Rhodium-Catalyzed Asymmetric 1,4-Addition Reactions of Aryl Boronic Acids with Nitroalkenes: Reaction Mechanism and Development of Homogeneous and Heterogeneous Catalysts

Hiroyuki Miyamura, Kohei Nishino, Tomohiro Yasukawa, and Shū Kobayashi* Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Electronic Supplementary Information

Contents

1.	General	S-1
2.	Preparation of chiral dienes	S-3
3.	Preparation of polymer incarcerated metal nanoparticle catalysts	S-4
4.	Preparation of substrates	S-8
5.	Asymmetric 1,4-addition reactions	S-10
6.	Reaction profiles in toluene/ $H_2O = 1/1$	S-11
7.	Reaction profiles during recovery and reuse, after hot filtration	S-12
8.	XPS analysis	S-14
9.	Products	S-16
10.	Charts	S-23
11.	References	S-136

1. General

- JEOL JMN-LA400, 500 or 600 spectrometers were used for NMR measurement. Chloroform (δ = 7.24) or tetramethylsilane (δ = 0.00) was used as an internal standard for ¹H NMR and CDCl₃ (δ = 77.0) for ¹³C NMR. Structures of known compounds were confirmed by comparison with commercially available compounds or data shown in literature.
- IR spectra were measured on a JASCO FT/IR-610 spectrometer.
- Direct Analysis in Real Time (DART) mass spectra were recorded on JEOL JMS-T100TD mass spectrometer.
- Specific rotations were recorded with JASCO P-1010 or P-2100.
- Melting point was determined on a standard melting point apparatus and is uncorrected.
- Preparative thin-layer chromatography was carried out using Wakogel B-5F.
- ICP analysis was performed on Shimadzu ICPS-7510 equipment.
- GC analysis. was performed on Shimadzu GC-2010 apparatus (Condition : column = J

& W SCIENTIFIC DB-1 0.25 mm ID, 0.25 μm, 60.0 m; Gas pressure: 157.5 kPa, Total flow: 41.3 mL/min, Column folw: 0.93 mL/min, Velocity: 21.1 cm/sec; Purge flow: 3.0 mL/min; Sprit ratio: 40.1; Injector: 300 °C, FID: 300 °C; Column program: starting from 100 °C, 20 °C/min to 300 °C, 10 min hold).

- HPLC analysis was performed on Shimadu LC-20AB, SPD-M20A and DGU-20A₃.
- XPS analysis was performed on JPS-9010MC with a Mg Kα X-ray source and the O 1s line at 532.9 eV was used as reference to correct the binding energies.
- The absolute configuration of reported compounds was determined by comparison to literature and that of other products was assumed by analogy.
- STEM/EDS images were obtained using a JEOL JEM-2100F instrument operated at 200 kV. All STEM specimens were prepared by placing a drop of the solution on carbon-coated Cu grids and allowed to dry in air (without staining).
- $Rh_2(OAc)_4$ was purchased from Strem Chemical Inc.
- $[Rh(C_2H_4)_2Cl]_2$ and V-70 were purchased from Wako Pure Chemical Company.
- AgSbF₆ complex was purchased from Sigma-Aldrich Co., Ltd..
- NaBH₄ was purchased from Wako Pure Chemical Company and recrystallized from diglyme by heating according to the literature¹ and stored in a glove box.
- Ketjen black EC300J was purchased from Lion Corporation.
- Toluene was purchased in dried grade from Wako Pure Chemical Company and used without further purification.
- Deionized water from a MILLIPORE MilliQ machine (Gradient A 10) was used as solvent without further treatment.
- Aliphatic unsaturated esters and cinnamate were purchased from Tokyo Kasei Kogyo Co., Ltd..
- Nitroalkenes were prepared by following the literature.
- Arylboronic acids were purchased from Wako Pure Chemical Company or prepared from the corresponding Grignard reagent. The ratio of boronic acid to boroxine was determined by ¹H NMR analysis before use.
- Chiral diene 4a, 4b, and S1 were prepared by following the literatures.^{2a}
- PI/CB Rh/Ag was prepared by following the literature.³
- Asymmetric 1,4-addition reactions were conducted with CarouselTM.
- Unless otherwise stated, all reactions were carried out under argon atmosphere.
- 0.45 µm PTFE membrane filter (Whatman[™] cat. No. 6784-2504) was used for filtration of solid catalysts during hot filtration test and taking reaction profiles.
- Yields were determined by GC analysis using durene as an internal standard for taking reaction profiles.
- Procedures conducted in previous published paper (Yasukawa, T.; Suzuki, A.; Miyamura, H.; Nishino, K.; Kobayashi, S., *J. Am. Chem. Soc.* 2015, *137*, 6616.) were followed for hot leaching test and taking reaction profile with preheating.

2. Preparation of chiral dienes

2-1. Saponification of 7-isopropyl-5-methylbicyclo[2.2.2]octa-2,5-diene-2-carboxylate S1²

Chiral diene **S1** (55 mg, 0.25 mmol) in MeOH (3 mL) and NaOH (40 mg, 1 mmol) in water (1.5 mL) were mixed. After stirring for 6 h at 50 °C, 1N HCl (5 mL) was added. The water layer was extracted with CH₂Cl₂, and the combined organic layers were washed with brine and dried over Na₂SO₄. The precipitation was removed by filtration and the filtrate was evaporated and dried under vacuum to afford the crude desired compound **S2** (57.0 mg, quantitative yield) as a solid, which was used in the next reaction without further purification. ¹H NMR (CDCl₃, 500 MHz) δ : 7.44 (1H, dd, *J* = 6.2, 1.7 Hz), 5.81 (1H, dt, *J* = 6.2, 1.7 Hz), 4.06 (1H, dt, *J* = 6.2, 1.7 Hz), 3.43-3.40 (1H, m), 1.59-1.54 (1H, m), 1.56 (3H, ddd, *J* = 11.3, 9.1, 2.8 Hz), 1.20-1.14 (1H, m), 1.13-1.05 (1H, m), 0.98 (3H, d, *J* = 6.8 Hz), 0.98-0.95 (1H, m), 0.82 (3H, d, *J* = 6.8 Hz). ¹H NMR (CDCl₃, 125 MHz) δ : 170.3, 148.9, 143.1, 140.5, 124.1, 47.6, 44.2, 39.2, 33.7, 31.4, 21.8, 21.3, 18.9.

2-2. Preparation of (1R,4R,7R)-N-(tert-butyl)-

7-isopropyl-5-methylbicyclo[2.2.2]octa-2,5-diene-2-carboxamide (4c)

tert-Butylamine (21.5 μ L, 0.2 mmol) and *N*,*N*-diisopropylcarbodiimide (34.7 μ L, 0.22 mmol) in CH₂Cl₂ (500 μ L) were added to a solution of carboxylic acid **S2** (41.3 mg, 0.2 mmol), 1-hydroxybenzotriazole (27.0 mg, 0.2 mmol) and

N,*N*-dimethyl-4-aminopyridine (1.2 mg, 0.01 mmol) in CH₂Cl₂ (500 μ L) under argon. After stirring for 9 h at 50 °C, triethylamine (0.4 mmol) and then *tert*-butylamine (21.5 μ L, 0.2 mmol) were added. After stirring for 24 h at 50 °C, 1N HCl (3 mL) was added. The precipitation was removed by filtration and the water layer was extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by preparative TLC (hexane/EtOAc = 5/1) to afford **4c** (28.3 mg, 54% yield) as a white solid.

 $[\alpha]^{20}{}_{D}$ = +25.6 (c = 0.09, CHCl₃). IR (KBr) cm⁻¹: 3341, 2961, 2938, 2869, 1662, 1630, 1605, 1536, 1447, 1364, 1285, 1220, 815. M.p. = 123-126 °C. ¹H NMR (CDCl₃, 600 MHz) δ: 6.68 (1H, dd, *J* = 6.2, 1.4 Hz), 5.80 (1H, d, *J* = 6.2 Hz), 5.49 (1H, br s), 4.01-4.00 (1H, m), 3.30 (1H, dt, *J* = 6.2, 2.1 Hz), 1.81 (3H, d, *J* = 1.4 Hz), 1.58-1.56 (1H, m), 1.37 (9H, s), 1.26-1.19 (1H, m), 1.10-1.05 (1H, m), 1.00 (3H, d, *J* = 6.9 Hz), 0.94 (1H, ddd, *J* = 11.7, 4.8, 2.8 Hz), 0.81 (3H, d, *J* = 6.9 Hz). ¹³C NMR (CDCl₃, 125 MHz) δ: 165.8, 146.1, 143.9, 136.6, 124.3, 51.0, 47.7, 43.5, 40.0, 33.9, 31.9, 28.9, 21.8, 21.3, 19.0. HRMS (DART) calculated for

$C_{17}H_{28}NO^+$ [*M*+H⁺] 262.21709, found 262.21643.

2-3. (1R,4R,7R)-N-(tert-butyl)-

7-isopropyl-N,5-dimethylbicyclo[2.2.2]octa-2,5-diene-2-carboxamide (4d)

Oxalyl chloride (65 μ L, 0.75 mmol) and dimethylformamide (8.5 μ L, 0.11 mmol) were added to the solution of carboxylic acid **S2** (103 mg, 0.5 mmol) in CH₂Cl₂ (1 mL) at 0 °C under argon. After stirring for 3 h at 0 °C, triethylamine (350 μ L, 2.5 mmol) and then *tert*-butyl

methyl amine (1.5 mmol) in CH₂Cl₂ (1 mL) were added at 0 °C. After the mixture was stirred for 24 h at room temperature, sat. NH₄Cl aq. (4 mL) was added. The water layer was extracted with CH₂Cl₂ and the combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by preparative TLC (hexane/EtOAc = 5/1) to afford **4d** (42.9 mg, 62 % yield) as a liquid.

 $[α]^{20}_{D}$ = +28.4 (c = 0.31, CHCl₃). IR (neat) cm⁻¹: 3037, 2957, 2869, 1632, 1472, 1365, 1150, 1057, 821. ¹H NMR (CDCl₃, 500 MHz) δ: 6.37 (1H, dd, *J* = 6.2, 1.7 Hz), 5.79 (1H, d, *J* = 6.2 Hz), 3.63 (1H, dt, *J* = 6.2, 1.7 Hz), 3.27-3.24 (1H, m), 2.78 (3H, s), 1.80 (3H, d, *J* = 1.7 Hz), 1.60 (1H, ddd, *J* = 11.9, 8.5, 2.8 Hz), 1.39 (9H, s), 1.37-1.32 (1H, m), 1.08-1.01 (1H, m), 0.94 (3H, d, *J* = 6.8 Hz), 0.90 (1H, ddd, *J* = 11.3, 4.5, 2.3 Hz), 0.79 (3H, d, *J* = 6.8 Hz). ¹³C NMR (CDCl₃, 125 MHz) δ: 172.2, 147.2, 144.1, 134.8, 123.9, 56.0, 48.0, 43.2, 42.4, 34.5, 34.0, 32.2, 27.8, 21.7, 21.4, 19.1. HRMS (DART) calculated for C₁₈H₃₀NO⁺ [*M*+H⁺] 276.23274, found 276.23370.

