Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017

Enantioselective Synthesis of Cyclopenta[b]benzofurans via an Organocatalytic Intramolecular Double Cyclization

Bruno Matos Paz, Yang Li, Mathias Kirk Thøgensen and Karl Anker Jørgensen*

Department of Chemistry, Aarhus University DK-8000 Aarhus C, Denmark Fax (45) 8919 6199, e-mail: <u>kaj@chem.au.dk</u>

Contents

1. General methods	S2
2. Synthesis of aldehydes 1a-t	S3
3. The asymmetric synthesis of cyclopenta[b]benzofurans	S10
3.1. Optimization	S10
3.2. General procedure for organocatalytic synthesis of 3a-p	S13
3.3. Results and characterization	S13
3.4 Procedure for the synthesis of 3a at 4.0 mmol scale	S18
4. Transformations	S19
4.1 Reduction	S19
4.2 Allylation	S19
4.3 Reductive amination	S20
4.4 Barton's vinyl iodide synthesis	S20
5. Diastereodivergence	S22
6. Attempts to react with alkyl substituted substrates	S23
7. Determination of the absolute configuration	S24
8. NMR spectra	S25
9. UPC ² traces	S69
10. IR spectra	S90

1. General methods

NMR spectra were acquired on a Bruker AVANCE III HD spectrometer running at 400 MHz for ¹H, 100 MHz for ¹³C and 162 MHz for ³¹P. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl₃, 7.26 ppm for ¹H NMR, CDCl₃, 77.16 ppm for ¹³C NMR). The following abbreviations are used to indicate the multiplicity in NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad signal; dd, double doublet; ddd, double doublet. ¹³C spectra were acquired in broad band decoupled mode. For characterization of isomeric mixtures * denotes minor isomer, # denotes overlap of signals of both isomers, whereas no sign denotes signal of major isomer. The number of protons given in parentheses is the sum over both isomers. Mass spectra were recorded on a Bruker Maxis Impact mass spectrometer using electronspray (ES⁺) ionization (referenced to the mass of the charged species). Dry solvents were obtained from a MBraun MB SPS-800 solvent purification system. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualized by UV radiation, KMnO₄ or panisaldehyde stains. For flash chromatography (FC) silica gel (Silica gel 60, 230- 400 mesh, Sigma-Aldrich) or latrobeads 6RS - 8060 were used. Optical rotations were measured on a PerkinElmer 241 polarimeter, $[\alpha]_D$ values are given in deg cm³·g⁻¹·dm⁻¹; concentration c in g (100 mL)⁻¹. The diastereomeric ratio (dr) of products was evaluated by ¹H NMR analysis of the crude mixture. The enantiomeric excess (ee) of products was determined by Ultraperformance Convergence Chromtagraphy (Waters ACQUITY UPC²) using Daicel Chiralpak IA, IB, IC, ID columns as chiral stationary phases. Racemates for UPC² analysis were made by mixing 3 and ent-3, formed from quinine 3a or quinidine 3b as catalysts. For the reactions in which the dr was poor and the diastereoisomers could not be well separated by FC, the diastereoisomeric mixture was characterized by means of chiral stationary phase UPC², in which all four peaks of both diastereoisomers were present; the correct correspondence of the peaks was confirmed by the juxtaposition of the UV spectra, recorded by the PDA detector of the UPC² system. Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification.

2. Synthesis of aldehydes 1a-t

In a flame dried flask, the stabilized ylide **S2** (1.1 eq, 5.5 mmol, 1.67 g) was dissolved in dry MeCN (20 mL). Afterwards, the respective 2-hydroxybenzaldehyde **S1** (1.0 eq, 5 mmol) was added in one portion and the reaction mixture was heated to 40 °C for 16-24 h. After full conversion, the respective α -bromo-ketone **S4** (1.2 eq, 6 mmol) was added and the reaction mixture was cooled to -20 °C. After stirring for 5 min, oven dried K₂CO₃ (1.2 eq, 6 mmol, 829 mg) was added in one portion. The reaction mixture was then stirred at -20 °C until full conversion, filtered over cotton, concentrated *in vacuo* and purified by FC over silica gel.

Following the general procedure, the second step was over in 4 d. The aldehyde **1a** was purified by FC on silica (10:40:50 to 20:40:40 EtOAc/PhMe/pentane). The product was then recrystallized from CH_2Cl_2 /pentane. The aldehyde **1a** was isolated in 51% yield (679 mg) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 9.70 (d, *J* = 7.8 Hz, 1H), 8.03 – 7.93 (m, 2H), 7.69 – 7.58 (m, 2H), 7.53 (t, *J* = 7.8 Hz, 2H), 7.37 (ddd, *J* = 8.8, 7.5, 1.7 Hz, 2H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.87 – 6.78 (m, 2H), 5.42 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 194.7, 193.7, 156.7, 147.9, 134.4, 134.3, 132.7, 129.5, 129.1, 129.0, 128.2 (2C), 123.8, 122.0, 112.6, 71.0.

HRMS (ESI+) calculated for: $[C_{17}H_{14}O_3+Na]^+$ 289.0835; found: 289.0840. IR, \tilde{v} (cm⁻¹): C=O 1618, 1596.

Following the general procedure, the second step was over in 1 d. The aldehyde **1b** was purified by FC on silica (10:40:50 to 20:40:40 EtOAc/PhMe/pentane). The product was then recrystallized from CH_2Cl_2 /pentane. The aldehyde **1b** was isolated in 57% yield (810 mg) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 9.71 (dd, J = 7.7, 1.2 Hz, 1H), 8.01 – 7.96 (m, 2H), 7.93 (d, J = 16.1, 1H), 7.66 (t, J = 7.4 Hz, 2H), 7.53 (t, J = 7.7 Hz, 2H), 7.29 (ddd, J = 8.9, 3.2, 1.3 Hz, 1H), 7.10 – 7.03 (m, 1H), 6.82 – 6.72 (m, 2H), 5.41 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 194.2, 193.5, 157.5 (d, *J* = 241.2 Hz), 153.0 (d, *J* = 2.1 Hz), 146.3 (d, *J* = 2.3 Hz), 134.4, 134.3, 130.2, 129.2 (2C), 128.1 (2C), 125.1 (d, *J* = 7.5 Hz), 118.9 (d, *J* = 23.7 Hz), 114.7 (d, *J* = 23.5Hz), 114.1 (d, *J* = 8.1Hz), 71.58.

¹⁹F NMR (376 MHz, CDCl₃): δ -121.41

HRMS (ESI+) calculated for: $[C_{17}H_{13}O_3F+Na]^+$ 307.0741; found: 307.0745.

IR, ṽ (cm⁻¹**):** C=O 1704, 1670.

Following the general procedure, the second step was over in 3 d. The aldehyde **1c** was purified by FC on silica (10:40:50 to 15:40:45 EtOAc/PhMe/pentane). The product was then recrystallized from CH_2Cl_2 /pentane. The aldehyde **1c** was isolated in 52% yield (782 mg) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 9.71 (d, *J* = 7.7 Hz, 1H), 8.00 – 7.94 (m, 2H), 7.88 (d, *J* = 16.1 Hz, 1H), 7.69 – 7.62 (m, 1H), 7.58 – 7.49 (m, 3H), 7.30 (dd, *J* = 8.9, 2.6 Hz, 1H), 6.84 – 6.74 (m, 2H), 5.42 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 194.2, 193.2, 155.2, 146.1, 134.5, 134.2, 132.0, 130.4, 129.2 (2C), 128.4, 128.1 (2C), 127.2, 125.2, 114.0, 71.1.

HRMS (ESI+) calculated for: [C₁₇H₁₃O₃Cl+Na]⁺ 323.0445; found: 323.0444.

IR, ṽ (cm⁻¹): C=O 1705, 1670.

Following the general procedure, the second step was over in 5 d. The aldehyde **1c** was purified by FC on silica (10:40:50 EtOAc/PhMe/pentane). The product was then recrystallized from CH_2Cl_2 /pentane. The aldehyde **1d** was isolated in 58% yield (1.00 g) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 9.69 (d, *J* = 7.7 Hz, 1H), 7.97 (d, *J* = 7.4 Hz, 2H), 7.86 (d, *J* = 16.1 Hz, 1H), 7.69 (d, *J* = 2.4 Hz, 1H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.43 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.79 (dd, *J* = 16.1, 7.7 Hz, 1H), 6.71 (d, *J* = 8.8 Hz, 1H), 5.42 (s,

2H).

¹³C NMR (100 MHz, CDCl₃): δ 194.2, 193.2, 155.7, 146.0, 134.9, 134.5, 134.2, 131.4, 130.4, 129.2 (2C), 128.1 (2C), 125.7, 114.4, 114.3, 71.0.

HRMS (ESI+) calculated for: $[C_{17}H_{13}BrO_3+Na]^+$: 366.9940; found: 366.9940. **IR, \tilde{v} (cm⁻¹):** C=O 1703, 1668.

Following the general procedure, the second step was over in 40 h. The aldehyde **1e** was purified by FC on silica (EtOAc/PhMe/pentane 10:40:50 to 40:30:30) and isolated in 32% yield (466 mg) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 9.73 (d, J = 7.6 Hz, 1H), 8.01 – 7.94 (m, 2H), 7.89 – 7.81 (m, 2H), 7.72 – 7.65 (m, 1H), 7.62 (dd, J = 8.7, 2.1 Hz, 1H), 7.55 (t, J = 7.8 Hz, 2H), 6.90 – 6.81 (m, 2H), 5.54 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 193.9, 192.2, 159.4, 144.9, 135.8, 134.7, 133.9, 133.0, 131.3, 129.3, 128.0, 124.9, 118.2, 113.2, 105.8, 70.7.

