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Supplementary Note 1: PSIIRC parameters

Electronic Parameters

The state energies in wavenumbers for the photocell model are given in Supplementary Table S1. The electronic
PSIIRC Hamiltonian Hel used for the excited state dynamics can be constructed using the energies of the single
excitation states of the six core chromophores and two charge transfer (CT) states of the ChlD1 charge separation
pathway26 along with the couplings from Supplementary Table S2.

g PD1 PD2 ChlD1 ChlD2 PheD1 PheD2 Chl+D1Phe−D1 P+
D1Phe−D1 β

0 14720 14650 14460 14560 14490 14480 14372 13972 2681

Supplementary Table S1: State energies in wavenumbers for PSIIRC photocell, reorganisation energy is not included.

PD1 PD2 ChlD1 ChlD2 PheD1 PheD2 Chl+D1Phe−D1 P+
D1Phe−D1

PD1 - 150 -42 -55 -6 17 0 0
PD2 - -56 -36 20 -2 0 0

ChlD1 - 7 46 -4 70 0
ChlD2 - -5 37 0 0
PheD1 - -3 70 0
PheD2 - 0 0

Chl+D1Phe−D1 - 40
P+
D1Phe−D1 -

Supplementary Table S2: Electronic couplings between PSIIRC core chromphores and CT states in wavenumbers.

Spectral Densities

The parameters for the low energy phonon environment, described using a Drude spectral density JD(ω) (see Eq. 1
in the main paper) are λD = 35cm−1 and ΩD = 40cm−1, which are the reorganisation energy and cut-off frequency
respectively21,26. The parameters for the high energy modes used in the full PSIIRC spectral density J(ω) are given in
Supplementary Table S321,28 for which a damping constant γj = 10cm−1 is used for all modes28 and the reorganisation
energy associated with each mode is given by λj = ωjsj . The frequencies, Huang-Rhys factors and damping constants
for the broadened modes in spectral densities J1(ω) and J2(ω), used to approximate the 48 underdamped modes in non-
perturbative calculations, are ω1 = 342cm−1, s1 = 0.4, γ1 = 100cm−1, and ω2 = 742cm−1, s2 = 0.32, γ2 = 100cm−1.
The reorganisation energies for the broadened modes are given by λi = ωisi. To quantify the stronger coupling of the
CT states to the bath, the reorganisation energies and line broadening functions of the primary (I) and secondary (α)
CT states were scaled using values of νI = 3 and να = 4 respectively26.

Supplementary Note 2: Theoretical Methods for Electronic Dynamics

The different parameter regimes found within PSIIRC systems make it a challenging computational task to accurately
describe the exciton and charge transfer dynamics in a self-consistent manner. Two frameworks for the photocell
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ωj sj ωj sj ωj sj ωj sj
97 0.0371 604 0.0034 1143 0.0303 1354 0.0057
138 0.0455 700 0.005 1181 0.0179 1382 0.0067
213 0.0606 722 0.0074 1190 0.0084 1439 0.0067
260 0.0539 742 0.0269 1208 0.0121 1487 0.0074
298 0.0488 752 0.0219 1216 0.0111 1524 0.0067
342 0.0438 795 0.0077 1235 0.0034 1537 0.0222
388 0.0202 916 0.0286 1252 0.0051 1553 0.0091
425 0.0168 986 0.0162 1260 0.0064 1573 0.0044
518 0.0303 995 0.0293 1286 0.0047 1580 0.0044
546 0.0030 1052 0.0131 1304 0.0057 1612 0.0044
573 0.0094 1069 0.0064 1322 0.0202 1645 0.0034
585 0.0034 1110 0.0192 1338 0.0037 1673 0.001

Supplementary Table S3: Frequencies (cm−1) and Huang-Rhys factors for 48 modes of PSIIRC

model are considered here: (i) A hybrid model where the exciton dynamics is described using the non-perturbative
hierarchical equations of motion (HEOM). (ii) A Pauli master equation where the exciton dynamics is described
using modified Redfield theory. Both these frameworks share a common description of the incoherent rates for charge
transfer, optical excitation and coupling to leads which can be obtained from a Lindblad dissipator. More detail is
given on the theoretical basis of these frameworks below.