3. Preparation of polymer incarcerated metal nanoparticle catalysts

3-1. Preparation of 2-(2-(2-(4-vinylbenzyloxy)ethoxy)ethoxy)ethoxy)ethanol: To

sodium hydride (55% in mineral oil, 5.7 g) suspended in THF (150 mL), tetraethyleneglycol (25.2 g) was added at 0 °C. After the reaction mixture was stirred for 1 hour at room temperature, 1-(chloromethyl)-4-vinylbenzene (13.3 g) was added and the mixture was further stirred for 2 h. The mixture was cooled to 0 °C and diluted with diethyl ether. Saturated aqueous ammonium chloride was added to quench

the reaction and the aqueous layer was extracted with diethyl ether. The combined organic layers were dried over sodium sulfate and the solvent was removed in vacuo. The residue was purified by column chromatography to afford 2-(2-(2-(4-vinylbenzyloxy)ethoxy)ethoxy)ethoxy)ethoxy)ethanol ether (21.6 g, 68%). ¹H NMR (CDCl₃, 600 MHz) δ : 7.38 (2H, d, *J* = 7.9 Hz), 7.30 (2H, d, *J* = 7.9 Hz), 6.70 (1H, dd, *J* = 17.8, 11.1 Hz), 5.74 (1H, d, *J* = 17.6 Hz), 5.23 (1H, d, *J* = 10.8 Hz), 4.55 (2H, s), 3.71-3.57 (17H, m), 2.82 (1H, s). ¹³C NMR (CDCl₃, 150 MHz) δ : 137.7, 136.9, 136.4, 127.9, 126.1, 113.7, 72.8, 72.4, 70.53, 70.51, 70.48, 70.2, 69.3, 61.6.

3-2. Preparation of 4-Vinylbenzyl glycidyl ether: To sodium hydride (55% in mineral oil,

O

17.5 g) suspended in DMF (300 mL), glycidol (33.1 mL) was added at 0 °C. After the reaction mixture was stirred for 0 °C. 1 h at 1-(chloromethyl)-4-vinylbenzene (28.3 mL) was added and the mixture was further stirred for 4 h. The mixture was diluted with diethyl ether at 0 °C. Saturated aqueous ammonium chloride was added to quench the reaction and the aqueous layer was extracted with dichloromethane. The combined

2,2'-

organic layers were dried over sodium sulfate and the solvent was removed in vacuo. The residue was purified by column chromatography to afford 4-vinylbenzyl glycidyl ether (20.2 g, 53%). ¹H NMR (CDCl₃, 400 MHz) δ : 7.39 (2H, d, J = 7.8 Hz), 7.30 (2H, d, J = 7.8 Hz), 6.71 (1H, dd, J = 17.9, 11.0 Hz), 5.74 (1H, d, J = 17.4 Hz), 5.24 (1H, d, J = 11.0 Hz), 4.57 (2H, q, J = 11.8 Hz), 3.76 (1H, dd, J = 11.5, 2.8 Hz), 3.42 (1H, q, J = 5.8 Hz), 3.20-3.15 (1H, J = 11.8 Hz), 3.20m), 2.79 (1H, t, J = 4.6 Hz), 2.61 (1H, q, J = 2.4 Hz). ¹³C NMR (CDCl₃, 100 MHz) δ : 137.4, 137.1, 136.4, 127.9, 126.2, 113.8, 73.0, 70.7, 50.8, 44.2.

3-3. Preparation of Copolymer: Styrene (0.98 g), 4-vinylbenzyl glycidyl ether (1.8 g), 2-(2-(2-(2-(4-vinylbenzyloxy)ethoxy)ethoxy)ethoxy)eth anol (2.93)g) and azobis(4-methoxy)-2,4-dimethylvaleronitrile (V-70, 92.4 mg) were combined in chloroform (5.5 mL). The \cap mixture was stirred for 48 h at room temperature. The resulting polymer solution was slowly poured into ether.

Solvent was removed by decantation and remaining precipitated polymers were washed with ether several times. Polymers were dissolved in THF, repeated to precipitate for 2 times and dried in vacuo to afford the desired copolymer (P4, 6.86 g, 49 % yield). The molar ratio of the components was determined by ¹H NMR analysis (x: y: z = 40: 25: 35).

3-4. Typical preparation procedure of PI/CB Rh/Ag:

Copolymer (500.0 mg), ketjen black EC300J (500.0 mg) and NaBH₄ (113.5 mg) were combined in diglyme (35 mL) at room temperature, to this solution was slowly added rhodium(II) acetate dimer (44.2 mg) and silver hexafluoroantimonate (68.7 mg) with 20 mL of THF. The mixture was stirred overnight at room temperature and diethyl ether (200 mL) was slowly added to the mixture at room temperature. After the catalysts, which were black powders, were filtered and crashed, they were washed with diethyl ether several times and dried at room temperature. Next, the catalysts were heated at 150 °C for 5 h without solvent. The catalysts were transferred to the solution of NaBH₄ (113.5 mg) in diglyme (28 mL) and this solution was stirred under air at room temperature for 6 h. The catalysts were filtered and stirred in 1:1 ratio of THF/water co-solvent overnight. The catalysts were filtered, washed with dichloromethane and THF and dried to afford black powder. This powder was heated at 170 °C for 5 h without solvent to afford PI/CB Rh/Ag. PI/CB Rh/Ag (10-20 mg) was heated in sulfuric acid (1 mL) at 200 °C, nitric acid was added until no emission of brown gas was observed. After complete evaporation of nitric acid, the mixture was cooled to room temperature and water was added to dilute to 50 mL solution in a volumetric flask. The amount of Rh and Ag in the resulting solution was measured by ICP analysis to determine the loading of Rh and Ag. Preparations of the PI catalysts with different ratios of Rh/Ag were conducted following this procedure.

ESI Figure 1. STEM images of PI/CB Rh/Ag.

ESI Figure 2. EDS mapping of PI/CB Rh/Ag.

ESI Figure 3. Line analysis of PI/CB Rh/

ESI Figure 4. Size distribution of PI/CB Rh/Ag.

4. Preparation of substrates

(E)- β -nitrostyrene⁴

NO2 To benzaldehyde (20.2 mL, 0.2 mol) and nitromethane (10.7 mL, 0.2 mol) in MeOH (50 mL) under argon, NaOH (9.0 g, 0.225 mol) in water (30 mL) was slowly added for 30 min at 0 °C. After stirring for another 30 min

at 0 °C, water (100 mL) was added. The reaction mixture was carefully poured to crushed ice containing concentrated HCl (32 mL). The yellow solids which were precipitated out was filtered, dried in a vacuum desiccator, and recrystallized from hot EtOH to afford 16.5 g of desired product (62% yield) as a yellow needle crystal.

¹H NMR (CDCl₃, 600 MHz) δ : 8.01 (1H, d, *J* = 13.8 Hz), 7.59 (1H, d, *J* = 13.8 Hz), 7.55 (2H, d, *J* = 7.6 Hz), 7.53-7.48 (1H, m), 7.47-7.44 (2H, m). ¹³C NMR (CDCl₃, 125 MHz) δ : 139.0, 137.1, 132.1, 130.0, 129.4, 129.1.

(E)-1-Nitrohex-1-ene⁵

 NO_2 To valeraldehyde (8.6 mL, 80 mmol) and nitromethane (4.5 mL, 84 mmol) in MeOH (20 mL) under argon, NaOH (3.52 g, 88 mmol) in water (10 mL) was slowly added for 30 min at 0 °C. After stirring for another 30 min at 0 °C, water (75 mL) and methanol (15 mL) were added. The reaction mixture was carefully poured to 1/1 solution (100 mL) of H₂O and concentrated HCl. The mixture was stirred for 1 hour at at 0 °C. The mixture was extracted with dichloromethane and the combined organic layers are dried over with Na₂SO₄. The solution was concentrated under vacuum and column chromatography and distillation afforded the desired product as yellow oil.

¹H NMR (CDCl₃, 600 MHz) δ: 7.31-7.26 (1H, m), 6.99 (1H, d, J = 13.1 Hz), 2.28 (2H, q, J = 7.6 Hz), 1.53-1.48 (2H, m), 1.39 (2H, td, J = 14.8, 7.6 Hz), 0.94 (4H, t, J = 7.2 Hz). ¹³C NMR (CDCl₃, 150 MHz) δ: 142.7, 139.5, 29.7, 28.0, 22.1, 13.6.

(E)-3-Methyl-1-nitrobut-1-ene⁶

NO₂ To isobutyraldehyde (7.3 mL, 80 mmol) and nitromethane (4.5 mL, 84 mmol) in MeOH (20 mL) under argon, NaOH (3.52 g, 88 mmol) in water (10 mL) was slowly added for 30 min at 0 °C. After stirring for another 30 min at 0 °C, water (75 mL) and methanol (15 mL) were added. The reaction mixture was carefully poured to 1/1 solution (100 mL) of H₂O and concentrated HCl. The mixture was stirred for 1 hour at at 0 °C. The mixture was extracted with dichloromethane and the combined organic layers are dried over with Na₂SO₄. The solution was concentrated under vacuum and column chromatography and distillation afforded 3.1 g of desired product (34% yield) as yellow oil.

¹H NMR (CDCl₃, 400 MHz) δ : 7.27 (1H, q, J = 6.9 Hz), 6.96 (1H, d, J = 13.3 Hz), 2.62-2.59 (1H, m), 1.17 (6H, d, J = 6.9 Hz). ¹³C NMR (CDCl₃, 100 MHz) δ : 148.4, 138.1, 28.3, 21.0.

(*E*)-(2-Nitrovinyl)cyclohexane⁷

NO₂

To cyclohexanecarboxaldehyde (4.85 mL, 40 mmol) and nitromethane (2.14 mL, 40 mmol) in MeOH (10 mL) under argon, NaOH (1.76 g, 44 mmol) in water (5 mL) was slowly added for 30 min at 0 °C. After stirring

for another 30 min at 0 °C, water (37.5 mL) and methanol (7.5) were added. The reaction mixture was carefully poured to 1/1 solution (50 mL) of H₂O and concentrated HCl. The mixture was stirred for 1 hour at at 0 °C. The mixture was extracted with dichloromethane and the combined organic layers are dried over with Na₂SO₄. The solution was concentrated under vacuum and column chromatography afforded desired product as yellow oil.