HRMS (ESI+) calculated for: [C₁₈H₁₃NO₃+Na]⁺ 314.0788; found: 314.0793.

IR, ṽ (cm⁻¹): C≡N 2229; C=O 1697, 1665.

Following the general procedure, the second step was over in 3 d. The aldehyde **1f** was purified by FC on silica (10:40:50 to 20:40:40 EtOAc/PhMe/pentane). The product was then recrystallized from CH_2CI_2 /pentane. The aldehyde **1f** was isolated in 73% yield (1.08 g) as a yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 9.70 (d, J = 7.8 Hz, 1H), 8.01 – 7.93 (m, 3H), 7.67 – 7.61 (m, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.11 (d, J = 3.0 Hz, 1H), 6.93 (dd, J = 9.0, 3.0 Hz, 1H), 6.83 – 6.73 (m, 2H), 5.36 (s, 2H), 3.80 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 194.5, 194.1, 154.4, 151.2, 147.5, 134.5, 134.3, 129.5, 129.1 (2C), 128.1 (2C), 124.5, 118.5, 114.3, 112.8, 71.9, 55.9.

HRMS (ESI+) calculated for: $[C_{18}H_{16}O_4+Na]^+$ 319.0941; found: 319.0943.

IR, ṽ (cm⁻¹): C=O 1687, 1678.

Following the general procedure, the second step was over in 4 d. The aldehyde **1g** was purified by FC on silica (10:40:50 to 20:40:40 EtOAc/PhMe/pentane) and isolated in 49% yield (726 mg) as a yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 9.64 (d, *J* = 7.9 Hz, 1H), 8.02 – 7.96 (m, 2H), 7.86 (d, *J* = 16.0 Hz, 1H), 7.68 – 7.61 (m, 1H), 7.58 – 7.48 (m, 3H), 6.75 (dd, *J* = 16.0, 7.9 Hz, 1H), 6.59 (dd, *J* = 8.7, 2.3Hz, 1H), 6.36 (d, *J* = 2.3 Hz, 1H), 5.38 (s, 2H), 3.82 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 194.7, 193.5, 163.6, 158.2, 148.0, 134.4, 134.3, 130.5, 129.1 (2C), 128.2 (2C), 127.3, 116.9, 106.6, 99.9, 71.0, 55.8.

HRMS (ESI+) calculated for: [C₁₈H₁₆O₄+Na]⁺ 319.0941; found: 319.0948.

IR, v (cm⁻¹): C=O 1659, 1594.

Following the general procedure, the second step was over in 4 d. The aldehyde **1h** was purified by FC on silica (10:40:50 to 15:40:45 EtOAc/PhMe/pentane) and isolated in 82% yield (1.21 g) as a white solid.

¹**H NMR (400 MHz, CDCl₃):** δ 9.68 (d, *J* = 7.8 Hz, 1H), 8.15 (d, *J* = 16.2 Hz, 1H), 7.99 – 7.92 (m, 2H), 7.65 – 7.59 (m, 1H), 7.50 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.23 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.12 (t, *J* = 8.0 Hz, 1H), 7.00 (dd, *J* = 8.1, 1.5 Hz, 1H), 6.70 (dd, *J* = 16.1, 7.8 Hz, 1H), 5.42 (s, 2H), 3.85 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 194.7, 194.6, 152.3, 147.8, 146.7, 134.8, 133.9, 129.7, 129.0 (2C), 128.3, 128.1 (2C), 124.6, 119.2, 115.1, 75.2, 56.1.

HRMS (ESI+) calculated for: $[C_{18}H_{16}O_4+Na]^+$ 319.0941; found: 319.0945.

IR, ṽ (cm⁻¹): C=O 1670, 1706.

Following the general procedure, the second step was over in 4 d. The aldehyde **1i** was purified by FC on silica (10:40:50 to 20:40:40 EtOAc/PhMe/pentane) and isolated in 67% yield (952 mg) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 9.71 (d, *J* = 7.8 Hz, 1H), 8.08 – 7.99 (m, 2H), 7.95 (d, *J* = 16.0 Hz, 1H), 7.61 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.37 (ddd, *J* = 8.7, 7.5, 1.7 Hz, 1H), 7.23 – 7.15 (m, 2H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.88 – 6.79 (m, 2H), 5.37 (s, 2H).

1i ¹³C NMR (100 MHz, CDCl₃): δ 194.6, 192.3, 166.4 (d, *J* = 256.50 Hz), 156.6, 147.7, 132.7, 131.0 (d, *J* = 9.56 Hz) (2C), 130.8 (d, *J* = 3.29 Hz), 129.6, 129.1, 123.8, 122.1, 116.4 (d, *J* = 22.02 Hz) (2C), 112.5, 70.9.

¹⁹F NMR (376 MHz, CDCl₃): δ -102.64

HRMS (ESI+) calculated for: [C₁₇H₁₃O₃F+Na]⁺ 307.0741; found: 307.0740. **IR, ν̃ (cm⁻¹):** C=O 1678, 1594. Following the general procedure, the second step was over in 3 d. The aldehyde **1j** was purified by FC on silica (10:40:50 to 15:40:45 EtOAc/PhMe/pentane). The product was then recrystallized from CH_2Cl_2 /pentane. The aldehyde **1f** was isolated in 66% yield (992 mg) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 9.71 (d, *J* = 7.8 Hz, 1H), 7.98 – 7.90 (m, 3H), 7.61 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.37 (ddd, *J* = 8.7, 7.4, 1.7 Hz, 1H), 7.05 (t, *J* = 15.1 Hz, 1H) (m, 1H), 6.87 – 6.79 (m, 2H), 5.37 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 194.6, 192.7, 156.6, 147.7, 140.9, 132.7 (2C), 129.7, 129.6 (2C), 129.5 (2C), 129.1, 123.8, 122.2, 112.5, 71.0.

HRMS (ESI+) calculated for: [C₁₇H₁₃O₃Cl+Na]⁺ 323.0445; found: 323.0447.

IR, v (cm⁻¹): C=O 1703, 1658.

Following the general procedure, the second step was over in 5 d. The aldehyde **1k** was purified by FC on silica (10:40:50 EtOAc/PhMe/pentane). The product was then recrystallized from CH_2CI_2 /pentane. The aldehyde **1k** was isolated in 50% yield (863 mg) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 9.70 (d, J = 7.7 Hz, 1H), 7.94 (d, J = 16.1 Hz, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 7.5 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.88 – 6.79 (m, 2H), 5.36 (s, 2H).

^{Br} ¹³C NMR (100 MHz, CDCl₃): δ 194.6, 192.9, 156.6, 147.7, 133.1, 132.7, 132.5 (2C), 129.6 (2C), 129.6 (2C), 129.6 (2C), 129.1, 123.8, 122.2, 112.5, 70.9.

HRMS (ESI+) calculated for: $[C_{17}H_{13}O_{3}Br+Na]^{+}$ 366.9940; found: 366.9940.

IR, ṽ (cm⁻¹): C=O 1703, 1664.

Following the general procedure, the second step was over in 3 d. The aldehyde **1** was purified by FC on silica (10:40:50 to 20:40:40 EtOAc/PhMe/pentane) and isolated in 76% (1.13 g) yield as a pale yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 9.70 (d, J = 7.8 Hz, 1H), 8.02 – 7.94 (m, 3H), 7.60 (dd, J = 7.8, 1.7 Hz, 1H), 7.36 (ddd, J = 8.5, 7.4, 1.7 Hz, 1H), 7.04 (t, J = 7.6, 1H), 7.01 – 6.95 (m, 2H), 6.87 – 6.78 (m, 2H), 5.36 (s, 2H), 3.89 (s, 3H).

¹¹ ¹³C NMR (100 MHz, CDCl₃): δ 194.7, 192.2, 164.4, 156.9, 147.9, 132.7, 130.6 (2C), 129.5, 128.9, 127.4, 123.7, 121.9, 114.3 (2C), 112.7, 70.9, 55.7.

HRMS (ESI+) calculated for: [C₁₈H₁₆O₄+Na]⁺ 319.0941; found: 319.0945. **IR, ν̃ (cm⁻¹):** C=O 1670, 1595.

Following the general procedure, the second step was over in 6 h. The aldehyde **1m** was purified by FC on silica (10:40:50 to 20:40:40 EtOAc/PhMe/pentane). The product was then recrystallized from CH_2Cl_2 /pentane. The aldehyde **1m** was isolated in 33% yield (489 mg) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 9.71 (d, J = 7.8 Hz, 1H), 7.98 (d, J = 16.1 Hz, 1H), 7.61 (dd, J = 7.7, 1.7 Hz, 1H), 7.58 – 7.50 (m, 2H), 7.43 (t, J = 7.9 Hz, 1H), 7.37 (ddd, J = 8.7, 7.5, 1.7 Hz, 1H), 7.19 (ddd, J = 8.3, 2.8, 1.0 Hz, 1H), 7.05 (t, J = 7.3 Hz, 1H), 6.88 – 6.80 (m, 2H),

5.41 (s, 2H), 3.87 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ194.7, 193.5, 160.2, 156.7, 147.9, 135.6, 132.6, 130.1, 129.5, 129.0, 123.8, 122.0, 120.7, 120.5, 112.6, 112.5, 71.0, 55.7.

HRMS (ESI+) calculated for: [C₁₈H₁₆O₄+Na]⁺ 319.0941; found: 319.0949. **IR, ν̃ (cm⁻¹):** C=O 1695, 1653.

