Programmed Serial Stereochemical Relay and Application in the Synthesis of Morphinans

Kun Ho (Kenny) Park, Rui Chen, and David Y.-K. Chen*

Department of Chemistry, Seoul National University Gwanak-1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea Email: davidchen@snu.ac.kr

Supporting Information Available

- I) Experimental Procedures and Physical Data for Compounds
- II) X-ray Crystallographic Analysis of Compound 12a
- III) Abbreviations
- IV) References
- V) ¹H and ¹³C NMR Spectra for Compounds

I) Experimental Procedures and Physical Data for Compounds

General Procedures. Reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Dry tetrahydrofuran (THF), diethyl ether (Et₂O), methylene chloride (CH₂Cl₂), toluene, *N*,*N*-dimethylacetamide (DMA), and 1,2-dichloroethane (DCE) were dried and distilled according to the standard protocols. Methanol (MeOH), benzene, *N*,*N*-dimethylformamide (DMF), and acetonitrile (CH₃CN) were purchased in anhydrous form and used without further purification. Acetone, ethyl acetate (EtOAc), Et₂O, CH₂Cl₂, hexanes and water were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials, unless otherwise stated. Reactions were monitored by thin-layers

chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F-254) using UV light as visualizing agent and an ethanolic solution of ammonium molybdate, anisaldehyde or potassium permanganate, and heat as developing agents. E. Merck silica gel (60, particle size 0.040–0.063 mm) was used for flash column chromatography. NMR spectra were recorded on an Agilent 400-MR DD2 Magnetic Resonance System or Varian/Oxford As-500 instrument and calibrated using residue undeuterated solvent as internal reference. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. IR spectra were recorded on a Thermo Scientific Nicolet 6700 spectrometer. High-resolution mass spectra (HRMS) were recorded on a Bruker (compact) Ultra High Resolution ESI Q-TOF mass spectrometer.

Iodide 2

To a stirred solution of veratrole (5.00 g, 36.2 mmol) in THF (60 mL) at -10 °C was added *n*BuLi (1.6 M in hexanes, 25.0 mL, 40.0 mmol). The resulting mixture was warmed to room temperature and stirred for 2 h before it was cooled to -45 °C followed by the addition of a cold (-45 °C) solution of I₂ (10.1 g, 39.8 mmol) in THF (100 mL). The resulting mixture was warmed to room temperature and stirred for 2 h before it was quenched with Na₂S₂O₃ (100 mL, sat. aq.). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 100 mL), the combined organic layer was washed with water (100 mL), brine (100 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 10:1) afforded iodide **2** (7.20 g, 75%) as an amorphous yellow solid. **2**: R_f = 0.75 (silica gel, hexanes:EtOAc 9:1); IR (film) v_{max} 3269, 2919, 2830, 1415, 625 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, *J* = 7.9 Hz, 1H), 6.77 (d, *J* = 8.2 Hz, 1H), 6.71–6.65 (m, 1H), 3.75 (s, 3H), 3.72 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.3, 148.2,

129.8, 125.5, 112.3, 92.1, 59.8, 55.4 ppm; HRMS calcd. For $C_8H_9IO_2Na^+$ [M + Na]⁺ 286.9539, found 286.9537.

Tricycle 3

To a stirred solution of iodide **2** (20.6 g, 78.0 mmol) in DMF (190 mL) at room temperature was added K₂CO₃ (43.0 g, 311 mmol), Pd(OAc)₂ (0.72 g, 3.21 mmol) and tetra-*n*-butylammonium bromide (25.2 g, 78.2 mmol). The resulting mixture was warmed to 120 °C and stirred for 16 h before it was cooled to room temperature and diluted with water (100 mL). The resulting mixture was extracted with Et₂O (3 × 100 mL), the combined organic layer was washed with water (100 mL), brine (100 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 10:1) afforded tricycle **3** (9.10 g, 86%) as an amorphous white solid. **3**: R_f = 0.46 (silica gel, hexanes:EtOAc 7:3); IR (film) v_{max} 3154, 2920, 1707, 1342, 1142, 725 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 8.07 (d, *J* = 8.2 Hz, 1H), 6.99 (t, *J* = 8.1 Hz, 1H), 6.87 (d, *J* = 8.3 Hz, 2H), 6.81 (d, *J* = 8.3 Hz, 1H), 4.98 (s, 2H), 3.88 (s, 3H), 3.85 (s, 3H), 3.71 ppm (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 153.1, 148.6, 146.3, 144.5, 126.0, 123.3, 122.5, 121.3, 120.0, 120.0, 111.4, 111.1, 68.7, 59.7, 55.8, 55.8 ppm; HRMS calcd. For C₁₆H₁₆O₄Na⁺ [M + Na]⁺ 295.0941, found 295.0940.

Bromide 2a

To a stirred solution of isovanillin (30.0 g, 197 mmol), NaOAc (32.3 g, 394 mmol) and iron powder (0.90 g, 16.1 mmol) in AcOH (glacial, 180 mL) at room temperature was added a solution of bromine/AcOH (1:4.2, 55.4 mL, 208 mmol). The resulting mixture was stirred for 16 h before it was quenched with ice cold water (500 mL). The resulting precipitate was filtered, washed with ice cold water (4 × 70 mL) and air dried. Recrystallization of the crude material from boiling ethanol afforded bromide **2a** (34.5 g, 76%) as a gray powder. **2a**: R_f = 0.40 (silica gel, CH₂Cl₂); IR (film) v_{max} 3667, 2985, 1738, 1265, 1057, 736 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 10.26 (s, 1H), 7.58 (d, *J* = 8.5 Hz, 1H), 6.92 (d, *J* = 8.6 Hz, 1H), 4.00 ppm (s, 3H); ¹³C NMR (101 MHz, DMSO): δ 191.1, 153.5, 144.2, 126.8, 122.3, 113.5, 110.5, 56.6 ppm; HRMS calcd. For C₈H₇BrO₃ [M]⁺ 228.9579, found 228.9467.

Dimethyl Ether 2b

To a stirred solution of phenol **2a** (81.0 g, 351 mmol) in acetone (820 mL) at room temperature was added K₂CO₃ (81.0 g, 586 mmol) and dimethylsulfate (56.0 mL, 592 mmol). The resulting mixture was warmed to reflux and stirred for 16 h before it was cooled to room temperature, and evaporated to approximately half of its original volume. The resulting mixture was diluted with water (200 mL) and extracted with Et₂O (3 × 100 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure to afford dimethyl ether **2b** (74.7 g, 87%) as a white solid. The crude material was sufficiently pure based on thin-layer-chromatography and ¹H NMR analysis for the subsequent reaction. **2b**: $R_{\rm f} = 0.48$ (silica gel, CH₂Cl₂); IR (film) $v_{\rm max}$ 3674, 2985, 2901, 1679, 1280, 779 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 10.22 (s, 1H), 7.71 (d, *J* = 8.7 Hz, 1H), 6.94 (d, *J* = 8.7 Hz, 1H), 3.94 (s, 3H), 3.86 ppm (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 190.8, 158.6, 146.3, 127.3, 126.4, 123.0, 110.9, 60.6, 56.2 ppm; HRMS calcd. For C₉H₉BrO₃Na⁺ [M + Na]⁺ 266.9627, found 266.9625.

Alcohol 2c

To a stirred solution of aldehyde **2b** (33.1 g, 135 mmol) in THF (250 mL) at 0 °C was added NaBH₄ (13.0 g, 344 mmol) in portions. The resulting mixture was warmed to 40 °C and stirred for 2 h before it was cooled to room temperature and quenched with water (200 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 100 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure to afford alcohol **2c** (28.5 g, 85%) as a white solid. The crude material was sufficiently pure based on thin-layer-chromatography and ¹H NMR analysis for the subsequent reaction. **2c**: $R_{\rm f} = 0.10$ (silica gel, CH₂Cl₂); IR (film) $v_{\rm max}$ 3232, 1667, 1284, 1016, 818 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 7.14 (d, J = 8.4 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 4.66 (d, J = 5.7 Hz, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 2.34 ppm (t, J = 6.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 152.9, 146.3, 132.7, 124.1, 118.3, 111.1, 64.9, 60.4, 56.0 ppm; HRMS calcd. For C₉H₁₁BrO₃Na⁺ [M + Na]⁺ 268.9784, found 268.9782.

Dibromide 2d

To a stirred solution of alcohol **2c** (27.7 g, 112 mmol) in CHCl₃ (52.2 mL) at 0 °C was added PBr₃ (8.52 mL, 89.8 mmol). The resulting mixture was stirred for 3 h before it was quenched with water (100 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3×100 mL), the combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure to afford dibromide **2d** (33.0 g, 95%) as a white solid. The crude material was sufficiently pure based on thin-layer-chromatography and ¹H NMR analysis for

the subsequent reaction. **2d**: $R_f = 0.84$ (silica gel, CH₂Cl₂); IR (film) v_{max} 2985, 2901, 1486, 1302, 810, 660 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 7.19 (d, J = 8.5 Hz, 1H), 6.84 (d, J = 8.5 Hz, 1H), 4.62 (s, 2H), 3.87 (s, 3H), 3.85 ppm (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 153.7, 146.9, 129.8, 126.3, 120.4, 111.2, 60.4, 56.0, 34.3 ppm; HRMS calcd. For C₉H₁₀Br₂O₂Na⁺ [M + Na]⁺ 330.8940, found 330.8937.

Biaryl Ether 2e

To a stirred solution of dibromide **2d** (31.0 g, 100 mmol) in acetone (232 mL) at room temperature was added K₂CO₃ (27.7 g, 200 mmol) and guaiacol (9.57 mL, 86.3 mmol). The resulting mixture was warmed to reflux and stirred for 16 h before it was cooled to room temperature and diluted with water (100 mL). The resulting mixture was extracted with Et₂O (3 × 100 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:Et₂O 5:1) afforded biaryl ether **2e** (30.6 g, 87%) as an amorphous white solid. **2e**: $R_f = 0.13$ (silica gel, hexanes:Et₂O 4:1); IR (film) v_{max} 3001, 2941, 1271, 1146, 806, 752 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 7.28 (d, J = 8.7 Hz, 1H), 6.97–6.84 (m, 5H), 5.16 (s, 2H), 3.91 (s, 3H), 3.88 (s, 3H), 3.84 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.9, 149.5, 147.8, 146.2, 129.0, 123.9, 121.5, 120.7, 117.8, 114.1, 111.9, 111.1, 70.2, 60.3, 55.9, 55.8 ppm; HRMS calcd. For C₁₆H₁₇BrO₄Na⁺ [M + Na]⁺ 375.0202, found 375.0204.

Tricycle 3:

To a stirred solution of bromide **2e** (18.9 g, 53.5 mmol) in DMA (freshly distilled, 190 mL) at room temperature was added K₂CO₃ (14.9 g, 108 mmol), Pd(OAc)₂ (0.37 g, 1.65 mmol) and Cy₃P-HBF₄ (1.18 g, 3.20 mmol). The resulting mixture was warmed to 120 °C and stirred for 16 h before it was cooled to room temperature and diluted with water (100 mL). The resulting mixture was extracted with Et₂O (3×100 mL), the combined organic layer was washed with water (100 mL), brine (100 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 10:1) afforded tricycle **3** (12.6 g, 86%) as a white solid. All physical data of tricycle **3** are identical to those obtained from the Pd(OAc)₂ mediated annulation of iodide **2**.

Hydroxy Aldehyde 4 and Hemiacetal 4'

To a stirred solution of tricycle **3** (19.8 g, 72.7 mmol) in CH₂Cl₂/pH 9.2 buffer (10:1, 1.2 L) at 0 °C was added DDQ (16.5 g, 72.7 mmol) portionwise. The resulting mixture was stirred for 1.5 h before the layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3×150 mL). The combined organic layer was washed successively with water (until the aqueous layer became colorless), brine (100 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Recrystallization of the crude material from CH₂Cl₂/hexane afforded hydroxy aldehyde **4** and hemiacetal **4'** (15.9 g, 76%) as a pale amorphous yellow solid. ¹H NMR

analysis indicated a mixture of hydroxy aldehyde **4** and hemiacetal **4'** (**4**:**4'**~1:3 by ¹H NMR analysis). **4**+**4'**: $R_f = 0.33$ (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 3408, 2987, 1739, 1651, 1266, 737 cm⁻¹; ¹H NMR (499 MHz, CDCl₃, **4**:**4'**~1:3): δ 9.57 (s, 0.25H), 8.21 (d, J =8.2 Hz, 0.75H), 7.84 (d, J = 8.7 Hz, 0.25H), 7.13 (d, J = 8.3 Hz, 0.75H), 7.10–7.03 (m, 1.25H), 6.98–6.92 (m, 1.75H), 6.82 (dd, J = 5.1, 4.1 Hz, 0.25H), 6.38 (d, J = 6.2 Hz, 0.75H), 5.80 (s, 0.25H), 3.97 (s, 0.75H), 3.94 (s, 0.75H), 3.92 (s, 2.25H), 3.91 (s, 2.25H), 3.78 (s, 2.25H), 3.62 (s, 0.75H), 3.47 ppm (d, J = 6.2 Hz, 0.75H); ¹³C NMR (101 MHz, DMSO): δ 153.4, 149.6, 145.6, 141.0, 127.1, 121.7, 121.3, 121.1, 119.2, 112.3, 112.2, 92.0, 59.6, 56.1, 56.0, 55.8 ppm; HRMS calcd. For C₁₆H₁₆O₅Na⁺ [M + Na]⁺ 311.0890, found 311.0889.

Alcohols 5a and 5a'

To a stirred solution of hemiacetal-hydroxy aldehyde mixture (4+4', 213 mg, 0.74 mmol) in THF (15.0 mL) at -78 °C was added methylmagnesium bromide (3.0 M in Et₂O, 0.81 mL, 2.43 mmol) dropwise. The resulting mixture was warmed to room temperature and stirred for 16 h before it was quenched with water (20 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 30 mL), the combined organic layer was washed with water (20 mL), brine (20 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded alcohols **5a** and **5a'** (~1:1 based on ¹H NMR analysis, 207 mg, 92% combined yield) as an amorphous solid. Small amount of analytically pure isomers **5a** and **5a'** were obtained through column chromatography.

5a (relative stereochemistry arbitrarily assigned): $R_f = 0.18$ (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 3456, 3154, 2918, 1705, 1197, 726 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): δ 7.48 (d, J = 9.3 Hz, 1H), 6.85 (d, J = 7.0 Hz, 1H), 6.76 (t, J = 9.2 Hz, 1H), 6.70 (d, J = 8.1 Hz, 1H), 6.43 (d, J = 8.1 Hz, 1H), 5.63 (br, 1H), 4.87 (q, J = 5.8 Hz, 1H), 3.63 (s, 3H), 3.36 (s, 3H), 3.14 (s, 3H), 1.46 ppm (d, J = 6.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.1, 146.5, 146.3, 142.5, 137.2, 130.5, 123.8, 122.6, 120.8, 119.7, 112.3, 109.8, 66.5, 60.6, 55.9, 55.8, 22.9 ppm; HRMS calcd. For C₁₇H₂₀O₅Na⁺ [M + Na]⁺ 327.1203, found 327.1204.

5a' (relative stereochemistry arbitrarily assigned): $R_{\rm f} = 0.25$ (silica gel, hexanes:EtOAc 1:1); IR (film) $v_{\rm max}$ 3457, 3154, 2920, 1706, 1200, 726 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): δ 7.44 (d, J = 8.3 Hz, 1H), 6.85 (d, J = 8.3 Hz, 1H), 6.76 (t, J = 8.3 Hz, 1H), 6.71 (d, J = 8.3 Hz, 1H), 6.45 (d, J = 8.3 Hz, 1H), 5.53 (s, 1H), 4.83 (q, J = 6.5 Hz, 1H), 3.70 (s, 3H), 3.37 (s, 3H), 3.14 (s, 3H), 1.35 ppm (d, J = 6.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.8, 146.6, 146.4, 143.2, 137.4, 130.3, 123.0, 122.5, 120.8, 119.5, 112.3, 109.9, 66.8, 60.5, 55.8, 55.8, 24.0 ppm; HRMS calcd. For C₁₇H₂₀O₅Na⁺ [M + Na]⁺ 327.1203, found 327.1203.

Alcohols 5b and 5b'

To a stirred solution of hemiacetal-hydroxy aldehyde mixture (4+4', 215 mg, 0.75 mmol) in THF (15.0 mL) at -78 °C was added phenylmagnesium bromide (1.0 M in THF, 3.50 mL, 3.50 mmol) dropwise. The resulting mixture was warmed to room temperature and stirred for 16 h before it was quenched with water (20 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 30 mL), the combined organic layer was washed with water (20 mL), brine (20 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) afforded alcohols **5b** and **5b'** (~6:1 based on ¹H NMR analysis, 233 mg, 85% combined yield) as an amorphous solid. Small amount of analytically pure isomers **5b** and **5b'** were obtained through column chromatography.

5b (relative stereochemistry arbitrarily assigned): $R_{\rm f} = 0.32$ (silica gel, hexanes:EtOAc 1:1); IR (film) $v_{\rm max}$ 3666, 3154, 2933, 1705, 1341, 1140, 727 cm⁻¹; ¹H NMR (499 MHz, C₆D₆): δ 7.55 (d, J = 7.8 Hz, 2H), 7.19–7.13 (m, 3H), 7.08 (t, J = 7.3 Hz, 1H), 6.92 (d, J = 7.7 Hz, 1H), 6.74 (t, J = 7.9 Hz, 1H), 6.55 (d, J = 8.7 Hz, 1H), 6.40 (d, J = 8.1 Hz, 1H), 5.93 (s, 1H), 5.60 (s, 1H), 3.63 (s, 3H), 3.27 (s, 3H), 3.12 (s, 3H), 3.04 ppm (s, 1H); ¹³C NMR (126 MHz, C₆D₆): δ 152.9, 147.3, 147.0, 144.7, 143.6, 137.5, 132.2, 128.2, 126.9, 126.9, 124.6, 124.2, 123.8, 120.0, 112.9, 110.1, 72.9, 60.4, 55.4, 55.3 ppm; HRMS calcd. For C₂₂H₂₂O₅Na⁺ [M + Na]⁺ 389.1359, found 389.1357.

5b' (relative stereochemistry arbitrarily assigned): $R_f = 0.45$ (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 3622, 3234, 2857, 1680, 1391, 1162, 811 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): δ 7.42 (d, J = 7.6 Hz, 2H), 7.13–7.08 (m, 3H), 6.99 (t, J = 7.5 Hz, 1H), 6.78 (d, J = 7.7 Hz, 1H), 6.67 (t, J = 7.9 Hz, 1H), 6.50 (d, J = 8.6 Hz, 1H), 6.37 (d, J = 8.1 Hz, 1H), 5.76 (s, 1H), 5.40 (s, 1H), 3.62 (s, 3H), 3.23 (s, 3H), 3.07 ppm (s, 3H); ¹³C NMR (101 MHz, C₆D₆): δ 152.7, 147.7, 147.0, 145.1, 144.2, 137.2, 132.5, 127.0, 126.8, 126.8, 124.1, 123.9, 123.8, 119.5, 112.6, 110.1, 73.0, 60.4, 55.4, 55.3 ppm; HRMS calcd. For C₂₂H₂₂O₅Na⁺ [M + Na]⁺ 389.1359, found 389.1359.

Alcohols 5c and 5c'

To a stirred solution of hemiacetal-hydroxy aldehyde mixture (4+4', 210 mg, 0.73 mmol) in THF (15.0 mL) at -78 °C was added *tert*-butyllithium (1.7 M in pentane, 1.50 mL, 2.55 mmol). The resulting mixture was warmed to room temperature and stirred for 16 h before it was quenched with water (20 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 30 mL), the combined organic layer was washed with water (30 mL), brine (30 mL), dried (Na₂SO₄), and concentrated under reduced pressure. Flash column

chromatography (hexanes:EtOAc 10:1) afforded alcohols **5c** and **5c'** (~4:1 based on ¹H NMR analysis, 231 mg, 92% combined yield) as an amorphous solid. Small amount of analytically pure isomers **5c** and **5c'** were obtained through column chromatography.