¹H NMR (CDCl₃, 600 MHz) δ: 7.20 (1H, q, J = 6.9 Hz), 6.91 (1H, d, J = 13.1 Hz), 2.27-2.21 (1H, m), 1.82-1.75 (4H, m), 1.72-1.67 (1H, m), 1.36-1.27 (2H, m), 1.24-1.15 (3H, m). ¹³C NMR (CDCl₃, 150 MHz) δ: 147.2, 138.3, 37.6, 31.5, 25.6, 25.6.

(*m*- or *p*-)Methoxyphenylboronic acid

To Mg (1.34g, 55 mmol) suspended in THF (4 mL) in 100 mL 3-necked round bottom flask, (m- or p-)bromoanisole (9.35g, 50 mmol) in THF (40 mL) was carefully added dropwise to prepare Grinard reagent. After stirring for 3 h at room temperature, this Grinard reagent was transferred to

the dropping funnel by cannula and slowly added to trimethoxyborate (6.7 mL, 60 mmol) in THF (40 mL) at -78 °C. After stirring over night at room temperature, 1N HCl (150 mL) was added, ant the aqueous layer was extracted with extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄, the solvent was removed *in vacuo*. The residue was purified by recrystallization (hexane/EtOAc) to afford mixture of boronic acid and boroxine.

Tris(3-methoxyphenyl)Boroxine⁸

The ratio of boronic acid to boroxine was determined by ¹H NMR analysis. ¹H NMR (CDCl₃, 500 MHz) δ : 7.83 (1H, d, J = 7.4 Hz), 7.75 (1H, d, J = 2.3 Hz), 7.45 (1H, t, J = 7.9 Hz), 7.15 (1H, dd, J = 7.9, 2.8 Hz), 3.92 (3H, s). ¹³C NMR (CDCl₃, 150MHz) δ : 159.2, 129.2, 128.0, 120.4, 118.4, 55.3. These peaks derive from boroxine.

Tris(4-methoxyphenyl)Boroxine⁸

The ratio of boronic acid to boroxine was determined by ¹H NMR analysis. ¹H NMR (CDCl₃, 600 MHz) δ : 8.16 (2H, d, *J* = 8.3 Hz), 7.01 (2H, d, *J* = 8.3 Hz), 3.89 (3H, s). ¹³C NMR (CDCl₃, 150MHz) δ : 163.2, 137.5, 113.5, 55.2. These peaks derive from boroxine.

5. Asymmetric 1,4-addition reactions

5-1. Preparation of a stock solution of Rh complex with chiral diene: To chiral diene **4c** (0.00165 mmol, 0.110 mL of 3.9 mg/mL solution of toluene) in toluene (0.3 mL), chlorobis(ethylene)rhodium(I) dimer (0.00075 mmol, 0.09 mL of 3.2 mg/mL solution of toluene) was added at room temperature. The mixture was stirred at room temperature over 30 minutes. Aliquot of the obtained solution (0.5 mL) was taken for asymmetric 1,4-addition reaction in homogeneous system.

5-2. A typical procedure of asymmetric 1,4-addition of arylboronic acids to nitroolefins

in homogeneous system: A stirring bar, 3-methoxyphenylboronic acid (0.45 mmol as B) and (*E*)-β-nitrostyrene (44.7 mg, 0.3 mmol) were combined in a reaction tube, then toluene (900 μ L) and water (1000 μ L) were added to the mixture. This tube was flushed with argon and sealed up with a septum. Rhodium-chiral diene complex (0.1 mol%) in toluene (100 μ L) was added by gas-tight syringe and the mixture was stirred at 100 °C for 16 h under reflux conditions. After refluxing, the reaction mixture was diluted with EtOAc, washed with brine and dried over with Na₂SO₄. The solid was filtered and the filtrate was concentrated under vacuum. The conversion was determined by ¹H NMR analysis with reference to an internal standard 1,1,2,2-tetrachloroethane. The solution was concentrated under vacuum again and the residue was purified by preparative TLC (toluene/hexane = 2/1) to afford 76.3 mg of 1-methoxy-3-(2-nitro-1-phenylethyl)benzene (99% yield) as a light yellow oil. The enantioselectivity of the desired compound was determined as 91% ee by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 1/1, flow = 1.0 mL/min.

5-3: A typical procedure of asymmetric 1,4-addition of arylboronic acids to nitroolefins in heterogeneous system: A stirring bar, PI/CB Rh/Ag(1/1) (13.6 mg, 1 mol% as Rh), 3-methoxyphenylboronic acid (0.45 mmol as B), (*E*)-β-nitrostyrene (44.7 mg, 0.3 mmol), and chiral diene **4c** (0.1 mol% in 20 µL toluene) were combined in a reaction tube, then toluene (1980 µL) and water (400 µL) were added to the mixture. This tube was flushed with argon and sealed up with a septum. The mixture was stirred at 100 °C for 24 h under reflux conditions. After refluxing, THF was added to the mixture. The mixture was picked up with syringe and transferred to volumetric flask through membrane filter in order to remove the residual solids and diluted to 25 mL solution by THF. The filtrate (5 mL) was taken by volumetric pipette and the solvent was removed *in vacuo*. Residual crude mixture was heated in mixture of sulfuric acid (0.2 mL) and nitric acid at 200 °C until all nitric acid was removed, the mixture was cooled to room temperature and aqua regia (0.2 mL) was added. The solution was diluted to 10 mL solution by pure water and the resulting solution was measured by ICP analysis to determine the amount of Rh that leached out. Another filtrate (20 mL) was diluted with EtOAc, washed with brine and dried over with Na₂SO₄. The solid was filtered and the filtrate was concentrated under vacuum. The conversion was determined by ¹H NMR analysis with reference to an internal standard 1,1,2,2-tetrachloroethane. The solution was concentrated under vacuum again and the residue was purified by preparative TLC (toluene/hexane = 2/1) to afford 54.6 mg of 1-methoxy-3-(2-nitro-1-phenylethyl)benzene (90% yield) as a light yellow oil. The enantioselectivity of the desired product was determined as 92% ee by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 1/1, flow = 1.0 mL/min.

5-4: A typical procedure of recovery and reuse of PI/CB Rh/Ag: A reaction was conducted following the procedure as previously mentioned. After the reaction, the catalyst was separated by the filtration. The filtrate was diluted with EtOAc and washed with brine. The organic layer was dried over with Na_2SO_4 and column chromatography afforded the desired product. The filtered catalyst was washed with EtOAc, water and acetone successively on the funnel. The catalyst was washed in 9/1 solution of water/0.5N HCl aq. overnight and filtered. In this procedure, around 5 mg of the catalyst was trapped on the filtrate paper, so the amount of the catalyst gradually decreased. The corrected catalyst was dried under vacuum. Based on the weight of the dried catalyst, the scale of next reaction was calculated.

6. Reaction profiles in toluene/ $H_2O = 1/1$

Obtaine reaction profiles in toluene/ $H_2O = 1/1$ were almost same regardless of the presence of dimethylurea.

6.1 In the presence of dimethyl urea

ESI Figure 5

6.2 In the absence of dimethyl urea

ESI Figure 6

7. Reaction profiles during recovery and reuse, after hot filtration

7.1 Reaction profiles during recovery and reuse (1st to 3rd run)

Durene (~50 mg) was added in the reaction mixture as internal standard for GC analysis.

ESI Figure 7. Reaction profiles during recovery and reuse

7.2 Reaction profiles after hot filtration at 4 h and further 2 runs with 24 h reaction time (1st to 3rd run)

Durene (~50 mg) was added in the reaction mixture as internal standard for GC analysis.

ESI Figure 8. Reaction profiles after hot filtration at 4 h and further 2 runs with 24 h reaction time

7.3 Reaction profiles after hot filtration at 6 h (1st to 3rd run)

Durene (~50 mg) was added in the reaction mixture as internal standard for GC analysis.

ESI Figure 9. Reaction profiles after hot filtration at 6 h

8. XPS analysis

|--|

ESI Figure 10. Rh 3p3/2 XPS spectrum of (a) fresh catalyst (b) catalyst collected by hot filtration during induction period (at 1 h) (c) catalyst collected by hot filtration during induction period (at 5 h) (d) catalyst after recovery reuse

chart	(a)	(b)	(c)	(d)
peak top 3d5/2 (eV)	368.264	367.913	367.720	367.279
peak top 3d3/2 (eV)	374.258	373.965	373.833	373.193

ESI Figure 11. Ag 3d5/2, 3/2 XPS spectrum of (a) fresh catalyst (b) catalyst collected by hot filtration during induction period (at 1 h) (c) catalyst collected by hot filtration during induction period (at 5 h) (d) catalyst after recovery reuse

9. Products

(R)-1-Methoxy-3-(2-nitro-1-phenylethyl)benzene (3aa, ent-3cb)^{6,7,8}

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 1/1, flow = 1.0 mL/min. ¹H NMR (CDCl₃, 500 MHz) δ : 7.34-7.30 (2H, m), 7.27-7.23 (4H, m), 6.84-6.76 (3H, m), 4.98-4.96 (2H, m), 4.89-4.86 (1H, m), 3.77 (3H, s). ¹³C NMR

(CDCl₃, 125 MHz) δ: 159.9, 140.7, 139.0, 130.0, 129.0, 127.6, 119.8, 114.0, 112.5, 79.1, 55.2, 48.9.

(R)-1-Methoxy-4-(2-nitro-1-phenylethyl)benzene (3ac, ent-3bb)^{5, 6, 7, 8}

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. ¹H NMR (CDCl₃, 600 MHz) δ : 7.32 (2H, t, J = 7.6 Hz), 7.26-7.21 (3H, m), 7.15 (2H, d, J = 8.3 Hz), 6.85 (2H, dt, J = 8.9, 2.8 Hz), 4.95 (2H, dd, J = 7.6, 2.1 Hz), 4.86 (1H, t, J = 8.3 Hz), 3.77 (3H, s). ¹³C NMR (CDCl₃, 150 MHz) δ : 158.9, 139.5, 131.1, 129.0, 128.7, 127.53, 127.48, 114.4, 79.4, 55.2, 48.2.

(R)-1-Chloro-4-(2-nitro-1-phenylethyl)benzene (3ad)^{5, 6, 7}

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. ¹H NMR (CDCl₃, 600 MHz) δ : 7.35-7.25 (5H, m), 7.21-7.16 (4H, m), 4.95 (2H, d, *J* = 7.6 Hz), 4.88 (1H, t, *J* = 8.2 Hz). ¹³C NMR (CDCl₃, 150 MHz) δ : 138.7, 137.7, 133.6, 129.2, 129.1, 129.0, 127.8, 127.5, 79.0, 48.3.