Following the general procedure, the second step was over in 3 d. The aldehyde **1n** was purified by FC on silica (9:91 to 50:50 EtOAc/pentane). The product was then recrystallized from CH_2Cl_2 /pentane. The aldehyde **1n** was isolated in 37% yield (548 mg) as a yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 9.68 (d, J = 7.8 Hz, 1H), 7.99 – 7.91 (m, 2H), 7.61 – 7.53 (m, 2H), 7.37 – 7.32 (m, 1H), 7.11 – 7.06 (m, 1H), 7.05 – 6.99 (m, 2H), 6.86 – 6.75 (m, 2H), 5.35 (s, 2H), 3.96 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 194.9, 194.8, 159.4, 157.2, 148.3, 135.1, 132.6, 131.2, 129.2, 128.8, 124.8, 123.5, 121.5, 121.4, 112.7, 111.6, 74.6, 55.8.

HRMS (ESI+) calculated for: $[C_{18}H_{16}O_4+Na]^+$ 319.0941; found: 319.0950.

IR, ṽ (cm⁻¹): C=O 1675, 1658.

Following the general procedure, the second step was over in 1 d. The aldehyde **10** was purified by FC on silica (10:40:50 to 20:40:40 EtOAc/PhMe/pentane). The product was then recrystallized from CH_2Cl_2 /pentane. The aldehyde **10** was isolated in 34% yield (538 mg) as a yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 9.68 (d, J = 7.8 Hz, 1H), 8.54 (s, 1H), 8.07 – 7.88 (m, 5H), 7.68 – 7.56 (m, 3H), 7.38 (ddd, J = 8.7, 7.4, 1.7 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.93 – 6.80 (m, 2H), 5.54 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 194.6, 193.7, 156.8, 147.8, 136.1, 132.7, 132.5, 131.7, 130.1, 129.7, 129.6, 129.2, 129.1, 129.0, 128.1, 127.4, 123.8, 123.6, 122.1, 112.7, 71.2.

HRMS (ESI+) calculated for: [C₂₁H₁₆O₃+Na]⁺ 339.0992; found: 339.0999.

IR, ṽ (cm⁻¹): C=O 1684, 1671.

Following the general procedure, the second step was over in 12 h. The aldehyde **1p** was purified by FC on silica (20:80 to 30:70 EtOAc/pentane). The product was then recrystallized from CH₂Cl₂/pentane. The aldehyde **1p** was isolated in 26% yield (354 mg) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 9.72 (d, *J* = 7.8 Hz, 1H), 7.99 (d, *J* = 16.1 Hz, 1H), 7.90 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.74 (dd, *J* = 4.9, 1.1 Hz, 1H), 7.61 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.38 (ddd, *J* = 8.6, 7.5, 1.7 Hz, 1H), 7.19 (dd, *J* = 4.9, 3.8 Hz, 1H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.90 – 6.78 (m, 2H), 5.25 (s, 2H).

^{1p} ¹³C NMR (100 MHz, CDCl₃): δ 194.6, 187.3, 156.6, 147.7, 140.4, 135.1, 132.9, 132.8, 129.6, 128.9, 128.6, 123.7, 122.2, 112.6, 71.4.

HRMS (ESI+) calculated for: $[C_{15}H_{12}O_3S+Na]^+$ 295.0399; found: 295.0405.

IR, ṽ (cm⁻¹**):** C=O 1677, 1661.

Following the general procedure, the second step was over in 5 d. The aldehyde **1q** was purified by FC on silica (10:40:50 EtOAc/pentane). The product was then recrystallized from CH_2Cl_2 /pentane. The aldehyde **1q** was isolated in 55% yield (942 mg) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ 9.61 (d, J = 7.8 Hz, 1H), 8.03 – 7.98 (m, 2H), 7.92 (d, J = 16.1 Hz, 1H), 7.58 (dtd, J = 9.6, 7.7, 1.5 Hz, 4H), 7.47 – 7.34 (m, 5H), 7.30 (ddd, J = 8.7, 7.4, 1.7 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 6.85 (dd, J = 8.4, 1.0 Hz, 1H), 6.74 (dd, J = 16.1, 7.8 Hz, 1H), 6.48 (s, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 195.0, 194.6, 156.2, 147.7, 134.8, 134.6, 133.9, 132.7, 129.4, 129.4 (2C), 129.3, 129.2 (2C), 128.9 (2C), 128.7, 127.7 (2C), 124.1, 122.2, 113.9, 83.2.

HRMS (ESI+) calculated for: $[C_{23}H_{18}O_3+OH]^+$ 365.1148; found: 365.1154.

IR, ṽ (cm⁻¹): C=O 1668, 1595.

Following the general procedure, the second step was over in 22h. The aldehyde **1r** was purified by FC on silica (1:15 to 1:5 EtOAc/ Pentane). The aldehyde **1r** was isolated in 68% yield (742 mg) as a pale yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 9.73 (d, J = 7.8 Hz, 1H), 7.93 (d, J = 16.1 Hz, 1H), 7.61 (dd, J = 7.8, 1.7 Hz, 1H), 7.39 (ddd, J = 8.6, 7.4, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 7.61 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.6, 1.0 Hz, 1H), 6.82 (dd, J = 7.8, 1.7 Hz, 1H), 7.06 (td, J = 7.8 Hz, 1Hz, 1Hz

16.1, 7.8 Hz, 1H), 6.76 (dd, J = 8.4, 1.0 Hz, 1H), 4.69 (s, 2H), 2.63 (q, J = 7.3 Hz, 2H), 1.14 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 207.1, 194.5, 156.4, 147.5, 132.8, 129.5, 129.0, 123.5, 122.1, 112.2, 72.8, 32.6, 7.2.

HRMS (ESI+) calculated for: [C₁₃H₁₄O₃+Na]⁺ 241.0835; found: 241.0840.

IR, ṽ (cm⁻¹): C=O 1718, 1670.

Following the general procedure, the second step was over in 18h. The aldehyde **1s** was purified by FC on silica (1:15 to 1:5 EtOAc/ Pentane). The aldehyde **1s** was isolated in 42% yield (488 mg) as a yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 9.72 (d, J = 7.8 Hz, 1H), 7.94 (d, J = 16.1 Hz, 1H), 7.60 (dd, J = 7.8, 1.7 Hz, 1H), 7.38 (ddd, J = 8.4, 7.4, 1.7 Hz, 1H), 7.05 (td, J = 7.4, 0.9 Hz, 1H), 6.82 (dd, J = 16.1, 7.8 Hz, 1H), 6.75 (dd, J = 8.4, 1.0 Hz, 1H), 4.79 (s, 2H), 2.90 (hept, J = 6.9 Hz, 1H), 1.20 (d, J = 6.9 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 209.5, 194.5, 156.5, 147.6, 132.7, 129.5, 129.0, 123.6, 122.0, 112.2, 71.6, 37.5, 18.1 (2C).

HRMS (ESI+) calculated for: [C₁₄H₁₆O₃+Na]⁺ 255.0992; found: 255.0997.

IR, ṽ (cm⁻¹): C=O 1725, 1666.

Following the general procedure, the second step was over in 25h. The aldehyde **1t** was purified by FC on silica (1:9 to 1:5 EtOAc/ Pentane). The aldehyde **1t** was isolated in 75% yield (923 mg) as a yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 9.72 (d, J = 7.8 Hz, 1H), 7.97 (d, J = 16.1 Hz, 1H), 7.59 (dd, J = 7.8, 1.7 Hz, 1H), 7.36 (ddd, J = 8.3, 7.4, 1.7 Hz, 1H), 7.06 - 7.00 (m, 1H), 6.84 (dd, J = 16.1, 7.8 Hz, 1H), 6.71 (dd, J = 8.4, 1.0 Hz, 1H), 5.01 (s, 2H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃): δ 208.8, 194.8, 156.8, 147.9, 132.5, 129.4, 129.0, 123.8, 121.8, 112.3, 69.0, 43.3, 26.5 (3C).

HRMS (ESI+) calculated for: [C₁₅H₁₈O₃+Na]⁺ 269.1148; found: 269.1154.

IR, ṽ (cm⁻¹**):** C=O 1722, 1670.

3. The asymmetric synthesis of cyclopenta[b]benzofurans

3.1 Optimization

Table 1. Brønsted base catalyst screening:^a

^{*a*} Reactions were performed on a 0.1 mmol scale. ^{*b*} Determined by ¹H NMR of the crude reaction mixture. ^{*c*} Diastereomeric ratio was determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*} Enantiomeric excess was determined by UPC².

Table 2. Solvent screening:^a

		1. 4a (10 mol%) 0.1M, solvent, rt 2. 5a (10 mol%),	→ 〔	H O H	∕O ™OH Ph	
	1a '''			3a		
Solvent	$t_{1(conversion)}^{b}$	t _{2(conversion)} ^b	dr_1^c	dr ₂ ^c	yield	ee ^c
					(%)	(%)
PhMe	48 h (100%)	>8 d (61%)	10:1	12:1	28	93
PhCl	24 h (100%)	>9 d (79%)	13:1	18:1	40	93
PhOMe	48 h (100%)	>8 d (62%)	15:1	18:1	32	93
THF	>24 h (13%)	-	-	-	-	-
MeCN	>48 h (76%)	-	-	-	-	-
CH_2CI_2	48 h (100%)	1 d (100%)	12:1	>20:1	56	91
CICH ₂ CH ₂ CI	48 h (100%)	1 d (100%)	7:1	>20:1	61	91

^{*a*} Reactions were performed on a 0.1 mmol scale. ^{*b*} Determined by ¹H NMR of the crude reaction mixture. ^{*c*} Diastereomeric ratio was determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*} Enantiomeric excess was determined by UPC².