5c (relative stereochemistry arbitrarily assigned): $R_{\rm f} = 0.38$ (silica gel, hexanes:EtOAc 1:1); IR (film) $v_{\rm max}$ 3464, 2915, 1705, 1198, 1062, 721 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 7.37 (d, J = 8.7 Hz, 1H), 6.99 (d, J = 8.7 Hz, 1H), 6.92–6.85 (m, 2H), 6.77 (dd, J = 7.2, 2.0 Hz, 1H), 5.7 (br s, 1H), 4.25 (s, 1H), 3.93 (s, 3H), 3.90 (s, 3H), 3.48 (s, 3H), 0.78 ppm (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 152.0, 146.1, 145.9, 142.2, 134.9, 131.6, 125.3, 123.4, 122.8, 119.2, 111.5, 109.5, 77.6, 60.4, 55.9, 55.7, 36.2, 26.4 ppm; HRMS calcd. For C₂₀H₂₆O₅Na⁺ [M + Na]⁺ 369.1672, found 369.1671.

5c' (relative stereochemistry arbitrarily assigned): $R_{\rm f} = 0.55$ (silica gel, hexanes:EtOAc 1:1); IR (film) $v_{\rm max}$ 3456, 2920, 1704, 1204, 1050, 731 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 7.36 (d, *J* = 8.7 Hz, 1H), 6.99 (d, *J* = 8.7 Hz, 1H), 6.89 (d, *J* = 5.1 Hz, 2H), 6.73 (t, *J* = 4.4 Hz, 1H), 5.67 (s, 1H), 4.49 (s, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 3.57 (s, 3H), 0.75 ppm (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 151.5, 147.3, 145.9, 143.9, 134.0, 132.2, 123.8, 123.6, 123.1, 119.3, 111.5, 110.0, 77.1, 60.6, 55.9, 55.7, 36.1, 25.9 ppm; HRMS calcd. For C₂₀H₂₆O₅Na⁺ [M + Na]⁺ 369.1672, found 369.1674.

Alcohols 5d and 5d'

To a stirred solution of hemiacetal-hydroxy aldehyde mixture (4+4', 1.80 g, 6.24 mmol) in THF (77.0 mL) at -78 °C was added allylmagnesium bromide (1.0 M in THF, 16.0 mL, 16.0 mmol) dropwise. The resulting mixture was warmed to room temperature and stirred for 16 h before it was quenched with water (100 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 150 mL), the combined organic layer was washed with water

(100 mL), brine (100 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) afforded alcohols **5d** and **5d'** (~3:1 based on ¹H NMR analysis, 2.01 g, 97% combined yield) as an amorphous solid. Small amount of analytically pure isomers **5d** and **5d'** were obtained through column chromatography.

5d (relative stereochemistry arbitrarily assigned): $R_{\rm f} = 0.24$ (silica gel, hexanes:EtOAc 1:1); IR (film) $v_{\rm max}$ 3454, 3154, 2925, 1574, 1196, 722 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 7.33 (d, J = 10.0 Hz, 1H), 7.01 (d, J = 9.7 Hz, 1H), 6.94–6.88 (m, 2H), 6.72 (dd, J = 7.1, 2.1 Hz, 1H), 5.82 (s, 1H), 5.67–5.59 (m, 1H), 5.00–4.95 (m, 2H), 4.43 (t, J = 7.1 Hz, 1H), 3.93 (s, 3H), 3.90 (s, 3H), 3.56 (s, 3H), 2.52 (s, 1H), 2.50–2.44 (m, 1H), 2.42–2.36 ppm (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 151.6, 146.6, 146.3, 143.1, 135.4, 135.2, 130.4, 122.8, 122.4, 121.3, 119.3, 117.3, 111.9, 109.8, 69.8, 60.4, 55.7, 55.6, 42.4 ppm; HRMS calcd. For C₁₉H₂₂O₅Na⁺ [M + Na]⁺ 353.1359, found 353.1357.

5d' (relative stereochemistry arbitrarily assigned): $R_{\rm f} = 0.37$ (silica gel, hexanes:EtOAc 1:1); IR (film) $v_{\rm max}$ 3539, 3154, 2931, 1600, 1208, 721 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, J = 8.6 Hz, 1H), 6.97 (d, J = 8.7 Hz, 1H), 6.93–6.84 (m, 2H), 6.70 (dd, J = 7.3, 1.8 Hz, 1H), 6.16 (s, 1H), 5.70–5.63 (m, 1H), 4.98–4.91 (m, 2H), 4.40 (t, J = 7.8 Hz, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.55 (s, 3H), 2.97 (br s, 1H), 2.50–2.32 ppm (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 151.8, 146.4, 146.1, 142.2, 135.5, 134.9, 130.7, 123.7, 122.4, 121.3, 119.5, 116.7, 112.0, 109.7, 69.8, 60.3, 55.6, 55.6, 41.5 ppm; HRMS calcd. For C₁₉H₂₂O₅Na⁺ [M + Na]⁺ 353.1359, found 353.1360.

Atropisomer Thermal Stability Studies:

NMR samples of atropisomerically pure (obtained through silica-gel flash column chromatography and purity confirmed by ¹H NMR analysis) compounds **5a**, **5a'**, **5b**, **5b'**, **5c**, **5c'**, **5d** and **5d'** in C₆D₆ were subjected to heating (oil bath) and held at temperatures 40 °C, 70 °C, 90 °C, 100 °C, 110 °C, 120 °C for 1 hour intervals. The samples were then cooled to room temperature after each incremental heating, and degree of atropisomerization analyzed by ¹H NMR analysis. Finally, all samples were further heated at 120 °C until atropisomeric ratio remained constant.

Temp	_{5.} Ter	Temperature-dependent configurational stability study ^a					
Compd.	40	70	90	100	110	120	
5a	1:0	1:0.10	1:0.43	1:0.88	0.79:1	0.69:1	
5a'	0:1	0.07:1	0.16:1	0.39:1	0.60:1	0.70:1	
5b	1:0	1:0.13	1:0.43	1:0.98	0.68:1	0.63:1	
5b'	0:1	0.06:1	0.23:1	0.44:1	0.58:1	0.65:1	
5c	1:0	1:0	1:0	1:0.09	1:0.35	0.53:1	
5c'	0:1	0:1	0:1	0.06:1	0.18:1	0.52:1	
5d	1:0	1:0	1:0.36	0.93:1	0.71:1	0.71:1	
5d'	0:1	0:1	0.53:1	0.70:1	0.70:1	0.70:1	

^aratio of each atropisomeric pair indicated

TBS Ethers 6a and 6a'

To a stirred solution of alcohol **5a** and **5a'** (335 mg, 1.10 mmol) in DMF (1.50 mL) at room temperature was added TBSCl (664 mg, 4.41 mmol) and imidazole (300 mg, 4.41 mmol). The resulting mixture was stirred for 24 h before it was quenched with NH₄Cl (40 mL, sat. aq.) and water (40 mL). The resulting mixture was extracted with ethyl acetate (3×100 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 12:1) afforded TBS ethers **6a** and **6a'** (382 mg, 83% combined yield) as an amorphous solid. Small amount of analytically pure isomers **6a** and **6a'** were obtained through column chromatography.

6a (relative stereochemistry arbitrarily assigned): $R_{\rm f} = 0.46$ (silica gel, hexanes:EtOAc 4:1); IR (film) $v_{\rm max}$ 3530, 3054, 2856, 1600, 1551, 733 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 7.39 (d, J = 8.6 Hz, 1H), 6.99 (d, J = 8.6 Hz, 1H), 6.90–6.82 (m, 2H), 6.72–6.69 (m, 1H), 5.59 (s, 1H), 4.59 (q, J = 6.2 Hz, 1H), 3.94 (s, 3H), 3.89 (s, 3H), 3.61 (s, 3H), 1.18 (d, J = 6.2 Hz, 3H), 0.85 (s, 9H), -0.09 (s, 3H), -0.12 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.1, 146.7, 145.9, 143.4, 138.9, 128.9, 122.9, 122.8, 121.2, 119.3, 112.2, 109.8, 67.5, 60.5, 55.8, 55.7, 26.6, 25.8, 18.1, -4.7, -4.9 ppm; HRMS calcd. For C₂₃H₃₄O₅SiNa⁺ [M + Na]⁺ 441.2068, found 441.2069.

6a' (relative stereochemistry arbitrarily assigned): $R_f = 0.48$ (silica gel, hexanes:EtOAc 4:1); IR (film) v_{max} 3541, 3154, 2856, 1642, 1560, 742 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 7.39 (d, J = 8.7 Hz, 1H), 6.98 (d, J = 8.7 Hz, 1H), 6.89–6.79 (m, 2H), 6.73–6.69 (m, 1H), 5.57 (s, 1H), 4.55 (q, J = 6.2 Hz, 1H), 3.94 (s, 3H), 3.89 (s, 3H), 3.58 (s, 3H), 1.15 (d, J = 6.2 Hz, 3H), 0.86 (s, 9H), -0.08 (s, 3H), -0.12 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.1, 146.7, 145.9, 142.6, 139.2, 128.8, 124.2, 122.6, 120.9, 119.1, 111.9, 109.9, 67.4, 60.6, 56.0, 55.7, 27.2, 25.9, 25.6, 18.0, -3.6, -4.9, -5.2 ppm; HRMS calcd. For $C_{23}H_{34}O_5SiNa^+$ [M + Na]⁺ 441.2068, found 441.2067.

TBS Ethers 6b and 6b'

To a stirred solution of alcohols **5b** and **5b'** (160 mg, 0.44 mmol) in DMF (4.00 mL) at room temperature was added TBSCI (263 mg, 1.74 mmol) and imidazole (119 mg, 1.75 mmol). The resulting mixture was stirred for 24 h before it was quenched with NH₄Cl (40 mL, sat. aq.) and water (40 mL). The resulting mixture was extracted with ethyl acetate (3×100 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄), and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 12:1) afforded TBS ethers **6b** and **6b'** (168 mg, 80% combined yield) as an amorphous solid. Small amount of analytically pure isomers **6b** and **6b'** were obtained through column chromatography.

6b (relative stereochemistry arbitrarily assigned): $R_{\rm f} = 0.20$ (silica gel, hexanes:EtOAc 4:1); IR (film) $v_{\rm max}$ 3533, 3038, 2857, 1572, 1458, 725 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): δ 7.72 (d, J = 8.6 Hz, 1H), 7.35 (d, J = 7.8 Hz, 2H), 7.12 (t, J = 7.0 Hz, 2H), 7.02 (t, J = 6.7 Hz, 2H), 6.83 (t, J = 7.9 Hz, 1H), 6.70 (d, J = 8.6 Hz, 1H), 6.48 (d, J = 8.1 Hz, 1H), 5.96 (s, 1H), 5.14 (s, 1H), 3.70 (s, 3H), 3.31 (s, 3H), 3.14 (s, 3H), 1.03 (s, 9H), 0.07 (s, 3H), -0.03 ppm (s, 3H); ¹³C NMR (101 MHz, C₆D₆): δ 152.3, 147.5, 147.3, 145.6, 144.9, 137.3, 131.1, 127.9, 127.5, 126.9, 123.9, 123.8, 122.6, 119.4, 112.7, 110.3, 74.2, 60.3, 55.4, 55.3, 26.2, 18.6, -4.4, -4.5 ppm; HRMS calcd. For C₂₈H₃₆O₅SiNa⁺ [M + Na]⁺ 503.2224, found 503.2226.

6b' (relative stereochemistry arbitrarily assigned): $R_f = 0.22$ (silica gel, hexanes:EtOAc 4:1); IR (film) v_{max} 3533, 3055, 2956, 1597, 1470, 742 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): δ 7.85 (d, J = 8.6 Hz, 1H), 7.23 (d, J = 7.6 Hz, 2H), 7.10 (t, J = 7.5 Hz, 2H), 7.01 (t, J = 7.3 Hz, 1H), 6.77 (d, J = 8.6 Hz, 1H), 6.59 (t, J = 7.8 Hz, 1H), 6.50 (d, J = 7.7 Hz, 1H), 6.44 (d, J = 7.9 Hz, 1H), 5.91 (s, 1H), 5.66 (s, 1H), 3.62 (s, 3H), 3.35 (s, 3H), 3.19 (s, 3H), 1.04 (s, 9H), 0.16 (s, 3H), 0.02 ppm (s, 3H); ¹³C NMR (101 MHz, C₆D₆): δ 152.4, 147.5, 146.9, 145.9, 143.5, 137.3, 130.8, 127.7, 127.0, 125.6, 123.4, 121.9, 119.2, 112.5, 110.0, 74.5, 60.4, 55.5, 55.4, 26.3, 18.6, -4.4, -4.7 ppm; HRMS calcd. For C₂₈H₃₆O₅SiNa⁺ [M + Na]⁺ 503.2224, found 503.2223.

TBS Ethers 6d and 6d'

To a stirred solution of alcohols **5d** and **5d'** (170 mg, 0.51 mmol) in DMF (9.00 mL) at room temperature was added TBSCI (310 mg, 2.06 mmol) and imidazole (138 mg, 2.03 mmol). The resulting mixture was stirred for 24 h before it was quenched with NH₄Cl (20 mL, sat. aq.) and water (20 mL). The resulting mixture was extracted with ethyl acetate (3×100 mL), the combined organic layer was washed with water (40 mL), brine (40 mL), dried (Na₂SO₄), and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 13:1) afforded TBS ethers **6d** and **6d'** (175 mg, 76% combined yield) as an amorphous solid. Small amount of analytically pure isomers **6d** and **6d'** were obtained through column chromatography.

6d (relative stereochemistry arbitrarily assigned): $R_f = 0.40$ (silica gel, hexanes:EtOAc 4:1); IR (film) v_{max} 3455, 2965, 2865, 1703, 1338, 1194, 742 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 7.33 (d, J = 8.6 Hz, 1H), 6.97 (d, J = 8.6 Hz, 1H), 6.94–6.88 (m, 2H), 6.73–6.71 (m, 1H), 5.75–5.68 (m, 1H), 5.61 (br s, 1H), 4.87 (d, J = 15.6 Hz, 1H), 4.80 (d, J = 16.2 Hz, 1H), 4.49– 4.44 (m, 1H), 3.94 (s, 3H), 3.89 (s, 3H), 3.62 (s, 3H), 2.32–2.26 (m, 1H), 2.19–2.10 (m, 1H), 0.85 (s, 9H), -0.11 (s, 3H), -0.18 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.2, 146.7, 146.0, 142.6, 137.2, 136.0, 129.1, 124.2, 122.4, 121.6, 119.1, 116.1, 111.5, 110.0, 71.3, 60.6, 56.0, 55.7, 44.9, 25.9, 18.1, -4.8, -5.2 ppm; HRMS calcd. For $C_{25}H_{36}O_5SiNa^+$ [M + Na]⁺ 467.2224, found 467.2226.

6d' (relative stereochemistry arbitrarily assigned): $R_{\rm f} = 0.42$ (silica gel, hexanes:EtOAc 4:1); IR (film) $v_{\rm max}$ 3458, 2918, 2860, 1706, 1344, 1137 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 7.34 (d, J = 8.7 Hz, 1H), 6.96 (d, J = 8.7 Hz, 1H), 6.92–6.89 (m, 2H), 6.73–6.68 (m, 1H), 5.80– 5.68 (m, 1H), 5.62 (s, 1H), 4.89 (d, J = 15.2 Hz, 1H), 4.82 (d, J = 15.4 Hz, 1H), 4.48–4.42 (m, 1H), 3.94 (s, 3H), 3.89 (s, 3H), 3.59 (s, 3H), 2.25–2.09 (m, 2H), 0.87 (s, 9H), -0.10 (s, 3H), -0.17 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.2, 146.7, 146.0, 142.5, 137.2, 136.0, 129.1, 124.2, 122.4, 121.6, 119.1, 116.1, 111.5, 110.0, 71.3, 60.6, 56.0, 55.6, 44.9, 25.9, 18.1, -4.8, -5.2 ppm; HRMS calcd. For C₂₅H₃₆O₅SiNa⁺ [M + Na]⁺ 467.2224, found 467.2225.

Bis-TBS Ethers TBS-6d and TBS-6d'

To a stirred solution of alcohols **5d** and **5d'** (0.60 g, 1.82 mmol) in DMF (1.50 mL) at room temperature was added TBSCl (1.10 g, 7.30 mmol) and imidazole (0.49 g, 7.20 mmol). The resulting mixture was warmed to 45 °C and stirred for 24 h before it was cooled to room temperature and quenched with NH₄Cl (20 mL, sat. aq.) and water (20 mL). The resulting mixture was extracted with ethyl acetate (3 × 100 mL), the combined organic layer was washed with water (70 mL), brine (70 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 15:1) afforded bis-TBS ethers **TBS-6d** and **TBS-6d'** (0.95 g, 94% combined yield) as an amorphous solid. **TBS-6d** + **TBS-6d'**: $R_{\rm f} = 0.87$ (silica gel, hexanes:EtOAc 4:1); IR (film) v_{max} 3154, 2912, 1575, 1199, 1012, 722 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.35 (t, *J* = 8.7 Hz, 1H), 7.05–6.84 (m, 3H), 6.78–6.70 (m, 1H), 5.84–5.62 (m, 1H), 4.96–4.73 (m, 2H), 4.61–4.53 (m, 0.5H), 4.47–4.38 (m, 0.5H), 3.88 (s, 3H), 3.83 (s, 3H), 3.59 (s, 2H), 3.57 (s, 1H), 2.46–2.07 (m, 2H), 0.89 (s,

6H), 0.84 (s, 3H), 0.72 (s, 6H), 0.64 (s, 3H), 0.11 (s, 1H), 0.10 (s, 2H), -0.03 (s, 2H), -0.05 (s, 1H), -0.10 (s, 2H), -0.12 (s, 1H), -0.19 (s, 2H), -0.20 ppm (s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 151.3, 151.2, 150.5, 150.1, 146.2, 146.0, 143.1, 142.6, 137.3, 136.7, 136.6, 135.4, 131.0, 130.8, 128.5, 124.0, 122.3, 121.4, 121.3, 119.9, 116.1, 115.7, 111.3, 110.8, 110.6, 110.5, 71.7, 71.3, 60.4, 60.3, 55.6, 55.6, 54.7, 54.6, 44.0, 26.3, 25.9, 25.8, 25.8, 18.6, 18.5, 18.1, 18.0, -4.0, -4.4, -4.4, -4.5, -4.6, -4.7, -4.8, -4.9 ppm; HRMS calcd. For C₃₁H₅₀O₅Si₂Na⁺ [M + Na]⁺ 581.3089, found 581.3090.

TBS Ethers 6d and 6d'

To a stirred solution of bis-TBS ethers **TBS-6d** and **TBS-6d'** (13.0 g, 23.3 mmol) in MeCN/H₂O (10:1, 75.0 mL) at room temperature was added DBU (3.30 mL, 22.1 mmol). The resulting mixture was warmed to 45 °C and stirred for 24 h before it was cooled to room temperature and quenched with NH₄Cl (40 mL, sat. aq.) and water (40 mL). The resulting mixture was extracted with ethyl acetate (3×100 mL), the combined organic layer was washed with water (40 mL), brine (40 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 13:1) afforded TBS ethers **6d** and **6d'** were obtained through column chromatography. All physical data of TBS ethers **6d** and **6d'** are identical to those obtained from mono-silylation of alcohols **5d** and **5d'**.

Dienones 7a and 7a'

From 6a: To a stirred solution of phenol **6a** (20.0 mg, 48 µmol) in MeOH (3.0 mL) at 0 °C was added PIFA (20.6 mg, 48 µmol) and NaHCO₃ (40.0 mg, 0.48 mmol). The resulting mixture was stirred for 10 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (3 mL, sat. aq.) and water (2 mL). The resulting mixture was extracted with Et₂O (3 \times 5 mL), the combined organic layer was washed with NaHCO₃ (8 mL, sat. aq.), brine (8 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, CH₂Cl₂:Et₂O 15:1) afforded dienones **7a** and **7a'** (16.2 mg, 76%) as an orange amorphous solid.

From 6a': To a stirred solution of phenol **6a'** (14.2 mg, 34 µmol) in MeOH (2.1 mL) at 0 °C was added PIFA (14.4 mg, 33 µmol) and NaHCO₃ (30.0 mg, 0.36 mmol). The resulting mixture was stirred for 10 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (3 mL, sat. aq.) and water (2 mL). The resulting mixture was extracted with Et₂O (3 \times 5 mL), the combined organic layer was washed with NaHCO₃ (5 mL, sat. aq.), brine (5 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, CH₂Cl₂:Et₂O 15:1) afforded dienones **7a** and **7a'** (9.1 mg, 60%) as an orange amorphous solid.

