the residue was partitioned between AcOEt and 1 M *aq*. HCl. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (ϕ 3×10 cm, 1→2% MeOH/CHCl₃) to afford **S4** (360 mg, 1.0 mmol, 63% over 2 steps) as a white solid. ¹H NMR (CD₃OD, 500 MHz) δ 6.81 (dd, 1H, H-4, *J*_{4,3} = 16, *J*_{4,5} = 5.2 Hz), 6.13 (d, 1H, H-3, *J*_{3,4} = 15.5 Hz), 4.21 (br s, 1H, H-8), 4.01 (dd, 1H, H-5, *J*_{5,4} = 5.2, *J*_{5,13} = 8.1 Hz), 3.27 (dd, 1H, H-12, *J*_{12,11} = 13.2, *J*_{gem} = 13.8 Hz), 2.89 (dt, 1H, H-12, *J*_{12,11} = 4.0, *J*_{gem} = 12.1 Hz), 1.87 (m, 1H, H-9), 1.60 (m, 1H, H-9), 1.58 (m, 1H, H-13), 1.43 (m, 1H, H-11), 1.23 (s, 9H, 'Bu), 1.18 (m, 3H, H-10, H-11), 0.84 (d, 1H, H-14, *J*_{14,13} = 6.9 Hz), 0.81 (d, 1H, H-14, *J*_{14,13} = 6.9 Hz); ESIMS-LR *m*/z 376 [(M+Na)⁺]; ESIMS-HR calcd for C₁₈H₃₁O₄N₃Na 376.2207, found 376.2210. This is a known compound. ⁸³

N-{(*S*)-1-{[(5*S*,8*S*,*E*)-5-Isopropyl-2,7-dioxo-1,6-diazacyclododec-3-en-8-yl]amino}-1-oxo-3-phenylpropan-2-yl}decanamide (5)

A solution of **S4** (39 mg, 0.11 mmol) was treated with 4 M HCl in AcOEt (1 mL) at room temperature for 1 h. The mixture was concentrated *in vacuo*. A solution of the residue, *N*-decanoyl-Lphenylalanine (39 mg, 120 μ mol), ^{*i*}Pr₂NEt (56 μ L, 330 μ mol), and HOAt (26 mg, 160 μ mol) in DMF (1.2 mL) was treated with PyBOP (86 mg, 160 μ mol) at 0 °C, and the mixture was stirred at room temperature for

15 h. The mixture was partitioned between AcOEt and 1 M *aq.* HCl. The mixture was filtered, and the insoluble contents was washed with *sat. aq.* NaHCO₃, H₂O, and AcOEt. The residue was purified by preparative-TLC (10% MeOH/CHCl₃) to afford **5** (34 mg, 61 µmol, 56% over 2 steps) as a white solid. ¹H NMR (DMSO-*d*₆, 500 MHz) δ 8.45 (d, 1H, H-6, *J*_{6.5} = 8.0 Hz), 8.14 (d, 1H, H-18, *J*_{18,17} = 8.1 Hz), 7.66 (d, 1H, H-15, *J*_{15.8} = 7.5 Hz), 7.38 (t, 1H, H-1, *J*_{1,12} = 6.3 Hz), 7.15-7.23 (m, 5H, Ar), 6.77 (dd, 1H, H-4, *J*_{4.3} = 15.5, *J*_{4.5} = 4.6 Hz), 6.25 (d, 1H, H-3, *J*_{3.4} = 14.9 Hz), 4.61 (m, 1H, H-8), 4.50 (m, 1H, H-17), 4.11 (m, 1H, H-5), 3.27 (m, 1H, H-12), 3.01 (m, 1H, H-29), 2.93 (m, 1H, H-12), 2.73 (dd, 1H, H-29, *J*_{gem} = 13.2, *J*_{29,17} = 11.5 Hz), 2.13 (m, 1H, H-9), 1.98 (t, 2H, H-20, *J*_{20,21} = 6.9 Hz), 1.79 (m, 1H, H-13), 1.62 (m, 1H, H-12), 1.44 (m, 1H, H-11), 1.04-1.34 (m, 14H, H-21, H-22, H-23, H-24, H-25, H-26, H-27), 0.95 (d, 3H, H-14, *J*_{14,13} = 6.3 Hz), 0.91 (d, 3H, H-14, *J*_{14,13} = 6.3 Hz), 0.86 (t, 3H, H-28, *J*_{28,27} = 6.3 Hz); ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 172.3, 170.8, 170.5, 165.8, 144.9, 138.2, 129.1, 127.9, 126.1, 119.9, 56.1, 53.8, 51.3, 38.0, 37.0, 35.2, 31.4, 31.2, 30.7, 30.3, 29.9, 28.8, 28.7, 28.4, 25.2, 22.1, 20.0, 19.3, 17.2, 14.0); ESIMS-LR *m/z* 577 [(M+Na)⁺]; ESIMS-HR calcd for C₃₂H₅₀O4N4Na 577.3724, found 577.3732.

Methyl (S)-3-Methoxycarbonyl-2-[(9-phenyl-9H-fluoren-9-yl)amino]propanoate (S6)

$$MeO_{2}C_{3}^{4}C_{3}CO_{2}Me$$

A solution of **S5** (5.0 g, 27 mmol) in MeOH (14 mL) was treated with SOCl₂ (2.4 mL, 32 mmol) at 0 °C, and the mixture was stirred at room temperature for 72 h. The mixture was concentrated *in vacuo*. A mixture of the residue, Pb(NO₃)₂ (9.2 g, 28 mmol) and K₃PO₄ (12 g,

56 mmol) in MeCN (56 mL) was treated with PfBr (12 g, 36 mmol) at room temperature for 24 h. The insoluble contents were filtered off, and the filtrate was concentrated *in vacuo*. The residue was partitioned between AcOEt and H₂O. The organic phase was washed with *sat. aq.* NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and

concentrated *in vacuo*. The residue was purified by silica gel column chromatography (ϕ 10 × 25 cm, 13% AcOEt/hexane) to afford **S6** (6.4 g, 16 mmol, 60% over 2 steps) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.68 (m, 2H, Ar), 7.18-7.39 (m 11H, Ar), 3.65 (s, 3H, 1-OMe), 3.34 (s, 3H, 4-OMe), 3.21 (m, 1H, NH), 3.01 (m, 1H, H-2), 2.51 (dd, 1H, H-3, $J_{3, 2} = 15.1$, $J_{gem} = 6.9$ Hz), 2.34 (dd, 1H, H-3, $J_{3, 2} = 15.1$, $J_{gem} = 5.5$ Hz). This is a known compound. ^{S4}

Methyl 4-Hydroxy-2-[(9-phenyl-9H-fluoren-9-yl)amino]butanoate (S7)

A solution of **S6** (1.2 g, 3.1 mmol) in toluene (31 mL) was treated with DIBAL (3.4 mL, 3.4 $HO \xrightarrow{5}_{3} CO_2Me$ mmol, 1.0 M in toluene) at -78 °C for 30 min. DIBAL (0.61 mL, 0.61 mmol, 1.0 M in toluene) was added to the mixture, which was stirred for 30 min. Acetone (1 mL), H₂O (1 mL), and NaHCO₃ were added to the mixture, which was stirred for 5 min, filtered, and concentrated *in vacuo*. The residue was purified by hi-flash silica gel column chromatography (ϕ 2.6 × 10 cm, 17% AcOEt/hexane) to afford **S7** (920 mg, 2.5 mmol, 81%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.20-7.70 (m, 13H, Ar), 3.72 (m, 1H, H-4), 3.56 (t, 1H, H-4, J_{4,3} = 11 Hz), 3.29 (s, 3H, CO₂Me), 2.77 (dd, 1H, H-2, J_{2,3} = 8.2, J_{2,3} = 3.6 Hz), 1.73 (m, 1H, H-3), 1.59 (br s, 1H, OH), 1.54 (m, 1H, H-3). This is a known compound. ^{S4}

(S,Z)-6-Hydroxy-2-[(9-phenyl-9H-fluoren-9-yl)amino]hex-4-enoic acid (S10)

A solution of S7 (2.2 g, 5.9 mmol) in CH₂Cl₂ (58 mL) was treated with Dess-Martin NHPf CO₂H periodinane (2.7 g, 6.4 mmol) at room temperature for 2 h. Ethyl acetate, sat. aq. NaHCO₃, HO² and sat. aq. Na₂S₂O₃ were added to the mixture, which was partitioned between AcOEt and H₂O. The organic phase was washed with sat. aq. NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo.* The residue was purified by silica gel column chromatography (ϕ 5 \times 10 cm, 11% AcOEt/hexane) to afford a crude S8 (2.0 g) as a colorless oil. A solution of $(CF_3CH_2O)_2P(=O)CH_2CO_2Me$ (530 mg, 1.7 mmol) and 18-crown-6 (2.2 g, 8.4 mmol) in THF (20 mL) was treated by KHMDS (3.4 mL, 1.7 mmol, 0.5 M in toluene) at -78 °C for 40 min. A solution of S8 (420 mg, 1.1 mmol) in THF (5 mL) was added to the mixture at -78 °C for 2 h. The reaction was quenched by addition of sat. aq. NH₄Cl. The mixture was partitioned between AcOEt and H₂O, and the organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by hiflash silica gel column chromatography (ϕ 2×6.5 cm, 0 \rightarrow 10 \rightarrow 20% AcOEt/hexane) to afford a crude **S9** (230 mg, 0.54 mmol) as a colorless oil. A solution of a crude S9 (230 mg) in THF (5.4 mL) was treated with DIBAL (1.4 mL, 1.4 mmol, 1.0 M in toluene) at -78 °C for 2 h. Additional DIBAL (1.4 mL, 1.4 mmol, 1.0 M in toluene) was added to the mixture, which was stirred for further 1 h. Methanol and sat. aq. KNaC₄H₄O₆ were added to the mixture, which was stirred for 30 min. The mixture was diluted with AcOEt and washed with H₂O, 1 M aq. HCl, sat. aq. NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. A solution of the residue (220 mg, 0.54 mmol)

in dioxane (4 mL) and H₂O (2 mL) was treated with LiOH·H₂O (140 mg, 3.2 mmol) for 2 h. The mixuture was partitioned between AcOEt and 1 M *aq.* HCl. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo.* The residue was purified by hi-flash silica gel column chromatography (ϕ 2×6.5 cm, 0→1→ 3% MeOH/CHCl₃) to afford **S10** (180 mg, 0.46 mmol, 38% over 4 steps) as a colorless oil. ¹H NMR (CD₃OD, 400 MHz) δ 7.79 (m, 2H, Ar), 7.33 (m, 11H, Ar), 5.74 (dt, 1H, H-5, *J*_{5,4} = 11, *J*_{5,6} = 6.8 Hz), 5.36 (dt, 1H, H-4, *J*_{4,5} = 11, *J*_{4,3} = 7.8 Hz), 4.02 (d, 2H, H-6, *J*_{6,5} = 6.4 Hz), 2.63 (t, 1H, H-2, *J*_{2,3} = 6.0 Hz), 2.32 (m, 1H, H-3) 2.18 (m, 1H, H-3); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 177.1, 148.2, 147.6, 143.9, 142.3, 142.2, 132.9, 130.4, 130.3, 129.6, 129.2, 129.0, 128.8, 128.4, 127.4, 127.0, 126.9, 121.3, 121.2, 74.4, 58.1, 57.5, 32.8, 30.2; ESIMS-LR (negative mode) *m/z* 384 [(M-H)⁻]; ESIMS-HR calcd for C₂₅H₂₂O₃N 384.1605, found 384.1607.; [α]²⁰_D - 16.4 (*c* 1.10, MeOH).