(R)-1-Methyl-4-(2-nitro-1-phenylethyl)benzene (3af, ent-3bd)^{5, 6, 7, 8}

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. ¹H NMR (CDCl₃, 600 MHz) δ : 7.31 (2H, t, J = 7.6 Hz), 7.25-7.20 (3H, m), 7.14-7.09 (4H, m), 4.95 (2H, d, J = 7.6 Hz), 4.86 (1H, t, J = 8.2 Hz), 2.30 (3H, s). ¹³C NMR (CDCl₃, 150 MHz) δ : 139.5, 137.3, 136.2, 129.7, 129.0, 127.6, 127.51, 127.48, 79.4, 48.6, 21.0.

(R)-1-Methoxy-2-(2-nitro-1-phenylethyl)benzene (3ag)^{6,7}

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. ¹H NMR (CDCl₃, 600 MHz) δ : 7.33-7.22 (6H, m), 7.06 (1H, dd, J = 7.6, 1.4 Hz), 6.91-6.87 (2H, m), 5.29-5.25 (1H, m), 5.05-4.94 (2H, m), 3.83 (3H, s). ¹³C NMR (CDCl₃, 150 MHz) δ : 156.8, 138.9, 128.74, 128.72, 128.4,

127.9, 127.5, 127.3, 120.8, 111.0, 77.9, 55.5, 43.3.

(R)-1-Methyl-2-(2-nitro-1-phenylethyl)benzene (3ah)⁵

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. ¹H NMR

(CDCl₃, 600 MHz) δ : 7.30 (2H, t, *J* = 7.6 Hz), 7.26-7.17 (7H, m), 5.11 (1H, t, *J* = 7.9 Hz), 5.00-4.90 (2H, m), 2.31 (3H, s). ¹³C NMR (CDCl₃, 150 MHz) δ : 138.7, 137.1, 136.5, 131.3, 128.9, 128.0, 127.49, 127.48, 126.4, 125.8, 79.2, 45.0, 19.6.

(S)-1-Methoxy-3-(1-(4-methoxyphenyl)-2-nitroethyl)benzene (3ba)⁶

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 1/1, flow = 1.0 mL/min. ¹H NMR (CDCl₃, 600 MHz) δ : 7.26-7.22 (1H, m), 7.15 (2H, d, *J* = 8.9 Hz), 6.86-6.74 (5H, m), 4.94-4.91 (2H, m), 4.82 (1H, t, *J* = 8.2 Hz), 3.77 (6H, s), 3.76 (6H, s). ¹³C NMR (CDCl₃, 150 MHz) δ :

160.0, 158.9, 141.1, 131.1, 130.0, 128.7, 119.7, 114.4, 113.9, 112.4, 79.4, 55.24, 55.19, 48.2.

(R)-1-Methoxy-3-(2-nitro-1-(p-tolyl)ethyl)benzene (3ea)⁹

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. ¹H NMR (CDCl₃, 600 MHz) δ : 7.25-7.21 (1H, m), 7.12 (4H, s), 6.83-6.75 (3H, m), 4.94 (2H, d, J = 8.2 Hz), 4.83 (1H, t, J = 7.9 Hz), 3.76 (3H, s), 2.30 (3H, s). ¹³C NMR (CDCl₃, 150 MHz) δ : 160.0, 141.0, 137.3, 136.1, 10.0, 112.0, 112.5, 50.2, 55.2, 40 (21.0)

130.0, 129.7, 127.5, 119.8, 113.9, 112.5, 79.3, 55.2, 48.6, 21.0.

(S)-1-Bromo-4-(2-nitro-1-phenylethyl)benzene (3fb)⁵

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = $0.7 \text{ mL/min.}^{1}\text{H}$ NMR (CDCl₃, 600 MHz) δ : 7.46-7.44 (2H, m), 7.35-7.31 (2H, m), 7.28-7.25 (1H, m), 7.20 (2H, d, J = 6.9 Hz), 7.13-7.10 (2H, m), 4.95 (2H, d, J = 8.2 Hz), 4.86 (1H, t, J = 8.2 Hz). ¹³C NMR (CDCl₃, 150

MHz) & 138.6, 138.2, 132.2, 129.4, 129.2, 127.8, 127.5, 121.6, 78.9, 48.4.

(R)-1-(1-(4-Bromophenyl)-2-nitroethyl)-3-methoxybenzene (3fa)

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 1/1, flow = 1.0 mL/min. $[\alpha]^{16}_{D} = +3.5$ (c = 1.46, CHCl₃, as 90% ee). IR (neat) cm⁻¹: 2938, 2837, 1601, 1586, 1553, 1490, 1454, 1435, 1407, 1377, 1319, 1294, 1263, 1154, 1074, 1041, 1011, 828, 778, 722, 696, 664. ¹H NMR

(CDCl₃, 600 MHz) δ : 7.46-7.44 (2H, m), 7.27-7.23 (1H, m), 7.11 (2H, d, J = 8.2 Hz), 6.81-6.77 (2H, m), 6.72 (1H, t, J = 2.1 Hz), 4.93 (2H, d, J = 8.9 Hz), 4.83 (1H, t, J = 8.2 Hz), 3.77 (3H, s). ¹³C NMR (CDCl₃, 150 MHz) δ : 160.1, 140.1, 138.1, 132.2, 130.2, 129.3, 121.7, 119.7, 114.0, 112.7, 78.8, 55.2, 48.3. HRMS (DART) calculated for C₁₅H₁₅BrNO₃⁺ [*M*+H⁺] 336.02353, found 336.02376.

(S)-1-Fluoro-4-(2-nitro-1-phenylethyl)benzene (3gb, ent-3ae)^{6,7,8}

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. ¹H NMR (CDCl₃, 600 MHz) δ : 7.33 (t, 2H, J = 7.6 Hz), 7.28-7.24 (m, 1H), 7.22-7.19 (m, 4H), 7.03-6.99 (m, 2H), 4.96-4.93 (m, 2H), 4.90 (q, 1H, J = 8.5 Hz). ¹³C NMR (CDCl₃, 150 MHz) δ : 162.1 (d, J = 245.6 Hz),

139.0, 135.0, 129.3 (d, *J* = 8.6 Hz), 129.1, 127.7, 127.5, 115.9 (d, *J* = 21.5 Hz), 79.3, 48.2.

(R)-1-(1-(4-Fluorophenyl)-2-nitroethyl)-3-methoxybenzene (3ga)

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 1/1, flow = 1.0 mL/min. $[\alpha]^{16}_{D}$ = -8.2 (c = 1.04, CHCl₃, as 91% ee). IR (neat) cm⁻¹: 3007, 2940, 2920, 2839, 1604, 1586, 1554, 1510, 1491, 1455, 1436, 1377, 1321, 1264, 1228, 1161, 1104, 1042, 875, 838, 803, 781, 739, 721, 697. ¹H NMR (CDCl₃,

600 MHz) δ: 7.25 (1H, t, J = 8.2 Hz), 7.22-7.19 (2H, m), 7.01 (2H, t, J = 8.2 Hz), 6.80 (2H, d, J = 8.2 Hz), 6.74-6.72 (1H, m), 4.93 (2H, q, J = 4.1 Hz), 4.85 (1H, t, J = 7.9 Hz), 3.77 (3H, s). ¹³C NMR (CDCl₃, 150 MHz) δ: 162.1 (d, J = 245.6 Hz), 160.1, 140.5, 134.9, 130.1, 129.3 (d, J = 7.2 Hz), 119.7, 115.9 (d, J = 21.5 Hz), 114.0, 112.6, 79.2, 55.2, 48.1. HRMS (DART) calculated for C₁₅H₁₅FNO₃⁺ [*M*+H⁺] 276.10360, found 276.10470.

(S)-3-(2-Nitro-1-phenylethyl)furan (3hb)

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. $[\alpha]^{16}_{D} = +35.4$ (c = 0.72, CHCl₃, as 94% ee). IR (neat) cm⁻¹: 3608, 3583, 3146, 3064, 3032, 2919, 1766, 1553, 1498, 1454, 1432, 1379, 1199, 1160, 1076, 1026, 875, 792, 771, 732, 703, 665, 600. ¹H NMR (CDCl₃, 400 MHz) δ : 7.38 (1H, t, *J*

= 1.8 Hz), 7.37-7.23 (6H, m), 6.26-6.24 (1H, m), 4.87-4.74 (3H, m). ¹³C NMR (CDCl₃, 150 MHz) δ : 143.8, 139.5, 138.5, 129.0, 127.9, 127.6, 123.9, 109.7, 79.6, 40.9. HRMS (DART) calculated for C₁₂H₁₂NO₃⁺ [*M*+H⁺] 218.08172, found 218.08162.

(S)-3-(1-(3-Methoxyphenyl)-2-nitroethyl)furan (3ha)

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. $[\alpha]^{16}_{D}$ = +23.9 (c = 0.78, CHCl₃, as 95% ee). IR (neat) cm⁻¹: 3145, 3006, 2920, 2838, 1766, 1602, 1553, 1493, 1455, 1436, 1379, 1322, 1262, 1198, 1158, 1028, 874, 782, 733, 705. ¹H NMR (CDCl₃, 400 MHz) δ : 7.38 (1H, t, *J* = 1.6

Hz), 7.28-7.23 (2H, m), 6.85-6.77 (3H, m), 6.26 (1H, s), 4.86-4.70 (3H, m), 3.78 (3H,s). ¹³C

NMR (CDCl₃, 150 MHz) δ : 160.0, 143.7, 140.1, 139.5, 130.1, 123.8, 119.8, 113.9, 112.9, 109.7, 79.5, 55.2, 40.8. HRMS (DART) calculated for C₁₃H₁₄NO₄⁺ [*M*+H⁺] 248.09228, found 248.09289.

(*R*)-2-(2-Nitro-1-phenylethyl)thiophene (3ib)¹⁰

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. ¹H NMR (CDCl₃, 600 MHz) δ : 7.27 (t, 2H, J = 7.6 Hz), 7.23-7.20 (3H, m), 7.13 (1H, d, J = 4.8 Hz), 6.87-6.82 (2H, m), 5.05 (1H, t, J = 7.9 Hz), 4.92-4.82 (2H, m). ¹³C NMR (CDCl₃, 150 MHz) δ : 142.4, 138.8, 129.1, 128.1, 127.5, 127.0, 125.2,

125.1, 79.9, 44.7.