From 6b: To a stirred solution of phenol **6b** (19.0 mg, 40 µmol) in MeOH (3.2 mL) at 0 °C was added PIFA (20.5 mg, 48 µmol) and NaHCO₃ (33.2 mg, 0.40 mmol). The resulting mixture was stirred for 10 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (4 mL, sat. aq.) and water (2 mL). The resulting mixture was extracted with Et₂O (3 \times 5 mL), the combined organic layer was washed with NaHCO₃ (8 mL, sat. aq.), brine (8 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography

(silica gel, $CH_2Cl_2:Et_2O$ 15:1) afforded dienones **7b** and **7b'** (11.8 mg, 58%) as an orange amorphous solid

From 6b': To a stirred solution of phenol **6b'** (12.1 mg, 25 µmol) in MeOH (2.0 mL) at 0 °C was added PIFA (13.2 mg, 31 µmol) and NaHCO₃ (21.1 mg, 0.25 mmol). The resulting mixture was stirred for 10 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (3 mL, sat. aq.) and water (2 mL). The resulting mixture was extracted with Et₂O (3 \times 5 mL), the combined organic layer was washed with NaHCO₃ (5 mL, sat. aq.), brine (5 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, CH₂Cl₂:Et₂O 15:1) afforded dienones **7b** and **7b'** (7.2 mg, 56%) as an orange amorphous solid.

Dienones 7c and 7c'

From 5c: To a stirred solution of phenol **5c** (12.8 mg, 37 µmol) in MeOH (2.0 mL) at 0 °C was added PIFA (16.7 mg, 39 µmol) and NaHCO₃ (31.1 mg, 0.37 mmol). The resulting mixture was stirred for 10 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (3 mL, sat. aq.) and water (2 mL). The resulting mixture was extracted with Et₂O (3 \times 5 mL), the combined organic layer was washed with NaHCO₃ (5 mL, sat. aq.), brine (5 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, CH₂Cl₂:Et₂O 15:1) afforded dienones **7c** and **7c'** (8.5 mg, 61%) as an orange amorphous solid.

From 5c': To a stirred solution of phenol **5c'** (12.0 mg, 35 µmol) in MeOH (2.0 mL) at 0 °C was added PIFA (13.0 mg, 30 µmol) and NaHCO₃ (29.1 mg, 0.35 mmol). The resulting mixture was stirred for 10 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (3 mL, sat. aq.) and water (2 mL). The resulting mixture was extracted with Et₂O (3 \times 5 mL), the combined organic layer was washed with NaHCO₃ (5 mL, sat. aq.), brine (5 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, CH₂Cl₂:Et₂O 15:1) afforded dienones **7c** and **7c'** (6.5 mg, 50%) as an orange amorphous solid.

Dienones 7d and 7d'

From 6d: To a stirred solution of phenol **6d** (19.1 mg, 43 µmol) in MeOH (3.0 mL) at 0 °C was added PIFA (19.4 mg, 45 µmol) and NaHCO₃ (34.2 mg, 0.41 mmol). The resulting mixture was stirred for 10 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (3 mL, sat. aq.) and water (2 mL). The resulting mixture was extracted with Et₂O (3 × 5 mL), the combined organic layer was washed with NaHCO₃ (8 mL, sat. aq.), brine (8 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography

(silica gel, $CH_2Cl_2:Et_2O$ 15:1) afforded dienones **7d** and **7d'** (10.7 mg, 52%) as an orange amorphous solid

From 6d': To a stirred solution of phenol **6d'** (11.5 mg, 26 µmol) in MeOH (1.8 mL) at 0 °C was added PIFA (13.2 mg, 31 µmol) and NaHCO₃ (21.0 mg, 0.25 mmol). The resulting mixture was stirred for 10 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (3 mL, sat. aq.) and water (2 mL). The resulting mixture was extracted with Et₂O (3 \times 5 mL), the combined organic layer was washed with NaHCO₃ (5 mL, sat. aq.), brine (5 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, CH₂Cl₂:Et₂O 15:1) afforded dienones **7d** and **7d'** (7.3 mg, 59%) as an orange amorphous solid.

Biaryl Ether 2g

(i) To a stirred solution of dibromide **2d** (450 mg, 1.45 mmol) in acetone (150 mL) at room temperature was added K₂CO₃ (602 mg, 4.36 mmol) followed by catechol (192 mg, 1.74 mmol). The resulting mixture was warmed to reflux and stirred for 16 h before it was cooled to room temperature and diluted with water (100 mL). The resulting mixture was extracted with Et₂O (3×75 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded biaryl ether **2f** (433 mg, 88%) as an amorphous white solid.

(ii) To a stirred solution of phenol **2f** (obtained above) in CH₂Cl₂ (130 mL) at 0 °C was added iPr_2NEt (0.33 mL, 1.89 mmol) followed by MOMCl (0.12 mL, 1.58 mmol). The resulting mixture was stirred for 2 h before it was warmed to room temperature and quenched with water (80 mL). The resulting mixture was extracted with Et₂O (3 × 70 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded biaryl ether **2g** (416 mg, 85%) as an amorphous white solid. **2g**: $R_f = 0.80$ (silica gel, hexanes:EtOAc 2:1); IR (film) v_{max} 3060, 2940, 1636, 1490, 806, 1002, 750 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 7.23 (d, *J* = 9.0 Hz, 1H), 7.13 (d, *J* = 7.0 Hz, 1H), 6.97–6.87 (m, 3H), 6.85 (d, *J* = 9.0 Hz, 1H), 5.22 (s, 2H), 5.14 (s, 2H), 3.86 (s, 3H), 3.84 (s, 3H), 3.51 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 153.1, 149.0, 147.0, 146.4, 129.1, 124.1, 122.8, 121.6, 118.1, 117.7, 114.7, 111.2, 95.8, 70.4, 60.5, 56.2, 56.1 ppm; HRMS calcd. For C₁₇H₁₉BrO₅Na⁺ [M + Na]⁺ 405.0308, found 405.0309.

Tricycle 3a:

To a stirred solution of biaryl ether **2g** (420 mg, 1.10 mmol) in dioxane (6.5 mL) at room temperature was added K₂CO₃ (454 mg, 3.28 mmol), Pd(OAc)₂ (36.9 mg, 0.16 mmol), Ph₃P (129 mg, 0.49 mmol) and PivOH (22.4 mg, 0.22 mmol). The resulting mixture was warmed to 110 °C and stirred for 16 h before it was cooled to room temperature and diluted with water (15 mL). The resulting mixture was extracted with Et₂O (3 × 20 mL), the combined organic layer was washed with water (40 mL), brine (40 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded tricycle **3a** (235 mg, 71%) as an amorphous white solid. **3a**: $R_f = 0.69$ (silica gel, hexanes:EtOAc 2:1); IR (film) v_{max} 3069, 2838, 1606, 1203, 1458, 1342, 720 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.13 (d, J = 8.0 Hz, 1H), 7.12 (d, J = 8.0 Hz, 1H), 6.98 (t, J = 8.2 Hz, 1H), 6.87 (d, J = 8.2 Hz, 1H), 6.82 (d, J = 8.2 Hz, 1H), 5.24 (s, 2H), 4.98 (s, 2H), 3.86 (s, 3H), 3.70 (s, 3H), 3.52 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 153.2, 146.3, 146.1, 145.4, 125.9, 123.3, 122.9, 121.7, 121.4, 120.0, 116.5, 111.2, 95.5, 68.8, 59.7, 56.1, 55.8 ppm; HRMS calcd. For C₁₇H₁₈O₅Na⁺ [M + Na]⁺ 325.1046, found 325.1047.

Alcohols 5e and 5e'

(i) To a stirred solution of biaryl ether **3a** (350 mg, 1.16 mmol) in CH₂Cl₂/pH 9.2 buffer (10:1, 12.1 mL) at 0 °C was added DDQ (315 mg, 1.39 mmol). The resulting mixture was stirred for 1.5 h before the layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3×30 mL). The combined organic layer was washed successively with water (until the aqueous layer became colorless), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure afforded crude mixture of hydroxy aldehyde **4a** and hemiacetal **4a'** (**4a**:**4a'**~1:1.4, 324 mg, 88%) as a pale amorphous yellow solid, which was used directly in the subsequent step without further purification.

(ii) To a stirred solution of hemiacetal-hydroxy aldehyde mixture (**4a**+**4a'**, obtained above) in THF (28 mL) at -78 °C was added allylmagnesium bromide (1.0 M in THF, 2.00 mL, 2.00 mmol) dropwise. The resulting mixture was warmed to room temperature and stirred for 16 h before it was quenched with water (30 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 30 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded alcohols **5e** and **5e'** (~4:1 based on ¹H NMR analysis, 359 mg, 98% combined yield) as a clear amorphous solid. **5e**+**5e'**: $R_f = 0.35$, 0.10 (silica gel, hexanes:EtOAc 2:1); IR (film) v_{max} 3126, 2990, 1573, 1421, 1262, 751 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.27 (d, J = 8.1 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.85 (t, J = 8.0 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 6.31 (br s, 0.75H), 6.01

(br s, 0.25H), 5.70–5.52 (m, 1H), 5.17 (s, 2H), 4.98–4.88 (m, 2H), 4.43 (m, 0.25H), 4.39 (t, J = 6.8 Hz, 0.75H), 3.85 (s, 3H), 3.57 (s, 0.75H), 3.53 (s, 2.25H), 3.47 (s, 3H), 2.86 (br s, 0.75H), 2.45–2.22 ppm (m, 2.25H); ¹³C NMR (101 MHz, CDCl₃): δ 151.9, 151.6, 146.2, 146.1, 144.5, 144.0, 143.1, 135.5, 135.4, 135.2, 134.8, 130.7, 130.3, 125.3, 124.5, 123.3, 123.1, 121.3, 119.7, 119.5, 117.2, 116.9, 114.8, 114.6, 112.1, 112.0, 95.9, 69.8, 60.4, 60.3, 56.3, 56.3, 55.6, 55.6, 42.5, 41.5 ppm; HRMS calcd. For C₂₀H₂₄O₆Na⁺ [M + Na]⁺ 383.1465, found 383.1464.

Phenols 6e and 6e'

(i) To a stirred solution of alcohols **5e** and **5e'** (360 mg, 1.00 mmol) in DMF (13 mL) at 0 °C was added NaH (230 mg, 9.58 mmol) and MeI (0.18 mL, 2.89 mmol). The resulting mixture was warmed to room temperature and stirred for 10 h before it was quenched with MeOH (20 mL) and brine (20 mL). The resulting mixture was extracted with Et₂O (3 × 30 mL), the combined organic layer was washed with water (40 mL), brine (40 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexane:EtOAc 6:1) afforded MOM ethers **MOM-6e** and **MOM-6e'** (~4:1 based on ¹H NMR analysis, 338 mg, 87% combined yield) as a yellow amorphous solid. **MOM-6e** + **MOM-6e'**: $R_f = 0.65, 0.70$ (silica gel, hexanes:EtOAc 2:1).

(ii) To a stirred solution of MOM ethers (**MOM-6e** + **MOM-6e'**, obtained above) in dioxane (5.5 mL) was added HCl (0.1 M aq., 0.15 mL, 1.5 mmol). The resulting mixture was stirred for 2 h before it was carefully quenched with NaHCO₃ (30 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3×20 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 6:1) afforded phenols **6e** (206 mg, 69%) and **6e'** (52 mg, 17%) as a white amorphous solids.

6e (relative stereochemistry arbitrarily assigned): $R_f = 0.57$ (silica gel, hexanes:EtOAc 2:1); IR (film) v_{max} 3692, 3154, 2988, 1215, 908, 753 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.23 (d, J = 8.9 Hz, 1H), 7.01–6.93 (m, 3H), 6.57 (d, J = 7.4 Hz, 1H), 5.99 (s, 0.75H), 5.94 (s, 0.25H), 5.66–5.54 (m, 1H), 4.86 (d, J = 10.1 Hz, 1H), 4.80 (d, J = 17.2 Hz, 1H), 3.94–3.85 (m, 4H), 3.68 (s, 3H), 3.48 (s, 3H), 3.17 (s, 3H), 2.23–2.12 ppm (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 151.6, 148.8, 145.9, 143.9, 135.1, 133.7, 131.7, 128.6, 123.7, 123.2, 121.0, 116.3, 114.6, 111.9, 79.7, 60.7, 60.4, 56.5, 55.6, 42.3 ppm; HRMS calcd. For C₂₀H₂₄O₅Na⁺ [M + Na]⁺ 367.1516, found 367.1514.

6e' (relative stereochemistry arbitrarily assigned): $R_{\rm f} = 0.60$ (silica gel, hexanes:EtOAc 2:1); IR (film) $v_{\rm max}$ 3523, 3052, 2988, 1267, 914, 765 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): δ 7.39 (d, J = 8.6 Hz, 1H), 7.01 (d, J = 7.9 Hz, 1H), 6.87 (t, J = 7.8 Hz, 1H), 6.69 (d, J = 8.6 Hz, 1H), 6.65 (d, J = 7.8 Hz, 1H), 6.15–6.02 (m, 1H), 5.52 (s, 1H), 5.14 (d, J = 16.7 Hz, 1H), 5.04 (d, J = 10.2 Hz, 1H), 4.08 (t, J = 6.2 Hz, 1H), 3.64 (s, 3H), 3.35 (s, 3H), 3.22 (s, 3H), 3.05 (s, 3H), 2.68 ppm (t, J = 6.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 151.7, 148.8, 145.7, 145.2, 135.8, 133.6, 132.5, 128.9, 123.8, 122.4, 121.8, 116.2, 114.5, 112.2, 79.2, 60.8, 60.5, 56.2, 55.7, 41.2 ppm; HRMS calcd. For C₂₀H₂₄O₅Na⁺ [M + Na]⁺ 367.1516, found 367.1517.

Atropisomer Thermal Stability Studies:

NMR samples of atropisomerically pure **6e** and **6e'** in C_6D_6 were subjected to heating (oil bath) at temperatures 40 °C, 70 °C, 90 °C, 100 °C, 110 °C, 120 °C over 1 hour intervals. The samples were then cooled to room temperature after each incremental heating, and degree of atropisomerization analyzed by ¹H NMR analysis. Finally, heating was maintained at 120 °C until atropisomeric ratio remained constant.

Dienone 7e and 7e'

From 6e: To a stirred solution of PIDA (34.8 mg, 10.8 mmol) and NaHCO₃ (76.0 mg, 0.90 mmol) in MeOH (3 mL) at 0 °C was added a solution of phenol **6e** (31.0 mg, 90 μ mol) in MeOH (1.5 mL) dropwise. The resulting mixture was stirred for 5 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (8 mL, sat. aq.) and water (8 mL). The resulting mixture was extracted with Et₂O (3 × 10 mL), the combined organic layer was washed with NaHCO₃ (20 mL, sat. aq.), brine (20 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexane:EtOAc 6:1) afforded dienones **7e** and **7e'** (28.0 mg, 83%) as an amorphous yellow solid.

From 6e': To a stirred solution of PIDA (4.5 mg, 14 µmol) and NaHCO₃ (9.8 mg, 0.12 mmol) in MeOH (0.5 mL) at 0 °C was added a solution of phenol **6e'** (4.0 mg, 12 µmol) in MeOH (0.5 mL) dropwise. The resulting mixture was stirred for 5 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (3 mL, sat. aq.) and water (3 mL). The resulting mixture was extracted with Et₂O (3×10 mL), the combined organic layer was washed with NaHCO₃ (15 mL, sat. aq.), brine (15 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexane:EtOAc 6:1) afforded dienones **7e** and **7e'** (3.2 mg, 74%) as an amorphous yellow solid.

¹H NMR (400 MHz, CDCl₃)

Biaryl Ester 2i

(i) To a stirred solution of aldehyde **2b** (390 mg, 1.59 mmol) in THF/H₂O/*t*BuOH (4:4:1, 36 mL) at room temperature was added NaH₂PO₄ (1.53 g, 12.8 mmol), NaClO₂ (576 mg, 6.37 mmol) and 2-methyl-2-butene (1.69 mL, 16.0 mmol). The resulting mixture was stirred for 3 h before it was diluted with EtOAc (30 mL). The resulting mixture was washed with HCl (1.0 N, 3×35 mL), the organic layer was separated and dried (Na₂SO₄), and concentrated under reduced pressure afforded crude acid **2h** (413 mg, 99%) as an amorphous white solid, which was sufficiently pure based on thin-layer-chromatography and ¹H NMR analysis and used directly in the subsequent step without further purification.

(ii) To a stirred solution of acid **2h** (crude, obtained above) and 5-methylguaiacol (198 mg, 1.43 mmol) in THF (16 mL) at 0 °C was added DCC (360 mg, 1.74 mmol) and DMAP (20.0 mg, 0.16 mmol). The resulting mixture was warmed to room temperature and stirred for 10 h before it was filtered and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded biaryl ester **2i** (343 mg, 57%) as an amorphous white
solid. **2i**: $R_{\rm f} = 0.38$ (silica gel, hexanes:EtOAc 3:1); IR (film) $v_{\rm max}$ 3053, 2940, 1748, 1586, 1127, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 8.0 Hz, 1H), 7.02–6.98 (m, 2H), 6.93 (d, J = 8.7 Hz, 1H), 6.89 (d, J = 8.2 Hz, 1H), 3.94 (s, 3H), 3.88 (s, 3H), 3.80 (s, 3H), 2.31 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 163.3, 156.5, 148.8, 147.0, 139.2, 130.2, 128.4, 126.9, 123.7, 123.3, 118.9, 112.2, 110.2, 60.1, 55.9, 55.7, 20.2 ppm; HRMS calcd. For C₁₇H₁₇BrO₅Na⁺ [M + Na]⁺ 403.0152, found 403.0150.

Tricyclic Lactone 3b

To a stirred solution of biaryl ester **2i** (340 mg, 0.89 mmol) in DMA (10.5 mL) at room temperature was added NaOAc (146 mg, 1.78 mmol), Pd(OAc)₂ (31.4 mg, 0.14 mmol) and Ph₃P (70.2 mg, 0.27 mmol). The resulting mixture was warmed to 100 °C and stirred for 24 h before it was cooled to room temperature and diluted with water (30 mL). The resulting mixture was extracted with Et₂O (3 × 30 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded tricyclic lactone **3b** (160 mg, 60%) as an amorphous white solid. **3b**: $R_f = 0.30$ (silica gel, hexanes:EtOAc 3:1); IR (film) v_{max} 2992, 1732, 1566, 1257, 1173, 760 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 8.17 (d, *J* = 9.1 Hz, 1H), 7.18 (d, *J* = 9.1 Hz, 1H), 7.10 (d, *J* = 9.1 Hz, 1H), 7.00 (d, *J* = 9.1 Hz, 1H), 4.02 (s, 3H), 3.95 (s, 3H), 3.48 (s, 3H), 2.40 ppm (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 160.8, 158.2, 145.3, 145.1, 140.6, 129.0, 128.8, 127.2, 126.6, 117.5, 117.1, 112.3, 112.2, 60.9, 56.3, 56.3, 22.7 ppm; HRMS calcd. For C₁₇H₁₆O₅Na⁺ [M + Na]⁺ 323.0890, found 323.0891.

Allylic Alcohols 6f and 6f'

(i) To a stirred solution of lactone **3b** (40.0 mg, 0.13 mmol) in THF (3 mL) at -78 °C was added DIBAL-H (1.0 M in hexane, 0.27 mL, 0.27 mmol). The resulting mixture was stirred for 7 min before it was quenched with sodium potassium tartrate (5 mL, sat. aq.) and diluted with EtOAc (5 mL), and stirred vigorously for 1 h. The layers were separated and the aqueous layer was extracted with ethyl acetate (3 × 8 mL), the combined organic layer was washed with water (15 mL), brine (15 mL), dried (Na₂SO₄) and concentrated under reduced pressure to afford a crude mixture of hydroxy aldehyde **4b** and hemiacetal **4b'** (18 mg, 45%) as an amorphous white solid, which was used directly in the subsequent step without further purification.

(ii) To a stirred solution of a hemiacetal hydroxy aldehyde mixture (**4b**+**4b'**, obtained above) in THF (1.0 mL) at -78 °C was added allylmagnesium bromide (1.0 M in Et₂O, 71 µL, 71 µmol). The resulting mixture was warmed to room temperature and stirred for 16 h before it was quenched with water (3 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 5 mL), the combined organic layer was washed with water (10 mL), brine (10 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded alcohols **6f** (8.5 mg, 41%) and **6f'** (7.5 mg, 37%) as a yellow amorphous solid.