$(4S,2E)-4-\{(2S,4Z)-6-Hydroxy-2-[(9-phenyl-9H-fluoren-9-yl)amino] hex-4-enamido\}-5-methyl-N-(p-1)-(p-$

toluenesulfonamide)hex-2-enamide (S12)

Compound **S11**^{S2)} (260 mg, 0.65 mmol) was treated with 4 M HCl in dioxane (6.5 mL) at room temperature for 40 min. The mixture was concentrated *in vacuo* to give **15**. A solution of **S10** (170 mg, 0.43 mmol), **15** (220 mg, 0.65 mmol), ^{*i*}Pr₂NEt (360 μ L, 2.6 mmol), and HOAt (180 mg, 1.3 mmol) in DMF (6.5 mL) was treated with EDCI (200 mg, 1.3 mmol) at room temperature for 22 h. The mixture was partitioned between AcOEt and H₂O. The

organic phase was washed with 1 M *aq.* HCl, *sat. aq.* NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by hi-flash silica gel column chromatography (ϕ 2×6.5 cm, 0→1→2% MeOH/CHCl₃) to afford **S12** (120 mg, 0.18 mmol, 40%) as a colorless oil. ¹H NMR (CD₃OD, 400 MHz) δ 7.91 (m, 2H, Ar), 7.70 (m, 2H, Ar), 6.92-7.38 (m, 15H, Ar), 6.63 (dd, 1H, H-3, *J*_{3,2} = 15.6, *J*_{3,4} = 8.2 Hz), 5.80 (d, 1H. H-2, *J*_{2,3} = 15.6 Hz), 5.66 (m, 1H, H-4'), 5.32 (m, 1H, H-5'), 4.02 (d, 2H, H-6', *J*_{6,5'} = 4.6 Hz), 3.89 (dd, 1H, H-4, *J*_{4,3} = 6.9, *J*_{3,5} = 6.4 Hz), 2.56 (m, 2H, H-2'), 2.41 (s, 3H, Ts-Me), 2.27 (m, 1H, H-3'), 2.17 (m, 1H, H-3'), 1.63 (m, 1H, H-5), 0.77 (d, 3H, H-6, *J*_{6,5} = 6.4 Hz); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 176.6, 165.1, 150.6, 149.9, 147.4, 146.2, 145.8, 142.2, 141.7, 138.0, 132.7, 130.5, 129.7, 129.6, 129.3, 128.9, 128.7, 128.2, 127.3, 127.1, 126.6, 124.3, 121.0, 120.9, 74.3, 58.1, 57.6, 57.4, 34.4, 32.7, 21.6, 19.5, 19.1; ESIMS-LR *m/z* 664 [(M+H)⁺]; ESIMS-HR calcd for C₃₉H₄₂O₅N₃S 664.2840, found 664.2850. [α]²⁰D-123.4 (*c* 0.54, MeOH).

(*3E*,5*S*,8*S*,10*Z*)-5-Isopropyl-8-[(9-phenyl-9H-fluoren-9-yl)amino]-1,6-diazacyclododeca-3,10-diene-2,7-dione (S13)

A solution of **S12** (110 mg, 170 μ mol) and PPh₃ (87 mg, 330 μ mol) in THF (83 mL) was treated with DEAD (150 μ L, 330 μ mol, 2.2 M in toluene) at room temperature for 10 min. The mixture was concentrated *in vacuo*. The residue was purified by hi-flash silica gel column chromatography (ϕ 2.6 × 10 cm, 0 \rightarrow 1% MeOH/CHCl₃) to afford a crude sulfonamide as a white solid. A solution of the crude sulfonamide in THF (1.6 mL) was treated with 0.1 M SmI₂ solution

in THF (10 mL) at room temperature for 1 min. The mixture was partitioned between AcOEt and 1 M *aq*. HCl. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by hi-flash silica gel column chromatography (ϕ 2.6 × 10 cm, 0→1% MeOH/CHCl₃) to afford **S13** (35 mg, 72 µmol, 43% over 2 steps) as a white solid. ¹H NMR (DMSO-*d*₆, 500 MHz) δ 7.84 (m, 2H, Ar), 7.46 (m, 1H, H-1), 7.41 (d, 1H, H-6, *J*_{6,5} = 7.4 Hz), 7.36 (m, 11H, Ar), 6.47 (dd, 1H, H-4, *J*_{4,3} = 14.9, *J*_{4,5} = 3.4 Hz), 5.82 (d, 1H, H-3, *J*_{3,4} = 14.9 Hz), 5.74 (dd, 1H, H-10, *J*_{10,11} = *J*_{10,9a} = 11.5 Hz), 5.20 (dd,1H, H-11, *J*_{11,12b} = 11.5 Hz), 3.94 (br s, 1H, H-5), 3.81 (ddd, 1H, H-12b, *J*_{12b,12a} = *J*_{12b,11} = 12, *J*_{12b,1} = 5.2 Hz), 3.67 (br s, 1H, H-5), 3.16 (d, 1H, H-12a, *J*_{12a,12b} = 12 Hz), 2.86 (br s, 1H, H-8), 2.74 (dd, 1H, H-9a, *J*_{9a,9b} = 13, *J*_{9a,8} = 12 Hz), 1.87 (d, 1H, H-9b, *J*_{9b,9a} = 13 Hz), 0.76 (d, 3H, H-14, *J*_{14,13} = 6.9 Hz), 0.64 (d, 3H, H-14, *J*_{14,13} = 6.9 Hz); ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 172.9, 166.0, 149.6, 144.9, 142.3, 140.3 139.7, 128.3, 128.2, 127.7, 127.6, 127.1, 125.8, 120.4, 120.2, 120.0, 72.9, 55.8, 53.9, 34.4, 30.5, 19.4, 19.0, 14.0; ESIMS-LR *m*/z 514 [(M+Na)⁺]; ESIMS-HR calcd for C₃₂H₃₃O₂N₃Na 514.2465, found 514.2473.; [α]²⁰D-167.0 (*c* 1.10, MeOH).

$N-\{(S)-1-\{[(3E,5S,8S,10Z)-5-Isopropy]-2,7-dioxo-1,6-diazacyclododeca-3,10-dien-8-y]amino\}-1-oxo-3-ioxo-1,6-diazacyclododeca-3,10-dien-8-y]amino}-1-oxo-3-ioxo-1,6-diazacyclododeca-3,10-dien-8-y]amino}-1-oxo-3-ioxo-1,6-diazacyclododeca-3,10-dien-8-y]amino}-1-oxo-3-ioxo-1,6-diazacyclododeca-3,10-dien-8-y]amino}-1-oxo-3-ioxo-1,6-diazacyclododeca-3,10-dien-8-y]amino}-1-oxo-3-ioxo-1,6-diazacyclododeca-3,10-dien-8-y]amino}-1-oxo-3-ioxo-1,6-diazacyclododeca-3,10-dien-8-y]amino}-1-oxo-3-ioxo-3-ioxo-1,6-diazacyclododeca-3,10-dien-8-y]amino}-1-oxo-3-ioxo-3-ioxo-1,6-diazacyclododeca-3,10-dien-8-y]amino}-1-oxo-3-iox0-3-io$

phenylpropan-2-yl}decanamide (7)

A solution of **S13** (21 mg, 43 μ mol) and Et₃SiH (17 μ L, 110 mmol) in CH₂Cl₂ (0.85 mL) was treated with TFA (0.85 mL) at 0 °C, and the mixture was stirred at room temperature for 1 h. The mixture was concentrated *in vacuo*. A solution of the residue, *N*-decanoyl-L-phenylalanine (16 mg, 51 μ mol), ^{*i*}Pr₂NEt (15 μ L, 85 mmol), and HOAt

(10 mg, 64 mmol) in DMF (0.43 mL) was treated with PyBOP (33 mg, 64 mmol) at room temperature for 18 h. The mixture was partitioned between AcOEt and H₂O. The organic phase was washed with 1 M *aq*. HCl, *sat. aq*. NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by hi-flash silica gel column chromatography (ϕ 1.6 × 6 cm, 0 → 1 → 2% MeOH/CHCl₃) followed by preparative-TLC (10% MeOH/CHCl₃) to afford **7** (15 mg, 27 µmol, 63% over 2 steps) as a white solid. ¹H NMR (DMSO-*d*₆, 500 MHz) δ 8.12 (d, 1H, H-15, *J*_{15,8} = 8.1 Hz), 8.07 (d, 1H, H-6, *J*_{6,5} = 8.6 Hz), 7.92 (d, 1H, H-18, *J*_{18, 17} = 6.3 Hz), 7.58 (br s, 1H, H-1), 7.23 (m, 4H, Ar), 7.16 (m, 1H, Ar), 5.58 (d, 1H, H-4, *J*_{4,3} = 14.9 Hz), 6.02 (d, 1H, H-3, *J*_{3,4} = 14.9 Hz), 5.51 (t, 1H, H-10, *J*_{10,11} = 11.5), 5.26 (m, 1H, H-11), 4.71 (br s, 1H, H-17), 4.56 (dt, 1H, H-8, *J*_{8,15} = 14.9, *J*_{8,9} = 4.1 Hz), 4.19 (br s, 1H, H-5), 3.99 (br s, 1H, H-12), 3.25 (br s, 1H, H-12), 3.08 (m, 1H, H-29), 3.03 (d, 1H, H-9, *J*_{9,10} = 10.4 Hz), 2.75 (dd, 1H, H-5, *J*_{5,3} = 13, *J*_{5,4} = 6.3 Hz), 1.35 (tt, 2H, H-21, *J*_{21,20} = 7.5, *J*_{21,22} = 7.5 Hz), 1.06-1.27 (m, 12H, 1.5), 1.80 (dt, 1H, H-5, *J*_{5,3} = 13, *J*_{5,4} = 6.3 Hz), 1.35 (tt, 2H, H-21, *J*_{21,20} = 7.5, *J*_{21,22} = 7.5 Hz), 1.06-1.27 (m, 12H, 1.5), 1.80 (dt, 1H, H-5, *J*_{5,3} = 13, *J*_{5,4} = 6.3 Hz), 1.35 (tt, 2H, H-21, *J*_{21,20} = 7.5, *J*_{21,22} = 7.5 Hz), 1.06-1.27 (m, 12H, 1.5), 1.80 (dt, 1H, H-5, *J*_{5,3} = 13, *J*_{5,4} = 6.3 Hz), 1.35 (tt, 2H, H-21, *J*_{21,20} = 7.5, *J*_{21,22} = 7.5 Hz), 1.06-1.27 (m, 12H, 1.5), 1.80 (dt, 1H, H-5, *J*_{5,3} = 13, *J*_{5,4} = 6.3 Hz), 1.35 (tt, 2H, H-21, *J*_{21,20} = 7.5, *J*_{21,22} = 7.5 Hz), 1.06-1.27 (m, 12H, 1.5), 1.80 (dt, 1H, H-5, *J*_{5,3} = 13, *J*_{5,4} = 6.3 Hz), 1.35 (tt, 2H, H-21, *J*_{21,20} = 7.5, *J*_{21,22} = 7.5 Hz), 1.06-1.27 (m, 12H, 1.5), 1.80 (dt, 1H, H-5, *J*_{5,3} = 13, *J*_{5,4} = 6.3 Hz), 1.35 (tt, 2H, H-21, *J*_{21,20} = 7.5, *J*_{21,22} = 7.5 Hz), 1.06-1.2

H-22, H-23, H-24, H-25, H-26, H-27), 0.93 (d, 6H, H-14, $J_{14,13} = 7.5$ Hz), 0.86 (t, 3H, H-28, $J_{28,27} = 7.5$ Hz); ¹³C NMR (DMSO- d_6 , 125 MHz) δ 172.2, 170.7, 170.0, 166.0, 142.1, 138.1, 129.1, 128.4, 127.9, 126.1, 125.1, 120.4, 55.8, 53.8, 50.9, 37.0, 35.2, 31.3, 30.6, 30.3, 28.8, 28.7, 28.4, 25.2, 22.1, 19.3, 19.2, 15.8, 14.0; ESIMS -LR m/z 575 [(M+Na)⁺]; ESIMS-HR calcd for C₃₂H₄₈O₄N₄Na 575.3568, found 575.3570.