Hamiltonian Dynamics

The Hamiltonian of the system and bath is H = Hel + HB + HI . The electronic Hamiltonian Hel =
∑
i |i〉〈i| +∑

ij Tij(|i〉〈j| + |j〉〈i|) is given in Supplementary Tables S1 and S2. The exciton states and associated energies are

given in Supplementary Table S4. Additionally, HB =
∑
k h̄ωkb

†
kbk is the bath Hamiltonian describing a continuum

of bosonic modes and HI =
∑
ki gik|i〉〈i|(b

†
k + bk) defines the interaction between the system and bath. The bath is

characterised by a spectral density J(ω) =
∑
k g

2
kδ(ω−ωk) for which several forms are investigated in the main paper

(see Eqs. 1 and 2). The bath is assumed identical for each site apart from a scaling for the CT states taking into
account their stronger coupling to the bath. Different open quantum systems approaches, depending on the framework
considered, are used to determine the dynamics of the electronic system under the influence of the bath.

PD1 PD2 ChlD1 ChlD2 PheD1 PheD2 ε (cm−1)
X1 -0.029 0.251 0.8 -0.018 -0.541 0.048 14412.5
X2 -0.185 0.057 -0.061 -0.404 0.04 0.891 14459.7
X3 0.265 -0.145 0.56 0.112 0.754 0.12 14517.0
X4 -0.558 0.735 -0.007 0.116 0.345 -0.126 14540.8
X5 0.134 0.096 -0.121 0.876 -0.134 0.416 14565.0
X6 -0.752 -0.603 0.165 0.209 -0.003 -0.012 14864.0

Supplementary Table S4: Site amplitudes and associated energies for the six exciton states of the core PSIIRC
chromophores. Bold amplitudes indicate the chromophore on which the exciton is quasi-localized. ε is the state energy
not including reorganisation energy.

Charge Transfer: Förster Theory

Primary and secondary charge separation were modeled using Förster theory42,43 (equivalent to Marcus rates in the
excited state) which is perturbative with respect to the electronic coupling between states and describes incoherent
electron transfer events. The Förster rate expression has the general form

kab = |Vab|2Sab, (S1)

where Vab is the electronic coupling between states a and b and Sab is the spectral overlap between these states. This
overlap can be expressed equivalently in both the time and frequency domain

S
(time)
ab = 2Re

∫∞
0
dteiωabte−i(λa+λb)te−(ga(t)+gb(t)) (S2)

S
(freq)
ab = 1

2π

∫∞
−∞ dωD̄a(ω)Db(ω), (S3)
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Supplementary Figure S1: Comparison of perturbative theories with the hierarchical equations of motion for downhill
transfer rates in a dimer system70. The electronic system Hamiltonian is H = (∆ε/2)σz + V σx which is interacting
with a Drude spectral density with reorganisation energy λ = 100cm−1 and cutoff frequency Ωc = 53cm−1. The rates
are calculated for different electronic coupling strengths (a) V = 20cm−1, (b) V = 100cm−1 and (c) V = 500cm−1.
The inset of (b) shows the dependence of transfer rate on reorganisation energy λ for an energy gap ∆ε = 10cm−1.

where Da(ω) = 2Re
∫∞

0
dteiωte−iωat−iλat−ga(t) and D̄a(ω) = 2Re

∫∞
0
dteiωte−iωat+iλat−g

∗
a(t) are the absorption and

fluorescence lineshapes respectively. The line broadening functions are defined g(t) = gD(t)+
∑
j gj(t) where gD(t) and

gj(t) are the line broadening functions for the Drude mode and the jth underdamped mode respectively. For a Drude

spectral density gD(t) =
cD0
Ω2
D

(e−ΩDt+ ΩDt−1) +
∑∞
k=1

cDk
ν2
k

(e−νkt+νkt−1) where cD0 = λDΩD(cot(βΩD
2 )− i) and cDk =

4λDΩD
β ( νk

ν2
k−Ω2

D
). For an underdampded mode gj(t) =

∑
+,−

c±0j
ν2
j±

(e−νj±t + νj±t− 1) +
∑∞
k=1

ckj
ν2
k

(e−νkt + νkt− 1), where

c±0j = ±iλjω
2
j

2ζj
(cot(βν±2 ) − i), ckj =

−4λjγjω
2

β ( νk
(ω2
j+ν2

k)2−(γ2
j ν

2
k)

), νj± =
γj
2 ± iζj and ζj =

√
ω2
j −

γ2
j

4 . The summations

over Matsubara frequencies νk = 2π
β k can usually can truncated at a suitable k depending on the temperature.