(R)-2-(1-(3-Methoxyphenyl)-2-nitroethyl)thiophene (3ia)

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. $[\alpha]^{16}_{D}$ = -11.6 (c = 1.13, CHCl₃, as 94% ee). IR (neat) cm⁻¹: 3426, 3109, 3072, 3006, 2960, 2939, 2919, 2837, 1602, 1587, 1553, 1491, 1455, 1435, 1377, 1319, 1292, 1264, 1201, 1161, 1083, 1044, 994, 907, 875, 852, 835, 782, 703. ¹H

NMR (CDCl₃, 600 MHz) δ : 7.31-7.28 (1H, m), 7.24 (1H, d, J = 4.8 Hz), 6.97 (1H, t, J = 4.5 Hz), 6.94 (1H, d, J = 3.4 Hz), 6.92 (1H, d, J = 8.2 Hz), 6.86 (2H, t, J = 2.7 Hz), 5.13 (1H, t, J = 7.9 Hz), 5.01-4.92 (2H, m), 3.81 (3H, s). ¹³C NMR (CDCl₃, 150 MHz) δ : 160.1, 142.3, 140.3, 130.1, 127.0, 125.2, 125.1, 119.7, 113.8, 113.1, 79.9, 55.2, 44.7. HRMS (DART) calculated for C₁₃H₁₄NO₃S⁺ [*M*+H⁺] 264.06944, found 264.06984.

(R)-(1-Cyclohexyl-2-nitroethyl)benzene (3jb)^{9,8}

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. ¹H NMR (CDCl₃, 600 MHz) δ : 7.23 (2H, t, J = 7.6 Hz), 7.18-7.15 (1H, m), 7.06 (d, 2H, J = 6.9 Hz), 4.70 (1H, dd, J = 12.4, 5.5 Hz), 4.54 (1H, dd, J = 12.4, 10.3 Hz), 3.21-3.17 (1H, m), 1.75-1.67 (2H, m), 1.60-1.49 (3H, m),

1.42-1.37 (1H, m), 1.22-1.13 (1H, m), 1.10-0.91 (3H, m), 0.83-0.75 (1H, m). ¹³C NMR (CDCl₃, 150 MHz) δ: 138.8, 128.5, 128.1, 127.3, 78.8, 50.2, 40.9, 31.0, 30.6, 26.13, 26.09.

(R)-1-(1-Cyclohexyl-2-nitroethyl)-3-methoxybenzene (3ja)

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. $[\alpha]^{16}_{D} = +33.1$ (c = 0.79, CHCl₃, as 91% ee). IR (KBr) cm⁻¹: 3435, 3036, 3006, 2977, 2930, 2848, 1600, 1551, 1487, 1466, 1446, 1384, 1350, 1329, 1284, 1255,

1216, 1200, 1165, 1131, 1086, 1038, 1008, 991, 963, 890, 865, 804, 784, 720, 700, 652, 617, 566, 541. M.p. = 84-86 °C. ¹H NMR (CDCl₃, 600 MHz) δ : 7.20 (1H, t, *J* = 8.2 Hz), 6.77 (1H, dd, *J* = 8.2, 2.1 Hz), 6.71 (1H, d, *J* = 7.6 Hz), 6.66 (1H, s), 4.76-4.72 (1H, m), 4.61-4.56 (1H, m), 3.77 (3H, s), 3.24-3.20 (1H, m), 1.76 (2H, t, *J* = 16.2 Hz), 1.67-1.52 (3H, m), 1.47 (1H, d, *J* = 13.1 Hz), 1.27-1.19 (1H, m), 1.16-0.97 (3H, m), 0.90-0.82 (1H, m). ¹³C NMR (CDCl₃, 150 MHz) δ : 159.7, 140.5, 129.5, 120.4, 114.5, 112.2, 78.8, 55.2, 50.2, 40.9, 31.0, 30.6, 26.15, 26.10. HRMS (DART) calculated for C₁₅H₂₂NO₃⁺ [*M*+H⁺] 264.15997, found 264.16061.

(R)-(3-Methyl-1-nitrobutan-2-yl)benzene (3kb)^{7,8,9}

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. ¹H NMR (CDCl₃, 600 MHz) δ : 7.31 (2H, t, *J* = 7.6 Hz), 7.27-7.25 (1H, m), 7.16-7.13 (2H, m), 4.76 (1H, q, *J* = 6.2 Hz), 4.64 (1H, dd, *J* = 12.4, 10.3 Hz), 3.26-3.21 (1H, m), 1.96 (1H, td, *J* = 14.1, 7.1 Hz), 1.01 (3H, d, *J* = 6.2 Hz), 0.81 (3H, d, *J* = 6.9

Hz). ¹³C NMR (CDCl₃, 150 MHz) δ: 138.6, 128.6, 128.1, 127.4, 79.1, 51.0, 31.3, 20.6, 20.2.

(R)-1-Methoxy-3-(3-methyl-1-nitrobutan-2-yl)benzene (3ka)

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 3/2, flow = 1.0 mL/min. [α]¹⁶_D = +29.9 (c = 0.85, CHCl₃, as 91% ee). IR (neat) cm⁻¹: 3583, 2964, 2875, 2838, 1602, 1586, 1553, 1490, 1467, 1436, 1381, 1322, 1290, 1263, 1205, 1163, 1129, 1044, 990, 876, 783, 736, 704, 664. ¹H NMR (CDCl₃, 600 MHz) δ : 7.21 (1H,

t, J = 8.2 Hz), 6.77 (1H, dd, J = 8.2, 2.7 Hz), 6.72 (1H, d, J = 7.6 Hz), 6.67 (1H, s), 4.72 (1H, q, J = 6.2 Hz), 4.60 (1H, dd, J = 12.4, 10.3 Hz), 3.77 (3H, s), 3.20-3.15 (1H, m), 1.95-1.89 (1H, m), 0.99 (3H, d, J = 6.9 Hz), 0.80 (3H, d, J = 6.9 Hz). ¹³C NMR (CDCl₃, 150 MHz) δ : 159.6, 140.3, 129.5, 120.3, 114.4, 112.3, 79.0, 55.2, 51.0, 31.3, 20.6, 20.3. HRMS (DART) calculated for C₁₂H₁₈NO₃⁺ [*M*+H⁺] 224.12867, found 224.12934.

(*R*)-(1-Nitrohexan-2-yl)benzene (3lb)⁷

The enantio excess was determined by HPLC analysis on a chiralcel OD-H with hexane/2-propanol = 99/1, flow = 1.0 mL/min. ¹H NMR (CDCl₃, 600 MHz) δ : 7.33 (2H, t, *J* = 7.6 Hz), 7.27-7.25 (1H, m), 7.20-7.17 (2H, m), 4.59-4.51 (2H, m), 3.47-3.41 (1H, m), 1.68 (2H, dd,

J = 15.1, 7.6 Hz), 1.34-1.13 (5H, m), 0.84 (3H, t, *J* = 7.2 Hz). ¹³C NMR (CDCl₃, 150 MHz) δ: 139.6, 128.9, 127.53, 127.50, 81.0, 44.4, 32.7, 29.0, 22.4, 13.8.

(R)-1-Methoxy-3-(1-nitrohexan-2-yl)benzene (3la)

The enantio excess was determined by HPLC analysis on a chiralcel

OMe NO_2

OD-H with hexane/2-propanol = 99/1, flow = 1.0 mL/min. $[\alpha]^{20}_{D}$ = +16.2 (c = 0.79, CHCl₃, as 86% ee). IR (neat) cm⁻¹: 3003, 2957, 2932, 2861, 1602, 1587, 1552, 1490, 1457, 1436, 1379, 1319, 1261, 1193, 1160, 1122, 1047, 874, 783, 730, 701. ¹H NMR (CDCl₃, 600 MHz) δ : 7.25 (1H, t, *J* = 7.6 Hz), 6.81-6.76 (2H, m), 6.72 (1H, t, *J* = 2.1 Hz), 4.56-4.49 (2H, m), 3.80 (3H, s), 3.43-3.38 (1H, m), 1.67 (2H, dd, *J* = 15.8, 7.6 Hz), 1.34-1.15 (4H, m), 0.84 (3H, t, *J* = 7.2 Hz). ¹³C NMR (CDCl₃, 150 MHz) δ : 159.9, 141.2, 129.9, 119.7, 113.7, 112.4, 80.9, 55.2, 44.3, 32.6, 29.0, 22.4, 13.8. HRMS (DART) calculated for C₁₃H₂₀NO₃⁺ [*M*+H⁺] 238.14432, found 238.14468.

Sample Name : nsn363rac OD-H, 1.0 mL/min, Hex:IsoPro= 1 : 1

1 PDA Multi 1/220nm 4nm

PDA Ch1	220nm 4nm			
Peak#	Ret. Time	Area	Height	Area%
1	27.005	4075750	80632	50.094
2	51.968	4060403	40411	49.906

3aa racemic

Sample Name : nsn121rac(for560) OD-H, 1.0 mL/min, Hex:IPA = 3/2

PDA Ch1 220nm 4nm

Peak# Ret. Time		Area	Height	Area%		
1	19.834	7144237	220552	50.018		
2	24.513	7139029	176357	49.982		

3ac racemic

Sample Name : nsn425rac(for580) OD-H, 1.0 mL/min, Hex:IPA = 3/2

PDA Ch1 220nm 4nm

Peak#	Ret. Time	Area	Height	Area%
1	17.165	1572780	58446	49.873
2	27.795	1580809	35885	50.127

3ad racemic

Sample Name : nsn389rac(for565and573) OD-H, 1.0 mL/min, Hex:IPA = 9/1

PDA Ch1 220nm 4nm

Peak#	Ret. Time	Area	Height	Area%
1	65.149	11668543	154080	49.947
2	69.268	11693200	145159	50.053

3af racemic

3af racemic(2)

D:¥Nishino¥nsn389rac.lcd

Difficienteriore	40.104		
: System Administrator : nsn389rac : nsn389rac L/min, Hex:IPA = 3 : 2 : 1 uL			
: nsn389rac.lcd : product.lcm			
: Default.lcr : 2014/07/28 13:07:28 : 2018/07/08 14:17:46			
	: System Administrator : nsn389rac : nsn389rac ch/min, Hex:IPA = 3 : 2 : 1 uL : nsn389rac.lcd : product.lcm : Default.lcr : 2014/07/28 13:07:28 : 2018/07/08 14:17:46	: System Administrator : nsn389rac : nsn389rac L/min, Hex:IPA = 3 : 2 : 1 ul. : nsn389rac.lcd : product.lcm : Default.lcr : 2014/07/28 13:07:28 : 2018/07/08 14:17:46	: System Administrator : nsn389rac : nsn389rac : nsn389rac : nsn389rac : rsn389rac.lcd : product.lcm : Default.lcr : 2014/07/28 13:07:28 : 2018/07/08 14:17:46

〈クロマトグラム〉

Sample Name : nsn448rac(for581) OD-H, 1.0 mL/min, Hex:IPA = 3/2

1 PDA Multi 1/220nm 4nm

Peak#	Ret. Time	Area	Height	Area%
1	9.383	3670882	281722	49.859
2	13.778	3691604	182372	50.141