6f (relative stereochemistry arbitrarily assigned): $R_f = 0.39$ (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 3151, 2986, 1731, 1266, 1139, 757 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): δ 7.46 (d, J = 8.2 Hz, 1H), 6.71 (t, J = 9.2 Hz, 2H), 6.42 (d, J = 8.2 Hz, 1H), 5.80–5.68 (m, 1H), 5.60 (s, 1H), 4.90 (d, J = 17.0 Hz, 1H), 4.84 (d, J = 10.1 Hz, 1H), 4.67 (t, J = 6.1 Hz, 1H), 3.53 (s, 3H), 3.28 (s, 3H), 3.17 (s, 3H), 2.74–2.57 (m, 2H), 2.12 ppm (s, 3H); ¹³C NMR (101 MHz, C₆D₆): δ 152.8, 147.0, 144.7, 143.0, 135.9, 135.6, 131.3, 130.9, 123.5, 122.1, 121.0, 117.0, 112.7, 109.8, 70.8, 60.2, 55.2, 41.3, 20.0 ppm; HRMS calcd. For C₂₀H₂₄O₅Na⁺ [M + Na]⁺ 367.1516, found 367.1517.

6f' (relative stereochemistry arbitrarily assigned): $R_{\rm f} = 0.48$ (silica gel, hexanes:EtOAc 1:1); IR (film) $v_{\rm max}$ 3054, 2986, 1730, 1266, 1165, 763 cm⁻¹; ¹H NMR (400 MHz, C₆D₆): δ 7.47 (d, J = 8.5 Hz, 1H), 6.71 (dd, J = 8.2, 3.9 Hz, 2H), 6.45 (d, J = 8.1 Hz, 1H), 5.80–5.70 (m, 1H), 5.52 (s, 1H), 4.93 (d, J = 17.1 Hz, 1H), 4.88 (d, J = 9.4 Hz, 1H), 4.51 (dd, J = 8.3, 3.4 Hz, 1H), 3.69 (s, 3H), 3.36 (s, 3H), 3.19 (s, 3H), 2.69–2.63 (m, 1H), 2.50–2.41 (m, 1H), 2.10 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.1, 146.1, 144.5, 142.9, 135.4, 135.3, 129.8, 129.4, 122.4, 121.6, 120.6, 117.8, 112.0, 110.0, 70.1, 60.4, 56.0, 55.7, 42.9, 19.5 ppm; HRMS calcd. For C₂₀H₂₄O₅Na⁺ [M + Na]⁺ 367.1516, found 367.1516.

Atropisomer Thermal Stability Studies:

NMR samples of atropisomerically pure **6f** and **6f'** in C_6D_6 were subjected to heating (oil bath) at temperatures 40 °C, 70 °C, 90 °C, 100 °C, 110 °C, 120 °C over 1 hour intervals. The samples were then cooled to room temperature after each incremental heating, and degree of atropisomerization analyzed by ¹H NMR analysis. Finally, heating was maintained at 120 °C until atropisomeric ratio remained constant.

Tetracycle 8f

(i) To a stirred solution of PIDA (9.5 mg, 29 μ mol) and NaHCO₃ (24.9 mg, 0.30 mmol) in MeOH (1.0 mL) at 0 °C was added a solution of phenol **6f** (8.5 mg, 25 μ mol) in MeOH (0.2 mL) dropwise. The resulting mixture was stirred for 5 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (3 mL, sat. aq.) and water (3 mL). The resulting mixture was extracted with Et₂O (3 × 8 mL), the combined organic layer was washed with NaHCO₃ (12 mL, sat. aq.), brine (12 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded dienone **7f** as an amorphous yellow solid.

ii) A solution of dienone **7f** (obtained above) in toluene (1.0 mL) was warmed to reflux and stirred for 4 h before it was cooled to room temperature and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded tetracycle **8f** (6.5 mg, 70% over two steps) as an amorphous yellow solid. **8f** (relative stereochemistry arbitrarily assigned): $R_{\rm f} = 0.48$ (silica gel, hexanes:EtOAc 1:1); IR (film) $v_{\rm max}$ 3478, 2957, 1747, 1467, 1239, 764 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, J = 8.6 Hz, 1H), 6.98 (d, J = 8.6 Hz, 1H), 6.20 (d, J = 6.7 Hz, 1H), 4.78–4.67 (m, 1H), 3.86 (s, 3H), 3.80 (s, 3H), 3.37 (s, 6H), 3.00 (d, J = 7.7 Hz, 1H), 2.26 (t, J = 9.6 Hz, 1H), 2.15–2.08 (m, 1H), 2.02–1.97 (m, 1H), 1.69 (d, J = 7.7 Hz, 1H), 1.53 (s, 3H), 1.30 (q, J = 12.5, 1H), 1.01–0.96 ppm (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 200.5, 151.4, 146.8, 137.1, 134.3, 126.5, 125.1, 121.3, 113.0, 94.9, 69.3, 59.9, 59.2, 55.8, 50.8, 49.2, 38.4, 37.5, 36.5, 29.1, 21.0 ppm; HRMS calcd. For C₂₁H₂₆O₆Na⁺ [M + Na]⁺ 397.1622, found 397.1624.

Tetracycle 8f'

(i) To a stirred solution of PIDA (8.4 mg, 26 μ mol) and NaHCO₃ (18.3 mg, 0.22 mmol) in MeOH (1.0 mL) at 0 °C was added a solution of phenol **6f'** (7.5 mg, 22 μ mol) in MeOH (0.2 mL) dropwise. The resulting mixture was stirred for 5 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (3 mL, sat. aq.) and water (3 mL). The resulting mixture was extracted with Et₂O (3 × 6 mL), the combined organic layer was washed with NaHCO₃ (10 mL, sat. aq.), brine (10 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded dienone **7f'** as an amorphous yellow solid.

ii) A solution of dienone **7f'** (obtained above) in toluene (1.0 mL) was warmed to reflux and stirred for 4 h before it was cooled to room temperature and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded tetracycle **8f'** (5.0 mg, 61% over two steps) as an amorphous yellow solid. **8f'** (relative stereochemistry arbitrarily assigned): $R_{\rm f} = 0.49$ (silica gel, hexanes:EtOAc 1:1); IR (film) $v_{\rm max}$ 3469, 2956, 1747, 1464, 1239, 762 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.10 (d, J = 7.4 Hz, 1H), 6.96 (d, J = 7.4 Hz, 1H), 6.20 (d, J = 7.4 Hz, 1H), 4.69 (br s, 1H), 3.87 (s, 3H), 3.81 (s, 3H), 3.38 (s, 6H), 3.04–3.01 (m, 1H), 2.57–2.46 (m, 1H), 2.28 (t, J = 11.9 Hz, 1H), 1.87 (d, J = 13.5 Hz, 1H), 1.77 (m, 1H), 1.51 (s, 3H), 1.53–1.46 (m, 1H) 1.00–0.95 ppm (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 201.5, 152.3, 147.3, 135.9, 132.1, 127.1, 125.4, 125.0, 113.0, 95.0, 67.8, 59.9, 58.8, 55.8, 50.8, 49.2, 37.6, 36.2, 32.2, 28.7, 20.8 ppm; HRMS calcd. For C₂₁H₂₆O₆Na⁺ [M + Na]⁺ 397.1622, found 397.1623.

¹H NMR (400 MHz, CDCl₃) Comparison Between Dienones 7f and 7f', and Between Intramolecular Diels-Alder Products 8f and 8f'

To a stirred solution of alcohols **8f** and **8f'** (5.2 mg, 14 µmol) in CH₂Cl₂ (0.5 mL) at room temperature was added pyridinium chlorochromate (8.9 mg, 41 µmol). The resulting mixture was stirred for 3 h before it was directly subjected to flash column chromatography (silica gel, hexanes:EtOAc 2:1) afforded ketones **9f** (3.5 mg, 68%) as an amorphous clear solid. **9f**: $R_{\rm f}$ =

0.76 (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 3053, 2987, 1738, 1712 1485, 747 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.7 Hz, 1H), 7.02 (d, J = 8.7 Hz, 1H), 6.31 (d, J =7.2 Hz, 1H), 3.94 (s, 3H), 3.84 (s, 3H), 3.38 (s, 6H), 3.09 (d, J = 6.1 Hz, 1H), 2.60–2.50 (m, 1H), 2.46 (d, J = 16.5 Hz, 1H), 2.34–2.18 (m, 1H), 2.35–2.24 (m, 1H), 1.40 (s, 3H), 1.03–0.99 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 199.8, 195.7, 157.0, 146.4, 134.7, 132.5, 126.8, 126.2, 123.8, 112.0, 94.9, 60.1, 58.6, 55.7, 50.9, 49.2, 42.7, 37.6, 28.4, 20.8 ppm; HRMS calcd. For C₂₁H₂₄O₆Na⁺ [M + Na]⁺ 395.1465, found 395.1464. Tetracycles 8 and 8'

(i) To a stirred solution of phenol **6d** and **6d'** (8.50 g, 19.1 mmol) in MeOH (300 mL) at 0 °C was added PIFA (9.40 g, 21.9 mmol) and NaHCO₃ (15.0 g, 179 mmol). The resulting mixture was stirred for 15 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (100 mL, sat. aq.) and water (100 mL). The resulting mixture was extracted with Et₂O (3×75 mL), the combined organic layer was washed with NaHCO₃ (100 mL, sat. aq.), brine (100 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, CH₂Cl₂:Et₂O 15:1) afforded dienones **7d** and **7d'** as an orange amorphous solid.

(ii) Dienones **7d** and **7d'** (obtained above) was redissolved in toluene (550 mL), and warmed to reflux and stirred for 1 h before it was cooled to room temperature and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 10:1) afforded tetracycles **8** and **8'** (~1:1 based on ¹H NMR analysis, 6.57 g, 72% over two steps) as an amorphous yellow solid. **8+8'**: $R_f = 0.59$ (silica gel, hexanes:EtOAc 7:3); IR (film) v_{max} 3154, 2983, 1702, 1210, 1052, 723 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.22 (d, J = 8.6 Hz, 0.5H), 6.92–6.85 (m, 1.5H), 6.42–6.38 (m, 1H), 5.82 (d, J = 8.1 Hz, 0.4H), 5.73 (d, J = 8.1 Hz, 0.6H), 4.76–4.66 (m, 1H), 3.86 (s, 1.8H), 3.85 (s, 1.2H), 3.81 (s, 1.8H), 3.79 (s, 1.2H), 3.39 (s, 3.6H), 3.38 (s, 2.4H), 3.10 (br s, 1H), 2.74–2.66 (m, 1H), 2.27–2.25 (m, 1H), 2.22–2.13 (m, 1H), 1.88–1.80 (m, 0.4H), 1.73 (dt, J = 13.4, 2.7 Hz, 0.6H), 1.54–1.45 (m, 1H), 0.95 (s, 3.6H), 0.84 (s, 5.4H), 0.18 (s, 1.2H), 0.12 (s, 1.2H), 0.05 (s, 1.8H), 0.00 ppm (s, 1.8H); ¹³C NMR (101

MHz, CDCl₃): δ 199.7, 199.5, 151.9, 151.4, 147.0, 146.7, 134.6, 132.2, 131.4, 131.2, 130.8, 129.1, 128.9, 128.5, 128.2, 125.0, 121.1, 112.6, 112.1, 94.7, 94.7, 70.0, 68.2, 60.2, 60.1, 55.9, 55.8, 55.7, 55.4, 50.8, 50.7, 49.3, 49.3, 38.2, 37.9, 37.8, 37.6, 34.5, 31.6, 29.7, 28.5, 28.2, 25.9, 25.8, 22.6, 18.2, 18.0, 14.1, -4.1, -4.2, -4.4, -4.8 ppm; HRMS calcd. For C₂₆H₃₈O₆SiNa⁺ [M + Na]⁺ 497.2330, found 497.2333.

(i) To a stirred solution of alkenes 8 and 8' (5.40 g, 11.4 mmol) in THF (250 mL) at -78 °C was added borane tetrahydrofuran complex (1.0 M in THF, 50.0 mL, 50.0 mmol). The resulting mixture was warmed to 70 °C and stirred for 4 h before it was cooled to 0 °C and treated with NaOH (2.0 N aq., 21.0 mL, 42.0 mmol) and H₂O₂ (34.5% aq., 21.0 mL, 210 mmol). The resulting mixture was warmed to reflux and stirred for 4 h before it was cooled to room temperature and quenched with NH₄Cl (100 mL, sat. aq.) and water (40 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (3 × 100 mL), the

combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded alcohols **8a** and **8a'** (3.40 g, 61%) as an amorphous white solid. **8a+8a'**: $R_f = 0.40$ (silica gel, hexanes:EtOAc 1:1); HRMS calcd. For C₂₆H₄₀O₇SiNa⁺ [M + Na]⁺ 515.2436, found 515.2434.

(ii) To a stirred solution of alcohols 8a and 8a' (4.70 g, 9.54 mmol) in CH₂Cl₂ (470 mL) at 0 °C was added Dess-Martin periodinane (12.5 g, 29.5 mmol) portion-wise. The resulting mixture was warmed to room temperature and stirred for 3 h before it was quenched with Na₂S₂O₃ (40 mL, sat. aq.) and water (40 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 100 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes: EtOAc 9:1) afforded ketones 8b and 8b' (4.24 g, 91%) as an amorphous yellow solid. **8b+8b'**: $R_f = 0.76$ (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 3456, 3154, 2970, 1710, 1200, 725 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.20 (d, J = 8.1 Hz, 0.5H), 6.91 (dd, J = 8.0 Hz, 0.5H), 6.92 (s, 1H), 4.72 (dd, J = 5.7 Hz, 0.5H), 4.67 (br t, J = 2.5 Hz, 0.5H), 3.86–3.76 (m, 4.5H), 3.70 (s, 1.2H), 3.56 (s, 0.3H), 3.43–3.37 (m, 6H), 3.30 (d, J = 20.5 Hz, 0.5H), 3.08 (br s, 0.25H), 3.06–2.96 (m, 0.25H), 2.91 (d, J = 19.3Hz, 0.25H), 2.79 (br s, 0.25H), 2.71 (d, J = 20.6 Hz, 0.5H), 2.51–2.24 (m, 2H), 2.02–1.92 (m, 1H), 1.88–1.76 (m, 1H), 1.50–1.42 (m, 1H), 1.35–1.24 (m, 1H), 0.94 (s, 5H), 0.80 (s, 4H), 0.17 (s, 1.7H), 0.11 (s, 1.7H), 0.10 (s, 1.3H), 0.03 ppm (s, 1.3H); ¹³C NMR (126 MHz, CDCl₃): δ 206.9, 204.3, 201.4, 196.0, 151.4, 147.0, 146.0, 133.6, 132.2, 126.6, 124.9, 123.1, 121.8, 113.0, 112.9, 100.0, 97.5, 96.7, 80.0, 69.5, 68.9, 67.5, 60.0, 59.8, 58.4, 55.8, 55.7, 51.9, 51.5, 50.7, 50.0, 49.9, 49.6, 41.7, 40.9, 36.6, 36.1, 34.3, 33.8, 31.3, 28.3, 25.9, 25.8, 24.9, 18.2, 17.9, -0.01, -4.1, -4.5, -4.8 ppm; HRMS calcd. For $C_{26}H_{38}O_7SiNa^+$ [M + Na]⁺ 513.2279, found 513.2281.

Ketones 8b and 8b'

To a stirred solution of alkenes **8** and **8'** (98.0 mg, 0.21 mmol) in THF (2.0 mL) at -78 °C was added borane tetrahydrofuran complex (1.0 M in THF, 1.03 mL, 1.03 mmol). The resulting mixture was warmed to 70 °C and stirred for 4 h before it was cooled to room temperature and treated with PCC (223 mg, 1.03 mmol). The resulting mixture was stirred for 5 h before it was filtered through Celite[®] and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:Et₂O 1:1) afforded ketones **8b** and **8b'** (42.0 mg, 41%) as an amorphous white solid. All physical data of ketone **8b** and **8b'** are identical to those obtained from stepwise hydroboration of alkenes **8** and **8'** followed by DMP oxidation.

Alkene 9

To a stirred solution of TBS ethers **8b** and **8b'** (4.20 g, 8.56 mmol) in toluene (350 mL) at room temperature was added *p*-toluenesulfonic acid monohydrate (1.63 g, 8.57 mmol). The resulting mixture was warmed to reflux and stirred for 20 min before it was cooled to room

temperature and quenched with NaHCO₃ (40 mL, sat. aq.) and water (40 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (3 × 80 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 9:1) afforded alkene **9** (2.90 g, 95%) as an amorphous white solid. **9**: R_f = 0.48 (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 3455, 3154, 2924, 1704, 1597, 722 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 6.82–6.70 (m, 2H), 6.37 (d, *J* = 9.4 Hz, 1H), 5.43 (d, *J* = 9.3 Hz, 1H), 3.85 (s, 6H), 3.42 (s, 3H), 3.39 (s, 3H), 3.14–3.04 (m, 2H), 2.77 (d, *J* = 19.5 Hz, 1H), 2.67 (d, *J* = 21.1 Hz, 1H), 2.53–2.49 (m, 1H), 1.77–1.66 ppm (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 206.3, 202.8, 152.9, 145.9, 128.0, 126.8, 125.7, 125.6, 123.1, 111.8, 97.5, 59.8, 55.7, 52.4, 51.9, 51.1, 49.3, 38.6, 37.4, 24.7 ppm; HRMS calcd. For C₂₀H₂₂O₆Na⁺ [M + Na]⁺ 381.1309, found 381.1308.

Oxime 10

To a stirred solution of alkene **9** (3.20 g, 8.93 mmol) in MeOH (28.0 mL) at room temperature was added hydroxylamine hydrochloride (1.86 g, 26.8 mmol) and NaOAc (2.20 g, 26.8 mmol). The resulting mixture was warmed to reflux and gradually allow the reaction mixture to evaporate to dryness, and the resulting solid residue was heated for 16 h before it was cooled to room temperature and quenched with NaHCO₃ (40 mL, sat. aq.) and MeOH (40 mL). The resulting mixture was extracted with ethyl acetate (3×100 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded oxime **10** (3.0 g, 90%) as an amorphous yellow solid.

Performing the reaction without "neat-heating" gave rise to a mixture of oxime **10** and its geometric isomer **10**'.

10: $R_{\rm f} = 0.24$ (silica gel, hexanes:EtOAc 1:1); IR (film) $v_{\rm max}$ 3707, 3456, 2926, 1705, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.89 (s, 1H), 6.81 (s, 2H), 6.35 (d, J = 9.3 Hz, 1H), 5.43 (d, J = 9.4 Hz, 1H), 3.85 (s, 6H), 3.41 (s, 6H), 3.20–3.15 (m, 1H), 3.01–2.95 (m, 1H), 2.85 (s, 2H), 2.45 (t, J = 12.1 Hz, 1H), 1.70–1.64 ppm (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 203.7, 157.9, 152.9, 146.3, 127.7, 127.1, 126.6, 126.2, 122.9, 111.8, 97.7, 59.8, 55.7, 51.3, 50.9, 49.4, 41.6, 37.6, 26.5, 26.3 ppm; HRMS calcd. For C₂₀H₂₃NO₆Na⁺ [M + Na]⁺ 396.1418, found 396.1416.

10': $R_{\rm f} = 0.37$ (silica gel, hexanes:EtOAc 1:1); IR (film) $v_{\rm max}$ 3705, 3457, 2926, 1702, 733 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 7.41 (s, 1H), 6.82 (dd, J = 2.5, 0.9 Hz, 2H), 6.36 (dd, J = 9.3, 2.2 Hz, 1H), 5.46 (dd, J = 9.3, 2.2 Hz, 1H), 4.17 (t, J = 3.0 Hz, 1H), 3.86 (s, 6H), 3.45 (s, 3H), 3.44 (s, 3H), 3.12–2.99 (m, 1H), 2.84 (d, J = 18.0 Hz, 1H), 2.66 (d, J = 17.4 Hz, 1H), 2.43–2.38 (m, 1H), 1.70–1.60 ppm (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 204.1, 156.8, 152.9, 146.3, 127.7, 127.2, 126.5, 126.5, 123.0, 111.7, 98.1, 59.9, 55.7, 51.7, 51.2, 49.5, 37.7, 35.5, 28.7, 25.5 ppm; HRMS calcd. For C₂₀H₂₃NO₆Na⁺ [M + Na]⁺ 396.1418, found 396.1416.