Methyl (S)-4-Methoxycarbonyl-2-[(9-phenyl-9H-fluoren-9-yl)amino)]butanoate (S15)

 $MeO_{2}C_{5} \xrightarrow{4}_{3} \xrightarrow{2}_{1} CO_{2}Me$

A solution of **S14** (6.2 g, 42 mmol) in MeOH (20 mL) was treated with SOCl₂ (3.8 mL, 52 mmol) at 0 °C, and the mixture was stirred at room temperature for 68 h. The mixture was concentrated *in vacuo* to afford a crude dimethyl glutamate (9.2 g). A mixture of the

dimethyl glutamate (8.0 g, 46 mmol), Pb(NO₃)₂ (15 g, 46 mmol) and K₃PO₄ (19 g, 91 mmol) in MeCN (91 mL) was treated with PfBr (15 g, 46 mmol) at room temperature for 48 h. The insoluble contents were filtered off, and the filtrate was concentrated *in vacuo*. The residue was partitioned between Et₂O and H₂O, and the organic phase was washed with 1 M *aq*. HCl, *sat. aq*. NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (ϕ 10×15 cm, 11% AcOEt/hexane) to afford **S15** (14 g, 33 mmol, 90% over 2 steps) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.66 (m, 2H, Ar), 7.15-7.40 (m, 11H, Ar), 3.63 (s, 3H, 1-OMe), 3.25 (s, 3H, 5-OMe), 2.95 (br s, 1H, H-2), 2.58 (br s, 1H, NH), 2.47 (ddd, 1H, H-4, $J_{gem} = 17$, $J_{4,3} = 8.3$, $J_{4,3} = 6.4$ Hz), 2.35 (ddd, 1H, H-4, $J_{gem} = 17$, $J_{4,3} = 7.8$ Hz). This is a known compound. ^{S1)}

Methyl (S,E)-5-Hydroxy-2-[(9-phenyl-9H-fluoren-9-yl)amino]pent-3-enoate (S18)

 $HO_{5}^{4} \xrightarrow{\frac{1}{2}} CO_{2}Me_{1}$ A solution of S15 (1.0 g, 2.4 mmol) in THF (8 mL) was treated with KHMDS (11 mL, 5.3 mmol, 0.5 M in toluene) at -78 °C for 30 min. A solution of PhSeCl (1.0 g, 5.3 mmol) in THF (2 mL) was added to the mixture, and the solution was stirred at the same temperature

for 3 h. The reaction was quenched by addition of AcOH (1 mL) at room temperature, and the mixture was partitioned between AcOEt and H₂O. The organic phase was washed with *sat. aq.* NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo* to give **S16**. A mixture of the crude **S16** and K₃PO₄ (1.5 g, 7.2 mmol) in CH₂Cl₂ (12 mL) was treated with *m*CPBA (1.0 g, 6.0 mmol) at 0 °C for 30 min. Saturated *aq.* Na₂S₂O₃ was added to the mixture and the resulting mixture was filtered. The filtrate was partitioned between AcOEt and H₂O, and the organic phase was washed with *sat. aq.* NaHCO₃, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo* ro give **S17**. A solution of the crude **S17** in THF (24 mL) was treated with DIBAL (7.1 mL, 7.1 mmol, 1.0 M in toluene) at -40 °C for 1 h. Methanol and *sat. aq.* KNaC₄H₄O₆ were added to the mixture, which was stirred for 30 min. The mixture was partitioned between AcOEt and H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography ($\phi 4 \times 13$ cm, 25% AcOEt/hexane) to afford **S18** (650 mg, 1.7 mmol, 70% over 3 steps) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.70 (m, 2H, Ar), 7.20-7.45 (m, 11H, Ar), 5.58 (dt, 1H, H-4, J_{4,3} = 15.6, J_{4,5} = 5.5 Hz), 5.43 (dd, 1H, H-3, J_{3,4} = 15.6, J_{3,2} = 6.4 Hz), 3.93 (m, 2H, H-5), 3.43 (s, 3H, Me), 3.36 (d, 1H, H-2, J_{2,3} = 6.9 Hz). This is a known compound. ^{\$10}

(S,E)-5-Hydroxy-2-[(9-phenyl-9H-fluoren-9-yl)amino]pent-3-enoic acid (16)

NHPf A solution of **S18** (190 mg, 0.50 mmol) in dioxane (4 mL) and H₂O (2 mL) was treated with $\stackrel{?}{=}$ **CO₂H** LiOH·H₂O (130 mg, 3.0 mmol) for 2.5 h. The mixuture was partitioned between AcOEt and 1 M *aq.* HCl. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and

concentrated *in vacuo* to afford **16** (200 mg, quant.) as a yellow solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.83 (m, 2H, Ar), 7.24-7.45 (m, 11H, Ar), 7.73 (m, 2H, Ar), 7.17-7.55 (m, 11H, Ar), 5.51 (m, 1H, H-4), 5.00 (d, 1H, H-3, $J_{3,4} = 12.4$ Hz), 3.71 (m, 2H, H-5), 3.20 (d, 1H, H-2, $J_{2,3} = 7.8$ Hz); $[\alpha]^{27}_{D} - 73.8(c \ 1.01, CHCl_3)$. This is a known compound. ^{S1}

(4*S*,2*E*)-4-{(2*S*,3*E*)-5-Hydroxy-2-[(9-phenyl-9H-fluoren-9-yl)amino]pent-3-enamido}-5-methyl-*N*-(*p*-toluenesulfonamido)hex-2-enamide (17)

Compound **S11**^{S2)} (150 mg, 0.38 mmol) was treated with 4 M HCl in dioxane (3.8 mL) at room temperature for 1 h. The mixture was concentrated *in vacuo* to give crude **15**. A solution of **15**, **16** (130 mg, 0.35 mmol), ^{*i*}Pr₂NEt (290 μ L, 2.1 mmol), and HOAt (140 mg, 1.1 mmol) in DMF (3.5 mL) was treated with EDCI (160 mg, 1.1 mmol) at room temperature for 20 h. Additional EDCI (54 mg, 0.35 mmol), ^{*i*}Pr₂NEt (97 μ L, 0.70 mmol), and HOAt (47 mg, 0.35 mmol) were added to the mixture, which was stirred for 2.5 h. The mixture was partitioned between AcOEt

and *sat. aq.* NaHCO₃. The organic phase was washed with 1 M *aq.* HCl and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by hi-flash silica gel column chromatography (ϕ 2×6.5 cm, 0→1% MeOH/CHCl₃) to afford **17** (130 mg, 0.20 mmol, 57% over 2 steps) as a colorless oil. ¹H NMR (CD₃OD, 500 MHz) δ 7.89 (m, 2H, Ar), 7.12-7.73 (m, 15H, Ar), 6.65 (dd, 1H, H-3, $J_{3,2} = 12.4$, $J_{3,4} = 6.4$ Hz), 5.78 (d, 1H, H-2, $J_{2,3} = 12.4$ Hz), 5.51 (m, 2H, H-3', H-4'), 4.13 (m, 1H, H-4), 3.90-3.95 (m, 2H, H-5'), 3.13 (m, 1H, H-2'), 2.41 (s, 3H, Ts-Me), 1.66 (m, 1H, H-5), 0.76 (m, 6H, H-6); ¹³C NMR (CD₃OD, 125 MHz) δ 187.9, 185.7, 172.1, 150.4, 145.9, 141.7, 133.1, 133.0, 132.9, 130.8, 130.5, 130.0, 129.6, 129.3, 128.8, 128.2, 127.1, 127.0, 126.5, 120.9, 74.3, 62.8, 62.7, 60.1, 57.4, 32.9, 21.4, 19.3, 14.8; ESIMS-LR *m*/*z* 650 [(M+H)⁺]; ESIMS-HR calcd for C₃₈H₄₀O₅N₃S 560.2683, found 560.2693; [α]²⁸_D -55.2 (*c* 0.99, MeOH).

(3*E*,5*S*,8*S*,9*E*)-5-Isopropyl-8-[(9-phenyl-9H-fluoren-9-yl)amino]-1,6-diazacycloundeca-3,9-diene-2,7-dione (18)

A solution of **17** (68 mg, 0.10 mmol) and PPh₃ (55 mg, 0.21 mmol) in THF (52 mL) was treated with DEAD (95 μ L, 0.21 mmol) at room temperature for 1 h. The mixuture was concentrated *in vacuo*, and the residue was purified by hi-flash silica gel column chromatography (ϕ 2×6.5 cm, 20→40% AcOEt/hexane) to afford a crude sulfonamide (100 mg) as a white solid. A solution of the sulfonamide in THF (1 mL) was treated with SmI₂ (10 mL, 10 mmol, 1.0 M in THF) at room temperature for 10 min. The mixture was partitioned between AcOEt and *sat. aq.* NH₄Cl. The

organic phase was washed with 1 M *aq.* HCl, *sat. aq.* NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by hi-flash silica gel column chromatography (ϕ 2×6.5 cm, 0→1% MeOH/CHCl₃) to afford **18** (25 mg, 52 µmol, 50% over 2 steps) as a white solid. ¹H NMR (CD₃OD, 500 MHz) δ 7.73 (m, 2H, Ar), 7.19-7.33 (m, 11H, Ar), 6.02 (m, 1H, H-4), 5.85 (d, 1H, H-3, *J*_{3,4} = 16.1 Hz), 5.20 (m, 1H, H-9), 5.15 (m, 1H, H-10), 3.79 (m, 1H, H-5), 3.70 (dd, 1H, H-11, *J*_{gem} = 15.5, *J*_{11,10} = 6.9 Hz), 3.64 (dd, 1H, H-11, *J*_{gem} = 15.5, *J*_{11,10} = 4.0 Hz), 3.26 (d, 1H, H-8, *J*_{8,9} = 8.0 Hz), 1.50 (m, 1H, H-12), 0.84 (d, 3H, H-13, *J*_{13,12} = 6.3 Hz), 0.76 (d, 3H, H-13, *J*_{13,12} = 6.3 Hz); ¹³C NMR (CD₃OD, 125 MHz) δ 174.1, 173.4, 151.1, 150.1, 145.9, 142.0, 141.0, 134.3, 131.0, 129.6, 129.5, 129.3, 128.8, 128.1, 127.3, 127.1, 126.6, 120.9, 120.8, 74.0, 59.3, 45.7, 39.9, 39.4, 32.8, 19.9, 19.7; ESIMS-LR *m*/*z* 500 [(M+Na)⁺]; ESIMS-HR calcd for C₃₁H₃₁O₂N₃Na 500.2309, found 500.2319; [α]²⁸_D-26.2(*c* 1.12, MeOH).

N-{(*S*)-1-{[(3*E*,5*S*,8*S*,9*E*)-5-Isopropyl-2,7-dioxo-1,6-diazacycloundeca-3,9-dien-8-yl]amino}-1-oxo-3-phenylpropan-2-yl}decanamide (8)

A solution of **18** (51 mg, 0.11 mmol) and Et₃SiH (0.73 mL, 0.27 mmol) in CH₂Cl₂ (1.1 mL) was treated with TFA (1.1 mL) at 0 °C, and the mixture was stirred at room temperature for 4 h. The mixture was concentrated *in vacuo*. A solution of the residue, *N*-decanoyl-L-phenylalanine (45 mg, 0.14 mmol), ^{*i*}Pr₂NEt (36 μ L, 0.21 mmol), and HOAt (25 mg, 0.16 mmol) in DMF (1.0 mL) was treated with PyBOP (83 mg, 0.16 mmol) at room

temperature for 20 h. Additional PyBOP (83 mg, 0.16 mmol), ${}^{i}Pr_{2}NEt$ (150 µL, 0.88 mmol), and HOAt (25 mg, 0.16 mmol) was added to the mixture, and the whole mixture was stirred for 14 h. The mixture was partitioned between AcOEt and H₂O. The organic phase was washed with 1 M *aq.* HCl, *sat. aq.* NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by hi-flash silica gel column chromatography (ϕ 1.6 × 6 cm, 1% MeOH/CHCl₃) to afford **8** (130 mg, 0.20 mmol, 57% over 2 steps) as a white solid. ¹H NMR (DMSO-*d*₆, 500 MHz) δ 8.06 (m, 1H, H-14), 7.87 (d, 1H, H-17, *J*_{17,16} = 8.0 Hz), 7.54 (br s, 1H, H-6), 7.41 (br s, 1H, H-1), 7.23 (m, 5H, Ar), 6.17 (dd, 1H, H-4, *J*_{4,3} = 16, *J*_{4,5} = 6.3 Hz), 5.99 (d, 1H, H-3, *J*_{3,4} = 16 Hz), 5.60 (br s, 1H, H-10), 5.53 (br s, 1H, H-11), 4.79 (br s, 1H, H-8), 4.58 (m, 1H, H-16), 3.89 (m, 1H, H-5), 3.71 (m, 2H, H-11), 3.03 (dd, 1H, H-28, *J*_{gem} = 11.5, *J*_{28,16} = 4.1 Hz), 2.74 (dd, 1H, H-28, *J*_{gem} = *J*_{28,16} = 11.5 Hz), 2.00 (t, 2H, H-19, *J*_{19,20} = 7.5 Hz), 1.73 (m, 1H, H-12), 1.09-1.37 (m, 14H, H-20, H-21, H-22, H-23, H-24, H-25, H-26), 0.88 (m, 9H, H-13, H-27); ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 171.9, 170.9, 169.0, 168.7, 138.0, 129.1, 127.9, 126.1, 53.5, 43.8, 37.3, 35.0, 31.3, 28.8, 28.7, 28.4, 25.2, 22.1, 19.7, 19.3, 14.0; ESIMS-LR *m*/*z* 539 [(M+Na)⁺]; ESIMS-HR calcd for C₃₁H₄₇O₄N₄ 539.3592, found 539.3595.