Table 3. Concentration and temperature screening:^a

		1. 4 [M], 2. 5	a (10 mo , CHCl ₃ , ⁻ i a (10 mo	I%) T► I%), rt		H O H B H B H	ЮН
Т	[conc.]	t1 ^b	t ₂ ^b	dr ₁ ^c	dr ₂ ^c	yield	ee ^d
		(h)	(h)			(%)	(%)
0 °C	0.1M	96	24	12:1	-	-	-
0 °C	0.25M	72	<12	11:1	15:1	60	93
0 °C	0.5M	36	<12	10:1	16:1	51	91
rt	0.1M	>48	-	-	-	-	-
rt	0.25M	32	<12	13:1	19:1	62	93
rt	0.25M	32	<12	10:1	19:1	55	-94 ^e

^{*a*}Reactions were performed on a 0.25 mmol scale. ^{*b*}Determined by ¹H NMR of the crude reaction mixture. ^{*c*}Diastereomeric ratio was determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*}Enantiomeric excess was determined by UPC².^{*e*}Quinidide was used as a catalyst.

Table 4. Chiral NHC screening:^{*a*}

^{*a*} Reactions were performed on a 0.25 mmol scale. ^{*b*} Determined by ¹H NMR of the crude reaction mixture. ^{*c*} Diastereomeric ratio was determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*} Enantiomeric excess was determined by UPC².

3.2. General procedure for organocatalytic synthesis of 3a-p

The respective aldehyde 1 (1 eq, 0.25 mmol) and quinine 4a (0.1 eq, 0.025 mmol, 8.1 mg) were dissolved in dry CHCl₃ (1 mL). The reaction mixture was stirred at rt until full conversion. Afterwards, the NHC catalyst **5a** (0.1 eq, 0.025 mol, 9.1 mg) was added in one portion and the reaction mixture was stirred at rt until full conversion. The crude reaction mixture was then loaded in silica gel and purified by FC.

3.3. Results and characterization

The product **3a** was isolated by FC on silica (1:1:8 Et₂O/CH₂Cl₂/pentane) as a white solid, in 62% yield (41.3 mg), 19:1 dr and 93% ee; t₁: 28 h; t₂: 12 h.

¹H NMR (400 MHz, CDCl₃): δ 7.53 – 7.47 (m, 2H), 7.47 – 7.36 (m, 3H), 7.24 – 7.16 (m, 2H), 6.95 (t, J = 7.5, 1H), 6.90 (d, J = 8.0 Hz, 1H), 5.45 (d, J = 7.4 Hz, 1H), 4.15 (ddd, J = 11.1, 7.4, 3.6 Hz, 1H), 3.46 (s, 1H), 3.01 (dd, J = 18.7, 11.1 Hz, 1H), 2.26 (dd, J = 18.7, 3.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 213.4, 158.7, 137.5, 130.9, 129.3 (3C), 129.2, 125.8 (2C), 124.7, 122.2, 110.4, 88.1, 82.2, 40.2, 38.6.

HRMS (ESI+) m/z calculated for: $[C_{17}H_{14}O_3+Na]^+$ 289.0835; found: 289.0839.

IR, ṽ (cm⁻¹): O-H 3485; C=O 1750.

The ee was determined by UPC² using a Chiralpak IB column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; τ_{major} = 3.73 min, τ_{minor} = 3.87 min (93% ee). [α]²⁰_D = 53.6.2 (c = 0.25, CH₂Cl₂).

For *ent-3a* 55% yield (36.6 mg), 19:1 dr, τ_{major} = 3.86 min, τ_{minor} = 3.75 min (-94% ee).

The product **3b** was isolated by FC on silica (1:1:8 Et₂O/CH₂Cl₂/pentane) as a white solid, in 58% yield (41.2 mg), 12:1 dr and 95% ee; t_1 : 28 h; t_2 : 16 h.

¹H NMR (400 MHz, CDCl₃): δ 7.50 – 7.36 (m, 5H), 6.94 – 6.84 (m, 2H), 6.80 (dd, J = 8.7, 4.2 Hz, 1H), 5.48 (d, J = 7.3 Hz, 1H), 4.10 (ddd, J = 11.2, 7.3, 3.7 Hz, 1H), 3.46 (s, 1H), 3.00 (dd, *J* = 18.8, 11.2 Hz, 1H), 2.24 (dd, *J* = 18.8, 3.7 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 212.9, 158.2 (d, *J* = 239.4 Hz), 154.7 (d, *J* = 1.7 Hz), 137.2, 132.2 (d, *J* = 8.6 Hz), 129.3 (3C), 125.76 (2C), 115.6 (d, J = 24.2 Hz), 111.7 (d, J = 25.0 Hz), 110.8 (d, J = 8.6 Hz), 88.8, 82.2, 39.9, 38.8 (d, J = 1.8 Hz).

¹⁹F NMR (376 MHz, CDCl₃): δ -121.98.

HRMS (ESI+) m/z calculated for: [C₁₇H₁₃O₃F+Na]⁺ 307.0741; found: 307.0739.

IR, ṽ (cm⁻¹): O-H 3471; C=O 1751.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/iPrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; $\tau_{major} = 5.30 \text{ min}$, $\tau_{minor} = 4.79 \text{ min}$ (95% ee). $[\alpha]^{20}_{D} = 54.0$ (c = 0.2, CH₂Cl₂).

For *ent-3b* 65% yield (46.2 mg), 13:1 dr, τ_{major} = 4.78 min, τ_{minor} = 5.34 min (-95% ee).

The product **3c** was isolated by FC on silica (1:1:8 Et_2O/CH_2Cl_2 /pentane) as a green oil, in 67% yield (50.4 mg), 14:1 dr and 95% ee; t_1 : 20 h; t_2 : 16 h.

¹H NMR (400 MHz, CDCl₃): δ 7.50 – 7.36 (m, 5H), 7.18 – 7.12 (m, 2H), 6.82 (d, *J* = 8.4 Hz, 1H), 5.48 (d, *J* = 7.3 Hz, 1H), 4.10 (ddd, *J* = 11.2, 7.3, 3.6 Hz, 1H), 3.42 (s, 1H), 3.01 (dd, *J* = 18.8, 11.2 Hz, 1H), 2.24 (dd, *J* = 18.8, 3.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 212.7, 157.5, 137.2, 132.8, 129.4, 129.3 (2C), 129.2, 126.8, 125.8 (2C), 124.8, 111.5, 88.8, 82.1, 39.9, 38.6.

HRMS (ESI+) m/z calculated for: [C₁₇H₁₃O₃Cl+Na]⁺ 323.0445; found: 323.0446.

IR, ṽ (cm⁻¹): O-H 3475; C=O 1752.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; $\tau_{major} = 6.57 \text{ min}$, $\tau_{minor} = 5.49 \text{ min}$ (95% ee). [α]²⁰_D = 16.0 (c = 0.25, CH₂Cl₂). For *ent*-3c 64% yield (48.1 mg), 14:1 dr, $\tau_{major} = 5.50 \text{ min}$, $\tau_{minor} = 6.64 \text{ min}$ (-95% ee).

The product **3d** was isolated by FC on silica (1:1:8 Et_2O/CH_2CI_2 /pentane) as a white solid, in 66% yield (57.0 mg), 11:1 dr and 95% ee; t_1 : 20 h; t_2 : 22 h.

¹H NMR (400 MHz, CDCl₃): δ δ 7.42 – 7.30 (m, 5H), 7.26 – 7.18 (m, 2H), 6.70 (d, J = 8.4 Hz, 1H), 5.40 (d, J = 7.4 Hz, 1H), 4.03 (ddd, J = 11.1, 7.4, 3.6 Hz, 1H), 3.38 (s, 1H), 2.93 (dd, J = 18.8, 11.1 Hz, 1H), 2.17 (dd, J = 18.8, 3.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 212.7, 158.0, 137.2, 133.3, 132.1, 129.4, 129.3 (2C), 127.7, 125.7 (2C), 113.8, 112.0, 88.7, 82.1, 39.9, 38.5.

HRMS (ESI+) m/z calculated for: $[C_{17}H_{13}O_3Br+Na]^+$ 366.9940; found: 366.9941.

IR, ṽ (cm⁻¹**):** O-H 3466; C=O 1750.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; τ_{major} = 7.59 min, τ_{minor} = 6.01 min (95% ee). [α]²⁰_D = 54.2 (c = 0.25, CH₂Cl₂). For *ent-3d* 53% yield (45.7 mg), 12:1 dr, τ_{major} = 5.99 min, τ_{minor} = 7.63 min (-96% ee).

The product **3e** was isolated by FC on silica (EtOAc/pentane 1:10 to 1:4) as a white solid, in 45% yield (32.5 mg), 9:1 dr and 87% ee; t_1 : 7 h; t_2 : 20 h.

¹**H NMR (400 MHz, CDCl₃):** δ 7.54 – 7.39 (m, 7H), 6.95 (d, J = 8.3 Hz, 1H), 5.55 (d, J = 7.4 Hz, 1H), 4.17 (ddd, J = 11.1, 7.4, 3.6 Hz, 1H), 3.47 (s, 1H), 3.05 (dd, J = 18.8, 11.3 Hz, 1H), 2.22 (dd, J = 18.8, 3.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 212.1, 162.4, 136.9, 134.6, 132.7, 129.5, 129.4, 128.8, 125.7, 119.0, 111.4, 105.5, 89.3, 82.0, 39.8, 38.0.

HRMS (ESI+) m/z calculated for: $[C_{18}H_{13}NO_3+Na]^+$ 314.0788; found: 314.0789.