Tosylate 11

To a stirred solution of oxime **10** (5.10 g, 13.7 mmol) in acetone/H₂O (1:1, 260 mL) at room temperature was added NaOH (1.37 g, 34.3 mmol) and TsCl (3.91 g, 20.5 mmol). The resulting mixture was stirred for 2 h before it was quenched with NaHCO₃ (100 mL, sat. aq.) and water (60 mL). The resulting mixture was extracted with ethyl acetate (3×100 mL), the combined organic layer was washed with water (70 mL), brine (70 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel,

hexanes:EtOAc 10:1) afforded tosylate **11** (7.02 g, 97%) as an amorphous yellow solid. **11**: $R_{\rm f}$ = 0.43 (silica gel, hexanes:EtOAc 1:1); IR (film) $v_{\rm max}$ 3695, 3457, 3154, 2918, 1704, 723 cm⁻¹; ¹H NMR (499 MHz, CDCl₃): δ 7.83 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 2H), 6.82 (s, 2H), 6.34 (dd, *J* = 9.3, 3.3 Hz, 1H), 5.33 (dd, *J* = 9.3, 2.3 Hz, 1H), 3.86 (s, 3H), 3.82 (s, 3H), 3.39 (s, 3H), 3.24 (s, 3H), 3.23–3.20 (m, 1H), 3.08–2.98 (m, 1H), 2.85 (d, *J* = 3.4 Hz, 2H), 2.49–2.40 (m, 1H), 2.48 (s, 3H), 1.57–1.51 ppm (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 202.6, 167.3, 153.0, 146.2, 144.7, 132.9, 129.5, 128.6, 128.0, 126.9, 125.4, 125.4, 123.2, 112.1, 97.1, 59.8, 55.8, 50.6, 50.6, 49.8, 41.8, 37.2, 27.5, 26.0, 21.7 ppm; HRMS calcd. For C₂₇H₂₉NO₈SNa⁺ [M + Na]⁺ 550.1506, found 550.1503.

Lactam 12

To a stirred solution of tosylate **11** (388 mg, 0.74 mmol) in MeCN (14.4 mL) at room temperature was added ZnCl₂ (200 mg, 1.47 mmol). The resulting mixture was warmed to reflux and stirred for 4 h before additional ZnCl₂ (200 mg, 1.47 mmol) was added. The resulting mixture was refluxed for further 4 h before it was cooled down to room temperature, quenched with sodium potassium tartrate (30 mL, sat. aq.) and diluted with EtOAc (30 mL), and stirred vigorously for 1 h. The layers were separated and the aqueous layer was extracted with ethyl acetate (3×70 mL). The combined organic layer was washed with water (70 mL), brine (70 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, EtOAc:MeOH 10:1) afforded lactam **12** (200 mg, 73%) as a brown amorphous solid. **12**: *R*_f = 0.32 (silica gel, EtOAc); IR (film) v_{max} 3695, 3457, 3154, 2918, 1704, 723 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.06 (d, *J* = 7.6 Hz, 1H), 6.86–6.76 (m, 2H), 6.38 (dd, *J* = 9.4, 2.5 Hz, 1H), 5.48 (dd, *J* = 9.3, 2.1 Hz, 1H), 3.92 (s, 3H), 3.85 (s, 3H), 3.72–3.69 (m, 1H), 3.41 (s, 3H), 3.39 (s, 3H), 3.09–2.97 (m, 1H), 2.93–2.78 (m, 2H), 2.72–

2.68 (m, 1H), 2.10–2.04 ppm (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 200.5, 174.2, 153.1, 147.1, 128.1, 128.0, 126.7, 123.6, 122.5, 112.2, 98.9, 60.3, 55.8, 54.1, 50.8, 49.8, 49.3, 37.3, 37.1, 32.4 ppm; HRMS calcd. For C₂₀H₂₃NO₆Na⁺ [M + Na]⁺ 396.1418, found 396.1417.

Lactam 12'

To a stirred solution of lactam **12** (360 mg, 0.96 mmol) in benzene (15.0 mL) at room temperature was added NaH (160 mg, 6.67 mmol) and MeI (0.59 mL, 9.48 mmol). The resulting mixture was warmed to reflux and stirred for 10 h before it was cooled to room temperature and quenched with MeOH (15 mL) and brine (15 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (3×50 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, EtOAc:MeOH 10:1) afforded lactam **12'** (299 mg, 80%) as a brown amorphous solid. **12'**: $R_f = 0.43$ (silica gel, EtOAc); IR (film) v_{max} 3646, 3464, 2979, 1738, 1236, 786 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.81 (s, 2H), 6.37 (d, J = 9.3 Hz, 1H), 5.46 (d, J = 9.3 Hz, 1H), 3.88 (s, 3H), 3.84 (s, 3H), 3.70 (d, J = 7.6 Hz, 1H), 2.84 (d, J = 18.6 Hz, 1H), 2.71–2.52 (m, 1H), 2.13–2.01 ppm (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 202.2, 170.7, 153.0, 146.5, 128.6, 128.1, 126.7, 124.3, 122.8, 112.0, 99.5, 60.0, 58.8, 55.8, 54.2, 51.6, 49.8, 38.1, 37.9, 37.6, 31.4 ppm; HRMS calcd. For C₂₁H₂₅NO₆Na⁺ [M + Na]⁺ 410.1574, found 410.1575.

Tertiary Amine 12a

To a stirred solution of LiAlH₄ (300 mg, 7.91 mmol) in THF (120 mL) at 0 °C was added a solution of lactam 12' (300 mg, 0.77 mmol) in THF (30.0 mL). The resulting mixture was warmed to reflux and stirred for 2 h before it was cooled to room temperature, quenched with sodium potassium tartrate (80 mL, sat. aq.) and diluted with EtOAc (50 mL), and stirred vigorously for 1 h. The layers were separated and the aqueous layer was extracted with ethyl acetate (3×80 mL), the combined organic layer was washed with water (50 mL), brine (50mL), dried (Na_2SO_4) and concentrated under reduced pressure. Flash column chromatography (silica gel, EtOAc:MeOH 8:1) afforded tertiary amine 12a (212 mg, 73%) as a brown amorphous solid. 12a: $R_f = 0.43$ (silica gel, EtOAc:MeOH 1:1); IR (film) v_{max} 3653, 3276, 2824, 1261, 1060, 684 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 6.80 (d, J = 8.3 Hz, 1H), 6.71 (d, J = 8.3 Hz, 1H), 6.24 (dd, J = 9.4, 3.2 Hz, 1H), 5.45 (dd, J = 9.3, 2.2 Hz, 1H), 5.08 (s, 1H), 3.95 (s, 3H), 3.82 (s, 3H), 3.40 (s, 3H), 3.36 (s, 3H), 3.15 (d, J = 7.9 Hz, 1H), 2.93 (t, J = 10.4 Hz, 1H), 2.80–2.69 (m, 1H), 2.59–2.52 (m, 1H), 2.48 (s, 3H), 2.24–2.08 (m, 2H), 1.74 (dd, J = 14.6, 10.5 Hz, 1H), 1.61 ppm (m, 1H); ¹³C NMR (101 MHz, CD₃OD): δ 154.1, 148.1, 136.1, 128.9, 128.8, 127.6, 123.7, 111.7, 102.8, 75.0, 60.8, 60.8, 56.1, 51.5, 49.5, 49.4, 46.8, 33.6, 31.8, 31.6 ppm; HRMS calcd. For $C_{21}H_{31}NO_5^+$ [M + H]⁺ 376.2118, found 376.2119.

Ammonium Salt 13

To a stirred solution of tertiary amine **12a** (430 mg, 1.15 mmol) in CH₂Cl₂ (10.0 mL) at room temperature was added MeI (2.00 mL, 32.1 mmol). The resulting mixture was stirred for 10 h before it was concentrated under reduced pressure to afford the crude ammonium salt **13** (500 mg, 84%) as a brown solid, which was used directly without further purification. **13**: $R_f = 0.05$ (silica gel, EtOAc:MeOH 1:1); IR (film) v_{max} 3287, 2824, 1457, 1257, 1060, 710 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 6.88 (d, J = 8.2 Hz, 1H), 6.78 (d, J = 8.3 Hz, 1H), 6.36 (d, J = 9.5 Hz, 1H), 5.49 (d, J = 9.5 Hz, 1H), 5.23 (s, 1H), 4.12 (m, 1H), 4.01 (s, 3H), 3.84 (s, 3H), 3.68 (td, J = 14.0, 3.4 Hz, 1H), 3.54 (s, 3H), 3.53 (s, 3H), 3.44 (s, 3H), 3.28–3.26 (m, 1H), 3.22 (s, 3H), 3.16–3.05 (m, 1H), 2.51–2.42 (m, 2H), 2.17 (dd, J = 17.4, 9.0 Hz, 1H), 1.71 ppm (d, J = 16.3 Hz, 1H); ¹³C NMR (101 MHz, CD₃OD): δ 154.3, 147.8, 134.1, 128.6, 128.4, 127.2, 123.9, 112.4, 101.6, 73.8, 71.3, 61.0, 60.6, 58.1, 56.3, 53.8, 50.6, 50.1, 48.5, 31.1, 28.5, 27.8 ppm; HRMS calcd. For C₂₂H₃₂NO₅⁺ [M]⁺ 390.2275, found 390.2274.

Preparation of Ammonium salt 13 via Reduction of 12 and Double Methylation

(i) To a stirred solution of LiAlH₄ (122 mg, 3.20 mmol) in THF (20 mL) at 0 $^{\circ}$ C was added a solution of lactam **12** (120 mg, 0.32 mmol) in THF (15 mL). The resulting mixture was warmed to reflux and stirred for 8 h before it was cooled to room temperature, quenched with sodium potassium tartrate (30 mL, sat. aq.) and diluted with EtOAc (30 mL), and stirred vigorously for 1 h. The layers were separated and the aqueous layer was extracted with ethyl acetate (3 × 30 mL), the combined organic layer was washed with water (50 mL), brine (50

mL), dried (Na₂SO₄) and concentrated under reduced pressure.

(ii) To a stirred solution of crude amine 12a' (obtained above) in CH₂Cl₂ (2.0 mL) at room temperature was added MeI (0.28 mL, 4.40 mmol). The resulting mixture was stirred for 10 h before it was concentrated under reduced pressure afforded crude ammonium salt 13 (70.3 mg, 42% over two steps). All physical data of ammonium salt 13 is identical to those obtained from methylation of tertiary amine 12a.

Diene 14

A stirred solution of ammonium salt **13** (0.100 g, 0.19 mmol) in KOH (20% in MeOH, 5.8 mL) was warmed to 70 °C and stirred for 10 h before it was cooled to room temperature and diluted with water (10 mL). The resulting mixture was extracted with CH₂Cl₂ (3 × 20 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, EtOAc:MeOH 4:1) afforded diene **14** (60.0 mg, 80%) as a brown amorphous solid. **14**: $R_{\rm f} = 0.38$ (silica gel, EtOAc:MeOH 1:1); IR (film) $v_{\rm max}$ 3345, 3043, 1648, 1386, 1123, 822 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 6.82 (d, *J* = 8.1 Hz, 1H), 6.72 (d, *J* = 8.3 Hz, 1H), 6.13–6.07 (m, 2H), 5.56 (t, *J* = 4.2 Hz, 1H), 5.09 (s, 1H), 3.91 (s, 3H), 3.81 (s, 3H), 3.28 (s, 3H), 3.31 (s, 3H), 2.65 (dd, *J* = 21.1, 4.3 Hz, 1H), 2.44 (dd, *J* = 20.0, 4.7 Hz, 1H), 2.36–2.30 (m, 1H), 2.18 (td, *J* = 11.8, 4.1 Hz, 1H), 2.05–2.00 (m, 1H), 2.00 (s, 6H), 2.08 ppm (td, *J* = 11.1, 4.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 152.4, 147.6, 138.9, 130.7, 128.5, 127.2, 125.1, 123.0, 122.4, 110.6, 100.9, 70.6, 60.2, 55.6, 55.3, 49.0, 48.3, 48.1, 45.4, 45.4, 37.2, 31.4 ppm; HRMS calcd. For C₂₂H₃₂NO₅⁺ [M]⁺ 390.2275, found 390.2277.

(i) To a stirred solution of dimethyl ketal **14** (220 mg, 0.56 mmol) in MeOH (5.0 mL) at room temperature was added HCl (10% aq., 20 mL). The resulting mixture was stirred for 1 h before it was slowly quenched with NaHCO₃ (40 mL, sat. aq.) and water (20 mL). The resulting mixture was extracted with CH_2Cl_2 (3 × 70 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure to afford the crude dienone **15a** (124 mg, 67%) as a dark purple solid, which was used directly without further purification.

(ii) To a stirred solution of crude dienone **15a** (obtained above) in 1,2-dichloroethane (10.0 mL) at room temperature was added NaHCO₃ (640 mg, 7.62 mmol) followed by ethyl chloroformate (0.18 mL, 1.89 mmol). The resulting mixture was warmed to reflux and stirred for 2 h before it was cooled to room temperature and quenched with NaHCO₃ (40 mL, sat. aq.) and water (30 mL). The resulting mixture was extracted with CH₂Cl₂ (3 × 80 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 5:1) afforded ethyl carbamate **15** (136 mg, 93%) as an amorphous yellow solid. **15**: $R_{\rm f} = 0.58$ (silica gel, hexanes:EtOAc 2:1); IR (film) v_{max} 3054, 2987, 1693, 1659, 1422, 909, 743 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.96 (br s, 1 H), 6.91–6.77 (m, 3H), 6.39 (d, J = 9.8 Hz, 2H), 5.87 (d, J = 9.4 Hz, 1H), 4.01 (br s, 2H), 3.89 (s, 6H), 3.26–2.99 (m, 2H), 2.70 (br s, 3H), 2.09–1.76 (m, 2H), 1.27–1.03 ppm (m, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 186.6, 156.1, 155.7, 153.4, 150.6, 130.1, 130.0, 129.1, 126.7,

126.5, 124.3, 122.7, 113.3, 61.2, 60.8, 55.9, 45.3, 37.4, 37.1, 34.6, 34.1, 14.4 ppm; HRMS calcd. For $C_{22}H_{32}NO_5^+$ [M]⁺ 406.1625, found 406.1627.

Ketone 18

(i) To a stirred solution of diene **14** (168 mg, 0.43 mmol) in MeOH (10 mL) at room temperature was added 5% Pd–CaCO₃ (916 mg, 0.43 mmol). The resulting mixture was evacuated and filled with hydrogen (3 ×) and stirred under an atmosphere of H₂ (balloon) for 16 h. The resulting mixture was filtered through Celite[®] and eluted with MeOH (3 × 8 mL), and concentrated under reduced pressure to afford crude alkene **14a** (as a ~5:1 mixture with 1,2-hydrogenated product **14b** based on ¹H NMR analysis, 154 mg, 91% combined yield) as an amorphous yellow solid, which was used directly without further purification. $R_f = 0.18$ (silica gel, EtOAc:MeOH 1:1)

(ii) To a stirred solution of the crude alkene **14a** (**14a**:**14b**~5:1, obtained above) in MeOH (5 mL) at room temperature was added HCl (10% aq., 10 mL). The resulting mixture was stirred for 1 h before it was slowly quenched with NaHCO₃ (15 mL, sat. aq.) and water (15 mL). The resulting mixture was extracted with CH_2Cl_2 (3 × 50 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, EtOAc:MeOH 4:1) afforded ketone **16** (98.0 mg, 72%) as an amorphous yellow solid. *Note: Due the highly polar nature of dimethylamine ketone 16, <i>this compound was*

semi-purified by flash column chromatography and subjected directly to the following reaction.

16: $R_{\rm f} = 0.15$ (silica gel, EtOAc:MeOH 1:1); IR (film) $v_{\rm max}$ 3690, 3053, 3005, 1721, 1458, 1260 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.89 (d, J = 8.3 Hz, 1H), 6.85 (d, J = 8.3 Hz, 1H), 6.11 (br s, 1H), 4.69 (s, 1H), 3.92 (s, 3H), 3.85 (s, 3H), 3.43 (d, J = 13.9 Hz, 2H), 3.03–2.92 (m, 1H), 2.74–2.62 (m, 1H), 2.60–2.50 (m, 2H), 2.38–2.30 (m, 2H), 2.17 (s, 6H), 1.85–1.65 ppm (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 211.0, 151.1, 147.3, 132.2, 128.8, 127.2, 125.7, 123.6, 112.5, 79.8, 60.2, 55.8, 54.8, 50.7, 44.7, 37.2, 31.3, 29.9, 28.8 ppm; HRMS calcd. For C₂₀H₂₈NO₄⁺ [M]⁺ 346.2013, found 346.2011.

Ketone 17

(i) To a stirred solution of ketone **16** (254 mg, 0.74 mmol) in CH₂Cl₂ (5.0 mL) at room temperature was added acetic anhydride (0.70 mL, 7.41 mmol), Et₃N (1.0 mL, 7.17 mmol) and DMAP (9.0 mg, 74 µmol). The resulting mixture was stirred for 4 h before it was quenched with NaHCO₃ (5.0 mL, sat. aq.). The resulting mixture was extracted with CH₂Cl₂ (3×15 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure to afford crude acetate **16a** as a brown amorphous solid, which was used directly without further purification. *R*_f = 0.25 (silica gel, EtOAc:MeOH 1:1).

(ii) To a stirred solution of the crude acetate **16a** (obtained above) in anhydrous THF:MeOH (1:1, 10.0 mL) at -78 °C was added SmI₂ (0.1 M in THF) until a blue color persists (~30 mL, 3.0 mmol). The resulting mixture was stirred for 0.5 h before it was quenched with K₂CO₃ (10 mL, sat. aq.). The resulting mixture was extracted with CH₂Cl₂ (4 × 30 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, EtOAc:MeOH 4:1) afforded ketone **17** (189 mg, 78% over two steps) as an amorphous white solid. *Note: Due the highly polar nature of dimethylamine ketone 17, <i>this compound was semi-purified by flash column chromatography and subjected directly to the following reaction.*

17: $R_{\rm f} = 0.30$ (silica gel, EtOAc:MeOH 1:1); IR (film) $v_{\rm max}$ 3691, 3059, 1707, 1661, 1550, 1262 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.85 (d, J = 8.1 Hz, 1H), 6.81 (d, J = 8.7 Hz, 1H), 5.90 (s, 1H), 3.90 (s, 3H), 3.84 (s, 3H), 3.53 (d, J = 14.6 Hz, 1H), 3.41 (s, 2H), 2.77–2.65 (m, 2H), 2.63–2.52 (m, 2H), 2.48 (d, J = 14.6 Hz, 1H), 2.47–2.36 (m, 2H), 2.19 (s, 1H), 2.11 (s, 6H), 1.86–1.63 ppm (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 210.9, 151.3, 147.8, 135.3, 131.7, 126.6, 123.2, 121.7, 112.0, 60.3, 55.9, 55.4, 53.3, 45.1, 44.3, 42.0, 32.9, 31.2, 30.0, 29.7 ppm; HRMS calcd. For C₂₀H₂₈NO₃⁺ [M]⁺ 330.2064, found 330.2065.

Ketone 18

(i) To a stirred solution of dimethyl amine **17** (16.0 mg, 49 μ mol) in 1,2-dichloroethane (3 mL) at room temperature was added NaHCO₃ (81.6 mg, 0.97 mmol) followed by 1-chloroethyl chloroformate (0.11 mL, 1.02 mmol). The resulting mixture was warmed to reflux and stirred for 2 h before it was cooled to room temperature and quenched with NaHCO₃ (2 mL, sat. aq.) and water (2 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂(3 × 8 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure to afford a crude residue, which was dissolved in MeOH (3 mL) and warmed to reflux and heated for 1.5 h before it was cooled to room temperature and

concentrated under reduced pressure to afford crude amine **17a** (14.3 mg, 93%) as an amorphous yellow solid. **17a**: $R_f = 0.10$ (silica gel, EtOAc:MeOH 1:1).

(ii) To a stirred solution of crude amine **17a** (9.8 mg, 31 µmol) in CH₂Cl₂ (1.5 mL) at room temperature was added TsCl (11.8 mg, 62 µmol), DMAP (1.5 mg, 12 µmol) and Et₃N (0.10 mL, 0.72 mmol). The resulting mixture was stirred for 1.5 h before it was diluted with water (2 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 5 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded ketone **18** (10.0 mg, 69%) as an amorphous yellow solid. **18**: $R_f = 0.68$ (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 2960, 1700, 1610, 1490, 1160 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 6.5 Hz, 2H), 7.23 (d, J = 6.5 Hz, 2H), 6.85 (d, J = 8.7 Hz, 1H), 6.80 (d, J = 8.7 Hz, 1H), 5.93 (br s, 1H), 3.90 (s, 3H), 3.83 (s, 3H), 3.47 (d, J = 12.5 Hz, 1H), 3.40 (br s, 2H), 2.91 (dt, J = 12.8, 3.4 Hz, 1H), 2.56 (s, 3H), 2.47 (d, J = 12.4 Hz, 1H), 2.40 (s, 3H), 2.74–2.27 (m, 6H), 1.79 ppm (dt, J = 12.3, 3.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 210.5, 151.4, 147.7, 143.1, 135.1, 134.8, 130.9, 129.5, 127.2, 126.6, 123.3, 122.2, 112.2, 60.4, 55.9, 53.1, 46.9, 44.0, 42.0, 34.7, 33.5, 31.1, 29.9, 21.5 ppm; HRMS calcd. For C₂₆H₃₁NO₅SNa⁺ [M + Na]⁺ 492.1815, found 492.1818.