For primary charge transfer we have transfer from an exciton state (X) to the primary CT state (I). In this case
the electronic coupling between X and I is VXI =

∑
n∈X cn(X)VnI where cn(X) is the amplitude of site n in exciton

X and VnI is the electronic coupling between site n and CT state I. The exciton reorganisation energy has the form
λX =

∑
i |ci(X)|4λ and similarly the line broadening function gX(t) =

∑
i |ci(X)|4g(t) where ci(X) are the amplitudes

of exciton X at site i and λ and g(t) are the site reorganisation energy and line broadening function. The primary CT
reorganisation energy and line broadening function are λI = νIλ and gI(t) = νIg(t).

Secondary charge transfer rates are calculated in a similar way though the reorganisation energies and line broad-
ening functions of both the donor and acceptor are now scaled.

Justification of Perturbative Treatment for Charge Transfer Dynamics

The parameter regime for primary charge separation in the ChlD1 pathway is such that a perturbative approach to
the dynamics using Förster theory is a good approximation to the exact dynamics. In the site basis the electronic
coupling between ChlD1 and PheD1 and the primary CT state is 70cm−1 while the CT reorganisation energy ranges
from 105cm−1 for a Drude spectral density JD(ω) to 1769cm−1 for the full spectral density J(ω). A comparison of
transfer rates calculated using HEOM and Förster theory is given in Supplementary Fig. S170, which shows downhill
transfer rates for a dimer system in various parameter regimes. The relevant regime comparable to primary CT in
PSIIRC is the right-hand side of plot a, where the electronic coupling is less than both the reorganisation energy and
the energy gap. In this region, Förster theory and HEOM give transfer rates in close agreement. The small electronic
coupling and large energy gap mean transfer must occur through transient resonant states of the system rather than
through coherent evolution.

Incoherent Excitation and Coupling to Leads

For the incoherent rates of electron hopping between the source lead of the system a value of ΓL = 201.6cm−1 was
used. The rate to hop from the system into the drain lead (ΓR) was varied for the current and Fano factor calculations
as a function of voltage.
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For calculations varying voltage with a constant excitation rate, the value γex = γn = 75cm−1 where γ =
0.00125cm−1 and n = 60000 were used to simulate excitation by concentrated solar radiation37. Satisfying detailed
balance the deexcitation rate γdeex = γ(n+ 1).

Hybrid Model: Hierarchical Equations of Motion

The exciton relaxation dynamics in photosynthetic systems can be described using the non-perturbative hierarchical
equations of motion (HEOM)34,35,36. This treats the exciton-vibrational dynamics exactly but is computationally
expensive and requires the hierarchy to be truncated at some suitable level. In order to include additional incoherent
processes in the photocell dynamics a hybrid model must be used. In this case a Lindblad dissipator is included to
capture the coupling of the excitons to the rest of the photocell68. In particular the dissipator describes the excitation
of the system from the ground to exciton manifold, primary and secondary charge transfer, and coupling to the leads.

Due to the numerical difficulty of describing the system-bath dynamics the full PSIIRC spectral density cannot be
included in this framework. Instead, a Drude mode and a broadened underdamped mode (see Fig. 2 from the main
paper) overlapping the exciton energy gaps is used to approximate the full spectral density. In the main paper the
photocell current and power output for this approximate spectral density are compared with a photocell having just
a Drude bath.