IR, ĩ (cm⁻¹**)**: C≡N 2230; C=O 1666.

The ee was determined by UPC² using a Chiralpak IC-3 column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; τ_{major} = 5.67 min, τ_{minor} = 6.31 min (87% ee). [α]²⁰_D = -41.2 (c = 1.0, CH₂Cl₂). For the other enantiomer: 52% yield, 89% ee.

For *ent-3e* 52% yield (37.9 mg), 8:1 dr, τ_{major} = 6.30 min, τ_{minor} = 5.67 min (-89% ee).

The product **3f** was isolated by FC on silica (15:85 EtOAc/pentane) as a yellow oil, in 46% yield (34.1 mg), 12:1 dr and 95% ee. t_1 : 48 h; t_2 : 6 d.

¹H NMR (400 MHz, CDCl₃): δ 7.51 – 7.46 (m, 2H), 7.45 – 7.36 (m, 3H), 6.81 – 6.76 (m, 2H), 6.72 (dd, *J* = 8.7, 2.7 Hz, 1H), 5.43 (d, *J* = 7.3 Hz, 1H), 4.09 (ddd, *J* = 11.2, 7.3, 3.6 Hz, 1H), 3.76 (s, 3H), 3.49 (s, 1H), 2.99 (dd, *J* = 18.8, 11.2 Hz, 1H), 2.26 (dd, *J* = 18.8, 3.6 Hz,

1H).

¹³C NMR (100 MHz, CDCl₃): δ 213.3, 155.2, 152.7, 137.5, 131.9, 129.2 (2C), 125.8 (2C), 114.0, 110.7, 110.4, 88.4, 82.2, 56.1, 40.0, 39.0.

HRMS (ESI+) m/z calculated for: $[C_{18}H_{16}O_4+Na]^+$ 319.0941; found: 319.0943.

IR, ṽ (cm⁻¹): O-H 3447; C=O 1751.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; $\tau_{major} = 7.49 \text{ min}$, $\tau_{minor} = 6.56 \text{ min}$ (95% ee). [α]²⁰_D = 40.0 (c = 0.2, CH₂Cl₂). For *ent*-3f 40% yield (29.6 mg), 14:1 dr, $\tau_{major} = 6.42 \text{ min}$, $\tau_{minor} = 7.57 \text{ min}$ (-96% ee).

The product **3g** was isolated by FC on silica (15:85 EtOAc/pentane) as a yellow oil, in 53% yield (39.3 mg), 12:1 dr and 92% ee; t_1 : 48 h; t_2 : 24 h.

¹**H NMR (400 MHz, CDCl₃):** δ 7.51 – 7.46[#] (m, 4H), 7.46 – 7.31[#] (m, 6H), 7.08[#] (d, *J* = 8.1 Hz, 2H), 6.51 – 6.42[#] (m, 3H), 6.20^{*} (d, *J* = 2.3 Hz, 1H), 5.47 (d, *J* = 7.4 Hz, 1H), 5.14^{*} (dd, *J* = 8.0, 2.3 Hz, 1H), 4.20 – 4.13^{*} (m, 1H), 4.09 (ddd, *J* = 10.9, 7.4, 3.4 Hz, 1H), 3.77 (s,

3H), 3.70* (s, 3H), 3.47[#] (m, 2H), 3.32* (dd, *J* = 19.2, 10.2 Hz, 1H), 2.97 (dd, *J* = 18.7, 10.9 Hz, 1H), 2.50* (dd, *J* = 19.2, 5.2 Hz, 1H), 2.22 (dd, *J* = 18.7, 3.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 213.5, 161.1, 160.0, 137.6, 129.3 (2C), 129.2, 125.7 (2C), 124.8, 122.8, 108.0, 96.8, 88.9, 82.07, 55.7, 40.4, 38.1.

HRMS (ESI+) m/z calculated for: [C₁₈H₁₆O₄+Na]⁺ 319.0941; found: 319.0943.

IR, ṽ (cm⁻¹): O-H 3475; C=O 1751.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; $\tau_{major} = 6.70 \text{ min}$, $\tau_{minor} = 6.29 \text{ min}$ (92% ee). [α]²⁰_D = 49.4 (c = 0.3, CH₂Cl₂). For *ent-3g* 49% yield (36.3 mg), 15:1 dr, $\tau_{major} = 6.25 \text{ min}$, $\tau_{minor} = 6.74 \text{ min}$ (-94% ee).

The product **3h** was isolated by FC on silica (15:85 EtOAc/pentane) as a yellow oil, in 57% yield (42.2 mg), 19:1 dr and 93% ee; t_1 : 48 h; t_2 : 24 h.

¹**H NMR (400 MHz, CDCl₃):** δ 7.52–7.47 [#] (m, 4H), 7.46 – 7.34[#] (m, 6H), 6.91 (t, *J* = 7.8 Hz, 1H), 6.85 – 6.76[#] (m, 4H), 6.72 – 6.66^{*} (m, 1H), 5.49 (d, *J* = 7.5 Hz, 1H), 5.20^{*} (d, *J* = 8.2 Hz, 1H), 4.24^{*} (ddd, *J* = 10.3, 8.2, 4.8 Hz, 1H), 4.16 (ddd, *J* = 11.1, 7.5, 3.6 Hz, 1H), 3.88[#] (s, 4H),

3.65* (s, 3H), 3.50 (s, 1H), 3.33* (dd, *J* = 19.4, 10.3 Hz, 1H), 2.99 (dd, *J* = 18.7, 11.1 Hz, 1H), 2.60* (dd, *J* = 19.4, 4.8 Hz, 1H), 2.27 (dd, *J* = 18.7, 3.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 213.3, 146.9, 144.9, 137.5, 132.1, 129.2 (2C), 129.1, 125.8 (2C), 123.1, 116.5, 112.1, 88.7, 82.1, 56.1, 40.1, 39.1.

HRMS (ESI+) m/z calculated for: $[C_{18}H_{16}O_4+Na]^+$ 319.0941; found: 319.0942.

IR, ṽ (cm⁻¹): O-H 3484; C=O 1750.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; $\tau_{major} = 7.99 \text{ min}$, $\tau_{minor} = 6.38 \text{ min}$ (93% ee). [α]²⁰_D = 50.0 (c = 0.2, CH₂Cl₂). For **ent-3h** 52% yield (38.5 mg), 9:1 dr, $\tau_{major} = 6.36 \text{ min}$, $\tau_{minor} = 8.11 \text{ min}$ (-96% ee).

The product **3i** was isolated by FC on silica (1:1:8 Et_2O/CH_2Cl_2 /pentane) as a white solid, in 48% yield (34.1 mg), 7:1 dr and 93% ee; t_1 : 28 h; t_2 : 16 h.

¹H NMR (400 MHz, CDCl₃): δ 7.51 – 7.45 (m, 2H), 7.23 – 7.16 (m, 2H), 7.12 (t, *J* = 8.5 Hz, 2H), 6.95 (t, *J* = 7.4 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 5.41 (d, *J* = 7.4 Hz, 1H), 4.13 (ddd, *J* = 11.1, 7.4, 3.6 Hz, 1H), 3.53 – 3.43 (m, 1H), 2.98 (dd, *J* = 18.8, 11.1 Hz, 1H), 2.27 (dd, *J* = 18.8, 3.6

Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 213.0, 163.1 (d, *J* = 249.0 Hz), 158.6, 133.4 (d, *J* = 3.2 Hz), 130.8, 129.3, 127.8 (d, *J* = 8.4 Hz) (2C), 124.7, 122.3, 116.3 (d, *J* = 21.7 Hz) (2C), 110.4, 87.93, 81.6, 40.1, 38.5.

¹⁹F NMR (376 MHz, CDCl₃): δ -112.05

HRMS (ESI+) m/z calculated for: $[C_{17}H_{13}O_3F+Na]^+$ 307.0741; found: 307.0739.

IR, ṽ (cm⁻¹): O-H 3475; C=O 1751.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; $\tau_{major} = 5.14 \text{ min}$, $\tau_{minor} = 4.63 \text{ min}$ (93% ee). [α]²⁰_D = 52.0 (c = 0.2, CH₂Cl₂). For *ent*-3i 42% yield (29.9 mg), 8:1 dr, $\tau_{major} = 4.62 \text{ min}$, $\tau_{minor} = 5.18 \text{ min}$ (-98% ee).

The product **3j** was isolated by FC on silica (1:1:8 Et_2O/CH_2Cl_2 /pentane) as a yellow oil, in 54% yield (40.6 mg), 12:1 dr and 93% ee; t_1 : 18 h; t_2 : 16 h.

¹**H NMR (400 MHz, CDCl₃):** δ 7.46 – 7.38 (m, 4H), 7.24 – 7.16 (m, 2H), 6.96 (td, *J* = 7.5, 1.0 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 5.39 (d, *J* = 7.5 Hz, 1H), 4.15 (ddd, *J* = 11.1, 7.5, 3.6 Hz, 1H), 3.51 – 3.44 (m, 1H), 2.99 (dd, *J* = 18.8, 11.1 Hz, 1H), 2.29 (dd, *J* = 18.8, 3.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 212.8, 158.6, 136.1, 135.3, 130.7, 129.4 (2C), 129.3, 127.2 (2C), 124.7, 122.3, 110.4, 87.8, 81.6, 40.1, 38.6.