Dioxolane 18a

To a stirred solution of ketone **18** (18.0 mg, 38 μ mol) in CH₂Cl₂/ethylene glycol (1:1, 3.0 mL) at room temperature was added TMSCl (10 μ L, 79 μ mol). The resulting mixture was warmed to 50 °C and stirred for 5 h before it was cooled to 0 °C and quenched with NaHCO₃ (3 mL, sat. aq.). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 3 mL), the combined organic layer was washed with water (5 mL), brine (5 mL), dried

(Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) afforded dioxolane **18a** (18.2 mg, 92%) as an amorphous yellow solid. **18a**: $R_f = 0.45$ (silica gel, hexanes:EtOAc 2:1); IR (film) v_{max} 2900, 1510, 1460, 1160, 1080 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 7.2 Hz, 2H), 7.22 (d, J = 7.2 Hz, 2H), 6.80 (d, J = 8.6 Hz, 1H), 6.74 (d, J = 8.6 Hz, 1H), 5.71 (br s, 1H), 4.09–4.01 (m, 1H), 4.01–3.95 (m, 1H), 3.88 (s, 3H), 3.93–3.84 (m, 2H), 3.82 (s, 3H), 3.32 (d, J = 22.8 Hz, 1H), 3.23 (d, J = 22.0 Hz, 1H), 2.99 (dd, J = 14.4, 1.7 Hz, 1H), 2.81–2.69 (m, 1H), 2.59 (s, 3H), 2.64–2.49 (m, 2H), 2.38 (s, 3H), 2.44–2.28 (m, 2H), 2.17 (td, J = 13.7, 3.9 Hz, 1H), 1.84 (d, J = 12.2 Hz, 1H), 1.64 (d, J = 14.2 Hz, 1H), 1.57 ppm (dt, J = 13.7, 4.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 151.3, 147.8, 142.7, 137.3, 134.9, 133.1, 129.3, 127.2, 126.7, 123.1, 119.8, 111.6, 109.0, 64.5, 63.6, 60.2, 55.8, 47.6, 45.0, 42.3, 36.2, 34.7, 32.7, 30.1, 29.9, 21.4 ppm; HRMS calcd. For C₂₈H₃₅NO₆SNa⁺ [M + Na]⁺ 536.2077, found 536.2079.

Phenolic Ketone 19

(i) To a stirred solution of dioxolane **18a** (22 mg, 43 µmol) in THF (1.5 mL) at room temperature was added L-selectride (1.0 M in THF, 0.21 mL, 0.21 mmol). The resulting mixture was warmed to reflux and stirred for 24 h before it was cooled to room temperature and quenched with sodium potassium tartrate (3 mL, sat. aq.) and diluted with EtOAc (5 mL), and stirred vigorously for 1 h. The layers were separated and the aqueous layer was extracted with ethyl acetate (3 × 8 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure to afford crude phenol **18b** as a clear amorphous solid, which was used directly in the subsequent step without further purification. **18b**: $R_f = 0.39$ (silica gel, hexanes:EtOAc 2:1); ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.3 Hz, 1H), 6.57 (d, J = 8.3 Hz, 1H), 6.01 (s, 1H), 5.71 (br s,

1H), 4.10–4.02 (m, 1H), 4.02–3.93 (m, 1H), 3.86 (s, 3H), 3.93–3.82 (m, 2H), 3.33 (br d, *J* = 22.6 Hz, 1H), 3.25 (br d, *J* = 22.0 Hz, 1H), 3.15 (dd, *J* = 14.4, 2.4 Hz, 1H), 2.92–2.82 (m, 1H), 2.58 (s, 3H), 2.59–2.49 (m, 3H), 2.40 (s, 3H), 2.36–2.26 (m, 1H), 2.18 (br d, *J* = 13.3 Hz, 1H), 1.87 (br d, *J* = 12.3 Hz, 1H), 1.61 (d, *J* = 13.8 Hz, 1H), 1.62–1.56 ppm (m, 1H).

(ii) To a stirred solution of crude phenolic dioxolane **18b** (obtained above) in MeOH (1.5 mL) at room temperature was added HCl (4.0 N aq., 0.1 mL, 0.40 mmol). The resulting mixture was warmed to 45 °C stirred for 3 h before it was cooled to 0 °C quenched with NaHCO₃ (5 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 8 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded phenolic ketone 19 (15 mg, 77% over two steps) as a clear amorphous solid. 19: $R_{\rm f} = 0.30$ (silica gel, hexanes:EtOAc 2:1); IR (film) v_{max} 3440, 2950, 1690, 1490, 1160 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 8.6 Hz, 2H), 7.23 (d, J = 8.6 Hz, 2H), 6.77 (d, J = 7.6 Hz, 1H), 6.63 (d, J = 7.6 Hz, 1H), 6.05 (s, 1H), 5.92 (br s, 1H), 3.88 (s, 3H), 3.65 (d, J = 13.6 Hz, 1H), 3.40 (br s, 2H), 2.98 (dt, J = 12.3, 4.8 Hz, 1H), 2.82 (dt, J = 12.3, 4.1 Hz, 1H), 2.67 (br t, J = 13.6 Hz) 1H), 2.57 (s, 3H), 2.60–2.51 (m, 1H), 2.40 (s, 3H), 2.49–2.37 (m, 3H), 2.32 (dt, J = 12.3, 4.1 Hz, 1H), 1.70 ppm (dt, J = 12.3, 5.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 210.6, 144.8, 143.1, 143.0, 135.3, 134.8, 129.5, 127.2, 126.9, 123.8, 122.1, 119.2, 109.5, 56.2, 51.9, 46.9, 43.5, 42.2, 34.5, 31.5, 31.0, 29.8, 21.5 ppm; HRMS calcd. For C₂₅H₂₉NO₅SNa⁺ [M + Na]⁺ 478.1659, found 478.1660.

Tetracyclic Ketone 20 and 20a

(i) To a stirred solution of phenolic ketone 19 (47 mg, 0.10 mmol) in CH₂Cl₂ (2.0 mL) at room temperature was added a solution of pyridinium tribromide (freshly recrystallized, 66 mg, 0.20 mmol) in acetic acid (5.0 mL) dropwise. The resulting mixture was stirred for 30 min before it was diluted with toluene and concentrated under reduced pressure. The resulting residue was redissolved in CH_2Cl_2 (5 mL) and water (5 mL), extracted with CH_2Cl_2 (3 × 5 mL), the combined organic layer was washed with water (10 mL), brine (10 mL), dried (Na₂SO₄) and concentrated under reduced pressure. To a stirred solution of the crude reaction mixture (obtained above) in MeCN (5.0 mL) at room temperature was added LiBr (44.8 mg, 0.52 mmol) and Et₃N (0.14 mL, 1.03 mmol). The resulting mixture was warmed to 60 °C and stirred for 20 min before it was cooled to room temperature and quenched with NH₄Cl (5 mL, sat. aq.) and water (5 mL). The layers were separated and the aqueous layer was extracted with EtOAc (3×10 mL), the combined organic layer was washed with water (15 mL), brine (15 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 7:1) afforded an inseparable mixture of tetracycles 20 and 20a (25 mg, 53% over two steps) as an amorphous yellow solid. 20+20a: $R_{\rm f} = 0.28$ (silica gel, hexanes: EtOAc 1:1); ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 7.7 Hz, 2H), 7.32–7.27 (m, 2H), 6.88 (s, 0.3H), 6.68 (s, 1.3H), 5.91–5.85 (m, 1H), 5.11 (s, 0.4H), 5.06 (s, 0.6H), 3.89 (s, 3H), 3.33-3.18 (m, 1H), 3.12 (dd, J = 5.6 Hz, 1H), 3.13-2.96 (m, 3H), 2.71–2.57 (m, 2H), 2.65 (s, 3H), 2.42 (s, 3H), 2.33–2.14 (m, 2H), 2.18 ppm (td, J = 12.0, 5.5Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 205.9, 205.4, 144.6, 144.1, 143.9, 143.6, 143.5, 143.1, 137.9, 137.6, 134.2, 134.1, 131.6, 130.4, 129.8, 129.7, 127.3, 126.8, 126.3, 124.2, 123.7, 120.5, 116.6, 113.5, 113.2, 90.4, 90.3, 56.9, 56.8, 50.2, 49.7, 46.2, 46.1, 37.4, 37.4, 36.5, 36.4, 35.3, 35.2, 29.9, 29.2, 27.8, 27.6, 21.5 ppm; 20: HRMS calcd. For C₂₅H₂₇ NO_5SNa^+ [M + Na]⁺ 476.1502, found 476.1505; **20a**: HRMS calcd. For $C_{25}H_{26}BrNO_5SNa^+$ [M + Na]⁺ 554.0607, found 554.0604.

Pentacyclic Alkene 21

(i) To a stirred solution of tetracyclic ketone **20+20a** (14.0 mg, 31 µmol) in EtOAc/MeOH (1:3, 3.0 mL) at room temperature was added Pd/C (10% wt/wt, 6.6 mg, 6 µmol). The resulting mixture was evacuated and filled with hydrogen (3 ×) and stirred under an atmosphere of H₂ (balloon) for 1 h. The resulting mixture was filtered through Celite[®] and eluted with EtOAc (3 × 8 mL), and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) afforded tetracyclic ketone **20b** (12.7 mg,

90%) as a clear amorphous solid. To a stirred solution of tetracyclic ketone **20b** (7.8 mg, 17 μ mol) in CH₂Cl₂/ethylene glycol (1:1, 1.0 mL) at room temperature was added TMSCI (50 μ L, 0.39 mmol). The resulting mixture was warmed to 50 °C and stirred for 5 h before it was cooled to 0 °C and quenched with NaHCO₃ (1 mL, sat. aq.). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 3 mL), the combined organic layer was washed with water (5 mL), brine (5 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) afforded dioxolane **20c** (6.9 mg, 80%) as a clear amorphous solid.

20b: $R_{\rm f} = 0.30$ (silica gel, hexanes:EtOAc 2:1); IR (film) $v_{\rm max}$ 2820, 1720, 1600, 1520, 1350 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 7.8 Hz, 2H), 7.33 (d, J = 7.8 Hz, 2H), 6.70 (d, J = 7.8 Hz, 1H), 6.60 (d, J = 7.8 Hz, 1H), 5.08 (s, 1H), 3.89 (s, 3H), 3.34–3.23 (m, 1H), 3.15–3.06 (m, 1H), 2.82–2.66 (m, 2H), 2.72 (s, 3H), 2.59–2.46 (m, 2H), 2.43 (s, 3H), 2.33 (d, J = 12.7 Hz, 1H), 2.20–2.07 (m, 1H), 2.05–1.96 (m, 1H), 1.96–1.88 (m, 2H), 1.88–1.77 (m, 1H), 1.35 ppm (q, J = 13.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): ¹³C NMR (101 MHz, CDCl₃): δ 207.5, 146.0, 143.6, 142.6, 133.8, 129.8, 128.7, 127.4, 124.9, 121.3, 114.5, 90.4, 56.7, 50.3, 46.7, 39.4, 34.9, 34.2, 33.7, 27.0, 23.4, 21.5, 20.8 ppm; HRMS calcd. For C₂₅H₂₉NO₅SNa⁺ [M + Na]⁺ 478.1659, found 478.1661.

20c: $R_f = 0.45$ (silica gel, hexanes:EtOAc 2:1); IR (film) v_{max} 2960, 2360, 1510, 1340, 1270 cm^{-1; 1}H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.8 Hz, 2H), 7.27 (d, J = 8.8 Hz, 2H), 6.72 (d, J = 7.5 Hz, 1H), 6.60 (d, J = 7.5 Hz, 1H), 4.57 (s, 1H), 4.19–4.12 (m, 1H), 3.97–3.89 (m, 1H), 3.87–3.78 (m, 1H), 3.84 (s, 3H), 3.77–3.70 (m, 1H), 3.37–3.24 (m, 1H), 2.89–2.77 (m, 1H), 2.72–2.61 (m, 1H), 2.66 (s, 3H), 2.59–2.46 (m, 1H), 2.40 (s, 3H), 2.17–2.02 (m, 2H), 1.93–1.81 (m, 1H), 1.81–1.67 (m, 1H), 1.65–1.42 (m, 4H), 1.35–1.21 ppm (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 143.2, 141.9, 134.5, 130.0, 129.7, 127.4, 125.3, 120.3, 113.7, 108.3, 93.3, 66.4, 64.8, 56.6, 46.5, 46.2, 36.8, 34.9, 34.3, 33.0, 23.8, 23.5, 21.5, 21.0 ppm; HRMS calcd. For C₂₇H₃₃NO₆SNa⁺ [M + Na]⁺ 522.1921, found 522.1922.

(ii) To a stirred solution of pentacyclic dioxolane 20c (23.0 mg, 46 µmol) in carbon tetrachloride (freshly distilled, 3.6 mL) at room temperature was added benzoyl peroxide (freshly recrystallized, 5.6 mg, 23 µmol) and *N*-bromosuccinimide (8.6 mg, 48 mmol). The

resulting mixture was warmed to reflux and stirred for 1 h before it was cooled to room temperature and added Et₃N (50 µL, 0.36 mmol). The resulting mixture was warmed to reflux and stirred for 15 min before it was cooled to room temperature. The resulting mixture was washed with NaHCO₃ (5 mL, sat. aq.), Na₂S₂O₃ (5 mL, sat. aq.), brine (5 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded an inseparable mixture of alkene **21** and starting material **20c** (**21:20c** ~ 3:1, 18 mg, 60% yield for **21** based on ¹H NMR calculation) as an amorphous solid. **21+20c**: $R_f = 0.45$ (silica gel, hexanes:EtOAc 2:1); ¹H NMR (400 MHz, CD₃CN, selected signals for **23**): δ 7.50 (d, J = 7.7 Hz, 2H), 7.36 (d, J = 7.7 Hz, 2H), 6.77 (d, J = 8.1 Hz, 1H), 6.66 (d, J = 8.1 Hz, 1H), 6.38 (d, J = 9.3 Hz, 1H), 5.81(dd, J = 12.7, 8.7 Hz, 1H), 4.65 (s, 1H), 4.14–4.02 (m, 1H), 3.90–3.72 (m, 3H), 3.86 (s, 3H), 3.03–2.92 (m, 1H), 2.88–2.77 (m, 1H), 2.64–2.57 (m, 1H), 2.59 (s, 3H), 2.42 (s, 3H), 1.80–1.62 (m, 3H), 1.56–1.38 (m, 2H), 1.08 ppm (qd, J = 12.7, 3.3 Hz, 1H).


```
Dihydrocodeinone
```


To a stirred solution liquid ammonia (10 mL), THF (1.0 mL) and ^tBuOH (0.1 mL) at -78 °C was added lithium metal (finely-cut, 30 mg) in small portions. The resulting solution was

stirred for 15 min before a solution of tosylamide **21** (ca. ~3:1 mixture with **20c**, 8.0 mg, 16 μ mol) in THF (1.5 mL) was added *via* a cannula. The resulting mixture was stirred for 10 min before it was quenched with NH₄Cl (10 mL, sat. aq.) and MeOH (10 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 15 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, CH₂Cl₂:MeOH:NH₄OH 94:2:1) afforded hexacyclic dioxolane **21a** (3.8 mg, 69%) as an amorphous yellow solid.

To a stirred solution of dioxolane **21a** (obtained above, 3.8 mg, 11 µmol) in MeOH (3.0 mL) at room temperature was added HCl (4.0 N aq., 0.2 mL, 0.80 mmol). The resulting mixture was warmed to 70 °C stirred for 6 h before it was cooled to 0 °C quenched with NaHCO₃ (5 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 8 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, CH_2Cl_2 :MeOH:NH₄OH 94:2:1) afforded dihydrocodeinone (2.5 mg, 75%) as a clear amorphous solid.

21a: $R_f = 0.20$ (silica gel, EtOAc:MeOH 1:1); IR (film) v_{max} 2920, 2360, 1510, 1440, 1280 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.74 (d, J = 8.2 Hz, 1H), 6.62 (d, J = 8.2 Hz, 1H), 4.49 (s, 1H), 4.24–4.14 (m, 1H), 4.04 (q, J = 6.5 Hz, 1H), 3.87 (s, 3H), 3.96–3.83 (m, 1H), 3.79 (q, J = 6.2 Hz, 1H), 3.13–3.06 (br s, 1H), 3.00 (d, J = 18.3 Hz, 1H), 2.51 (dd, J = 12.2, 4.8 Hz, 1H), 2.43–2.29 (m, 1H), 2.41 (s, 3H), 2.20 (td, J = 12.1, 3.7 Hz, 2H), 1.86 (td, J = 12.2, 4.9 Hz, 1H), 1.74–1.61 (m, 2H), 1.60–1.46 (m, 2H), 1.15 ppm (qd, J = 12.9, 3.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 146.5, 142.1, 129.1, 126.4, 118.6, 113.4, 108.6, 94.4, 66.4, 64.9, 59.5, 56.5, 47.1, 43.6, 42.9, 42.6, 36.5, 33.4, 22.3, 20.1 ppm; HRMS calcd. For C₂₀H₂₆NO₄⁺ [M + H]⁺ 344.1856, found 344.1859.

Dihydrocodeinone: $R_{\rm f} = 0.17$ (silica gel, EtOAc:MeOH 1:1); IR (film) $v_{\rm max}$ 3410, 2960, 1725, 1510, 1430 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.68 (d, J = 8.2 Hz, 1H), 6.62 (d, J = 8.2 Hz, 1H), 4.64 (s, 1H), 3.89 (s, 3H), 3.16 (br s, 1H), 3.01 (d, J = 18.5 Hz, 1H), 2.61–2.50 (m, 2H), 2.47–2.38 (m, 2H), 2.41 (s, 3H), 2.31 (td, J = 14.2, 4.3 Hz, 1H), 2.17 (td, J = 11.8, 2.9 Hz, 1H), 2.05 (td, J = 12.2, 4.8 Hz, 1H), 1.89–1.78 (m, 2H), 1.24 ppm (qd, J = 13.1, 3.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 207.9, 145.4, 142.8, 127.2, 126.3, 119.8, 114.5, 91.4, 59.2,

56.7, 46.9, 46.8, 42.9, 42.7, 40.2, 35.6, 25.6, 20.0 ppm; HRMS calcd. For $C_{18}H_{22}NO_3^+$ [M + H]⁺ 300.1594, found 300.1597.

Dihydrocodeine

To a stirred solution of dihydrocodeinone (2.5 mg, 8.4 µmol) in THF (1.0 mL) at 0 °C was added LiAlH₄ (10 mg, 0.26 mmol). The resulting mixture was stirred for 45 min before it was quenched with sodium potassium tartrate (3 mL, sat. aq.) and diluted with EtOAc (3 mL), and stirred vigorously for 1 h. The layers were separated and the aqueous layer was extracted with EtOAc (4 × 5 mL), the combined organic layer was dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, CH₂Cl₂:MeOH:NH₄OH 94:2:1) afforded dihydrocodeine (1.9 mg, 74%) as a clear amorphous solid. **Dihydrocodeine**: R_f = 0.23 (silica gel, EtOAc:MeOH 1:3); IR (film) v_{max} 3470, 2950, 1510, 1250, 1050 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.70 (d, *J* = 8.2 Hz, 1H), 6.61 (d, *J* = 8.2 Hz, 1H), 4.59 (d, *J* = 5.2 Hz, 1H), 4.02 (br s, 1H), 3.86 (s, 3H), 3.06 (br s, 1H), 2.98 (d, *J* = 18.5 Hz, 1H), 2.49 (dd, *J* = 12.0, 4.8 Hz, 1H), 1.68 (d, *J* = 12.5 Hz, 1H), 1.59–1.51 (m, 1H), 1.49–1.37 (m, 2H), 1.17–1.02 ppm (m, 1H); ¹³C NMR (101 MHz, CDCl₃): 146.2, 141.7, 130.0, 126.5, 119.2, 113.3, 90.3, 67.1, 60.0, 56.4, 47.0, 42.8, 41.9, 40.4, 37.0, 27.2, 20.2, 18.9 ppm; HRMS calcd. For C₁₈H₂₄NO₃⁺ [M + H]⁺ 302.1754, found 302.1751.