The infinite hierarchy of coupled differential equations including the Lindblad dissipator has the form:

σ̇(n,m−,m+) = [L − nνD −
1

2
(m+ +m−)ν0 + i(m− −m+)ζ0 − ΞTC ]σ(n,m−,m+)

+ i

N∑
i

√
(ni + 1)cDi V

×
i σ

(ni+1,m
−,m+)

+ i

N∑
i

√
(m−i + 1)c−i V

×
i σ

(n,m−i+1,m
+)

+ i

N∑
i

√
(m+

i + 1)c+i V
×
i σ

(n,m−,m+
i+1)

+

N∑
i

√
ni
|cDi |

Θiσ
(ni−1,m

−,m+) +

N∑
i

√
m−i
|c−i |

Θ−i σ
(n,m−i−1,m

+) +

N∑
i

√
m+
i

|c+i |
Θ+
i σ

(n,m−,m+
i−1) (S4)

where σ(n,m−,m+) are auxiliary density matrices indexed by the vectors n = {n1, n2, ..., nN} to account for the Drude
part of the spectral density and m− = {m−1 ,m

−
2 , ...,m

−
N},m+ = {m+

1 ,m
+
2 , ...,m

+
N} for the underdamped mode. The

system density matrix ρs(t) is given by the matrix indexed by zero vectors, σ(0,0,0). ni±1 indicates the vector n with
element i → ni ± 1 with similar definitions for m±i±1.

The coherent system dynamics and incoherent rates for charge transfer, excitation and coupling to the leads are
accounted for within the Liouvillian L• = − i

h̄ [Hel, •] + D(•) where Hel is the electronic Hamiltonian and D(σ) =∑
p γp[apσa

†
p − 1

2{a
†
papσ}] is a Lindblad dissipator. γp are the incoherent rate for coupling between the exciton states

and the rest of the photocell with a†p(ap) the associated jump operators.
The vectors νD,ν0 and ζ0 contain the Drude cutoff frequency ΩD, the mode damping constant γ0 and the quantity

ζ0 =
√
ω2

0 − 1
4γ

2
0 respectively, for each site of the system.

The hierarchy above is given in the rescaled form which allows for efficient numerical computation of the time
dynamics and steady state. The coefficients cDi , c

−
i and c+i are the leading coefficients of the exponential expansion of

the bath correlation functions for Drude (D) and underdamped Brownian oscillator (±) spectral densities. Matsubara
terms were not explicitly considered as they had little effect on the dynamics at 300K and increased the cost of
computation. However a temperature correction term which approximates the effect of the Matsubara frequencies was

included: ΞTC =
∑
i

∑∞
k=1 ΨikV

×
i V

×
i where

∑∞
k=1 Ψik =

2λD−βΩDλD cot(
βΩD

2 )

βΩD
+ λ0

2ζ0
(

sin(
βγ0

2 )+γ0 sinh(βζ0)

cos(
βγ0

2 )−cosh(βζ0)
) + 2γ0

βω2
0
.

The operators for coupling to the lower tiers are

Θi =iλDΩD arctan(
βΩD

2
)V ×i + λDΩDV

◦
i (S5)

Θ±i =∓ iλ0 ω
2
0

2ζ0
arctan{ iβ

4
(γ0 ± 2iζ0)}V ×i ± i

λ0 ω
2
0

2ζ0
V ◦i (S6)

with V ×• = [Vi, •] and V ◦• = {Vi, •} the superoperators representing commutator and anticommutator relations
involving site i system-bath coupling operator Vi = |i〉〈i|.
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Pauli Master Equation: Modified Redfield Theory

An alternative framework used to model the PSIIRC photocell involves a Pauli master equation where modified
Redfield theory is used to calculate the exciton relaxation dynamics26. The other incoherent rates for excitation,
charge transfer and coupling to leads are the same as in the hybrid model framework. The reduced computational cost
of the Pauli master equation allowed an investigation of the effect of the full PSIIRC spectral density on the behaviour
of the photocell and also allowed the electron counting statistics of the photocell to be studied.

Modified Redfield theory43,69 describes population-to-population transfer among strongly coupled groups of chro-
mophores. The transfer rates take into account the strong coupling to the phonon-bath but treat as a perturbation
the off-diagonal coupling in the exciton basis i.e. H ′ =

∑
k 6=k′ |k〉H

el−ph
kk′ 〈k′|, where |k〉 are exciton states. The

electron-phonon coupling matrix elements are given by Hel−ph
kk′ =

∑N
n=1 akk′(n)un where akk′(n) is the spatial overlap

of excitons |k〉 and |k′〉 at site n. It is clear that modified Redfield should work well for systems in which we have
quasi-localised excitons (ie. akk′(n) is small), which is the situation for the ChlD1 pathway in PSIIRC. The Markovian
transfer rate between excitons a and b is given by the expression

kab = 2

∫ ∞
0

dt exp(iωabt− i(λaaaa + λbbbb − 2λbbaa)t− gaaaa(t)− gbbbb(t) + 2gbbaa(t))