HRMS (ESI+) m/z calculated for: [C₁₇H₁₃O₃Cl+Na]⁺ 323.0445; found: 323.0445. **IR, ν̃ (cm⁻¹):** O-H 3491; C=O 1751.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; $\tau_{major} = 6.08 \text{ min}$, $\tau_{minor} = 5.30 \text{ min}$ (93% ee). [α]²⁰_D = 63.2 (c = 0.25, CH₂Cl₂). For *ent-3j* 49% yield (36.8 mg), 8:1 dr, $\tau_{major} = 6.15 \text{ min}$, $\tau_{minor} = 5.30 \text{ min}$ (-95% ee).

The product **3k** was isolated by FC on silica (1:1:8 Et_2O/CH_2Cl_2 /pentane) as a white solid, in 48% yield (41.4 mg), 7:1 dr and 96% ee; t_1 : 20 h; t_2 : 22 h.

¹H NMR (400 MHz, CDCl₃): δ 7.46 – 7.38 (m, 4H), 7.24 – 7.16 (m, 2H), 6.96 (td, *J* = 7.5, 1.0 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 5.39 (d, *J* = 7.5 Hz, 1H), 4.15 (ddd, *J* = 11.1, 7.5, 3.6 Hz, 1H), 3.51 – 3.44 (m, 1H), 2.99 (dd, *J* = 18.8, 11.1 Hz, 1H), 2.29 (dd, *J* = 18.8, 3.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 212.8, 158.6, 136.1, 135.3, 130.7, 129.4 (2C), 129.3, 127.2 (2C), 124.7, 122.3, 110.4, 87.8, 81.6, 40.1, 38.6.

HRMS (ESI+) m/z calculated for: [C₁₇H₁₃O₃Cl+Na]⁺ 323.0445; found: 323.0445. **IR, ν̃ (cm⁻¹):** O-H 3502; C=O 1751.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; τ_{major} = 6.76 min, τ_{minor} = 5.77 min (96% ee). [α]²⁰_D = 54.2 (c = 0.25, CH₂Cl₂).

For *ent-3k* 40% yield (34.5 mg), 7:1 dr, τ_{major} = 5.77 min, τ_{minor} = 6.83 min (-95% ee).

The product **3I** was isolated by FC on silica (15:85 EtOAc/pentane) as a yellow oil, in 42% yield (31.1 mg), 11:1 dr and 94% ee; t₁: 72 h; t₂: 20 h.

¹H NMR (400 MHz, CDCl₃): δ 7.44 – 7.38 (m, 2H), 7.18 (ddd, J = 9.0, 7.5, 1.7 Hz, 2H), 6.91 (dd, J = 25.3, 8.2 Hz, 4H), 5.44 (d, J = 7.3 Hz, 1H), 4.08 (ddd, J = 11.1, 7.3, 3.5 Hz, 1H), 3.82 (s, 3H), 3.43 – 3.38 (m, 1H), 2.97 (dd, J = 18.7, 11.1 Hz, 1H), 2.20 (dd, J = 18.7, 3.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 213.5, 160.4, 158.7, 131.1, 129.3, 129.2, 127.3 (2C), 124.6, 122.1, 114.6 (2C), 110.4, 88.0, 81.9, 55.5, 40.0, 38.4.

HRMS (ESI+) m/z calculated for: [C₁₈H₁₆O₄+Na]⁺ 319.0941; found: 319.0942.

IR, ṽ (cm⁻¹): O-H 3500; C=O 1748.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; $\tau_{major} = 7.49$ min, $\tau_{minor} = 6.74$ min (94% ee). [α]²⁰_D = 106.0 (c = 0.2, CH₂Cl₂). For *ent-3l* 39% yield (28.9 mg), 15:1 dr, τ_{major} = 6.72 min, τ_{minor} = 7.53 min (-94% ee).

> The product **3m** was isolated by FC on silica (EtOAc/pentane 1:15 to 1:5) as a pale yellow oil, in 55% yield (40.7 mg), 15:1 dr and 95% ee; t₁: 48 h; t₂: 24 h.

> ¹H NMR (400 MHz, CDCl₃): δ 7.33 (t, J = 8.0 Hz, 1H), 7.23 – 7.15 (m, 2H), 7.09 (t, J = 2.2 Hz, 1H), 7.02 (ddd, J = 7.8, 1.8, 0.9 Hz, 1H), 6.97 – 6.85 (m, 3H), 5.41 (d, J = 7.4 Hz, 1H), 4.14 (ddd, J = 11.1, 7.5, 3.6 Hz, 1H), 3.82 (s, 3H), 3.53 (s, 1H), 3.02 (dd, J = 18.7, 11.1

Hz, 1H), 2.24 (dd, J = 18.8, 3.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 213.2, 160.2, 158.6, 139.0, 130.9, 130.2, 129.2, 124.7, 122.1, 117.5, 114.6, 111.7, 110.3, 88.1, 82.0, 55.5, 40.1, 38.6.

HRMS (ESI+) m/z calculated for: [C₁₈H₁₆O₄+Na]⁺ 319.0941; found: 319.0947.

IR, ṽ (cm⁻¹): O-H 3475; C=O 1750.

The ee was determined by UPC² using a Chiralpak IC column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; τ_{major} = 5.43 min, τ_{minor} = 5.19 min (95% ee). [α]²⁰_D = +36.8 (c = 1.0, CH₂Cl₂). For *ent-***3m** 58% yield (43.0 mg), 15:1 dr, τ_{major} = 5.18 min, τ_{minor} = 5.43 min (-96% ee).

3m

The product **3n** was isolated by FC on silica (EtOAc/pentane 1:20 to 1:5) as a colorless oil, in 44% yield (32.2 mg), 8:1 dr and 94% ee; t₁: 7 d; t₂: 16 h.

¹H NMR (400 MHz, CDCl₃): δ 7.69 (dd, J = 7.6, 1.7 Hz, 1H), 7.34 (td, J = 7.8, 1.7 Hz, 1H), 7.27 - 7.17 (m, 2H), 7.08 (td, J = 7.5, 1.0 Hz, 1H), 7.01 - 6.95 (m, 1H), 6.94 - 6.88 (m, 2H), 5.43 (d, J = 9.3 Hz, 1H), 4.27 (td, J = 9.8, 5.8 Hz, 1H), 3.81 (s, 3H), 3.56 (s, 1H), 3.11 (dd, J = 19.1, 10.3 Hz, 1H), 2.80 (dd, J = 19.1, 5.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 213.0, 159.2, 154.8, 130.7, 130.2, 129.5, 129.0, 126.7, 124.9, 122.2, 121.4, 111.0, 110.1, 89.8, 77.6, 55.5, 42.3, 40.5.

HRMS (ESI+) m/z calculated for: [C₁₈H₁₆O₄+Na]⁺ 319.0941; found: 319.0947.

IR, v (cm⁻¹): O-H 3425; C=O 1731.

The ee was determined by UPC² using a Chiralpak ID-4 column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; τ_{major} = 5.57 min, τ_{minor} = 6.44 min (94% ee). [α]²⁰_D = -46.8 (c = 1.0, CH₂Cl₂). For *ent*-3n 40% yield (29.6 mg), 11:1 dr, τ_{major} = 6.40 min, τ_{minor} = 5.59 min (-95% ee).

The product **30** was isolated by FC on silica (EtOAc/pentane 1:20 to 1:5) as a yellow oil, in 51% yield (40.2 mg), 13:1 dr and 94% ee; t₁: 30 h; t₂: 40 h.

¹H NMR (400 MHz, CDCl₃): δ 7.94 – 7.82 (m, 4H), 7.64 (dd, J = 8.6, 2.0 Hz, 1H), 7.57 – 7.50 (m, 2H), 7.21 (ddd, J = 9.1, 7.5, 1.3 Hz, 2H), 6.96 (td, J = 7.5, 1.0 Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H), 5.57 (d, J = 7.4 Hz, 1H), 4.19 (ddd, J = 11.1, 7.5, 3.6 Hz, 1H), 3.64 (s, 1H), 3.04 (dd, J = 18.7, 11.1 Hz, 1H), 2.29 (dd, J = 18.8, 3.6 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 213.4, 158.7, 134.8, 133.4, 133.1, 130.9, 129.3, 129.2, 128.4, 127.8, 127.1, 126.8, 124.9, 124.7, 123.4, 122.2, 110.4, 88.0, 82.2, 40.2, 38.6.

HRMS (ESI+) m/z calculated for: [C₂₁H₁₆O₃+Na]⁺ 339.0992; found: 339.0996.

IR, ṽ (cm⁻¹): O-H 3466; C=O 1751.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/iPrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; τ_{major} = 8.69 min, τ_{minor} = 7.27 min (94% ee). [α]²⁰_D = +117.4 (c = 1.0, CH₂Cl₂). For *ent-3o* 58% yield (45.9 mg), 14:1 dr, τ_{major} = 7.26 min, τ_{minor} = 8.70 min (-95% ee).

3p

The product **3p** was isolated by FC on silica (1:1:8 Et2O/CH₂Cl₂/pentane) as a yellow oil, in 29% yield (19.7 mg), 6:1 dr and 89% ee; t₁: 18 h; t₂: 14 h.