tert-Butyl {(S)-5-[2-(Diethoxyphosphoryl)acetamido]-1-{[(S)-1-hydroxy-3-methylbutan-2-yl]amino}-1oxopentan-2-yl}carbamate (S21)

$$EtO \xrightarrow{H}_{1''} \underbrace{N}_{6} \xrightarrow{5} \xrightarrow{3} \xrightarrow{2} \xrightarrow{1} \xrightarrow{5'}_{1'} \xrightarrow{3'}_{2'} OH$$

1

A mixture of **S19** (710 mg, 3.1 mmol) and Na₂CO₃ (640 mg, 6.1 mmol) in dioxane (3.0 mL) and H₂O (5 mL) was treated with a solution of $(EtO)_2P(=O)CH_2CO_2NHS$ (1.5 g, 6.1 mmol) in dioxane (2 mL) at 0 °C, and the mixture was stirred at room temperature for 23 h. The mixture was

partitioned between Et₂O and *sat. aq.* NaHCO₃. The aqueous phase was acidified with 1 M *aq.* HCl, and extracted with AcOEt. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo* to give **S20**. A solution of **S20**, L-valinol (670 µL, 6.0 mmol), HOBt·H₂O (810 mg, 6.0 mmol), and *i*Pr₂NEt (1.7 mL, 12 mmol) in DMF (20 mL) was treated with EDCI (930 mg, 6.0 mmol) at room temperature for 22 h. The mixture was partitioned between with AcOEt and H₂O. The organic phase was washed with 1 M *aq.* HCl, *sat. aq.* NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (ϕ 3 × 10 cm, 2% MeOH/CHCl₃) to afford **S21** (990 mg, 2.0 mmol, 50% over 3 steps) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.14 (m, 1H, H-6), 7.03 (d, 1H, H-5', *J*_{5,1'} = 8.3 Hz), 5.45 (d, 1H, BocN*H, J*_{NH,2} = 8.2 Hz), 4.37 (m, 1H, H-2), 4.15 (m, 4H, CH₃CH₂O), 3.80 (m, 2H, H-2'), 3.65 (m, 4H, OH, H-1', H-2'), 3.47 (m, 1H, H-5), 3.27 (m, 1H, H-5), 2.91 (d, 1H, H-1", *J* = 15.1 Hz), 2.85 (d, 1H, H-1", *J* ₁",P = 15.6 Hz), 1.88 (m, 1H, H-3'), 1.69 (m, 2H, H-3), 1.59 (m, 2H, H-4), 1.47 (s, 9H, 'Bu), 1.32 (m, 6H, CH₃CH₂O), 0.94 (m, 6H H-4'); ¹³C NMR (CDCl₃, 100 MHz) δ 172.6, 164.6, 156.2, 79.9, 63.6, 63.2, 57.9, 57.2, 53.5, 39.1, 36.1, 34.8, 30.7, 29.2, 29.0, 28.4, 24.4, 19.6, 19.2, 18.8, 16.5, 16.4; ESIMS-LR *m*/z 518 [(M+Na)⁺]; ESIMS-HR calcd for C₂₁H₄₂O₈N₃NaP 518.2602, found 518.2600. [α]²⁰_D-14.4 (*c* 1.27, CHCl₃).

tert-Butyl [(5S,8S,E)-5-Isopropyl-2,7-dioxo-1,6-diazacycloundec-3-en-8-yl]carbamate (S22)

A solution of **S21** (970 mg, 2.0 mmol) in CH₂Cl₂ (20 mL) was treated with Dess-Martin periodinane (910 mg, 2.2 mmol) at room temperature for 1 h. Ethyl acetate, *sat. aq.* NaHCO₃, and *sat. aq.* Na₂S₂O₃ were added to the mixture, which was stirred for further 10 min. The organic phase was dried (Na₂SO₄), filtered, and concentrated *in vacuo* to afford a crude aldehyde. A solution of Zn(OTf)₂ (1.6 g, 4.3 mmol), TMEDA (350 µL, 2.4 mmol) in THF (260 mL) was treated with Et₃N (1.1 mL, 7.8 mmol) at room temperature for 15 min. A solution of

the crude aldehyde in THF (130 mL) was added to the mixture, which was stirred for further 19 h. The mixture was concentrated *in vacuo*, and the residue was partitioned between AcOEt and 1 M *aq*. HCl. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (ϕ 3×11 cm, 1→3% MeOH/CHCl₃) to afford **S22** (310 mg, 0.91 mmol, 47% over 2 steps) as a white solid. ¹H NMR (CD₃OD, 500 MHz) δ 6.43 (d, 1H, H-3, $J_{3,4}$ = 16.6 Hz), 6.00 (dd, 1H, H-4, $J_{4,3}$ = 16.6, $J_{4,5}$ = 9.2 Hz), 4.11 (dd, 1H, H-5, $J_{5,4}$ = 9.2, $J_{5,12}$ = 9.8 Hz), 4.00 (dd, 1H, H-8, J = 5.2, J = 4.6 Hz), 3.15 (ddd, 1H, H-11, $J_{11,10}$ = 11.5, $J_{11,NH}$ = 3.5, J_{gem} = 14.9 Hz), 2.92 (ddd, 1H, H-11, $J_{11,10}$ = 8.1, $J_{11,NH}$ = 6.3, J_{gem} = 14.4 Hz), 1.82 (m, 1H, H-12), 1.81 (m, 1H, H-9), 1.66 (m, 1H, H-9), 1.43 (s, 9H, 'Bu), 1.34 (m, 2H, H-10), 1.04 (d, 3H, H-13, $J_{13,12}$ = 6.3 Hz); ¹³C NMR (CD₃OD, 100 MHz) δ 176.1, 174.1, 157.1, 141.8, 125.5, 80.4, 60.6, 55.4, 44.2, 31.6, 29.5, 28.7, 24.9, 20.0, 19.8; ESIMS-LR *m*/z 362 [(M+Na)⁺]; ESIMS-HR calcd for C₁₇H₂₉O₄N₃Na 362.2050, found 362.2059. [α]²⁰D-124.2 (*c* 0.81, MeOH).

N-{(*S*)-1-{[(5*S*,8*S*,*E*)-5-Isopropyl-2,7-dioxo-1,6-diazacycloundec-3-en-8-yl]amino}-1-oxo-3-phenylpropan-2-yl}decanamide (9)

A solution of **S22** (37 mg, 0.11 mmol) was treated with 4 M HCl in AcOEt (1 mL) at room temperature for 1 h. The mixture was concentrated *in vacuo*. A solution of the residue, *N*-decanoyl-Lphenylalanine (39 mg, 120 μ mol), ^{*i*}Pr₂NEt (56 μ L, 330 μ mol), and HOAt (26 mg, 160 μ mol) in DMF (1.2 mL) was treated with PyBOP (86 mg, 164 μ mol) at 0 °C, and the mixture was stirred at room

temperature for 15 h. The mixture was partitioned between AcOEt and 1 M *aq.* HCl. The mixture was filtered, and the insoluble contents was washed with *sat. aq.* NaHCO₃, H₂O, and AcOEt. The residue was purified by preparative-TLC (10% MeOH/CHCl₃) to afford **9** (45 mg, 83 µmol, 76% over 2 steps) as a white solid. ¹H NMR (DMSO-*d*₆, 500 MHz) δ 8.42 (d, 1H, H-6, *J*_{6.5} = 9.2 Hz), 7.96 (d, 1H, H-14, *J*_{14.8} = 6.9 Hz), 7.93 (d, 1H, H-17, *J*_{17.16} = 8.1 Hz), 7.37 (m, 1H, H-11), 7.14-7.20 (m, 5H, Ar), 6.29 (d, 1H, H-3, *J*_{3.4} = 16 Hz), 5.84 (dd, 1H, H-4, *J*_{4.3} = 16, *J*_{4.5} = 8.6 Hz), 4.51 (m, 1H, H-16), 4.26 (m, 1H, H-8), 4.00 (ddd, 1H, H-5, *J*_{5.4} = 8.6, *J*_{5.6} = *J*_{5.12} = 9.2 Hz), 3.00 (m, 1H, H-11), 2.93 (m, 1H, H-28), 2.77 (m, 1H, H-11), 2.69 (dd, 1H, H-28, *J*_{28,16} = 10.9, *J*_{gem} = 12.6 Hz), 1.98 (t, 2H, H-19, *J*_{19,20} = 6.3 Hz), 1.76 (m, 1H, H-9), 1.73 (m, 1H, H-12), 0.84-1.43 (m, 27H, H-9, H-10, H-13, H-20, H-21, H-22, H-23, H-24, H-25, H-26, H-27); ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 172.7, 172.1, 170.7, 170.0, 138.9, 137.9, 129.2, 127.9, 126.1, 125.2, 58.4, 53.5, 52.2, 42.5, 37.5, 35.2, 31.3, 29.8, 28.9, 28.8, 28.7, 28.4, 25.2, 25.2, 22.1, 19.6, 19.3, 14.0; ESIMS-LR *m/z* 563 [(M+Na)⁺]; ESIMS-HR calcd for C₃₁H₄₈O4N₄Na 563.3568, found 563.3575.

Methyl (S)-4-Methoxycarbonyl-2-(di-tert-butoxycarbonylamino)butanoate (S25)

A solution of **S23** (2.9 g, 20 mmol) in MeOH (50 mL) was treated with TMSCl (11 mL, 88 mmol) at 0 °C, the mixture was stirred at room temperature for 19 h. Triethylamine (18 mL, 130 mmol) and Boc₂O (5.1 mL, 22 mmol) were added to the mixture at 0 °C. After

stirring for 18 h at room temperature, the mixture was filtered, and partitioned between AcOEt and H₂O. The organic phase was washed with 1 M *aq*. HCl, *sat. aq*. NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo* to give **S24**. A solution of **S24** and DMAP (480 mg, 4.0 mmol) in MeCN (58 mL) was treated with Boc₂O (5.6 mL, 22 mmol) at room temperature for 14 h. The mixture was partitioned between AcOEt and H₂O. The organic

phase was washed with 1 M aq. HCl, sat. aq. NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated in vacuo. The residue was purified by hi-flash silica gel column chromatography ($\phi 4.6 \times 12$ cm, $10 \rightarrow 30\%$ AcOEt/hexane) to afford S25 (6.2 g, 16 mmol, 82% over 2 steps) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) & 4.95 (dd, 1H, H-2, *J*_{2,3a} = 9.6, *J*_{2,3b} =4.1 Hz), 3.73 (s, 3H, CO₂Me), 3.69 (s, 3H, CO₂Me), 2.46 (m, 2H, H-4), 2.41 (m, 1H, H-3), 2.18 (m, 1H, H-3), 1.52 (s, 18H, 'Bu). This is a known compound. S5)

Methyl 2-di-tert-butoxycarbonylamino-5-oxo-pentanoate (S26)

NBoc₂

A solution of S25 (6.2 g, 16 mmol) in Et₂O (150 mL) was treated with a solution of DIBAL $\frac{1}{2}$ CO₂Me (25 mL, 25 mmol, 1.0 M in toluene) in Et₂O (10 mL) at -78 °C for 1 h. Diisobutylaluminium hydride (4.9 mL) was further added to the mixture, which was stirred for 20 min. The reaction

was quenched with Na₂SO₄·10 H₂O, and the mixture was stirred for 15 min, filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography ($18 \rightarrow 25\%$ AcOEt/hexane) to afford S26 (2.9 g, 8.5 mmol 52%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 9.76 (s, 1H, CHO), 4.87 (dd, 1H, H-2, J_{2,3a} = 9.2, J_{2,3b} = 4.6 Hz), 3.71 (s, 3H, CO₂Me), 2.58 (m, 1H, H-3), 2.48 (m, 2H, H-4), 2.16 (m, 1H, H-3), 1.49 (s, 18 H, ^tBu). This is a known compound. ^{S5)}

Methyl (S,E)-2-[(tert-Butoxycarbonyl)amino]-7-hydroxyhept-5-enoate (S27)

A solution of diethylphosphonoacetic acid (1.7 g, 4.9 mmol), Zn(OTf)₂ (3.2 g, 8.9 mmol), TMEDA (0.72 mL, 4.9 mmol), and DBU (2.4 mL, 16 mmol) in THF (31 mL) was treated with a solution of S26 (1.4 g, 4.1 mmol) in THF (10 mL) at room

temperature for 16 h. The reaction was quenched with 1 M aq. HCl, and partitioned between AcOEt and H₂O. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated in vacuo. A solution of the residue and Et₃N (1.1 mL, 8.1 mmol) in THF (41 mL) was treated with ethyl chloroformate (770 µL, 8.1 mmol) at 0 °C for 15 min. A solution of NaBH₄ (1.5 g, 41 mmol) in MeOH (13 mL) was added to the mixture, which was stirred for 2 h. The reaction was quenched with 1 M aq. HCl, and the mixture was partitioned between AcOEt and H₂O. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography (ϕ 3 \times 10 cm, 50% AcOEt/hexane) to afford S27 (200 mg, 0.73 mmol 18% over 3 steps) as a colorless oil. ¹H NMR (CD₃OD, 500 MHz) δ 5.65 (m, 2H, H-5, H-6), 4.11 (m, 1H, H-2), 4.00 (d, 2H, H-7, *J*_{7,6} = 4.1 Hz), 3.71 (s, 3H, CO₂Me), 2.13 (m, 2H, H-4), 1.85 (m, 1H, H-3), 1.71 (m, 1H, H-3), 1.44 (s, 9H, ^{*t*}Bu); ¹³C NMR (CD₃OD, 125 MHz) δ 174.6, 158.2, 131.9, 131.2, 80.6, 63.5, 54.4, 52.6, 32.2, 29.5, 28.7; ESIMS-LR *m/z* 296 [(M+Na)⁺]; ESIMS-HR calcd for $C_{13}H_{23}O_5NNa$ 296.1468, found 296.1471. [α]¹⁹D - 16.2 (*c* 0.42, MeOH).