3ag racemic

Sample Name : nsn454rac(for582) OD-H, 1.0 mL/min, Hex:IPA = 3/2

1 PDA Multi 1/220nm 4nm

PDA Ch1	220nm 4nm			
Peak#	Ret. Time	Area	Height	Area%
1	22.302	9517617	265377	49.852
2	36.590	9574089	159917	50.148

3ah racemic

Sample Name : nsn364rac(for562) OD-H, 1.0 mL/min, Hex:IPA = 1/1

1 PDA Multi 1/220nm 4nm

PDA Ch1 220nm 4nm					
	Peak#	Ret. Time	Area	Height	Area%
	1	24.416	7440327	166596	49.9
	2	53.203	7461443	74852	50.0

49.929 50.071

3ba racemic

Sample Name : nsn390rac(for566) OD-H, 1.0 mL/min, Hex:IPA = 3/2

PDA Ch1	220nm	4nm
---------	-------	-----

Peak#	Ret. Time	Area	Height	Area%
1	27.160	15333372	324629	49.907
2	56.506	15390255	149693	50.093

3ea racemic

Sample Name : nsn563 OD-H, 1.0 mL/min, Hex:IPA = 3/2

1 PDA Multi 1/220nm 4nm

PDA Ch1 220nm 4nm

Peak#	Ret. Time	Area	Height	Area%
1	22.036	39063611	1050953	93.983
2	31.606	2500839	49153	6.017

3fb HPLC

Sample Name : nsn370rac(for564) OD-H, 1.0 mL/min, Hex:IPA = 1/1

1 PDA Multi 1/220nm 4nm

Peak#	Ret. Time	Area	Height	Area%
1	30.309	544229	9578	50.083
2	76.021	542421	3660	49.917

3fa racemic

Sample Name : nsn401rac(for567and583) OD-H, 1.0 mL/min, Hex:IPA = 3/2

PDA Ch1 220nm 4nm

Peak#	Ret. Time	Area	Height	Area%
1	12.651	1777954	97729	49.742
2	22.837	1796402	53828	50.258

3gb racemic

Sample Name : nsn379(for568) OD-H, 1.0 mL/min, Hex:IPA = 3/2

1 PDA Multi 1/220nm 4nm

PDA Ch1	220nm 4nm			
Peak#	Ret. Time	Area	Height	Area%
1	24.180	2332232	57750	50.050
2	73.027	2327608	18250	49.950

3ga racemic

D:\Documents and Settings\Kobayashilab\Desktop\nsn396pc.als nsn396pc

Sample Name : nsn399rac(for569) OD-H, 1.0 mL/min, Hex:IPA = 3/2

1 PDA Multi 1/220nm 4nm

PDA Ch1	220nm 4nm			
Peak#	Ret. Time	Area	Height	Area%
1	9.984	3024378	220004	50.083
2	18.797	3014361	110705	49.917

3hb racemic

Sample Name : nsn400rac(for570) OD-H, 1.0 mL/min, Hex:IPA = 3/2

PDA Ch1 220nm 4nm

Peak#	Ret. Time	Area	Height	Area%
1	13.865	9261027	446039	49.872
2	40.092	9308628	142390	50.128

3ha racemic

Sample Name : nsn413rac(for571) OD-H, 1.0 mL/min, Hex:IPA = 3/2

PDA Ch1 220nm 4nm

Peak#	Ret. Time	Area	Height	Area%
1	13.584	6011473	317783	50.214
2	25.503	5960319	162043	49.786

3ib racemic

D:\Documents and Settings\Kobayashilab\Desktop\nsn412pc-1.als

Sample Name : nsn414rac(for572) OD-H, 1.0 mL/min, Hex:IPA = 3/2

1 PDA Multi 1/220nm 4nm

PDA Ch1	220nm 4nm			
Peak#	Ret. Time	Area	Height	Area%
1	18.934	6259445	215657	49.941
2	63.886	6274312	59180	50.059

3ia racemic

Sample Name : nsn415rac(for574) OD-H, 1.0 mL/min, Hex:IPA = 3/2

Peak#	Ret. Time	Area	Height	Area%
1	5.386	6314881	896462	49.517
2	7.136	6438185	655779	50.483

3jb racemic

Sample Name : nsn431rac(for575) OD-H, 1.0 mL/min, Hex:IPA = 3/2

1 PDA Multi 1/220nm 4nm

PDA	Ch1	220nm	4nm

Peak#	Ret. Time	Area	Height	Area%
1	7.008	10797847	1033510	49.223
2	14.370	11138806	439921	50.777

3ja racemic

Sample Name : nsn419rac(for576) OD-H, 1.0 mL/min, Hex:IPA = 3/2

PDA Ch1	220nm 4nm			
Peak#	Ret. Time	Area	Height	Area%
1	5.391	4048959	614476	49.760
2	7.000	4088006	460129	50.240

3kb racemic

D:\Documents and Settings\Kobayashilab\Desktop\nsn418pc-1.als nsn418pc

Sample Name : nsn420rac(for577) OD-H, 1.0 mL/min, Hex:IPA = 3/2

1 PDA Multi 1/220nm 4nm

PDA Ch1	220nm 4nm			
Peak#	Ret. Time	Area	Height	Area%
1	6.605	4676319	534198	49.932
2	12.566	4689130	258808	50.068

3ka racemic

Sample Name : nsn445rac(for578) OD-H, 1.0 mL/min, Hex:IPA = 99/1

1 PDA Multi 1/220nm 4nm

PDA Ch1	220nm 4nm			
Peak#	Ret. Time	Area	Height	Area%
1	15.559	1358783	71611	50.041
2	28.722	1356550	37948	49.959

3lb racemic

Sample Name : nsn446rac(for579) OD-H, 1.0 mL/min, Hex:IPA = 99/1

1 PDA Multi 1/220nm 4nm

PDA Ch1 2	20nm 4ı	nm
-----------	---------	----

Peak#	Ret. Time	Area	Height	Area%
1	33.185	14860401	323933	49.865
2	93.302	14940705	102968	50.135

3la racemic

	: Shimadzu LCsolution 分析レポート ====
	D:¥Nishino¥nsn586.lcd
分析者	: System Administrator
サンプル名	: nsn586
サンプルID	: nsn586
測定条件 :OD-H, 1.0 m	L/min, Hex:IPA = 1/1
注入量	: 1 uL
データファイル	: nsn586.lcd
メソッドファイル	: product.lcm
レポートファイル	: Default.lor
分析日時	: 2015/01/26 14:44:28
解析日時	: 2015/01/26 18:34:51

<クロマトグラム>

==== Shimadzu LCsolution 分析レポート ====

	D:¥Nishino¥nsn588.lcd	
分析者	: System Administrator	
サンプル名	: nsn588	
サンプルID	: nsn588	
測定条件:OD-H, 1	.0 mL/min, Hex:IPA = 3/2	
注入量	: 1 uL	
データファイル	: nsn588.lcd	
メソッドファイル	: product.lcm	
レポートファイル	: Default.lcr	
分析日時	: 2015/01/26 18:36:27	
解析日時	: 2015/01/26 20:00:06	
レポートファイル 分析日時 解析日時	: Default.lcr : 2015/01/26 18:36:27 : 2015/01/26 20:00:06	

〈クロマトグラム〉

ピーク: peak 保持時間:retention time 面積:area 高さ:height

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn580.lcd

分析者	: System Administrator	
サンプル名	: nsn580	
サンプルID	: nsn580	
測定条件 :OD-H,1.0 m	L/min, Hex:IPA = 3/2	
注入量	:1 uL	
データファイル	: nsn580.lcd	
メソッドファイル	: product.lcm	
レポートファイル	: Default lor	
分析日時	2015/01/19 11:21:48	
解析只時	2015/01/22 11:45:08	
0T1/1 0 0 0 0	- EVIV/ VI/ E& T1-10.00	

〈クロマトグラム〉

==== Shimadzu LCsolution 分析レポート ====

-	D:¥Nishino¥nsn583.lcd	I
分析者 サンプル名 サンプルID	: System Administrator : nsn583 : nsn583	
測定条件:OD-H, 1.0 注入量 データファイル メソッドファイル	0 mL/min, Hex:IPA = 3/2 : 1 uL : nsn583.lcd : product.lcm	
レポートファイル 分析日時 解析日時	: Default.lor : 2015/01/19 13:03:16 : 2015/01/22 11:48:30	

ピーク: peak 保持時間:retention time 面積:area 高さ:height

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn573.lcd

分析者	: System Administrator	
サンプル名	: nsn573	
サンプルID	: nsn573	
測定条件 :OD-H, 1.0 ml	L/min, Hex:IPA = 9/1	
注入量	: 1 uL	
データファイル	: nsn573.lcd	
メソッドファイル	: product.lcm	
レポートファイル	: Default.lcr	-
分析日時	: 2015/01/24 9:50:56	
解析日時	: 2015/01/24 11:39:40	

<クロマトグラム>

==== Shimadzu LCsolution 分析レポート ====

D:#INIShino#nsho61.icd	D:¥N	lishino	¥nsn58	1.lcd
------------------------	------	---------	--------	-------

分析者	: System Administrator
サンプル名	: nsn581
サンプルID	: nsn581
測定条件 :OD-H, 1.0 mi	L/min, Hex:IPA = 3/2
注入量	: 1 uL
データファイル	: nsn581.lod
メソッドファイル	: product.lcm
レポートファイル	: Default.lcr
分析日時	2015/01/19 14:30:32
解析日時	2015/01/22 11:47:27
DT 21 14 PM	

==== Shimadzu LCsolution 分析レポート ====

D-¥Nie	hino¥nsn582 led	
D. TI 10	1007031002.000	

分析者	: System Administrator	
サンプル名	: nsn582	
サンプルID	: nsn582	
測定条件 :OD-H, 1.0 ml	L/min, Hex:IPA = 3/2	
注入量	:1uL	
データファイル	: nsn582.lcd	
メソッドファイル	: product.lcm	
レポートファイル	: Default.lcr	
分析日時	: 2015/01/20 16:10:30	
解析日時	: 2015/01/22 11:49:20	

〈クロマトグラム〉

==== Shimadzu LCsolution 分析レポート ====

	D:¥Ni	shino¥nsn589.lcd	
分析者 サンプル名 サンプルID 測定条件	: System Administrator : nsn589 : nsn589 1.0 ml /min Hay:IPA = 1/1		
滅足来に 100 円 注入量 データファイル メソッドファイル	: 1 uL : nsn589.lcd : product.lcm		
レポートファイル 分析日時 解析日時	: Default.lor : 2015/01/26 11:57:23 : 2015/01/26 18:34:09		