× (g̈baba(t)− (ġbabb − ġbaaa + 2iλbabb)
2) (S7)

where the reorganisation energies and line broadening functions are given by λpqrs =
∑
i ci(p)ci(q)ci(r)ci(s)λi and

gpqrs(t) =
∑
i ci(p)ci(q)ci(r)ci(s)gi(t). ci(p) is the amplitude of exciton p on site i, λi is the reorganisation energy of

site i and gi(t) is the line broadening function for site i.
The rates for coupling to the leads, excitation and charge transfer are treated equivalently in both frameworks we

consider. The Pauli master equation can be obtained from a Lindblad dissipator having the form D(ρ) =
∑
p γp[apρa

†
p−

1
2{a
†
papρ}]. The jump operators ap(a

†
p) causing population transfer between two states of the system give contributions

to the time evolution of both the populations and coherences. Since the populations and coherences are decoupled
from each other in the Lindblad formalism the coherences can be neglected and a master equation for the populations
is obtained. This is given in the form of the Liouville space operator in Supplementary Eq. S8. The diagonal elements
of the Pauli matrix have been omitted for compactness, but each column must sum to zero in order to satisfy a trace
preserving time evolution. The rates kXY where X,Y = 1, .., 6 are the modified Redfield rates for transfer between
excitons. The additional rates have been discussed in the previous sections where kXI(IX) and kIα(αI) are Förster
rates for primary and secondary charge separation and rates γn, γ(n + 1),ΓL and ΓR are for optical excitation and
coupling to leads. 

ρ̇gg
ρ̇X1

ρ̇X2

ρ̇X3

ρ̇X4

ρ̇X5

ρ̇X6

ρ̇II
ρ̇αα
ρ̇ββ


=



− γ(n+ 1) 0 0 0 0 0 0 0 ΓL
γn − k21 k31 k41 k51 k61 kI1 0 0
0 k12 − k32 k42 k52 k62 kI2 0 0
0 k13 k23 − k43 k53 k63 kI3 0 0
0 k14 k24 k34 − k54 k64 kI4 0 0
0 k15 k25 k35 k45 − k56 kI5 0 0
0 k16 k26 k36 k46 k56 − kI6 0 0
0 k1I k2I k3I k4I k5I k6I − kαI 0
0 0 0 0 0 0 0 kIα − 0
0 0 0 0 0 0 0 0 ΓR −





ρgg
ρX1

ρX2

ρX3

ρX4

ρX5

ρX6

ρII
ραα
ρββ


(S8)

Supplementary Note 3: Comparison of Theoretical Frameworks for PSI-
IRC Photocell Dynamics and Steady States

The two frameworks we consider in the main paper are compared here to justify the use of modified Redfield theory to
describe exciton relaxation in the Pauli master equation framework. In Supplementary Fig. S2 the transient dynamics
of the full photocell for the different spectral densities is presented, with the exciton populations summed to simplify
the plot. For the Drude (JD(ω)) and single underdamped Browian oscillator (J1(ω)) spectral densities the hybrid
model dynamics is well approximated by the Pauli master equation at both the initial stages and at longer times
where the systems are relaxing towards a steady state. The Pauli dynamics with the full spectral density (J(ω))
is shown for completeness. The dynamics of exciton coherences as calculated with the hybrid model are shown in
Supplementary Fig. S3. This shows the exciton coherences are small in amplitude and decay quickly towards a steady
state close to zero. The use of modified Redfield which does not carry information about coherences between exciton
states is justified on these grounds.
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Supplementary Figure S2: Comparison of PSIIRC photocell population dynamics using the hybrid model and Pauli
master equation. The exciton populations (Xi) have been summed to simplify the plots and the populations of the
secondary CT state (α) are shown in the insets. The population of state β is not shown.