(S,E)-2-[(tert-Butoxycarbonyl)amino]-7-hydroxyhept-5-enoic acid (S28)

A solution of S27 in dioxane (4 mL) and H₂O (2 mL) was treated with LiOH·H₂O (160 mg, 3.7 mmol) at room temperature for 3 h. The mixture was partitioned between AcOEt and 1M aq. HCl. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and

concentrated in vacuo to afford **S28** (150 mg, 0.56 mmol, 90%) as a colorless oil. ¹H NMR (CD₃OD, 400 MHz) δ 5.66 (m, 2H, H-5, H-6), 4.07 (m, 1H, H-2), 4.01 (m, 2H, H-7), 2.14 (m, 2H, H-4), 1.87 (m, 1H, H-3), 1.69 (m, 1H, H-3), 1.48 (s, 9H, ^{*I*}Bu); ¹³C NMR (CD₃OD, 100 MHz) δ 131.7, 131.4, 101.0, 80.4, 63.6, 62.8, 32.4, 29.6, 28.7; ESIMS-LR (negative mode) *m*/*z* 258 [(M-H)⁻]; ESIMS-HR calcd for C₁₂H₂₀O₅N 258.1347, found 128.1349. [α]¹⁹_D -5.33 (*c* 0.30, MeOH).

tert-Butyl {(2*S*,5*E*)-7-Hydroxy-1-{{(3*S*,4*E*)-2-methyl-6-[(4-methylphenyl)sulfonamide]-6-oxohex-4-en-3-yl}amino}-1-oxohept-5-en-2-yl}carbamate (S29)

Compound **S11**^{S2)} (320 mg, 0.80 mmol) was treated with 4 M HCl in dioxane (8.0 mL) at room temperature for 30 min. The mixture was concentrated *in vacuo* to give **15**. A solution of **15**, **S28** (150 mg, 0.53 mmol), ^{*i*}Pr₂NEt (450 μ L, 3.2 mmol), and HOAt (220 mg, 1.6 mmol) in DMF (5.3 mL) was treated with EDCI (250 mg, 1.6 mmol) at room temperature for 21 h. The mixture was partitioned between AcOEt and 1 M *aq*. HCl. The organic phase was washed with 1 M *aq*. HCl, *sat. aq*. NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue

was purified by hi-flash silica gel column chromatography ($\phi 2.6 \times 10 \text{ cm}, 0 \rightarrow 1 \rightarrow 2\%$ MeOH/CHCl₃) to afford **S29** (230 mg, 0.43 mmol, 81% over 2 steps) as a colorless oil. ¹H NMR (CD₃OD, 500 MHz) δ 7.92 (d, 1, H-6, $J_{6,5} = 8.1$ Hz), 7.88 (d, 2H, H-1', $J_{1',2'} = 6.4$ Hz), 7.38 (d, 2H, H-2', $J_{2',1'} = 6.4$ Hz), 6.78 (dd, 1H, H-4, $J_{4,3} = 15.5$, $J_{4,5} = 6.9$ Hz), 5.93 (d, 1H, H-3 $J_{3,4} = 15.5$ Hz), 5.64 (dt, 1H, H-11, $J_{11,12} = 15.5$, $J_{11,10} = 5.7$ Hz), 5.61 (dt, 1H, H-12, $J_{12,11} = 15.5$, $J_{12,13} = 5.7$ Hz), 4.25 (m, 1H, H-5), 4.00 (m, 1H, H-8), 3.99 (m, 2H, H-13), 2.43 (s, 3H, H-3'), 2.08 (m, 2H, H-10), 1.85 (m, 1H, H-14), 1.67-1.82 (m, 2H, H-9), 1.42 (s, 9H, 'Bu), 0.89 (t, 6H, H-15, $J_{15,14} = 8.6$ Hz); ¹³C NMR (CD₃OD, 100 MHz) δ 175.3, 165.8, 158.3, 148.5, 146.4, 138.4, 132.0, 130.9, 129.6, 124.2, 81.1, 80.0, 79.6, 79.3, 63.9, 57.7, 56.0, 33.7, 33.6, 33.1, 30.0, 29.1, 26.9, 22.0, 19.9, 19.2; ESIMS-LR m/z 560 [(M+Na)⁺]; ESIMS-HR calcd for C₂₆H₃₉O₇N₃NaS 560.2401, found 560.2405. [α]²⁰D⁻9.3 (*c* 0.13, MeOH).

tert-Butyl [(3E,5S,8S,11E)-5-Isopropyl-2,7-dioxo-1,6-diazacyclotrideca-3,11-dien-8-yl]carbamate (S30)

A solution of **S29** (200 mg, 0.37 mmol) and PPh₃ (200 mg, 0.74 mmol) in THF (180 mL) was treated with DEAD (340 μ L, 0.74 mmol) for 30 min. The mixuture was concentrated *in vacuo*. The residue was purified by hi-flash silica gel column chromatography (ϕ 2.6×10 cm, 20→40% AcOEt/hexane) to afford a crude sulfonamide (220 mg) as a white solid. A solution of the crude sulfonamide in THF (3.7 mL) was treated with SmI₂ (10 mL, 1.0 mmol,

1.0 M in THF) at room temperature for 10 min. The mixture was partitioned between AcOEt and 1 M *aq.* HCl. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by hi-flash silica gel column chromatography (ϕ 2×6.5 cm, 1% MeOH/CHCl₃) to afford **S30** (50 mg, 140 µmol, 37% over 2 steps) as a white solid. ¹H NMR (CD₃OD, 500 MHz) δ 6.48 (m, 2H, H-3, H-4), 5.50 (m, 1H, H-11), 5.34 (m, 1H, H-12), 4.25 (dd, 1H, H-5, *J* = 6.3, *J* = 2.9 Hz), 4.10 (d, 1H, H-8, *J* = 5.7 Hz), 3.75 (dd, 1H, H-13, *J_{gem}* = 16.6, *J*_{13,12} = 8.1 Hz), 3.64 (d, 1H, H-13, *J_{gem}* = 16.6 Hz), 2.32 (m, 1H, H-10), 2.12 (m, 1H, H-10), 2.09 (m, 1H, H-9), 1.85 (m, 1H, H-14), 1.74 (m, 1H, H-9), 1.44 (s, 9H, 'Bu), 0.94 (m, 6H, H-15); ¹³C NMR (CD₃OD, 125 MHz) δ 173.5, 172.5, 157.3, 145.5, 143.6, 134.1, 130.2, 126.1, 122.8, 80.5, 57.6, 57.3, 55.0, 45.3, 32.7, 32.6, 28.7, 28.4, 19.8, 19.3;

ESIMS-LR m/z 388 [(M+Na)⁺]; ESIMS-HR calcd for C₁₉H₃₁O₄N₃Na 388.2207, found 388.2212. [α]²⁰_D-52.3 (*c* 0.69, MeOH).

N-{(*S*)-1-{[(3*E*,5*S*,8*S*,11*E*)-5-Isopropyl-2,7-dioxo-1,6-diazacyclotrideca-3,11-dien-8-yl]amino}-1-oxo-3-phenylpropan-2-yl}decanamide (10)

A solution of **S30** (25 mg, 68 μ mol) was treated with 4 M HCl in dioxane (0.68 mL) at room temperature for 20 min. The mixture was concentrated *in vacuo*. A solution of the residue, *N*-decanoyl-L-phenylalanine (43 mg, 140 μ mol), ^{*i*}Pr₂NEt (46 μ L, 270 μ mol), and HOAt (21 mg, 140 μ mol) in DMF (0.68 mL) was treated with PyBOP (71 mg,

140 µmol) at room temperature for 24 h. The mixture was partitioned between AcOEt and 1 M *aq.* HCl. The mixture was filtered, and the insoluble contents was washed with *sat. aq.* NaHCO₃, H₂O, and AcOEt. The residue was purified by hi-flash silica gel column chromatography (ϕ 1.6 × 6 cm, 10% MeOH/CHCl₃) to afford **10** (14 mg, 250 µmol, 36% over 2 steps) as a white solid. ¹H NMR (DMSO-*d*₆, 500 MHz) δ 8.06 (d, 1H, H-6, *J*_{6,5} = 9.2 Hz), 8.06 (d, 1H, H-19, *J*_{19,18} = 9.2 Hz), 7.96 (d, 1H, H-16, *J*_{16,8} = 7.5 Hz), 7.42 (m, 1H, H-1), 7.23 (m, 5H, Ar), 6.36 (d, 1H, H-3, *J*_{3,4} = 15.5 Hz), 6.28 (dd, 1H, H-4, *J*_{4,3} = 15.5, *J*_{4,5} = 6.3 Hz), 5.50 (dt, 1H, H-11, *J*_{11,12} = 15.5, *J*_{11,10} = 6.9 Hz), 5.25 (dt, 1H, H-12, *J*_{12,11} = 14.9, *J*_{12,13} = 5.8 Hz), 4.54 (ddd, 1H, H-18, *J*_{18,19} = 8.6, *J*_{18,30} = 4.1 Hz), 4.36 (t, 1H, H-8, *J*_{8,16} = 7.5 Hz), 4.18 (ddd, 1H, H-5, *J*_{5,4} = 6.3, *J*_{5,6} = *J*_{5,14} = 8.0 Hz), 3.58 (ddd, 1H, H-13, *J*_{gem} = 16, *J*_{13,12} = 6.9, *J*_{13,1} = 6.9 Hz), 3.48 (t, 1H, H-13, *J*_{gem} = 16 Hz), 2.98 (dd, 1H, H-30, *J*_{gem} = 13.8, *J*_{30,18} = 4.0 Hz), 2.72 (dd. 1H, H-30, *J*_{gem} = 13.8, *J*_{30,18} = 4.0 Hz), 2.15 (m, 2H, H-10), 1.99 (m, 3H, H-9, H-10), 1.72 (m, 1H, H-14), 0.86-1.34 (m, 27H, H-14, H-15, H-21, H-22, H-23, H-24, H-25, H-26, H-27, H-28, H-29); ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 172.2, 170.7, 170.4, 168.7, 166.9, 142.6, 140.8, 138.0, 132.7, 129.1, 127.9, 126.1, 125.3, 122.1, 55.0, 53.7, 51.7, 51.4, 43.7, 35.2, 31.7, 31.3, 30.8, 28.8, 28.7, 28.4, 26.4, 25.2, 22.1, 19.2, 18.9, 13.9; ESIMS-LR *m*/*z* 589 [(M+Na)⁺]; ESIMS-HR calcd for C₃₃H₅₀O₄N₄Na 589.3724, found 589.3729.