<クロマトグラム>

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn560.lcd

	D:¥Nishino¥nsn560.lcd	
分析者	 System Administrator 	
サンプル名	: nsn560	
サンプルID	: nsn560	
測定条件 :OD-H,	1.0 mL/min, Hex:IPA = 3/2	
注入量	:1 uL	
データファイル	: nsn560.lcd	
メソッドファイル	: product.lcm	
レポートファイル	: Default.lcr	
分析日時	: 2015/01/14 18:44:11	
解析日時	: 2015/01/14 21:21:28	

<クロマトグラム>

HPLC Table 3 entry 10 ==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn562.lcd

分析者	: System Administrator
サンプル名	: nsn562
サンプルID	: nsn562
測定条件 :OD-H,1.0 m	L/min, Hex:IPA = 1/1
注入量	:1 uL
データファイル	: nsn562.lod
メソッドファイル	: product.lcm
レポートファイル	: Default.lcr
分析日時	2015/01/13 11:42:34
解析日時	: 2015/01/13 16:38:05
01-01 m - 9	

HPLC Table 3 entry 11 ==== Shimadzu LCsolution 分析レポート ====

	. D:¥Nishino¥nsn565.lcd
分析者	: System Administrator
サンプル名	: nsn565
サンプルID	: nsn565
測定条件 :OD-H, 1.0 r	nL/min, Hex:IPA = 9/1
注入量	: 1 uL
データファイル	: nsn565.lcd
メソッドファイル	: product.lcm
レポートファイル	: Default.lor
分析日時	: 2015/01/23 18:45:04
解析日時	: 2015/01/24 11:39:21

HPLC Table 3 entry 12 ==== Shimadzu LCsolution 分析レホート ====

D:¥Nishino¥nsn566.lcd					
分析者 サンプル名 サンプルID 測定条件:OD-H, 1.0 m 注入量 データファイル	: System Administrator : nsn566 : nsn566 L/min, Hex:IPA = 3/2 : 1 uL : nsn566.lcd			•	
レポートファイル 分析日時 解析日時	: Default.lor : 2015/01/15 13:29:16 : 2015/01/15 18:27:55				

==== Shimadzu LCsolution 分析レポート ====

D:#INIShino#rish000.iCQ	shino¥nsn563.lcd
-------------------------	------------------

分析者	: System Administrator	
サンプル名	: nsn563	
サンプルID	: nsn563	
測定条件:OD-H,1	.0 mL/min, Hex:IPA = 3/2	
注入量	:1 uL	
データファイル	: nsn563.lcd	
メソッドファイル	: product.lcm	
レポートファイル	: Default.lcr	
分析日時	: 2015/01/14 20:04:13	
解析日時	: 2015/01/14 21:22:58	

HPLC Table 3 entry 14 ==== Shimadzu LCsolution 分析レポート ====

	D:¥Nishino¥nsn564.lcd
分析者	: System Administrator
サンプル名	: nsn564
サンプルロ	: nsn564
測定条件:OD-H.1.0 m	L/min, Hex:IPA = 1/1
注入量	: 1 uL
データファイル	: nsn564.lcd
メソッドファイル	: product.lcm
レポートファイル	: Default.lcr
分析日時	: 2015/01/13 16:36:02
解析日時	: 2015/01/14 8:53:54

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn567.lcd	
-----------------------	--

	Difficiento	- Ca	
分析者	: System Administrator		
サンプル名	: nsn567		
サンプルID	: nsn567		
測定条件 :OD-H,	1.0 mL/min, Hex:IPA = 3/2		
注入量	: 1 uL		
データファイル	: nsn567.lcd		
メソッドファイル	: product.lem		
レポートファイル	: Default.lcr		
分析日時	: 2015/01/19 12:32:06		
解析日時	: 2015/01/22 11:46:10		
NT VI H PS			

<クロマトグラム>

==== Shimadzu LCsolution 分析レポート ====

	D:¥Nishino¥nsn568.lcd		
分析者	: System Administrator		
サンプル名	: nsn568		
サンプルID	: nsn568		
測定条件:OD-H, 1.0:	mL/min, Hex:IPA = 3/2		
注入量	:1uL		
データファイル	: nsn568.lcd		
メソッドファイル	: product.lom		

データファイル メソッドファイル	: nsn568.lcd : product.lcm	
レポートファイル 分析日時 解析日時	: Default.lor : 2015/01/15 10:58:55 : 2015/01/15 18:34:35	

<クロマトグラム>

HPLC Table 3 entry 17 ==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn569.lcd

分析者 .	: System Administrator		
サンプル名	: nsn569		
サンプルID	: nsn569	,	
測定条件 :OD-H,1	.0 mL/min, Hex:IPA = 3/2		
注入量	:1 uL		
データファイル	: nsn569.lcd		
メソッドファイル	: product.lom		
	-		
レボートファイル	: Default.lor		
分析日時	: 2015/01/15 15:09:14		
解析日時	: 2015/01/15 18:31:50	,	

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn570.lcd

分析者	: System Administrator	
サンプル名	: nsn570	
サンプルID	: nsn570	
測定条件 :OD-H, 1.0	0 mL/min, Hex:IPA = 3/2	
注入量	:1 uL	
データファイル	: nsn570.lcd	
メソッドファイル	: product.lcm	
レポートファイル	: Default.lcr	
分析日時	: 2015/01/15 17:15:50	
解析日時	: 2015/01/15 18:32:38	

<クロマトグラム>

==== Shimadzu LCsolution 分析レポート ====

	D:¥Nishino¥nsn571.lcd	
分析者	: System Administrator	
サンブル名	: nsn571	
サンプルID	: nsn571	
則定条件 :OD-H,1	.0 mL/min, Hex:IPA = 3/2	
主入量	:1uL	
データファイル	: nsn571.lcd	
メソッドファイル	: product.lcm	
レポートファイル	: Default.lcr	
分析日時	: 2015/01/16 10:55:20	
解析日時	: 2015/01/19 9:27:35	

<クロマトグラム>

HPLC Table 3 entry 20 ==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn572.lcd 分析者 : System Administrator サンプル名 : nsn572 サンプルID : nsn572 別定条件 :OD-H, 1.0 mL/min, Hex:IPA = 3/2 注入量 : 1 uL データファイル : nsn572.lcd メソッドファイル : product.lcm レポートファイル : Default.lcr 分析日時 : 2015/01/16 12:58:37 解析日時 : 2015/01/19 9:28:12

HPLC Table 3 entry 21 ==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn574.lcd

	D.#Mishino#fisho74.iCu
分析者	: System Administrator
サンプル名	: nsn574
サンプルID	: nsn574
測定条件:OD-H, 1.0 m	nL/min, Hex:IPA = 3/2
注入量	: 1 uL
データファイル	: nsn574.lod
メソッドファイル	; product.lcm
レポートファイル	- Default lor
公析日時	· 2015/01/16 14-50-20
级近日時	2015/01/10 0:20:25
7411 11 11	. 2010/01/10 0.20.20

==== Shimadzu LCsolution 分析レポート ====

11:20	Ichinol	(nenh /h	lod.
- D. TIN	ISTRICT	Instructo.	i Gu

分析者	: System Administrator	
サンプル名	: nsn575	4
サンブルID	: nsn575	
測定条件 :OD-H, 1.0 m	L/min, Hex:IPA = 3/2	
主入量	:1 uL	
デー・タファイル	: nsn575.lcd	
メソッドファイル	: product.lcm	
レホートファイル	: Default.lor	
分析日時	: 2015/01/15 18:23:50	
解析日時	: 2015/01/15 18:49:47	

<クロマトグラム>

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn576.lcd

分析者	: System Administrator
サンプル名	: nsn576
サンプルID	: nsn576
測定条件 :OD-H, 1.0 ml	_/min, Hex:IPA = 3/2
注入量	:1 uL
データファイル	t nsn576.lcd
メソッドファイル	; product.lcm
レポートファイル	: Default.lcr
分析日時	: 2015/01/16 15:54:31
解析日時	: 2015/01/19 9:30:19

<クロマトグラム>

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn577.lcd	
-----------------------	--

分析者 サンプル名	: System Administrator : nsn577
サンプルID	: nsn577
測定条件 :OD-H, 1.0 ml	L/min, Hex:IPA = 3/2
注入量	:1 uL
データファイル	: nsn577.lcd
メソッドファイル	: product.lcm
レポートファイル 分析日時 解析日時	: Default.lor : 2015/01/16 17:46:45 : 2015/01/19 9:31:02

<クロマトグラム>

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn578.lcd	D:¥Ni:	shino¥ns	m578.lcd	
-----------------------	--------	----------	----------	--

分析者 サンプル名 サンプルID 測定条件 :OD-H, 1.0 m	: System Administrator : nsn578 : nsn578 L/min, Hex:IPA = 99/1	
注入量 データファイル メソッドファイル	: 1 uL : nsn578.lcd : product.lcm	
レポートファイル 分析日時 解析日時	: Default.lcr : 2015/01/22 13:33:18 : 2015/01/22 17:32:45	

HPLC Table 3 entry 26 ==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn579.lcd

	0.711	15/11/07/15/10/0.100	
分析者	: System Administrator		
サンプル名	: nsn579		
サンブルID	: nsn579		
測定条件 :OD-H,	1.0 mL/min, Hex:IPA = 99/1		
注入量	:1 uL		
データファイル	: nsn579.lcd		
メソッドファイル	: product.lcm		
レポートファイル	: Default.lcr		
分析日時	: 2015/01/22 16:09:20		
解析日時	: 2015/01/22 18:53:40		

<クロマトグラム>

==== Shimadzu LCsolution 分析レポート ====

J:¥Nishino¥nsh620.lcd	
-----------------------	--

	D:¥Nishino¥nsn620.lcd
分析者	; System Administrator
サンプル名	: nsn620
サンプルID	: nsn620
測定条件 :OD-H,1.0 ml	_/min, Hex:IPA = 1 /1
注入量	: 1 uL
データファイル	: nsn620.lcd
メソッドファイル	: product.lcm
レポートファイル	: Default.lcr
分析日時	: 2015/02/23 15:41:04
解析日時	: 2018/07/07 17:41:45
1 I I I I I I I I I I I I I I I I I I I	

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn679.lc	d
----------------------	---

分析者	: System Administrator
サンプル名	: nsn679
サンプルID	: nsn679
測定条件 :OD-H, 1.0mL	/min, Hex:IPA =3/2
注入量	: 1 uL
データファイル	: nsn679.lcd
メソッドファイル	: product.lcm
レポートファイル	: Default Icr
分析日時	: 2015/05/19 10:21:34
解析日時	: 2015/05/20 8:13:31
WE WE HAVE NOT	