¹H NMR (400 MHz, CDCl₃): δ 7.41 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.37* (dd, *J* = 4.8, 1.4 Hz, 1H), 7.24 - 7.15[#] (m, 4H), 7.14-7.08[#] (m, 2H), 7.05 (dd, J = 5.1, 3.6 Hz, 1H), 7.00 - 6.91[#] (m, 3H), 6.88 (d, J = 8.2, 1H), 6.70* (d, J = 8.1, 1H), 5.42 (d, J = 7.2 Hz, 1H), 5.24* (d, J = 8.4 Hz, 1H), 4.21*

(ddd, J = 10.5, 8.4, 5.3 Hz, 1H), 4.12 (ddd, J = 11.1, 7.2, 3.6 Hz, 1H), 3.56 - 3.50[#] (m, 2H), 3.29^{*} (dd, J = 19.0, 10.5 Hz, 1H), 3.11 (dd, J = 18.8, 11.1 Hz, 1H), 2.58* (dd, J = 19.0, 5.3, 1H), 2.25 (dd, J = 18.8, 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 211.7*, 211.2, 159.2*, 158.7, 140.6, 139.3*, 130.6*, 130.8, 129.3, 129.1*, 127.5, 127.3, 127.1*, 127.0*, 126.8*, 125.4, 124.6, 124.5*, 122.3, 121.7*, 110.4, 110.3*, 90.6*, 88.4, 80.4, 79.9*, 41.7*, 39.6, 39.0*, 38.4.

HRMS (ESI+) m/z calculated for: [C₁₅H₁₂O₃S+Na]⁺ 295.0399; found: 295.0399. IR, v (cm⁻¹): O-H 3456; C=O 1749.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; $\tau_{major} = 6.21 \text{ min}$, $\tau_{minor} = 6.04 \text{ min}$ (89% ee). [α]²⁰_D = 22.0 (c = 0.2, CH₂Cl₂). For *ent-3p* 29% yield (19.7 mg), 6:1 dr, $\tau_{major} = 6.02 \text{ min}$, $\tau_{minor} = 6.232 \text{ min}$ (-92% ee).

3.4 Procedure for the synthesis of 3a at 4.0 mmol scale

The respective aldehyde 1 (1 eq, 4 mmol, 1.06 g) and quinine 4a (0.1 eq, 0.4 mmol, 129.8 mg) were dissolved in dry CHCl₃ (16 mL). The reaction mixture was stirred at rt for 28 h. Afterwards, the NHC catalyst 5a (0.1 eq, 0.4 mmol, 145.2 mg) was added in one portion and the reaction mixture was stirred at rt for 12 h. The crude reaction mixture was then loaded in silica gel and purified by FC. The product **3a** was isolated as a white solid in 53% yield (565 mg), 11:1 dr and 93% ee.

4. Transformations

4.1 Reduction

Compound **3a** (1.0 eq, 0.25 mmol, 66.6 mg) was dissolved in dry MeOH (2 mL), and the solution was cooled to -78 °C. NaBH₄ (2.5 eq, 0.625 mmol, 23.6mg) was added and the reaction mixture was stirred at -78 °C for 40 min. The reaction was then quenched with $NH_4Cl_{(aq)}$, extracted with CH_2Cl_2 , dried over Na_2SO_4 , concentrated *in vacuo* and purified by FC over silica gel.

The product **6** was isolated by FC on silica (20:80 EtOAc/pentane) as a white foam, in 83% yield (55.4 mg), >20:1 dr and 94% ee.

¹H NMR (400 MHz, CDCl₃): δ 7.60 – 7.53 (m, 2H), 7.42 (dd, J = 8.5, 6.9 Hz, 2H), 7.37 – 7.29 (m, 1H), 7.24 – 7.12 (m, 2H), 6.94 (td, J = 7.4, 1.0 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 5.30 (d, J = (m, 2H))

9.7 Hz, 1H), 4.27 (dd, J = 8.5, 6.2 Hz, 1H), 3.93 (td, J = 9.3, 7.3 Hz, 1H), 3.27 (s, 1H), 2.65 (ddd, J = 12.8, 9.0, 6.2 Hz, 1H), 2.29 (s, 1H), 2.03 (ddd, J = 12.8, 8.6, 7.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 159.2, 142.5, 131.6, 128.7, 128.4, 127.8, 125.5, 124.5, 121.6, 109.7, 91.6, 81.2, 79.2, 42.1, 39.3.

HRMS (ESI+) m/z calculated for: [C₁₇H₁₆O₃+Na]⁺ 291.0992; found: 291.0996.

IR, ṽ (cm⁻¹): O-H 3470.

The ee was determined by UPC² using a Chiralpak ID-4 column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; τ_{major} = 5.26 min, τ_{minor} = 6.44 min (94% ee). [α]²⁰_D = -88.2 (c = 1.0, CH₂Cl₂).

4.2 Allylation

Compound **3a** (1.0 eq, 0.25 mmol, 66.6 mg) was dissolved in dry CH_2Cl_2 (2.5 mL), and allyltrimethylsilane (2.0 eq, 0.5 mmol, 79.5 µL) was added. The solution was cooled to -20 °C and BF_3 Et_2O (4 eq, 1.0 mmol, 123.4 µL) was added. The reaction mixture was stirred at -20 °C for 30 h. The reaction was then quenched with NaHCO_{3(aq)}, extracted with CH₂Cl₂, concentrated *in vacuo* and purified by FC over silica gel

The product **7** was isolated by FC on silica (5:95 to 17:83 Et_2O /pentane) as a yellow oil, in 54% yield (41.8 mg), > 20:1 dr and 94% ee.

¹H NMR (400 MHz, CDCl₃): δ 7.57 – 7.50 (m, 2H), 7.46 – 7.39 (m, 2H), 7.38 – 7.32 (m, 1H), 7.22 (dt, J = 7.4, 1.2 Hz, 1H), 7.16 (td, J = 7.8, 1.4 Hz, 1H), 6.94 (td, J = 7.4, 1.0 Hz, 1H), 6.84 (d, J = 7.4, 1.2 Hz, 1H), 7.16 (td, J = 7.8, 1.4 Hz, 1H), 6.94 (td, J = 7.4, 1.0 Hz, 1H), 6.84 (d, J = 7.4, 1.2 Hz, 1H), 7.16 (td, J = 7.8, 1.4 Hz, 1H), 6.94 (td, J = 7.4, 1.0 Hz, 1H), 6.84 (d, J = 7.8, 1.4 Hz, 1H), 6.94 (td, J = 7.4, 1.0 Hz, 1H), 6.84 (d, J = 7.4, 1.2 Hz, 1H), 7.16 (td, J = 7.8, 1.4 Hz, 1H), 6.94 (td, J = 7.4, 1.0 Hz, 1H), 6.84 (d, J = 7.4, 1.2 Hz, 1H), 7.16 (td, J = 7.8, 1.4 Hz, 1H), 6.94 (td, J = 7.4, 1.0 Hz, 1H), 6.84 (d, J = 7.4, 1.2 Hz, 1H), 6.84 (d, J = 7.8, 1.4 Hz), 7

7 J = 8.0 Hz, 1H), 5.79 (dddd, J = 16.8, 10.1, 8.0, 6.5 Hz, 1H), 5.42 (d, J = 9.2 Hz, 1H), 5.08 (ddt, J = 10.1, 2.0, 1.0 Hz, 1H), 4.99 (dq, J = 17.0, 1.5 Hz, 1H), 4.04 (td, J = 9.3, 4.0 Hz, 1H), 3.66 (s, 1H), 2.48 (dd, J = 13.7, 9.3 Hz, 1H), 2.38 (s, 1H), 2.11 (dd, J = 13.7, 4.0 Hz, 1H), 2.01 (ddt, J = 13.9, 6.5, 1.4 Hz, 1H), 1.65 (ddd, J = 14.0, 8.1, 1.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 159.5, 141.0, 133.6, 132.1, 128.4, 128.3, 127.8, 126.0, 124.3, 121.3, 118.9, 109.4, 90.9, 84.0, 83.4, 42.9, 42.5, 40.9. HRMS (ESI+) m/z calculated for: $[C_{20}H_{20}O_3+Na]^+$ 331.1305; found: 331.1312. IR, \tilde{v} (cm⁻¹): O-H 3428; C=C 1597.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; τ_{major} = 4.26 min, τ_{minor} = 5.11 min (94% ee). [α]²⁰_D = +11.8 (c = 1.0, CH₂Cl₂).

4.3 Reductive amination

Compound **3a** (1.0 eq, 0.25 mmol, 66.6 mg) was dissolved in ClCH₂CH₂Cl (1.25 mL). *p*-Anisidine (1.2 eq, 0.3 mmol, 36.9 mg) and acetic acid (1.2 eq, 0.3 mmol, 17.2 μ L) were added afterwards. The reaction was stirred at rt for 2 h. Afterwards, NaHB(OAC)₃ (2.0 eq, 0.5 mmol, 105 mg) was added and stirred at rt for 44 h. After full conversion, the reaction was quenched with NaHCO_{3(aq)}, extracted with CH₂Cl₂, concentrated *in vacuo* and purified by FC over silica gel.

The product **8** was isolated by FC on silica (5:95 to 9:91 EtOAc/pentane) as a yellow oil, in 75% yield (70.0 mg), >20:1 dr and 95% ee.

 $\frac{10}{10} \text{ MMR} (400 \text{ MHz}, \text{CDCl}_3): \delta 7.55 - 7.44 \text{ (m, 4H)}, 7.44 - 7.38 \text{ (m, 1H)}, 7.28 - 7.21 \text{ (m, 2H)}, 7.01 \text{ (td, J = 7.4, 1.0 Hz, 1H)}, 6.94 \text{ (d, J = 8.0 Hz, 1H)}, 6.76 - 6.70 \text{ (m, 2H)}, 6.55 - 6.48 \text{ (m, 2H)}, 5.43 \text{ (d, J = 8.7 Hz, 1H)}, 4.13 \text{ (td, J = 8.8, 2.9 Hz, 1H)}, 3.91 \text{ (dd, J = 9.0, 6.0 Hz, 1H)}, 3.74 \text{ (s, 3H)}, 3.24 \text{ (s, 1H)}, 2.94 \text{ (s, 1H)}, 2.26 \text{ (ddd, J = 13.0, 6.0, 3.1 Hz, 1H)}, 2.07 \text{ (dt, J = 13.0, 9.0 Hz, 1H)}.$

¹³C NMR (100 MHz, CDCl₃): δ 159.2, 152.3, 141.4, 139.4, 131.5, 128.6, 128.6, 128.2, 126.7, 124.6, 121.7, 115.3, 114.7, 109.6, 90.0, 83.9, 62.4, 55.8, 42.7, 37.0.