Diethyl [2-(But-3-en-1-ylamino)-2-oxoethyl]phosphonate (S32)

A solution of S31 (1.6 g, 8.1 mmol), DMAP (300 mg, 2.4 mmol), homoallylamine EtO-P

hydrochloride (0.96 g, 8.9 mmol) and ⁱPr₂NEt (4.1 mL, 24 mmol) in CH₂Cl₂ (27 mL) was treated with EDCI (1.9 g, 12 mmol) at room temperature for 17 h. The mixture was

partitioned between AcOEt and H₂O. The organic phase was washed with 1 M aq. HCl, sat. aq. NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo* to afford S32 (1.0 g, 4.0 mmol, 50%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 6.78 (br s, 1H, NH), 5.77 (ddt, 1H, H-3', $J_{3',4'b} = 17.4$, $J_{3',4'a} = 10.6$, $J_{3',2'} = 6.9$ Hz), 5.12 $(dd, 1H, H-4'b, J_{4'b,3'} = 17.4, J_{4'b,4'a} = 1.4 Hz), 5.10 (dd, 1H, H-4'a, J_{4'a,3'} = 10.6, J_{4'a,4'b} = 1.4 Hz), 4.14 (dt, 4H, CH_3CH_2O, J_{4'a,4'b} = 1.4 Hz), 4.1$ *J*_{CH3CH20,P} = *J*_{CH3CH20,CH3CH20} = 7.4 Hz), 3.36 (t, 2H, H-1', *J*_{1',2'} = 6.8 Hz), 2.86 (s, 1H, H-1), 2.80 (s, 1H, H-1), 2.26 (dt, 2H, H-2', $J_{2',3'} = J_{2'1'} = 6.8$ Hz), 1.34 (t, 6H, OCH₂CH₃, $J_{OCH_2CH_3, OCH_2CH_3} = 6.9$ Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 164.0, 135.1, 117.4, 62.9, 62.8, 39.1, 35.8, 34.5, 33.7, 16.5; ESIMS-LR *m/z* 272 [(M+Na)⁺]; ESIMS-HR calcd for C₁₀H₂₀O₄NNaP 272.1022, found 272.1023.

(S,E)-2-(tert-Butoxycarbonyl)amino-7-[2-(diethoxyphosphoryl)acetamido]hept-4-enoic acid (S33)

A solution of S32 (830 mg, 3.3 mmol), Boc-allylGly-OH (790 mg, 3.7 mmol), and CuI (13 mg, 67 µmol) in Et₂O (33 mL) was treated with Grubbs II (85 mg, 0.10 mol) at room temperature, and the mixture was heated at under

reflux temperature for 24 h^{S6}). The mixture was partitioned between Et₂O and *sat. aq.* NaHCO₃. The aqueous phase was acidified with 1 M aq. HCl and extracted with AcOEt. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (ϕ 3×12 cm, 10% MeOH/CHCl₃) to afford S33 (970 mg, 2.2 mmol, 66%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 6.09 (br s, 1H, H-8), 5.56 (m, 1H, H-4), 5.41 (m, 1H, H-5), 5.35 (m, 1H, BocNH), 4.46 (m, 1H, H-2), 4.14 (m, 4H, CH₃CH₂O), 3.37 (m, 1H, H-7), 3.16 (m, 1H, H-7), 3.15 (dd, 1H, H-1', $J_{1',P} = 22.8$, $J_{gem} = 14.2$ Hz), 2.84 (dd, 1H, H-1', $J_{1',P} = 22.8$, $J_{gem} = 14.2$ Hz), 2.51 (m, 2H, H-3), 2.33 (m, 1H, H-6), 2.12 (m, 1H, H-6), 1.43 (s, 9H, 'Bu), 1.31 (t, 6H, CH₃CH₂O, J = 6.8 Hz); ¹³C NMR (CDCl₃, 400 MHz) δ 174.9, 164.0, 154.9, 131.1, 128.2, 110.4, 79.9, 63.3, 54.4, 38.7, 36.5, 31.0, 28.5, 16.4; ESIMS-LR *m*/*z* 459 [(M+Na)⁺]; ESIMS-HR calcd for C₁₈H₃₃O₈N₂NaP 459.1867, found 459.1869. [α]¹⁸_D+105.9 (*c* 0.19, CHCl₃).

tert-Butyl {(*S*,*E*)-7-[2-(Diethoxyphosphoryl)acetamido]-1-{[(*S*)-1-hydroxy-3-methylbutan-2-yl]amino}-1oxohept-4-en-2-yl}carbamate (S34)

$$EtO \xrightarrow{H} H = 0$$

A solution of **S33** (370 mg, 0.84 mmol), L-valinol (140 μ L, 1.3 mmol), HOBt·H₂O (170 mg, 1.3 mmol), ^{*i*}Pr₂NEt (350 μ L, 2.5 mmol) in DMF (8.4 mL) was treated with EDCI (200 mg, 1.3 mmol) at room

temperature for 24 h. *N*,*N*-Diisopropylethylamine (120 µL, 0.84 mmol), HOBt·H₂O (57 µg, 0.42 mmol) and EDCI (65 mg, 0.42 mmol) were further added to the mixture, which was stirred for further 11 h. The mixture was partitioned between with AcOEt and H₂O. The organic phase was washed with 1 M *aq*. HCl, *sat. aq*. NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography ($\phi 4 \times 12$ cm, $0 \rightarrow 2 \rightarrow 3\%$ MeOH/CHCl₃) to afford **S34** (370 mg, 0.71 mmol, 85%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 7.01 (br s, 1H, H-7), 6.83 (d, 1H, H-5', *J*_{5',1'} = 9.2 Hz), 5.59 (d, 1H, BocN*H*, *J*_{NH,1} = 6.9 Hz), 5.47 (m, 2H, H-4, H-5), 4.16 (m, 1H, H-2), 4.13 (m, 4H, CH₃CH₂O), 3.74 (m, 1H, H-1'), 3.68 (m, 2H, H-2'), 3.29 (m, 2H, H-7), 2.98 (d, 2H, H-1", *J*_{1",P} = 21.5 Hz), 2.49 (m, 2H, H-3), 2.42 (m, 1H, H-6), 2.20 (br s, 1H, H-6), 1.89 (m, 1H, H-3'), 1.43 (s, 9H, 'Bu), 1.34 (t, 6H, CH₃CH₂O, *J* = 6.9 Hz), 0.94 (d, 6H, H-4', *J*_{4',3'} = 6.9 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 172.1, 164.1, 155.7, 130.6, 128.1, 63.5, 63.2, 62.9, 57.2, 54.9, 38.8, 36.3, 35.7, 34.4, 32.0, 29.0, 28.5, 19.7, 18.9, 16.5, 16.4; ESIMS-LR *m*/*z* 544 [(M+Na)⁺]; ESIMS-HR calcd for C₂₃H₄₄O₈N₃NaP 544.2758, found 544.2757. [α]¹⁹_D –12.0 (*c* 0.88, CHCl₃).

tert-Butyl [(3E,5S,8S,10E)-5-Isopropyl-2,7-dioxo-1,6-diazacyclotrideca-3,10-dien-8-yl]carbamate (S35)

A solution of **S34** (310 mg, 0.59 mmol) in CH₂Cl₂ (5.9 mL) was treated with Dess-Martin periodinane (270 mg, 0.65 mmol) at room temperature for 1 h. Ethyl acetate, *sat. aq.* NaHCO₃ and *sat. aq.* Na₂S₂O₃ were added to the mixture, which was stirred for further 10 min. The organic phase was dried (Na₂SO₄), filtered, and concentrated *in vacuo* to afford a crude aldehyde. A solution of Zn(OTf)₂ (470 mg, 1.3 mmol), TMEDA (110 μ L, 0.71 mmol)

in THF (78 mL) was treated with Et₃N (330 µL, 2.4 mmol) at room temperature for 15 min. A solution of the crude aldehyde in THF (39 mL) was added to the mixture, which was further stirred for 20 h. The mixture was concentrated *in vacuo* and the residue was partitioned between AcOEt and 1 M *aq*. HCl. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (ϕ 3 × 10 cm, 1 \rightarrow 3% MeOH/CHCl₃) to afford **S35** (150 mg, 0.40 mmol, 67% over 2 steps) as a white solid. ¹H NMR (CD₃OD, 500 MHz) δ 6.56 (dd, 1H, H-4, *J*_{4,3} = 15.5, *J*_{4,5} = 5.8 Hz), 6.40 (d, 1H, H-3, *J*_{3,4} = 15.5 Hz), 5.43 (dt, 1H, H-10, *J*_{10,11} = 15.5, *J*_{10,9} = 7.4 Hz), 5.32 (dt, 1H, H-11, *J*_{11,10} = 15.5, *J*_{11,12} = 6.9 Hz), 4.05 (dd, 1H, H-5, *J*_{5,4} = 5.8, *J*_{5,14} = 6.3 Hz), 3.98 (dd, 1H, H-8, *J*_{8,9} = 8.1, *J*_{8,NH} = 2.9 Hz), 3.12 (m, 2H, H-13), 2.29 (ddd, 1H, H-9, *J*_{9,10} = 7.5, *J*_{9,8} =

8.0, J_{gem} = 14.3 Hz), 2.14 (m, 1H, H-9), 1.98 (m, 2H, H-12), 1.23 (s, 9H, ^{*t*}Bu), 0.80 (d, 6H, H-15, $J_{15,14}$ = 5.2 Hz); ¹³C NMR (CD₃OD, 100 MHz) δ 174.0, 170.6, 157.3, 146.3, 133.0, 129.1, 123.5, 80.5, 57.8, 54.6, 44.2, 37.7, 35.5, 32.7, 30.7, 28.7, 19.7; ESIMS-LR *m/z* 388 [(M+Na)⁺]; ESIMS-HR calcd for C₁₉H₃₁O₄N₃Na 388.2207, found 388.2208.

N-{(*S*)-1-{[(3*E*,5*S*,8*S*,10*E*)-5-Isopropyl-2,7-dioxo-1,6-diazacyclotrideca-3,10-dien-8-yl]amino}-1-oxo-3-phenylpropan-2-yl}decanamide (11)

A solution of **S35** (40 mg, 0.11 mmol) was treated with 4 M HCl in AcOEt (1 mL) at room temperature for 1 h. The mixture was concentrated *in vacuo*. A solution of the residue, *N*-decanoyl-Lphenylalanine (38 mg, 120 μ mol), ^{*i*}Pr₂NEt (56 μ L, 330 μ mol), and HOAt (25 mg, 160 μ mol) in DMF (1.2 mL) was treated with PyBOP (85 mg, 160 μ mol) at 0 °C, and the mixture was stirred at room temperature for

14 h. The mixture was partitioned between AcOEt and 1 M *aq*. HCl. The mixture was filtered, and the insoluble contents was washed with *sat. aq*. NaHCO₃, H₂O, and AcOEt. The residue was purified by preparative-TLC (10% MeOH/CHCl₃) to afford **11** (37 mg, 65 µmol, 65% over 2 steps) as a white solid. ¹H NMR (DMSO-*d*₆, 500 MHz) δ 8.24 (m, 1H, H-6), 8.02 (m, 2H, H-16, H-19), 7.39 (m, 1H, H-1), 7.15-7.22 (m, 5H, Ar), 6.61 (m, 1H, H-4), 6.51 (m, 1H, H-3), 5.58 (m, 1H, H-10), 5.42 (m, 1H, H-11), 4.52 (m, 1H, H-18), 4.43 (m, 1H, H-8), 4.19 (m, 1H, H-5), 3.13 (m, 2H, H-13), 2.98 (m, 1H, H-30), 2.74 (m, 1H, H-30), 2.39 (m, 1H, H-9), 2.28 (m, 1H, H-9), 2.09 (m, 1H, H-12), 2.00 (m, 2H, H-21), 1.75 (m, 1H, H-14), 0.84-1.34 (m, H-10, 11, 22-29); ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 171.2, 170.7, 167.4, 143.9, 142.4, 129.7, 128.7, 128.4, 126.8, 123.3, 55.7, 54.2, 52.1, 50.9, 42.8, 35.6, 32.0 31.2, 29.4, 29.2, 28.8, 25.7, 22.7, 19.8, 14.6; ESIMS-LR *m*/*z* 589 [(M+Na)⁺]; ESIMS-HR calcd for C₃₃H₅₀O₄N₄Na 589.3724, found 589.3727.