Additionally the steady states calculated by the two theories are compared in Supplementary Fig. S4 which
shows the long time behaviour of the photocell. The steady state plays an important role in the counting statistics
calculations. There is a close agreement between the two frameworks which suggests that calculations using the Pauli
master equation should give results representative of the hybrid model behaviour.
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Supplementary Figure S3: Exciton coherence dynamics within the hybrid model for spectral densities JD(ω) and
J1(ω). Only coherences between exciton X1 and the other excitons are shown.
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Supplementary Figure S4: Comparison of PSIIRC photocell steady states using the hybrid model and Pauli master
equation for different spectral densities.
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Supplementary Note 4: Reduction of Förster Rates on Increasing Reor-
ganisation Energy

Since charge transfer occurs between excitons and a primary CT state and then between the primary and secondary
CT states there is an asymmetry of reorganisation energies between each donor-acceptor pair due to the scaling of
the bath coupling for the CT states. Supplementary Fig. S5 shows donor fluorescence and acceptor absorption
lineshapes for forward primary and secondary charge transfer. For primary CT, the fluorescence lineshape D̄X1(ω)
for the exciton quasi-localised at site ChlD1 and the absorption lineshape DI(ω) for the primary CT state are shown.
Similarly for secondary CT, the fluorescence lineshape D̄I(ω) for the primary CT state and the absorption lineshape
Dα(ω) for the secondary CT state are shown. The position of the absorption and fluorescence lineshapes depends
on the reorganisation energy of the states involved. As modes are added to the spectral density the reorganisation
energy of the states increase but the reorganisation energy of the acceptor state (for forward transfer) increases much
more rapidly. Despite broadening of the lineshapes, the absorption peaks move away from the fluorescence peaks
reducing the overlap between them and therefore decreasing the Förster rate between the exciton and the CT state.
The lineshapes shown below are not individually normalized in order to show the relative amplitudes at which the

lineshapes enter the equation for the overlap S
(freq)
ab .

JD(ω) J1(ω) J(ω)
X1 → I 0.01122 0.00360 0.00139
X2 → I 0.01123 0.00353 0.00124
X3 → I 0.01114 0.00432 0.00149
X4 → I 0.01071 0.00447 0.00151
X5 → I 0.01023 0.00415 0.00135
X6 → I 0.00215 0.00475 0.00149
I → α 0.00676 0.00206 0.00021

JD(ω) J1(ω) J(ω)
X1 17.51 85.95 295.019
X2 23.048 113.132 388.32
X3 14.939 73.332 251.707
X4 14.116 69.288 237.829
X5 21.67 106.367 365.099
X6 15.91 78.093 268.051
I 105 515.4 1769.087
α 140 687.2 2358.782

Supplementary Table S5: (Left) Spectral overlaps for the forward charge transfer between exciton states and the
primary CT state, and between the primary and secondary CT states for different spectral densities at 300K. (Right)
Reorganisation energies in wavenumbers (cm−1) for excitons and CT states for different spectral densities at 300K.

Supplementary Note 5: Theory of Full Counting Statistics

Here we outline a derivation of the zero-frequency noise for both the hybrid and Pauli models used in the main paper.
The derivation starts from a general time-local master equation σ̇(t) = Mσ(t) where the state of the system σ(t) is
propagated through time by an operator M. For the hybrid model the state of the system is a vector of auxiliary
density matrices with the hierarchy matrix acting as a time propagator. For the Pauli model the state of the system
is a vector of state populations with the associated rate matrix given in Eq. S8. The counting statistics are generated
by singling out the counting transition |α〉 → |β〉 with a counting field χ to obtain a perturbed time propagator
M(χ) =M+ (eiχ − 1)MJ . MJ is a jump matrix describing transitions between the systems and the drain lead. In
the hybrid model MJ is the part of the Lindblad dissipator describing the counting transition in the top level of the
hierarchy only. A recursive scheme44 can then be followed which generates zero-frequency current cumulants up to
any order and expresses them in terms of the jump matrix MJ and a pseudo-inverse R of the time propagator. The
current cumulants are obtained from the maximal eigenvalue λ0(χ) of M(χ) which becomes λ0(0) = 0 and solves the
eigenvalue problem

M(χ)|0(χ)〉〉 = λ0(χ)|0(χ)〉〉, (S9)

|0(χ)〉〉 being the steady state left-eigenvector of M(χ). The eigenvalue can be written

λ0(χ) = 〈〈0̃|∆M(χ)|0(χ)〉〉, (S10)

where 〈〈0̃|L = 0 (steady state right-eigenvector acting on unperturbed generator), 〈〈0̃|0(χ)〉〉 = 1 (normalization) and
∆M(χ) = (eiχ − 1)MJ (perturbation).