Comparison Table of Notable Contributions in the Synthesis of Morphinans:

(Longest linear sequence and approximated overall yield were calculated based on the best of our knowledge with reference to the original literature)

Author (Year) ^{ref}	Final Target	Racemic /Asymmetric	Longest linear sequence (steps)	Overall yield
This work	dihydrocodeinone	Racemic /Asymmetric	25 steps	0.1%
Fukuyama/Inoue (2017) ^w	Morphine	Asymmetric	18 steps	0.3%
Smith (2016) ^v	Morphine	Racemic	14 steps	6.6%
Zhang (2015) ^u	Codeine	Racemic	19 steps	3.0%
Opatz (2014) ^t	Dihydrocodeine	Asymmetric	12 steps	31.0%
Hudlicky (2014) ^s	Hydromorphone	Asymmetric	12 steps	2.3%
Chida (2013) ^r	Morphine (Formal)	Asymmetric	28 steps	2.0%
Metz (2011) ^q	Codeine	Racemic	23 steps	3.5%
Fukuyama (2010) ^p	Morphine	Asymmetric	17 steps	5.0%
Stork (2009) ^o	Codeine	Racemic	23 steps	2.1%
Magnus (2009) ⁿ	Codeine	Racemic	13 steps	20.0%
Guillou/Iorga (2008) ^m	Codeine	Racemic	14 steps	0.6%
Trost $(2005)^{1}$	Morphine	Asymmetric	16 steps	3.2%
Taber $(2002)^k$	Morphine	Asymmetric	23 steps	0.8%
White (1997) ^j	Morphine	Asymmetric	28 steps	3.0%
Mulzer (1996) ⁱ	Dihydrocodeinone	Asymmetric	11 steps	11.5%
Overman (1993) ^h	Dihydrocodeinone	Asymmetric	15 steps	4.7%
Parker (1992) ^g	Dihydro-isocodeine	Racemic	11 steps	11.4%
Fuchs $(1987)^{\rm f}$	Morphine	Racemic	27 steps	1.1%
Rapoport (1983) ^e	Codeine	Racemic	26 steps	1.2%
Rice (1980) ^d	Dihydrocodeinone	Asymmetric	10 steps	29.0%
Grewe (1967) ^c	Dihydro-thebainone	Racemic	9 steps	0.8%
Ginsberg (1954) ^b	Dihydro-thebainone	Racemic	21 steps	8.9%
Gates (1952) ^a	Morphine	Asymmetric	23 steps	0.01%

References: (a) Gates, M.; Tschudi, G. J. Am. Chem. Soc. 1952, 74, 1109. (b) Elad, D.;
Ginsburg, D. J. Am. Chem. Soc. 1954, 76, 312. (c) Grewe, R.; Friedrichsen, W. Chem. Ber.
1967, 100, 1550. (d) Rice, K. C. J. Org. Chem. 1980, 45, 3135. (e) Moos, W. H.; Gless, R. D.;
Rapoport, H. J. Org. Chem. 1983, 48, 227. (f) Toth, J. E.; Fuchs, P. L. J. Org. Chem. 1987, 52,
473. (g) Parker, K. A.; Fokas, D. J. Am. Chem. Soc. 1992, 114, 9688. (h) Hong, C. Y.; Kado,

N.; Overman, L. E. J. Am. Chem. Soc. 1993, 115, 11028. (i) Mulzer, J.; Duerner, G.; Trauner, D. Angew. Chem. Int. Ed. 1996, 35, 2830. (j) White, J. D.; Hrnciar, P.; Stappenbeck, F. J. Org. Chem. 1997, 62, 5250. (k) Taber, D. F.; Neubert, T. D.; Rheingold, A. L. J. Am. Chem. Soc. 2002, 124, 12416. (l) Trost, B. M.; Tang, W.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 14785. (m) Verin, M.; Barre, E.; Iorga, B.; Guillou, C. Chem. Eur. J. 2008, 14, 6606. (n) Magnus, P.; Sane, N.; Fauber, B. P.; Lynch, V. J. Am. Chem. Soc. 2009, 131, 16045. (o) Stork, G.; Yamashita, A.; Adams, J.; Schulte, G. R.; Chesworth, R.; Miyazaki, Y.; Farmer, J. J. J. Am. Chem. Soc. 2009, 131, 11402. (p) Koizumi, H.; Yokoshima, S.; Fukuyama, T. Chem. Asian J. 2010, 5, 2192. (q) Erhard, T.; Ehrlich, G.; Metz, P. Angew. Chem. Int. Ed. 2011, 50, 3892. (r) Ichiki, M.; Tanimoto, H.; Miwa, S.; Saito, R.; Sato, T.; Chida, N. Chem. Eur. J. 2013, 19, 264. (s) Varghese, V.; Hudlicky, T. Angew. Chem. Int. Ed. 2014, 53, 4355. (t) Geffe, M.; Opatz, T. Org. Lett. 2014, 16, 5282. (u) Li, Q.; Zhang, H. Chem. Eur. J. 2015, 21, 16379. (v) Chu, S.; Munster, N.; Balan, T.; Smith, M. D. Angew. Chem. Int. Ed. 2016, 55, 14306. (w) Umihara, H.; Yokoshima, S.; Inoue, M.; Fukuyama, T. Chem. Eur. J. 2017, 23, 6993.

Alkene 2j

To a stirred solution of methyltriphenylphosphonium bromide (dried over P₂O₅, 10.0 g, 30.0 mmol) in THF (150 mL) at 0 °C was added nBuLi (2.5 M in hexanes, 8.90 mL, 22.3 mmol). The resulting mixture was stirred for 15 min before a solution of hemiacetal-hydroxy aldehyde mixture (4+4', 1.60 g, 5.55 mmol) in THF (30 mL) was added. The resulting mixture was stirred for 1 h before it was warmed to room temperature and quenched with NH₄Cl (40 mL, sat. aq.) and water (40 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3×50 mL), the combined organic layer was washed with water (80 mL), brine (80 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes: EtOAc 4:1) afforded alkene 2j (1.13 g, 71%) as an amorphous white solid. 2j: $R_f = 0.50$ (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 3533, 3086, 3009, 1621, 1594, 1471, 1357 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 8.6 Hz, 1H), 6.97 (d, J = 8.7 Hz, 1H), 6.93–6.89 (m, 2H), 6.76–6.72 (m, 1H), 6.37 (dd, J = 17.5, 11.0 Hz, 1H), 5.68 (s, 1H), 5.56 (d, J = 17.5 Hz, 1H), 5.01 (d, J = 10.9 Hz, 1H), 3.93 (s, 3H), 3.91 (s, 3H), 3.62 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 152.3, 146.7, 146.6, 143.1, 134.6, 131.0, 130.3, 123.7, 122.7, 120.6, 119.3, 112.7, 112.0, 109.9, 60.6, 60.6, 55.8 ppm; HRMS calcd. For $C_{17}H_{18}O_4Na^+$ [M + Na]⁺ 309.1097, found 309.1095.

Alcohol 2k

To a stirred solution of alkene 2j (1.10 g, 3.84 mmol) in THF (100 mL) at -78 °C was added borane tetrahydrofuran complex (1.0 M in THF, 38.4 mL, 38.4 mmol). The resulting mixture was warmed to room temperature and stirred for 4 h before it was cooled to 0 °C and treated with NaOH (2.0 N aq., 5.16 mL, 10.3 mmol) and H₂O₂ (34.5% aq., 5.16 mL, 52.3 mmol). The resulting mixture was stirred for 4 h before it was quenched with NH₄Cl (80 mL, sat. aq.) and water (20 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (3×100 mL), the combined organic layer was washed with water (100 mL), brine (100 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 3:1) afforded alcohol 2k (1.02 g, 87%) as an amorphous white solid. **2k**: $R_f = 0.19$ (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 3620, 3233, 3004, 1620, 1459, 946 cm⁻¹; ¹H NMR (400 MHz, C_6D_6): δ 6.94 (d, J = 8.4 Hz, 1H), 6.83 (d, J = 7.7 Hz, 1H), 6.76 (t, J = 8.0 Hz, 1H), 6.63 (d, J = 8.5 Hz, 1H), 6.45 (d, J = 7.9 Hz, 1H), 3.68 (s, 3H), 3.65–3.59 (m, 2H), 3.37 (s, 3H), 3.15 (s, 3H), 2.78–2.61 ppm (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 151.3, 147.7, 146.7, 142.8, 132.3, 130.1, 124.9, 123.4, 123.3, 119.5, 112.0, 109.8, 63.1, 60.5, 55.8, 55.8, 35.8 ppm; HRMS calcd. For $C_{17}H_{20}O_5Na^+$ [M + Na]⁺ 327.1203, found 327.1203.

Allylic Alcohol 6g

(i) To a stirred solution of oxalyl chloride (0.43 mL, 5.01 mmol) in CH_2Cl_2 (13.0 mL) at -78 °C was added DMSO (0.70 mL, 9.86 mmol) dropwise. The resulting mixture was stirred for 15 min before a solution of alcohol **2l** (150 mg, 0.49 mmol) in CH_2Cl_2 (13.0 mL) was added. The resulting mixture was stirred for 1 h before Et_3N (2.10 mL, 14.8 mmol) was added, and the resulting mixture was stirred for 1 h before it was warmed to room temperature and quenched with NH_4Cl (80 mL, sat. aq.) and water (20 mL). The layers were separated and the

aqueous layer was extracted with Et_2O (3 × 100 mL), the combined organic layer was washed with water (100 mL), brine (100 mL), dried (Na₂SO₄) and concentrated under reduced pressure to afford crude aldehyde **4c** (112 mg, 75%) as an amorphous yellow solid, which was used directly in the following step without further purification.

(ii) To a stirred solution of crude aldehyde (4c, obtained via above procedure, 380 mg, 1.26 mmol) in THF (50.0 mL) at -78 °C was added vinyl magnesium bromide (1.0 M in THF, 7.54 mL, 7.54 mmol) dropwise. The resulting mixture was warmed to room temperature and stirred for 16 h before it was quenched with water (50 mL). The layers were separated and the aqueous layer was extracted with Et_2O (3 × 150 mL), the combined organic layer was washed with water (100 mL), brine (100 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded allylic alcohol 6g (370 mg, 89%) as an amorphous yellow solid. 6g: $R_f = 0.30$ (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 3690, 3528, 3054, 1602, 1264, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, mixture of atropisomers): δ 7.06 (t, J = 7.9 Hz, 1H), 6.97–6.84 (m, 3H), 6.75– 6.73 (m, 1H), 5.84 (s, 1H), 5.78–5.67 (m, 1H), 5.12–4.94 (m, 2H), 4.17–4.03 (m, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 3.60 (s, 1.5H), 3.58 (s, 1.5H), 2.74–2.68 (m, 1H), 2.59–2.49 (m, 1H), 1.74 ppm (br s, 1H); ¹³C NMR (101 MHz, CDCl₃, mixture of atropisomers): δ 151.4, 151.4, 147.1, 147.0, 146.8, 146.7, 143.0, 142.5, 140.5, 132.4, 132.2, 129.7, 129.5, 125.9, 125.2, 123.5, 123.4, 123.4, 123.2, 119.6, 119.5, 114.3, 114.0, 112.0, 111.7, 109.9, 109.8, 73.4, 72.3, 60.5, 60.4, 55.9, 55.8, 55.8, 55.7, 41.0, 40.6 ppm; HRMS calcd. For $C_{19}H_{22}O_5Na^+$ [M + Na]⁺ 353.1359, found 353.1362.

Alcohol 2n

(i) To a stirred solution of phenol **2j** (0.22 g, 0.77 mmol) in DMF (12.0 mL) at room temperature was added TBSCl (0.46 g, 3.05 mmol) and imidazole (0.21 g, 3.07 mmol). The resulting mixture was warmed to 45 °C and stirred for 24 h before it was cooled to room temperature and quenched with NH₄Cl (10 mL, sat. aq.) and water (10 mL). The resulting mixture was extracted with ethyl acetate (3×25 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure to afford TBS ether **2m** (0.25 g, 81%) as an amorphous solid, which was used directly in the following step without further purification.

(ii) To a stirred solution of alkene 2m (0.25 g, 0.62 mmol) in THF (15 mL) at -78 °C was added borane tetrahydrofuran complex (1.0 M in THF, 5.0 mL, 5.0 mmol). The resulting mixture was warmed to room temperature and stirred for 4 h before it was cooled to 0 °C and treated with NaOH (2.0 N aq., 2.5 mL, 5.0 mmol) and H₂O₂ (34.5% aq., 2.5 mL, 25.3 mmol). The resulting mixture was stirred for 4 h before it was guenched with NH₄Cl (10 mL, sat. aq.) and water (10 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (3×25 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 6:1) afforded alcohol 2n (0.23 g, 88%) as an amorphous white solid. **2n**: $R_{\rm f} = 0.19$ (silica gel, hexanes:EtOAc 2:1); IR (film) $v_{\rm max}$ 3615, 2932, 2856, 1576, 1470, 739 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.00–6.90 (m, 2H), 6.87 (d, J = 8.4 Hz, 2H), 6.73 (d, J = 7.0 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.69–3.51 (m, 2H), 3.15 (s, 3H), 2.69– 2.52 (m, 2H), 1.68 (s, 1H), 0.62 (s, 9H), 0.11 (s, 3H), -0.07 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.5, 150.1, 147.2, 142.2, 133.9, 130.6, 128.9, 124.6, 123.3, 120.3, 111.6, 110.4, 63.2, 60.5, 56.0, 54.6, 36.3, 25.5, 18.4, -3.9, -4.7 ppm; HRMS calcd. For C₂₃H₃₄O₅SiNa⁺ [M + Na]⁺ 441.2068, found 441.2066.

Allylic Alcohol 20

(i) To a stirred solution of alcohol **2n** (0.23 g, 0.55 mmol) in CH₂Cl₂ (15.0 mL) at 0 °C was added Dess-Martin periodinane (0.35 g, 0.83 mmol). The resulting mixture was warmed to room temperature and stirred for 3 h before it was quenched with Na₂S₂O₃ (40 mL, sat. aq.) and water (40 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 100 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure to afford crude aldehyde **4d** as an amorphous white solid, which was used directly in the following step without further purification.

(ii) To a stirred solution of crude aldehyde **4d** (obtained above) in THF (30.0 mL) at -78 °C was added vinyl magnesium bromide (1.0 M in THF, 2.0 mL, 2.0 mmol) dropwise. The resulting mixture was warmed to room temperature and stirred for 16 h before it was quenched with water (30 mL). The layers were separated and the aqueous layer was extracted with Et₂O (3 × 25 mL), the combined organic layer was washed with water (70 mL), brine (70 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 6:1) afforded allylic alcohol **2o** (0.22 g, 90% over two steps) as an amorphous yellow solid. **2o**: $R_{\rm f} = 0.40$ (silica gel, hexanes:EtOAc 4:1); IR (film) v_{max} 3690, 3536, 3054, 1550, 1265, 706 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.00 (d, J = 8.0 Hz, 1H), 6.93 (t, J = 8.0 Hz, 1H), 6.86 (d, J = 8.0 Hz, 2H), 6.74 (d, J = 8.0 Hz, 1H), 5.75–5.62 (m, 1H), 5.12–4.94 (dd, J = 16.9, 8.7 Hz, 2H), 3.99 (br s, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 3.59 (s, 3H), 2.67 (d, J = 14.0 Hz, 1H), 2.42 (dd, J = 9.0, 4.0 Hz, 1H), 1.72 (s, 1H), 0.61 (s, 9H), 0.12 (s, 3H), -0.10 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.7, 150.2, 147.2, 142.1, 140.7, 133.8, 130.3, 128.8, 125.4, 123.6, 120.3, 113.9, 111.5, 110.6, 73.1, 60.5, 55.9, 54.8, 41.4, 25.5, 18.4, -3.9, -4.8 ppm.

Enone 6i

To a stirred solution of alcohol **20** (110 mg, 0.25 mmol) in CH₂Cl₂ (10.0 mL) at 0 °C was added Dess-Martin periodinane (209 mg, 0.49 mmol). The resulting mixture was warmed to room temperature and stirred for 3 h before it was quenched with Na₂S₂O₃ (10 mL, sat. aq.) and water (10 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL), the combined organic layer was washed with water (30 mL), brine (30 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 6:1) afforded enone **6i** (93.0 mg, 85%) as an amorphous white solid. **6i**: $R_{\rm f} = 0.60$ (silica gel, hexanes:EtOAc 4:1); IR (film) v_{max} 2853, 1809, 1647, 1459, 1065, 910 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.98–6.81 (m, 4H), 6.68 (d, *J* = 7.0 Hz, 1H), 6.13 (dd, *J* = 11.0, 7.0 Hz, 1H), 5.93 (d, *J* = 18.0 Hz, 1H), 5.56 (d, *J* = 11.0 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 3.70 (d, *J* = 16.0 Hz, 1H), 3.60 (s, 3H), 3.46 (d, *J* = 16.5 Hz, 1H), 0.63 (s, 9H), 0.12 (s, 3H), -0.09 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 198.6, 151.8, 150.1, 147.1, 142.1, 135.7, 133.6, 128.6, 127.8, 126.9, 125.0, 123.6, 120.4, 111.6, 110.6, 60.4, 55.8, 54.7, 44.0, 25.4, 18.3, -4.1, -4.8 ppm; HRMS calcd. For C₂₅H₃₄O₅SiNa⁺ [M + Na]⁺ 465.2068, found 465.2066.

Optically Active Allylic Alcohol 6j and 6k

To a strirred solution of (S)–(–)–2–Methyl-CBS-oxazaborolidine (165 mg, 56 µmol) in THF (1.0 mL) at 0 °C was added borane dimethyl sulfide complex (1.0 M in THF, 0.37 mL, 0.37 mmol) dropwise. The resulting mixture was stirred for 10 min before the addition of a solution of enone **6i** (83.0 mg, 0.19 mmol) in THF (5.0 mL) over 2 h. The resulting mixture was stirred for 1 h before it was quenched with MeOH (5 mL) and water (5 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (3 × 10 mL), the combined organic layer was washed with water (15 mL), brine (15 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 6:1) afforded allylic alcohols **6j** and **6k** (69.0 mg, 84%) as an amorphous white solid. **6j** (relative stereochemistry arbitrarily assigned): $[\alpha]_D^{25} = -14^\circ$ (c = 0.1, CHCl₃).

Chiral HPLC (ChiralPak1A, flow rate: 1.00 mL/min, isocratic hexane:isopropanol 98:2) Chromatographs of Racemic (above) and Optically Active (below) Allylic Alcohol 6j (relative stereochemistry arbitrarily assigned)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak # 	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	14.405 15.886	PB BBA	0.4729 0.4775	1168.31641 1204.13867	37.14697 38.86147	49.2450 50.7550
Total	ls :			2372.45508	76.00844	

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.042	BBA	0.5673	1851.99902	49.63151	93.0604
2	15.000	BBA	0.5499	138.10510	3.95039	6.9396
Total	ls :			1990.10413	53.58190	

Chiral HPLC (ChiralPak1A, flow rate: 1.00 mL/min, isocratic hexane:isopropanol 98:2) Chromatographs of Racemic (above) and Optically Active (below) Allylic Alcohol 6k (relative stereochemistry arbitrarily assigned)

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 2	16.679 18.561	 BB MM	0.5136 0.6676	4148.57080 5896.67822	120.50980 147.21384	41.2988 58.7012
Total	ls :			1.00452e4	267.72363	

DAD1 A, Sig=254,4 Ref=360,100 (CBS2F.D) mAU 40 30 6.411 20 10 18.997 0 10 15 20 min

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	웅
1	16.411	BBA	0.5210	608.64044	18.15982	95.4314
2	18.997	MM	0.6843	29.13777	7.09636e-1	4.5686
Total	ls :			637.77821	18.86946	

Optically Active Allylic Alcohol 6g'

To a stirred solution of TBS ether **6j/6k** (66.0 mg, 0.15 mmol) in THF (1.5 mL) at room temperature was added TBAF (1.0 M in THF, 0.45 mL, 0.45 mmol). The resulting mixture was stirred for 1 h before it was diluted with water (10 mL). The resulting mixture was extracted with Et₂O (3×10 mL), the combined organic layer was washed with water (20 mL), brine (20 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 5:1) afforded alcohol **6g'** (40.0 mg, 82%) as an amorphous solid. All physical data of allylic alcohol **6g'** are identical to those obtained for the racemic allylic alcohol **6g**.