Scheme S7. Synthesis of 12

A mixture of **S33** (500 mg, 1.1 mmol) and Pd/C (110 mg, 0.10 mmol) in MeOH (8.0 mL) was stirred at room temperature under H_2 atmosphere for 1.5 h. The catalyst was filtered off through a Cerite pad, and the filtrate was concentrated *in vacuo* to give **S36**. A solution

of **S36** (500 mg), L-valinol (250 μL, 2.3 mmol), HOBt·H₂O (310 mg, 2.3 mmol), and ⁱPr₂NEt (640 μL, 4.6 mmol) in DMF (10 mL) was treated with EDCI (350 mg, 2.3 mmol) at room temperature for 24 h. The mixture was partitioned between with AcOEt and H₂O. The organic phase was washed with 1 M *aq*. HCl, *sat. aq*. NaHCO₃, H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by hi-flash silica gel column chromatography (ϕ 2.6 × 10 cm, 2% MeOH/CHCl₃) to afford **S37** (500 mg, 0.96 mmol, 84%) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 6.68 (m, 1H, H-8), 6.70 (d, 1H, H-5', *J*_{5',1'} = 8.2 Hz), 5.21 (d, 1H, H-BocN*H*, *J*_{NH,2} = 8.2 Hz), 4.16 (m, 1H, H-2), 4.12 (m, 4H, CH₃CH₂O), 3.68 (m, 3H, H-2', O*H*), 3.51 (m, 1H, H-1'), 3.28 (m, 2H, H-7), 2.85 (d, 2H, H-1", *J*_{1",P} = 18.3 Hz), 1.88 (m, 2H, H-3), 1.55 (m, 1H, H-3'), 1.35-1.45 (m, H-4, H-5, H-6, 'Bu, H-4'), 0.95 (t, 6H, CH₃CH₂O); ¹³C NMR (CDCl₃, 100 MHz) δ 172.6, 164.0, 145.2, 139.1, 92.7, 63.5, 62.7, 57.2, 54.7, 39.3, 29.1, 28.5, 24.4, 19.6, 19.1, 16.5; ESIMS-LR *m*/*z* 546 [(M+Na)⁺]; ESIMS-HR calcd for C₂₃H₄₆O₈N₃NaP 546.2915, found 546.2925. [α]¹⁹_D –28.3 (*c* 0.36, CHCl₃).

tert-Butyl [(5S,8S,E)-5-Isopropyl-2,7-dioxo-1,6-diazacyclotridec-3-en-8-yl]carbamate (S38)

A solution of **S37** (170 mg, 0.32 mmol) in CH₂Cl₂ (3.2 mL) was treated with Dess-Martin periodinane (150 mg, 0.36 mmol) at room temperature for 1 h. Ethyl acetate, *sat. aq.* NaHCO₃, and *sat. aq.* Na₂S₂O₃ were added to the mixture, which was stirred for further 10 min. The organic phase was dried (Na₂SO₄), filtered, and concentrated *in vacuo* to afford a crude aldehyde. A solution of Zn(OTf)₂ (260 mg, 0.70 mmol), and TMEDA (57 μ L, 0.38 mmol) in THF (44 mL) was treated with Et₃N (180 μ L, 1.3 mmol) at room temperature for

15 min. A solution of the crude aldehyde in THF (20 mL) was added to the mixture, and the whole mixture was stirred for 15 h. The mixture was concentrated *in vacuo*, and the residue was partitioned between AcOEt and 1 M *aq*. HCl. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (ϕ 3 × 10 cm, 1→3% MeOH/CHCl₃) to afford **S38** (100 mg, 0.27 mmol, 86% over 2 steps) as a white solid. ¹H NMR (CD₃OD, 400 MHz) δ 6.73 (dd, 1H, H-4, *J*_{4,3} = 15.6, *J*_{4,5} = 4.6 Hz), 6.30 (d, 1H, H-3 *J*_{3,4} = 15.6 Hz), 4.37 (dd, 1H, H-5, *J*_{5,4} = *J*_{5,14} = 5.5 Hz), 4.30 (m, 1H, H-8), 3.20 (ddd, 1H, H-13, *J*_{13,12} = 6.4, *J*_{13,NH} = 8.7, *J*_{gem} = 15.1 Hz), 3.03 (ddd, 1H, H-13, *J*_{13,12} = *J*_{13,NH} = 7.8, *J*_{gem} = 15.1 Hz), 1.90 (m, 1H, H-14), 1.81 (m, 2H, H-9), 1.43 (s, 9H, 'Bu), 1.29-1.60 (m, 6H, H-10, H-11, H-12), 1.02 (t, 6H, H-15, *J*_{15,14} = 5.5 Hz); ¹³C NMR (CD₃OD, 100 MHz) δ 174.1, 170.9, 157.2, 145.4, 122.9, 80.5, 57.6, 54.9, 41.1, 32.8, 32.6, 29.5, 28.7, 24.9, 21.1, 19.7, 19.5; ESIMS-LR *m*/z 390 [(M+Na)⁺]; ESIMS-HR calcd for C₁₉H₃₃O₄N₃Na 390.2363, found 390.2368. [α]¹⁸_D -58.2 (*c* 0.60, MeOH).

N-{(*S*)-1-{[(5*S*,8*S*,*E*)-5-isopropyl-2,7-dioxo-1,6-diazacyclotridec-3-en-8-yl]amino}-1-oxo-3-phenylpropan-2-yl}decanamide (12)

A solution of **S38** (40 mg, 0.11 mmol) was treated with 4.0 M HCl in AcOEt (1.0 mL) at room temperature for 1 h. The mixture was concentrated *in vacuo*. A solution of the residue, *N*-decanoyl-Lphenylalanine (39 mg, 120 μ mol), ^{*i*}Pr₂NEt (56 μ L, 330 μ mol), and HOAt (26 mg, 160 μ mol) in DMF (1.2 mL) was treated with PyBOP (86 mg, 160 μ mol) at 0 °C, and the mixture was stirred at room temperature for

17 h. The mixture was partitioned between AcOEt and 1 M *aq.* HCl. The mixture was filtered, and the insoluble contents was washed with *sat. aq.* NaHCO₃, H₂O, and AcOEt. The residue was purified by preparative-TLC (10% MeOH/CHCl₃) to afford **12** (40 mg, 70 µmol, 64% over 2 steps) as a white solid. ¹H NMR (DMSO-*d*₆, 500 MHz) δ 8.13 (m, 2H, H-6, H-19), 7.70 (m, 1H, H-16), 7.44 (m, 1H, H-1), 7.15-7.23 (m, 5H, Ar), 6.55 (d, 1H, H-4, *J*_{4,3} = 13.8 Hz), 6.13 (d, 1H, H-3, *J*_{3,4} = 15.5 Hz), 4.51 (m, 2H, H-8, H-18), 4.28 (br s, 1H, H-5), 3.01 (m, 1H, H-30), 2.88 (m, 2H, H-13), 2.75 (m, 1H, H-30), 2.00 (br s, 2H, H-21), 1.81 (m, 2H, H-9), 1.77 (m, 1H, H-14), 0.85-1.47 (m, 29H, H-10, H-11, H-12, H-15, H-22, H-23, H-24, H-25, H-26, H-27, H-28, H-29); ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 172.3, 170.6, 166.9, 142.7, 138.2, 133.7, 129.1, 127.9, 126.1, 123.3, 122.1, 120.3, 95.6, 55.0, 53.7, 51.7, 37.0, 35.2, 31.3, 30.9, 28.9, 28.7, 28.4, 25.3, 23.4, 22.2, 19.4, 19.3, 18.8, 14.0; ESIMS-LR *m*/*z* 591 [(M+Na)⁺]; ESIMS-HR calcd for C₃₃H₅₂O₄N₄Na 591.3881, found 591.3893.

tert-Butyl {(S)-1-{[(R)-1-Hydroxy-3-methylbutan-2-yl]amino}-1-oxopent-4-en-2-yl}carbamate (S40)

A solution of **S39** (500 mg, 2.3 mmol), L-valinol (260 μ L, 2.3 mmol), HOBt·H₂O (470 mg, 3.5 mmol), and Pr₂NEt (0.97 mL, 7.0 mmol) in DMF (12 mL) was treated with EDCI (540 mg, 3.5 mmol) at room temperature for 24 h. The mixture was partitioned between with AcOEt and H₂O. The organic phase was washed with 1 M *aq*. HCl, *sat. aq.* NaHCO₃,

H₂O, and brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo* to afford **S40** (700 mg, quant.) as a colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 6.32 (m, 1H, N*H*), 5.76 (ddt, 1H, H-4, $J_{4,5} = 17.9$, $J_{4,5} = 10.1$, $J_{4,3} = 7.8$ Hz), 5.20 (d, 1H, H-5, $J_{5,4} = 10.1$ Hz), 5.00 (br s, 1H, BocN*H*), 4.10 (dd, 1H, H-2, $J_{2,3} = 12.8$, $J_{2,3} = 6.4$ Hz), 3.71 (m, 1H, H-1'), 3.60-3.70 (m, 2H, H-2'), 2.67 (br s, 1H, O*H*), 2.52 (m, 2H, H-3), 1.87 (dq, 1H, H-3', $J_{3',1'} = 14$, $J_{3',4'} = 6.9$ Hz), 1.45 (s, 9H, 'Bu), 0,93 (d, 6H, H-4', $J_{4',3'} = 6.8$ Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 172.2, 162.7, 156.0, 133.3, 119.2, 80.7, 63.7, 57.4, 54.4, 36.6, 36.4, 31.6, 29.0, 28.4, 19.7, 18.8; ESIMS-LR m/z 323 [(M+Na)⁺]; ESIMS-HR calcd for C₁₅H₂₈O₄N₂Na 323.1941, found 323.1943. [α]²⁰D^{-65.2} (*c* 1.00, CHCl₃).

tert-Butyl {(S)-1-{[(S,E)-2-Methyl-6-(methylamino)-6-oxohex-4-en-3-yl]amino}-1-oxopent-4-en-2-yl}carbamate (S41)

A solution of **S40** (310 mg, 1.0 mmol) in CH₂Cl₂ (10 mL) was treated with Dess-Martin periodinane (470 mg, 1.1 mmol) at room temperature for 1 h. Ethyl acetate, *sat. aq.* NaHCO₃, and *sat. aq.* Na₂S₂O₃ were added to the mixture, which was vigorously stirred for further 10 min. The organic phase was dried (Na₂SO₄), filtered, and concentrated *in vacuo.* A solution of the residue (210 mg, 1.1 mmol), Zn(OTf)₂ (800 mg, 2.2 mmol), and TMEDA (180 μ L, 1.2

mmol) in THF (8.0 mL) was treated with Et₃N (560 μL, 4.0 mmol) at room temperature for 15 min. A solution of the crude aldehyde in THF (4 mL) was added to the mixture, which was stirred for 18 h. The mixture was concentrated *in vacuo* and the residue was partitioned between AcOEt and 1 M *aq*. HCl. The organic phase was washed with brine, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The residue was purified by trituration with Et₂O to afford **S41** (180 mg, 0.51 mmol, 51% over 2 steps) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ 6.71 (dd, 1H, H-4, $J_{4,3}$ = 14.9, $J_{4,5}$ = 5.7 Hz), 6.59 (d, 1H., H-6, $J_{6,5}$ = 8.0 Hz), 5.92 (d, 1H, H-3, $J_{3,4}$ = 14.9 Hz), 5.72 (m, 1H, H-10), 5.15 (m, 1H, H-11), 5.11 (m, 1H, H-11), 4.41 (m, 1H, H-5), 4.14 (m, 1H, H-8), 2.84 (d, 3H, NMe, J = 5.2 Hz), 2.51 (m, 2H, H-9), 1.85 (m, 1H, H-12), 1.42 (s, 9H, 'Bu), 0.89 (t, 6H, H-13, $J_{13,12}$ = 6.9 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 171.4, 166.2, 156.2, 141.9, 133.4, 124.7, 119.4, 80.7, 55.7, 54.3, 36.3, 32.3, 28.6, 26.6, 19.2, 18.3; ESIMS-LR *m/z* 376 [(M+Na)⁺]; ESIMS-HR calcd for C₁₈H₃₁O₄N₃Na 376.2207, found 376.2209. [α]¹⁸_D-43.4 (*c* 1.02, MeOH).

N-{(*S*)-1-{{(*S*)-1-{{(*S*,*E*)-2-Methyl-6-(methylamino)-6-oxohex-4-en-3-yl]amino}-1-oxopent-4-en-2-yl}amino}-1-oxo-3-phenylpropan-2-yl}decanamide (13)

A solution of the **S41** (35 mg, 0.10 mmol) was treated with 4.0 M HCl in AcOEt (1.0 mL) at room temperature for 1 h, and the mixture was concentrated *in vacuo*. A solution of the residue, *N*-decanoyl-L-phenylalanine (35 mg, 110 μ mol), ^{*i*}Pr₂NEt (51 μ L, 300 μ mol), and HOAt (23 mg, 150 μ mol) in DMF (1 mL) was treated with PyBOP (78 mg, 150 μ mol) at 0 °C, and the mixture was stirred at room temperature for 15 h.