HRMS (ESI+) m/z calculated for: [C₂₄H₂₃NO₃+Na]⁺ 374.1751; found: 374.1767. **IR, ỹ (cm⁻¹):** O-H 3522.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; τ_{major} = 6.28 min, τ_{minor} = 6.89 min (95% ee). [α]²⁰_D = +31.1 (c = 2.0, CH₂Cl₂).

4.4 Barton's vinyl iodide synthesis

Compound **3a** (1.0 eq, 0.25 mmol, 66.6 mg) was dissolved in absolute EtOH (500 μ L). Afterwards, hydrazine monohydrate (20 eq, 5 mmol, 243 μ L) and Et₃N (15 eq, 3.75 mmol, 521 μ L) were added. The reaction mixture was heated at 80 °C for 3 h. The crude reaction was then diluted with water (20 mL) and extracted with CH₂Cl₂ (3x10 mL), dried over with Na₂SO₄, filtered over cotton, concentrated *in vacuo* and used in the next step without further purification.

In a flame dried vial, the reaction crude was dissolved in dry THF (2 mL). Afterwards, Et₃N (3 eq, 0.75 mmol, 104 μ L) was added in one portion. At rt, a solution of iodine (2.2 eq, 0.55 mmol, 140 mg) in dry THF (500 μ L) was added dropwise. The reaction mixture was stirred at rt for 30 min. The reaction crude was diluted with Et₂O (30 mL), washed with 2x10 mL of Na₂SO_{3(aq)},10 mL of NaHCO_{3(aq)}, dried over MgSO₄, filtered over cotton, concentrated *in vacuo* and purified by FC over silica gel (2:98 to 5:95 Et₂O/pentane). The product **9** was obtained as a yellow oil, in 56% yield (52.7 mg) and 94% ee.

¹H NMR (400 MHz, CDCl₃): δ 7.53 – 7.47 (m, 2H), 7.47 – 7.39 (m, 2H), 7.35 (td, J = 7.1, 1.6 Hz, 1H), 7.29 – 7.18 (m, 2H), 6.96 (t, J = 7.4 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 6.37 (t, J = 1.8 Hz, 1H), 5.02 (dd, J = 7.0, 1.4 Hz, 1H), 4.41 (dd, J = 6.9, 1.8 Hz, 1H), 3.61 (d, J = 1.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 158.6, 141.4, 139.5, 129.2, 128.8 (2C), 128.1, 127.5, 125.3 (2C),

124.2, 122.0, 110.5, 108.8, 88.6, 88.5, 54.1. **HRMS (ESI+) m/z calculated for:** $[C_{17}H_{13}O_{3I}+-OH]^+$; 358.9927 found: 358.9928. **IR, \tilde{v} (cm⁻¹):** O-H 3531; C=C 1595.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; τ_{major} = 5.24 min, τ_{minor} = 4.42 min (94% ee). [α]²⁰_D = -153.6 (c = 0.25, CH₂Cl₂).

5. Diastereodivergence

Aldehyde **1q** (1 eq, 0.1 mol) and cinchonidine (0.1 eq, 0.01 mol, 2.9 mg) were dissolved in dry CHCl₃ (400 μ L). The reaction mixture was stirred at rt until full conversion. Afterwards, the NHC catalyst **5b** or **5c** (0.1 eq, 0.01 mol, 4.7 mg) was added in one portion and the reaction mixture was stirred at rt until full conversion. The crude reaction mixture was then loaded in silica gel and purified by FC.

The product **3q** was isolated by FC on silica (1:1:8 Et_2O/CH_2Cl_2 /pentane) as a white solid, in 65% yield (55.6 mg), 6:1 dr and 92% ee. t_1 : 16 h ; t_2 : 24 h. NHC catalyst **5c** was used.

 $\begin{array}{c} & \overset{\circ}{}_{3q} \end{array}^{1} H \text{ NMR (400 MHz, CDCl_3): } \delta 7.38 - 7.33 (m, 2H), 7.29 - 7.26 (m, 2H), 7.22 - 7.08 (m, 8H), \\ & 6.92 (t, J = 7.5 \text{ Hz}, 1H), 6.86 (d, J = 7.9 \text{ Hz}, 1H), 4.50 (dd, J = 11.4, 4.2 \text{ Hz}, 1H), 3.74 (s, 1H), \\ & 3.39 (dd, J = 19.3, 11.4 \text{ Hz}, 1H), 2.41 (dd, J = 19.3, 4.2 \text{ Hz}, 1H). \end{array}$

¹³C NMR (100 MHz, CDCl₃): δ 213.3, 157.0, 137.1, 136.6, 132.7, 129.2, 128.5, 128.4, 128.3 (2C), 128.1 (2C), 127.1 (2C), 126.5 (2C), 124.0, 122.2, 111.1, 97.9, 86.7, 42.5, 41.6.

HRMS (ESI+) m/z calculated for: $[C_{23}H_{18}O_3+Na]^+$ 365.1148; found: 365.1147.

IR, ṽ (cm⁻¹): O-H 3475; C=O 1745.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/MecN, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; τ_{major} = 4.59 min, τ_{minor} = 4.88 min (92% ee). [α]²⁰_D = 77.0 (c = 0.2, CH₂Cl₂).

The product *epi***-3q** was isolated by FC on silica (1:1:8 $Et_2O/CH_2Cl_2/pentane$) as a white solid, in 63% yield (53.9 mg), 2:1 dr and 96% ee. t_1 : 16 h ; t_2 : 48 h. NHC catalyst **5b** was used.

¹**H NMR (400 MHz, CDCl₃):** δ 7.38 – 7.32 (m, 3H), 7.31 – 7.24 (m, 4H), 7.23 – 7.14 (m, 2H), 7.13 – 7.06 (m, 3H), 6.86 (t, J = 7.5, 1H), 6.78 (d, J = 7.9 Hz, 1H), 4.43 (dd, J = 11.1, 4.4 Hz, 1H), 3.63 (dd, J = 19.1, 11.1 Hz, 1H), 2.57 – 2.55 (m, 1H), 2.43 (dd, J = 19.1, 4.4 Hz, 1H).

³C NMR (100 MHz, CDCl₃): δ 211.4, 157.7, 136.5, 135.2, 132.2, 128.8, 128.7 (2C), 128.4 (2C), 127.9 (2C), 127.5 (2C), 127.4 (2C), 124.4, 121.9, 110.6, 98.4, 82.1, 45.0, 42.9.

HRMS (ESI+) m/z calculated for: $[C_{23}H_{18}O_3+Na]^+$ 365.1148; found: 365.1147.

IR, ṽ (cm⁻¹): O-H 3584; C=O 1751.

The ee was determined by UPC² using a Chiralpak ID column [CO₂/*i*PrOH, gradient, 120 bar, 40 °C]; flow rate 3.0 mL/min; τ_{major} = 4.05 min, τ_{minor} = 3.92 min (96% ee). [α]²⁰_D = -94.0 (c = 0.2, CH₂Cl₂).

6. Attempts to react with alkyl substituted substrates

Entry	Substrate	Cat. 1 (mol %)	Additive 1 (mol %)	Cat. 2 (mol %)	Solv.1	Solv.2	Conv. 1	Conv.2
1 <i>^{<i>a</i>}</i>	3r (Et)	10 (10)	-	5a (10)	CH_2Cl_2	CH_2CI_2	>95%	Complex mixture
2	3t (<i>t</i> Bu)	10 (20)	-	5a (10)	THF	CHCl₃	>95%	Complex mixture
3	3t (<i>t</i> Bu)	10 (20)	-	5a (10)	PhMe	CHCl ₃	>95%	Complex mixture
4 ^b	3t (<i>t</i> Bu)	10 (20)	-	5a (10)+ 13 (10)	PhMe	CHCl₃	>95%	Complex mixture
5	3t (<i>t</i> Bu)	11 (20)	-/DABCO(20)/ DABCO(20)+PhCOOH(40)	-	CHCl ₃	-	0%	0%
6	3t (<i>t</i> Bu)	12 (20)	-/DABCO(20)/ DABCO(20)+PhCOOH(40)	-	CHCl₃	-	0%	0%

^{*a*} Reaction was performed at -20 °C. ^{*b*} Reaction was performed stepwise.

7. Determination of the absolute configuration

Item	Value
Molecular formula	C17H13BrO3
Formula weight	345.19
Crystal system	orthorhombic
Space Group	P 21 21 21
a (Å)	10.4889
b (Å)	15.637
c (Å)	17.361
α (°)	90
β (°)	90
γ (°)	90
Volume (ų)	2847.6
Z	8
T (K)	100
ρ (g cm ⁻¹)	1.61
λ (Å)	0.56086
μ (mm ⁻¹)	1.556
# measured refl	36258
# unique refl	5817
R _{int}	0.0613
# parameters	384
R(F ²), all refl	0.0221
R _w (F ²), all refl	0.0528
Goodness of fit	1.043

CCDC number 1545253.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S76

S81

10. IR Spectra

1b

1m

3a

MeO

3i

3q

S108

6

H

O H Ph Ar = p-MeOC₆H₅ 8