<クロマトグラム>

HPLC Table 9 entry 3 ==== Shimadzu LCsolution 分析レポート ====

1

	D:¥Nishino¥nsn681.lcd
分析者	: System Administrator
サンプル名	: nsn681
サンプルID	: nsn681
湖定衆行: :OD-H, 1.0mL	/min, HeXIPA =3/2
注入量	: 1 uL
データファイル	: nsn681.lcd
メソッドファイル	: product.lcm
レポートファイル	: Default.lor
分析日時	: 2015/05/19 14:33:50
解析日時	: 2015/05/20 8:16:57

〈クロマトグラム〉

S-118

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn680.lcd

分析者 サンプル名 サンプルID 沙宮条体 op は 10cl	: System Administrator : nsn680 : nsn680				
测定条件 :OD-H, LOML 注入暑	:1 uL				
データファイル メソッドファイル	: nsn680.lcd : product.lcm				
レポートファイル 分析日時 解析日時	: Default.lor : 2015/05/19 11:15:11 : 2015/05/20 8:24:34	•			

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn682.lcd

分析者 サンプル名	: System Administrator : nsn682	
サンブルID 測定条件 :OD-H, 1.0mL	:nsn682 ./min, Hex:IPA =3/2	
注入量 データファイル	: 1 uL : nsn682.lcd	
メソッドファイル	: product.lcm	
レポートファイル 分析日時	: Default.lcr : 2015/05/19 15:54:10	
解析日時	: 2015/05/20 8:18:18	

〈クロマトグラム〉

==== Shimadzu LCsolution 分析レポート ====

D·¥Nis	hino¥ne	an703 lo	h
D. TINIS		311700.10	

		113/11/104/13/1700.100	
分析者	: System Administrator		
サンプル名	: nsn703		-
サンプルID	: nsn703		
測定条件 :OD-H, 1.0m	L/min, Hex:IPA =3/2		
注入量	:1 uL		
データファイル	: nsn703.lod		
メソッドファイル	: product.lcm		
レポートファイル	: Default lor		
分析日時	2015/05/23 13:32:30	1	
解析日時	: 2018/07/07 17:47:47		
AT IN LEVY	. 2010/07/07 1111111		

<クロマトグラム>

HPLC Table 9 entry 7 ==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn711.lcd 分析者 : System Administra サンブル名 : nsn711 サンプルID : nsn711 測定条件 :OD-H, 1.0mL/min, Hex:IPA =3/2 : System Administrator :1 uL データファイル メソッドファイル : nsn711.lcd : product.lcm

	·	
ッポートファイル 分析日時 解析日時	: Default.lor : 2015/05/23 14:52:36 : 2015/05/27 8:34:56	

<クロマトグラム>

注入量

S-122

==== Shimadzu LCsolution 分析レポート ====

	D:¥Nishino¥nsni	647.lcd	
分析者 サンプル名	: System Administrator : nsn647		
サンプルID	: nsn647	۸.	
測定条件 :OD-H, 1.	0 mL/min, Hex:IPA = 1/1		
注入量	: 1 uL .		
データファイル	: nsn647.lcd		
メソッドファイル	: product.lom		
レポートファイル	: Default.lcr		
分析日時	: 2015/04/01 15:28:32		
解析日時	: 2015/04/01 19:35:12		

〈クロマトグラム〉

D:¥Nishino¥nsn646.lcd

	D. HIGHING HIGHIGHO	
分析者 サンプル名 サンプルID 測定条件 :OD-H. 1.0mL	: System Administrator : nsn646 : nsn646 /min, Hex:IPA =3/2	
注入量 データファイル メソッドファイル	: 1 uL : nsn646.lcd : product.lcm	
レポートファイル 分析日時 解析日時	: Default.lcr : 2015/04/07 14:24:40 : 2015/04/07 19:22:09	

<クロマトグラム>

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn653.lo	bd.
----------------------	-----

	D. FINSINI OF	riono o a o a	
分析者	: System Administrator		
サンプル名	: nsn653		
サンプルID	: nsn653		
測定条件 :OD-H,	1.0 mL/min, Hex:IPA = 1/1		
注入量	: 1 uL		
データファイル	: nsn653.lcd		
メソッドファイル	: product.lcm		
レポートファイル	: Default.lcr		
分析日時	: 2015/04/01 16:37:57		
解析日時	: 2015/04/01 19:35:26	6.	4

<クロマトグラム>

HPLC Table 9 entry 11 ==== Shimadzu LCsolution 分析レポート ====

分析者 サンプル名 サンプルID 測定条件 :OD-H, 1.0mL 注入量	D:¥Nishino¥nsn664.lcd : System Administrator : nsn664 ./min, Hex:IPA =3/2 : 1 uL : nsn664	
メソッドファイル レポートファイル	: Default.lor	
分析日時 解析日時	: 2015/05/18 15:40:00 : 2015/05/20 8:11:37	

<クロマトグラム>

HPLC Table 9 entry 12 ==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn649.lcd

分析者 サンプル名	: System Administrator : nsn649	
サンフルID 測定条件:OD-H, 0.7mL	: nsn649 //min, Hex:IPA =3/2	
注入量 データファイル メソッドファイル	: nsn649.lcd : product.lcm	
レポートファイル 分析日時 解析日時	: Default.lor : 2015/04/07 12:32:48 : 2015/04/07 19:22:00	

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn655.	lcd
--------------------	-----

分析者	: System Administrator		
サンプル名	: nsn655		
サンプルID	: nsn655		
測定条件 :OD-H,	1.0 mL/min, Hex:IPA = 1/1		
注入量	:1 uL		
データファイル	: nsn655.lcd		
メソッドファイル	: product.lcm		
レポートファイル	: Default.lor		
分析日時	: 2015/04/01 18:18:46		
解析日時	: 2015/04/01 19:35:37		

<クロマトグラム>

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn648.lcd

分析者	: System Administrator	
サンプル名	: nsn648	
サンプルID	: nsn648	
測定条件 :OD-H, 1.0	mL/min, Hex:IPA =3/2	
注入量	:1 uL	
データファイル	: nsn648.lcd	
メソッドファイル	: product.lcm	
レポートファイル	: Default.lcr	
分析日時	: 2015/04/07 15:29:21	
解析日時	: 2015/04/07 19:22:26	

<クロマトグラム>

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn656.lcd

分析者	: System Administrator		
サンプル名	: nsn656	,	
サンブルID	: nsn656		
测定条件 :OD-H, 1.0ml	_/min, Hex:IPA =3/2		
注入量	: 1 uL		
データファイル	: nsn656.lcd		
メソッドファイル	: product.icm		
レード・ファイル	Default las		
レホートノアイル	; Default.icr		
力价口吁 匆忙口哇	2015/04/07 10:23:20		
月半付 ロロサ	2010/04/07 18:22:38		

<クロマトグラム>

===== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn702.lcd

分析者	: System Administrator
サンプル名	: nsn702
サンプルID	: nsn702
测定条件 :ODH, 1.0mL	/min, Hex:IPA =3/2
注入量	:1 uL
データファイル	: nsn702.lcd
メソッドファイル	: product.lom
レポートファイル	: Default.lcr
分析日時	: 2015/05/22 17:29:52
解析日時	: 2015/05/27 8:31:12

〈クロマトグラム〉

==== Shimadzu LCsolution 分析レポート ====

D:¥N	ishino¥nsn	698.lcd
D. T.	31 11 10 11 131	000.100

分析者	: System Administrator
サンプル名	: nsn698
サンプルID	: nsn698
测定条件 :OD-H, 1.0mL	/min, Hex:IPA =3/2
注入量	:1 uL
データファイル	: nsn698.lcd
メソッドファイル	: product.lcm
レポートファイル	: Default.lcr
分析日時	: 2015/05/20 17:27:50
解析日時	: 2015/05/21 15:15:34

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥ns	n726.lcd
---------------	----------

分析者	: System Administrator	
サンプル名	: nsn726	
サンプルID	: nsn726	
則定条件:OD-H, 1.0mL	/min, Hex:IPA =3/2	
主入量	:1uL	
データファイル	: nsn726.lcd	
メソッドファイル	: product.lom	
ポートファイル	· Default lor	
	2015/06/13 16:28:39	
物化口味	· 2015/06/16 19:21:14	
呼の ロロ	. 2010/00/10 10:01:14	

•

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥nsn751.lcd

分析者	: System Administrator	
サンプル名	: nsn751	
サンプルID	: nsn751	
測定条件 :OD-H.	1.0mL/min, Hex:IPA ≕3/2	
注入量	:1 uL	
データファイル	: nsn751.lcd	
メソッドファイル	: product.lcm	
レポートファイル	: Default lor	
公析日時	2015/07/09 16:27:45	
短折日時	2015/07/09 17:43:23	
77F17F1 14 14 19	. 2010/01/08 17.40.20	

<クロマトグラム>

==== Shimadzu LCsolution 分析レポート ====

D:¥Nishino¥r	isn731.lcd

D;=INIShin0=hsh/31.00	
分析者	: System Administrator
サンプル名	: nsn731
サンプルID	: nsn731
測定条件 :OD-H, 1.0mL/min, Hex:IPA =99/1	
注入量	:1 uL
データファイル	: nsn731.lod
メソッドファイル	: product.lcm
レポートファイル	· Default lor
レホートファイル	2015/06/15 11:07:00
力机口时	2015/06/16 18:3:07
所们口时	. 2010/00/10 10.02.27

9. References

¹ Brown, H. C.; Mead, E. J.; Rao, B. C. S. J. Am. Chem. Soc. 1955, 77, 6209.

- ⁴ Bowman, R. K.; Johnson, J. S., *The Journal of Organic Chemistry* **2004**, *69*, 8537.
- ⁵ Lin, L.; Yin, W.; Fu, X.; Zhang, J.; Ma, X.; Wang, R., Organic & Biomolecular Chemistry 2012, 10, 83.
- ⁶ Kiyokawa, K.; Nagata, T.; Hayakawa, J.; Minakata, S., Chemistry A European Journal 2015, 21, 1280.
- ⁷ Chandrasekhar, S.; Shrinidhi, A., *Synthetic Communications* **2014**, *44*, 3008.
- ⁸ Antoft-Finch, A.; Blackburn, T.; Snieckus, V., J Am Chem Soc 2009, 131, 17750.
- ⁹ Gao, J.-R.; Wu, H.; Xiang, B.; Yu, W.-B.; Han, L.; Jia, Y.-X., J Am Chem Soc 2013, 135, 2983.
- ¹⁰ Xing, J.; Chen, G.; Cao, P.; Liao, J., European Journal of Organic Chemistry 2012, 1230.

² (a) Okamoto, K.; Hayashi, T.; Rawal, V. H. Chem. Commun. 2009, 4815; (b) Okamoto, K.; Hayashi, T.; Rawal, V. H. Org. Lett. 2008, 10, 4387.

³ Yasukawa, T.; Miyamura, H.; Kobayashi, S. J. Am. Chem. Soc. **2012**, 134, 16963.