The mixture was partitioned between AcOEt and 1 M aq. HCl. The organic phase was washed with sat. aq. NaHCO₃ and H₂O, filtered, and the residue was washed with AcOEt. The residue was purified by preparative-TLC (10% MeOH/CHCl₃) to afford **13** (49 mg, 88 µmol, 88% over 2 steps) as a white solid. ¹H NMR (DMSO- d_6 , 500 MHz) δ 8.12 (m, 1H, H-14), 8.11 (m, 1H, H-1), 8.06 (m, 1H, H-17), 8.05 (m, 1H, H-6), 7.14-7.23 (m, 5H, Ar), 6.48 (ddd, 1H, H-4, $J_{4,3} = 15.5$, $J_{4,5} = 5.0$, $J_{4,12} = 3.2$ Hz), 5.87 (d, 1H, H-3, $J_{3,4} = 15.5$ Hz), 5.70 (m, 1H, H-10), 5.08 (d, 1H, H-11, $J_{11,10} = 16.6$ Hz), 5.00 (d, 1H, H-11, $J_{11,10} = 10.3$ Hz), 4.50 (m, 1H, H-16), 4.35 (m, 1H, H-8), 4.17 (m, 1H, H-5), 3.00 (dd, 1H, H-28, $J_{28,16} = J_{gem} = 13.7$ Hz), 2.72 (dd, 1H, H-28, $J_{28,16} = 10.9$, $J_{gem} = 13.7$ Hz), 2.61 (m, 3H, NMe), 2.42 (m, 1H, H-9), 2.35 (m, 1H, H-9), 2.00 (m, 2H, H-19), 1.76 (m, 1H, H-12), 0.83-1.36 (m, 23H, H-13, H-20, H-21, H-22, H-23, H-24, H-25, H-26, H-27); ¹³C NMR (DMSO- d_6 , 125 MHz) δ 172.2, 171.1, 164.9, 140.4, 137.9, 133.9, 129.0, 127.7, 125.9, 124.4, 117.4, 54.8, 53.7, 52.3, 37.1, 36.3, 35.1, 31.5, 31.1, 28.7, 28.5, 28.3, 25.3, 25.0, 21.9, 18.8, 18.3, 13.8; ESIMS-LR m/z 577 [(M+Na)⁺]; ESIMS-HR calcd for C₃₂H₅₀O4N4Na 577.3724, found 577.3726.

 $N-\{(S)-3-[(1,1'-Biphenyl)-4-yl]-1-\{[(3E,5S,8S,9E)-5-isopropyl-2,7-dioxo-1,6-diazacycloundeca-3,9-dien-8-yl]amino\}-1-oxopropan-2-yl\}decanamide (14)$

A solution of **18** (20 mg, 42 µmol) and Et₃SiH (17 µL, 110 µmol) in CH₂Cl₂ (0.50 mL) was treated with TFA (0.50 mL) at 0 °C, and the mixture was stirred at room temperature for 3 h. The mixture was concentrated *in vacuo*. A solution of the residue, *N*-decanoyl-L-(*p*-phenyl)phenylalanine (25 mg, 130 µmol), ^{*i*}Pr₂NEt (22 µL, 130 µmol), and HOAt (10 mg, 63 µmol) in DMF (0.50 mL) was treated with PyBOP (33 mg, 63 µmol) at room temperature for 20 h. The mixture was partitioned between AcOEt and 1 M *aq*. HCl. The mixture was

filtered, and the insoluble contents was washed with *sat. aq.* NaHCO₃, H₂O, and AcOEt. The residue was purified by preparative-TLC (10% MeOH/CHCl₃) to afford **14** (13 mg, 21 µmol, 50% over 2 steps) as a white solid. ¹H NMR (DMSO-*d*₆, 500 MHz) δ 8.32 (m, 1H, H-14), 8.05 (d, 1H, H-17, *J*_{17,16} = 6.9 Hz), 7.33-7.62 (m, 11H, H-Ar, H-1, H-6), 6.18 (m, 1H, H-4), 5.98 (d, 1H, H-3, *J*_{3,4} =15.5 Hz), 5.61 (m, 2H, H-9, H-10), 4.79 (m, 1H, H-8), 4.60 (m, H-16), 3.87 (m, 1H, H-5), 3.73 (m, 2H, H-11), 3.05 (d, 1H, H-28, *J*_{gem} = 13.8 Hz), 2.74 (t, 1H, H-28, *J* = 11.5 Hz), 1.99 (m, 1H, H-19), 1.72 (m, 1H, H-12), 1.31 (m, 2H, H-20), 0.80-1.9 (m, 21H, H-13, H-21-27) ; ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 185.6, 171.2, 170.8, 169.1, 168.3, 139.9, 137.8, 137.2, 129.6, 128.7, 127.0, 126.3, 126.0, 53.3, 43.8, 36.9, 35.1, 31.2, 31.1, 28.7, 28.6, 28.2, 25.1, 21.9, 19.5, 19.1, 13.8; ESIMS-LR *m*/*z* 637 [(M+Na)⁺]; ESIMS-HR calcd for C₃₇H₅₁O₄N₄ 615.391, found 615.391.

4) Evaluation of *in vitro* β5 proteasome inhibitory activity and determination of kinetic constants

In vitro proteasome inhibitory activity was measured on 96-well microtiter plates using human erythrocyte 20S proteasome (R&D Systems, Inc.) with the AK-740 Assay Kit for Drug Discovery (Biomol). Reactions were performed at 37 °C in 100 µL volumes containing a serial dilution of test samples, 2 µg/mL 20S proteasome, and 100 µM Suc-LLVY-AMC for assaying chymotrypsin-like activity, according to the manufacture's instructions. Fluorescence was monitored with an infinite M200 microplate reader (Tecan) equipped with 360 nm excitation and 465 nm emission filters, and the results were graphically represented in Figures S1. The observed rate constant for inhibition, k_{obs} , at each concentration was determined from the slope of a semi-logarithmic plot of inhibition versus time. The k_{obs} values were re-plotted against inhibitor concentrations as shown in Figure S1, and fitted to a hyperbolic equation, $k_{obs} = k_2[\Pi]/(K_i+[\Pi])$, to obtain values for K_i and k_2 . The k_2/K_i ratio represents the second-order rate constant for the reaction of the inhibitor with the target. ^{S7}

Data for analogue 1

Data for analogue 2

Figure S1-1. In vitro β 5 proteasome inhibitory activity and k_{obs} plots. (a) (d) (g) Comparative data of the β 5 proteasome inhibitory activity. (b) (e) (h) Proteasome β 5 inhibitory activity. (c) (f) (i) The dependence of the observed k_{obs} on the concentration of inhibitor.

Data for analogue 4

Data for analogue 5

Figure S1-2. In vitro β 5 proteasome inhibitory activity and k_{obs} plots. (j) (m) (p) Comparative data of the β 5 proteasome inhibitory activity. (k) (n) (q) Proteasome β 5 inhibitory activity. (l) (o) (r) The dependence of the observed k_{obs} on the concentration of inhibitor.

Data for analogue 8

Figure S1-3. In vitro β 5 proteasome inhibitory activity and k_{obs} plots. (s) (v) (y) Comparative data of the β 5 proteasome inhibitory activity. (t) (w) (z) Proteasome β 5 inhibitory activity. (u) (x) (aa) The dependence of the observed k_{obs} on the concentration of inhibitor.

Figure S1-4. In vitro β 5 proteasome inhibitory activity and k_{obs} plots. (bb) (ee) (hh) Comparative data of the β 5 proteasome inhibitory activity. (cc) (ff) (ii) Proteasome β 5 inhibitory activity. (dd) (gg) (jj) The dependence of the observed k_{obs} on the concentration of inhibitor.

5) Evaluation of anti-proliferation activity against Amo-1 cells

Cell proliferation assays were performed using the Cell Counting Kit-8 (CCK-8) (Dojindo, CK04) according to the manufacturer's protocol. In brief, Amo-1 cells were cultured in RPMI1640 medium containing 10% FBS and 1% penicillin-streptomycin. A cell suspension at 1×10^5 cells/ml (100 µL) was seeded into a 96-well plate in each well. After culturing for 24 h at 37 °C under atmosphere of 5% CO₂, the cells were treated with a solution of the compound in DMSO (1 µL) at 37 °C for 72 h. A solution of the CCK-8 (10 µL) was then added to each well and the cells were incubated at 37 °C for 3 h. The absorbance at 450 nm was measured using an Infinite M200 PRO multimode microplate reader (Tecan). The data points were calculated from the average (±standard deviation) of three assays and plotted using Microsoft Excel 2016. Compound concentrations that exhibited 50% inhibition of cell proliferation (IC₅₀) were calculated from curves constructed by plotting cell proliferation (%) versus the log of compound concentration (nM). IC₅₀ (nM): **4** = 4.33±1.6, **8** = 26.3±9.3, **14** = 12.1±3.2.

Figure S2. Anti-cell proliferative activity of 4, 8, and 14 on Amo-1 cells.

6) Conformational calculation

Conformational search of **7**, **8**, **11**, and **12** was carried out using the Monte Carlomultiple minimum (MCMM) method (1000 steps), followed by Polak-Ribiere conjugate gradient (PGCG) minimization with the OPLS 2005 force field. The other settings were used as default.

Conformational search of **4**, **5**, **6**, **9**, and **10** was carried out using the Monte Carlomultiple minimum (MCMM) method (1000 steps), followed by Polak-Ribiere conjugate gradient (PGCG) minimization with the OPLS 2005 force field with constraints on to build structures that fulfill tortional angles derived from $J_{4,5}$ measured at 400 or 500 MHz ¹H NMR. The other settings were used as default. To calculate tortional angles, the vinyl-allylic proton coupling constants in analogues were calculated using the Garbish equations: $J_{4,5} = 6.6 \cos^2\theta + 2.6 \sin^2\theta$ ($0^{\circ} < \theta < 90^{\circ}$), $J_{4,5} = 11.6 \cos^2\theta + 2.6 \sin^2\theta$ ($\theta > 90^{\circ}$).^{S8)} The other settings were used as default. Side chains of all structures were replaced by acetyl group.

compound	J _{4,5} (Hz)	dihedral angle(°)
4	5.4	33, 123
5	5.2	36, 122
6	5	39, 121
7	-	-
8	-	-
9	8.6	145
10	6.3	16, 130
11	-	-
12	-	-

Table S1. Coupling constants of analogues and calculated dihedral angles.

two lowest energy-minimum conformers of 4

Figure S3-1. Calculated lowest energy-minimum conformers of the core structures of analogues 4-6.

two lowest energy-minimum conformers of 7

two lowest energy-minimum conformers of 8

relative energy (KJ/mol) +5.35

lowest energy-minimum conformer of 8 HN ูNHAc 0= 11 Ĥ 9

Figure S3-2. Calculated lowest energy-minimum conformers of the core structures of analogues 7-9.

+4.638 relative energy (KJ/mol) 0

two lowest energy-minimum conformers of 11

two lowest energy-minimum conformers of 12 $\frac{HN}{13} \frac{13}{12} \frac{13}{12}$

Figure S3-3. Calculated lowest energy-minimum conformers of the core structures of analogues 10-12.

References

- S1) M. M. Paz, F. J. Sardina, J. Org. Chem. 1993, 58, 6990-6995.
- S2) S. Kitahata, T. Chiba, T. Yoshida, M. Ri, S. Iida, A. Matsuda, S. Ichikawa, Org. Lett. 2016, 18, 2312-2315.
- S3) M. Pirrung, G. Biswas, T. Ibarra-Rivera, Org. Lett. 2010, 12, 2402-2405.
- S4) P. Gmeiner, P. L. Feldman, M. Chu-Moyer, H. Rapoport, J. Org. Chem. 1990, 55, 3068-3074.
- S5) S. Ortial, R. Dave, Z. Benfodda, D. Bénimélis, P. Meffre, Synlett 2014, 25, 569-573.
- S6) K. Voigtritter, S. Ghorai, B. Lipshutz, J. Org. Chem. 2011, 76, 4697-4702.
- S7) a) G. Fanteany, R. F. Standaert, W. S. Lane, S. Choi, E. J. Corey, S. L. Schreiber, *Science* 1995, 268, 726-731.
 b) J. Singh, E. M. Dobrusin, D. W. Fry, T. Haske, A. Whitty, J. McNamara, *J. Med. Chem.* 1997, 40, 1130-1135.
- S8) E. W. Garbisch, J. Am. Chem. Soc. 1964, 86, 5561-5564.

7) ¹H and ¹³C NMR spectra of compounds

.

S70

S71

S102

S104

S105