Using the projectors P = P2 = |0〉〉〈〈0̃| (projector onto the steady state subspace of the system) andQ = Q2 = I−P
(projector onto the space orthogonal to the steady state) the steady state can be written

|0(χ)〉〉 = |0〉〉 +Q|0(χ)〉〉. (S11)
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Supplementary Figure S5: Spectral lineshapes for different spectral densities at 300K. (Left) Exciton state (X1)
fluorescence and primary CT state (I) absorption lineshapes. (Right) Primary CT state (I) fluorescence and secondary
CT state (α) absorption lineshapes.

Additionally using M = QMQ the eigenvalue equation can be written

QM(χ)Q|0(χ)〉〉 = [λ0(χ)−∆M(χ)]|0(χ)〉〉. (S12)

Introducing the pseudo-inverse R = QM−1Q which is well defined since it is performed in the subspace orthogonal
to the steady state. We then have

Q|0(χ)〉〉 = R[λ0(χ)−∆M(χ)]|0(χ)〉〉, (S13)

which on substituting in Eq. S11 we get

|0(χ)〉〉 = |0〉〉+R[λ0(χ)−∆M(χ)]|0(χ)〉〉. (S14)

Equations S10 and S14 are the starting points for the recursive scheme. Expanding the zero eigenvalue λ0(χ),
steady state |0(χ)〉〉 and the perturbation ∆M(χ) about χ = 0 gives

λ0(χ) =

∞∑
n=1

(iχ)n

n!
〈〈In〉〉 (S15)

|0(χ)〉〉 =

∞∑
n=0

(iχ)n

n!
|0(n)〉〉 (S16)

∆M(χ) =

∞∑
n=1

(iχ)n

n!
M(n) (S17)

From this it is clear that the zero eigenvalue is equivalent to the cumulant generating function of the statistics.
Substituting these expansions into Eqs. S10 and S14 give us the following expressions to calculate the cumulant to
any order (n = 1, 2, 3, ...)

〈〈In〉〉 =

n∑
m=1

(
n

m

)
〈〈0̃|M(n)|0(n−m)〉〉 (S18)

|0(n)〉〉 = R
n∑

m=1

(
n

m

)
[〈〈Im〉〉 −M(m)]|0(n−m)〉〉 (S19)
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Supplementary Figure S6: Zero-frequency Fano factor versus voltage for a single resonant level. E0 = 11291.7cm−1

and T = 300K.

The first and second order cumulant which are used to obtain the numerical results later on are explicitly shown below

〈〈I1〉〉 = 〈〈0̃|M(1)|0〉〉 (S20)

〈〈I2〉〉 = 〈〈0̃|M(2) − 2M(1)RM(1)|0〉〉 (S21)

It is useful to note that M(n) =MJ in the above since ∂n

∂(iχ)n∆M(χ)|χ=0 = ∂n

∂(iχ)nMJ(eiχ − 1)|χ=0.

Supplementary Note 6: Counting Statistics of a Single Resonant Level

Equation 6 from the main text is plotted in Supplementary Fig. S6 to show the voltage dependence of the zero-
frequency Fano factor for electrons passing through a single resonant level. The derivation of Eq. 6 is outlined in the
following.

The Liouvillian for the single resonant level system has the form29,63

L =

(
−ΓL ΓR
ΓL −ΓR

)
, (S22)

from which the steady state populations of the empty and occupied states can be calculated as ρempty = ΓR
ΓL+ΓR

and

ρoccupied = ΓL
ΓL+ΓR

. Substituting the expressions for the steady state populations into eV = E0 + kBT ln(
ρoccupied
ρempty

)

leads to
ΓR = ΓL exp(−(eV − E0)/kBT ). (S23)

This can be used with the expression for the Fano factor in terms of the rates ΓL and ΓR
29,

F (2) =
Γ2
L + Γ2

R

(ΓL + ΓR)2
, (S24)

to give the Fano factor as a function of V,

F (2)(V ) =
1 + exp[−2(eV − E0)/kBT ]

(1 + exp[−(eV − E0)/kBT ])2
. (S25)
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