(i) To a stirred solution of phenol **6g** (115 mg, 0.35 mmol) in MeOH (15.0 mL) at 0 °C was added PIFA (164 mg, 0.38 mmol) and NaHCO₃ (350 mg, 4.17 mmol). The resulting mixture was stirred for 15 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (20 mL, sat. aq.) and water (10 mL). The resulting mixture was extracted with Et₂O (3×30

mL), the combined organic layer was washed with NaHCO₃ (50 mL, sat. aq.), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, CH₂Cl₂:Et₂O 15:1) afforded dienone **7g** as an orange amorphous solid.

(ii) Dienone **7g** (obtained above) was redissolved in toluene (30.0 mL), and warmed to reflux and stirred for 1 h before it was cooled to room temperature and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded tetracycles **8g** and **8g'** (~5:1 based on ¹H NMR analysis, 77.0 mg, 61% over two steps) as an amorphous yellow solid. **8g**+**8g'**: $R_f = 0.30$ (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 3475, 3002, 2861, 2705, 1690, 703 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.87 (d, J = 8.5 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 6.43 (t, J = 8.1 Hz, 1H), 5.87 (d, J = 8.2 Hz, 0.2H), 5.75 (d, J = 8.2 Hz, 0.8H), 3.84 (s, 3H), 3.79 (s, 3H), 3.55 (td, J = 10.7, 4.8 Hz, 1H), 3.39 (s, 6H), 3.19–3.13 (m, 1H), 3.02 (dd, J = 15.5, 4.8 Hz, 1H), 2.71 (dd, J = 15.5, 1.2 Hz, 1H), 2.28–2.18 (m, 1H), 2.15–2.05 (m, 1H), 1.51–1.42 ppm (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 199.2, 150.9, 147.2, 132.0, 131.4, 128.3, 127.9, 123.6, 113.0, 94.6, 70.6, 60.2, 57.0, 55.9, 50.8, 49.3, 44.2, 39.6, 37.7, 24.9 ppm; HRMS calcd. For C₂₀H₂₄O₆Na⁺ [M + Na]⁺ 383.1465, found 383.1466.

Tetracycle 8g and 8g'

(i) To a stirred solution of phenol **6g** (282 mg, 0.85 mmol) in MeOH (17.0 mL) at 0 °C was added PIFA (302 mg, 0.94 mmol) and NaHCO₃ (860 mg, 10.2 mmol). The resulting mixture

was stirred for 15 min before it was warmed to room temperature and quenched with $Na_2S_2O_3$ (20 mL, sat. aq.) and water (10 mL). The resulting mixture was extracted with Et₂O (3 × 30 mL), the combined organic layer was washed with NaHCO₃ (70 mL, sat. aq.), brine (70 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, CH₂Cl₂:Et₂O 15:1) afforded dienone **7g** as an orange amorphous solid.

(ii) To a solution of dienone **7g** (obtained above) in toluene (30.0 mL) was added trimethyl borate (0.48 mL, 4.31 mmol). The resulting mixture was stirred for 30 min, warmed to reflux and stirred for 1 h before it was cooled to room temperature and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 4:1) afforded tetracycles **8g** and **8g'** (~5:1 based on ¹H NMR analysis, 172 mg, 56% over two steps) as an amorphous yellow solid. All physical data of tetracycles **8g** and **8g'** are identical to those obtained from the intramolecular Diels-Alder reaction in the absence of B(OMe)₃.

TBS Ether 6h

To a stirred solution of alcohol **6g** (134 mg, 0.41 mmol) in DMF (5.0 mL) at room temperature was added TBSCl (183 mg, 1.21 mmol) and imidazole (82.8 mg, 1.22 mmol). The resulting mixture was stirred for 24 h before it was quenched with NH₄Cl (10 mL, sat. aq.) and water (10 mL). The resulting mixture was extracted with Et₂O (3 × 20 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 10:1) afforded TBS ether **6h** (127 mg, 70%) as an amorphous solid. **6h**: $R_f = 0.37$ (silica gel, hexanes:EtOAc 4:1); IR (film) v_{max} 3622, 3460, 3155, 2987, 1590, 1280, 705 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.99 (d, J = 8.4 Hz, 1H), 6.95–6.84 (m, 3H), 6.76 (d, J = 7.2 Hz, 1H), 5.69–5.58 (m, 2H), 4.98–4.82 (m, 2H), 4.10–3.92 (m, 1H), 3.92 (s, 3H), 3.87 (s,

3H), 3.58 (s, 3H), 2.66 (dd, J = 13.4, 7.3 Hz, 1H), 2.53–2.48 (m, 1H), 0.80 (s, 9H), -0.18 (s, 3H), -0.26 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 151.2, 151.2, 146.9, 146.8, 146.8, 142.9, 142.8, 141.2, 141.2, 132.0, 131.8, 130.4, 130.2, 126.9, 126.6, 123.8, 123.5, 123.4, 119.3, 119.3, 113.3, 113.2, 111.5, 109.8, 73.7, 73.5, 60.5, 55.9, 55.8, 55.8, 42.3, 42.2, 25.8, 25.8, 18.1, -5.1, -5.1, -5.3, -5.4 ppm; HRMS calcd. For C₂₅H₃₆O₅SiNa⁺ [M + Na]⁺ 467.2224, found 467.2226.

(i) To a stirred solution of phenol **6h** (135 mg, 0.30 mmol) in MeOH (20.0 mL) at 0 °C was added PIFA (137 mg, 0.32 mmol) and NaHCO₃ (860 mg, 10.2 mmol). The resulting mixture was stirred for 15 min before it was warmed to room temperature and quenched with Na₂S₂O₃ (20 mL, sat. aq.) and water (10 mL). The resulting mixture was extracted with Et₂O (3×30 mL), the combined organic layer was washed with NaHCO₃ (50 mL, sat. aq.), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, CH₂Cl₂:Et₂O 15:1) afforded dienone **7h** as an orange amorphous solid.

(ii) Dienone **7h** (obtained above) was redissolved in toluene (30.0 mL), and warmed to reflux and stirred for 1 h before it was cooled to room temperature and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 10:1) afforded tetracycles **8h** and **8h'** (~4:1 based on ¹H NMR analysis, 79.6 mg, 55% over two steps) as an amorphous

yellow solid. **8h**+**8h'**: $R_f = 0.37$ (silica gel, hexanes:EtOAc 4:1); IR (film) v_{max} 3105, 3000, 1710, 1468, 808, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.92–6.68 (m, 2H), 6.43 (t, J = 7.6 Hz, 0.7H), 6.16 (t, J = 7.6 Hz, 0.3H), 5.77 (d, J = 7.0 Hz, 1H), 3.84 (s, 3H), 3.80 (s, 3H), 3.60–3.50 (m, 1H), 3.39 (s, 6H), 3.18–3.05 (m, 1H), 2.92–2.80 (m, 1H), 2.80–2.68 (m, 1H), 2.22–2.10 (m, 2H), 1.42–1.30 (m, 1H), 0.90 (s, 7.2H), 0.71 (s, 1.8H), 0.07 (s, 2.2H), 0.05 (s, 2.2H), 0.00 (s, 0.9H), -0.08 ppm (s, 0.7H); ¹³C NMR (101 MHz, CDCl₃): δ 199.3, 150.9, 147.3, 132.1, 131.3, 128.9, 128.0, 123.6, 113.0, 94.7, 71.3, 60.2, 57.0, 55.9, 50.7, 49.4, 44.4, 40.3, 37.7, 25.8, 25.6, 18.0, -3.9, -4.7 ppm; HRMS calcd. For C₂₆H₃₈O₆SiNa⁺ [M + Na]⁺ 497.2330, found 497.2327.

Ketone 8j and 8j'

(i) To a stirred solution of alkene 8h+8h' (120 mg, 0.25 mmol) in THF (28.0 mL) at -78 °C was added borane tetrahydrofuran complex (1.0 M in THF, 3.10 mL, 3.10 mmol). The

resulting mixture was warmed to room temperature and stirred for 4 h before it was cooled to 0 °C and treated with NaOH (2.0 N aq., 1.00 mL, 2.00 mmol) and H_2O_2 (34.5% aq., 1.00 mL, 10.1 mmol). The resulting mixture was stirred for 4 h before it was quenched with NH₄Cl (20 mL, sat. aq.) and water (20 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (3 × 30 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄), filtered and concentrated under reduced pressure. The resulting crude alcohols **8i** and **8i'** (98.0 mg, 79%) was used directly in the following step without further purification.

(ii) To a stirred solution of crude alcohol **8i**+**8i'** (obtained above) in CH₂Cl₂ (30.0 mL) at 0 °C was added Dess-Martin periodinane (370 mg, 0.87 mmol). The resulting mixture was warmed to room temperature and stirred for 3 h before it was quenched with Na₂S₂O₃ (40 mL, sat. aq.) and water (40 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 100 mL), the combined organic layer was washed with water (50 mL), brine (50 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes: EtOAc 9:1) afforded ketones 8j and 8j' (65.0 mg, 67% combined yield) as an amorphous white solid. Major isomer 8j was chromatographically separated and advanced forward in the subsequent steps. 8j: $R_f = 0.23$ (silica gel, hexanes:Et₂O 4:1); IR (film) v_{max} 2852, 2682, 1809, 1647, 1459, 1181 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.87 (d, J = 8.5 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 3.88 (dd, J = 10.5, 5.1 Hz, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.42 (s, 3H), 3.41 (s, 3H), 3.35 (d, *J* = 19.5 Hz, 1H), 3.16–3.11 (m, 1H), 2.97 (dd, *J* = 15.7, 5.1 Hz, 1H), 2.72 (dd, J = 15.7, 10.3 Hz, 1H), 2.53 (d, J = 19.5 Hz, 1H), 2.36–2.26 (m, 1H), 2.22– 2.12 (m, 1H), 1.76 (dd, *J* = 14.7, 6.5 Hz, 1H), 0.90 (s, 9H), 0.11 (s, 3H), 0.07 ppm (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 207.1, 200.6, 150.9, 146.7, 127.9, 126.5, 124.2, 113.3, 96.8, 68.9, 60.0, 55.9, 53.5, 51.4, 50.7, 49.7, 43.2, 41.8, 40.1, 25.7, 22.0, 18.0, -3.8, -4.8 ppm; HRMS calcd. For $C_{26}H_{38}O_7SiNa^+$ [M + Na]⁺ 513.2279, found 513.2279.

Mesylate 81

(i) To a stirred solution of TBS ether **8j** (40.0 mg, 82 µmol) in THF (5.0 mL) at room temperature was added TBAF (1.0 M in THF, 0.30 mL, 0.30 mmol). The resulting mixture was stirred for 1 h before it was diluted with water (10 mL). The resulting mixture was extracted with CH₂Cl₂ (3 × 10 mL), the combined organic layer was washed with water (40 mL), brine (40 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 5:1) afforded alcohol **8k** (28.2 mg, 92%) as an amorphous solid. **8k**: $R_f = 0.13$ (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 3452, 3067, 2825, 1704, 1453, 676 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.88 (d, J = 8.4 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 3.97–3.87 (m, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 3.43 (s, 3H), 3.41 (s, 3H), 3.34 (d, J = 19.8 Hz, 1H), 3.19–3.06 (m, 2H), 2.77–2.68 (m, 1H), 2.52 (d, J = 19.5 Hz, 1H), 2.44–2.34 (m, 1H), 2.21–2.09 (m, 1H), 1.95–1.87 (m, 1H), 1.75 ppm (br s, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 206.9, 200.7, 150.9, 146.6, 127.4, 126.4, 124.2, 113.3, 96.8, 68.1, 60.0, 55.9, 53.6, 51.3, 50.8, 49.6, 42.9, 41.8, 39.6, 21.3 ppm.

(ii) To a stirred solution of alcohol **8k** (25.0 mg, 66 µmol) in CH₂Cl₂ (5.0 mL) at 0 °C was added MsCl (26 µL, 0.34 mmol). The resulting mixture was stirred for 1 h before it was diluted with water (10 mL). The resulting mixture was extracted with CH₂Cl₂ (3 × 10 mL), the combined organic layer was washed with water (40 mL), brine (40 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 5:1) afforded mesylate **8l** (28.0 mg, 93%) as an amorphous solid. **8l**: R_f = 0.23 (silica gel, hexanes:EtOAc 1:1); IR (film) v_{max} 3013, 2894, 1704, 1632, 1162, 708 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.90 (d, *J* = 8.5 Hz, 1H), 6.81 (d, *J* = 8.5 Hz, 1H), 4.96–4.84 (m, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.43 (s, 3H), 3.40 (s, 3H), 3.36 (d, *J* = 18.2 Hz, 1H), 3.17 (s, 1H), 3.09 (s, 3H), 3.07–2.98 (m, 1H), 2.57 (d, *J* = 18.2 Hz, 1H), 2.47–2.36 (m, 2H), 1.94–1.80

ppm (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ 205.4, 200.0, 151.3, 146.6, 125.5, 124.3, 113.6, 96.6, 78.2, 60.1, 55.9, 53.5, 50.8, 49.7, 41.6, 40.4, 39.0, 37.0, 21.6, 9.3, -0.0 ppm; HRMS calcd. For C₂₁H₂₆O₉SNa⁺ [M + Na]⁺ 477.1190, found 477.1188.

Alkene 9

To a stirred solution of mesylate **8l** (8.0 mg, 18 μ mol) in toluene (1.2 mL) at room temperature was added DBU (0.10 mL, 0.67 mmol). The resulting mixture was heated to reflux and stirred for 4 h before it was cooled to room temperature and quenched with NH₄Cl (2 mL, sat. aq.) and water (2 mL). The resulting mixture was extracted with CH₂Cl₂ (3 × 3 mL), the combined organic layer was washed with water (10 mL), brine (10 mL), dried (Na₂SO₄) and concentrated under reduced pressure. Flash column chromatography (silica gel, hexanes:EtOAc 5:1) afforded alkene **9** (as a ~1:2 mixture with **9'** based on ¹H NMR analysis, 4.5 mg, 71% combined yield). All physical data of alkene **9** are identical to those obtained from the PTSA mediated elimination of TBS ethers **8b** and **8b'**.

II) X-ray Crystallographic Analysis of Compound 12a

Data Collection

A colorless crystal with approximate dimensions $0.2 \times 0.1 \times 0.08 \text{ mm}^3$ was selected under oil under ambient conditions and attached to the tip of a MiTeGen MicroMount[®]. The crystal was mounted in a stream of cold nitrogen at 120 K and centered in the X-ray beam by using a video camera. The crystal evaluation and data collection were performed on a Bruker D8 Venture diffractometer with Mo K_{α} ($\lambda = 0.71073$ Å) radiation and the diffractometer to crystal distance of 4.00 cm. The initial cell constants were obtained from two series of ω scans at different starting angles. Each series consisted of 12 frames collected at intervals of 0.5° in a 6° range about ω with the exposure time of 10 seconds per frame. The reflections were successfully indexed by an automated indexing routine built in the APEXII program. The final cell constants were calculated from a set of 4218 strong reflections from the actual data collection. The data were collected by using the half sphere data collection routine to survey the reciprocal space to the extent of a full sphere to a resolution of 0.81 Å. A total of 18865 data were harvested by collecting 3 sets of frames with 0.5° scans in ω and φ with an exposure time 10 sec per frame. These highly redundant datasets were corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements.^[1]

Structure Solution and Refinement

The systematic absences in the diffraction data were uniquely consistent for the space group P2₁/c that yielded chemically reasonable and computationally stable results of refinement.^[2,3] A successful solution by the direct methods provided most non-hydrogen atoms from the *E*-map. The remaining non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. The final least-squares refinement of 250 parameters against 3815 data resulted in residuals *R* (based on F^2 for $I \ge 2\sigma$) and *wR* (based on

 F^2 for all data) of 0.0464 and 0.1058, respectively. The final difference Fourier map was featureless.

Summary

Crystal Data for C₂₁H₂₉NO₅ (*M* =375.45 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 19.8561(10) Å, *b* = 7.9076(4) Å, *c* = 12.5788(6) Å, β = 101.5550(16)°, *V* = 1935.02(17) Å³, *Z* = 4, *T* = 120.0 K, μ (MoK α) = 0.091 mm⁻¹, *Dcalc* = 1.289 g/cm³, 18865 reflections measured (5.562° ≤ 2 Θ ≤ 52.11°), 3815 unique (*R*_{int} = 0.0635, R_{sigma} = 0.0473) which were used in all calculations. The final *R*₁ was 0.0464 (I > 2 σ (I)) and *wR*₂ was 0.1058 (all data).

Identification code	RC438
Empirical formula	$C_{21}H_{29}NO_5$
Formula weight	375.45
Temperature/K	120.0
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	19.8561(10)
b/Å	7.9076(4)
c/Å	12.5788(6)
a/°	90
β/°	101.5550(16)
γ/°	90
Volume/Å ³	1935.02(17)
Z	4
$\rho_{calc}g/cm^3$	1.289
μ/mm^{-1}	0.091
F(000)	808.0
Crystal size/mm ³	0.2 imes 0.1 imes 0.08
Radiation	MoKα ($\lambda = 0.71073$)
20 range for data collection/°	5.562 to 52.11
Index ranges	$-24 \le h \le 24, -9 \le k \le 9, -15 \le l \le 15$
Reflections collected	18865
Independent reflections	3815 [R _{int} = 0.0635, R _{sigma} = 0.0473]
Data/restraints/parameters	3815/231/250
Goodness-of-fit on F ²	1.016
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0464, wR_2 = 0.0924$
Final R indexes [all data]	$R_1 = 0.0848, wR_2 = 0.1058$
Largest diff. peak/hole / e Å -3	0.27/-0.22

 Table 1: Crystal data and structure refinement for RC438 (Compound 12a)

Table 2: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å ²×10³) for RC438 (Compound 12a). U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
015	6629.5(6)	10358.3(16)	5135.9(10)	24.1(3)
017	5403.2(7)	9886(2)	3876.3(11)	37.1(4)
O23	8961.7(6)	10526.3(16)	6884.4(10)	22.8(3)
O25	9054.6(6)	8000.9(17)	5969.1(10)	22.9(3)
O27	7899.6(6)	8865.8(17)	4841.5(9)	20.4(3)
N19	8417.0(8)	8788(2)	8555.9(12)	20.9(4)
C1	6391.0(9)	8722(3)	4971.6(15)	22.0(4)
C2	5735.1(10)	8453(3)	4322.0(16)	28.3(5)
C3	5463(1)	6850(3)	4203.1(17)	33.8(5)
C4	5823.3(10)	5527(3)	4760.8(16)	32.3(5)
C5	6462.8(10)	5770(2)	5438.9(15)	24.6(4)
C6	6799.9(11)	4356(2)	6078.2(16)	28.3(5)
C7	7446.8(10)	4454(2)	6610.9(15)	25.2(5)
C8	7863.2(9)	6009(2)	6530.9(14)	19.2(4)
C9	8471.3(9)	6153(2)	7500.3(14)	21.0(4)
C10	8735.8(9)	7970(2)	7731.0(14)	19.3(4)
C11	8674.7(9)	8893(2)	6638.3(14)	18.2(4)
C12	7922.2(9)	8987(2)	5969.4(13)	16.7(4)
C13	7444.6(9)	7661(2)	6361.9(14)	17.8(4)
C14	6765.5(9)	7393(2)	5532.8(14)	20.0(4)
C16	6738.1(11)	11251(3)	4181.7(16)	30.7(5)
C18	4698.7(10)	9706(4)	3343.6(18)	44.2(6)
C20	7723.6(10)	9454(2)	8154.9(15)	22.4(4)
C21	7235.0(9)	8266(2)	7433.7(14)	20.2(4)
C22	8845.4(10)	10093(3)	9177.9(15)	29.4(5)
C24	8959.2(11)	11595(3)	5968.8(16)	31.4(5)
C26	9776.7(9)	7837(3)	6365.8(17)	34.4(5)

Table 3: Anisotropic Displacement Parameters (Å ²×10³) for RC438 (Compound 12a).

The Anisotropic displacement factor exponent takes the form:

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O15	26.3(7)	23.5(8)	22.2(7)	1.7(6)	4.4(5)	3.5(6)
O17	23.0(8)	51.6(10)	34.0(8)	8.0(7)	-0.8(6)	8.2(7)
O23	26.6(7)	23.8(7)	17.7(7)	3.4(6)	3.3(5)	-7.9(6)
O25	18.2(7)	32.7(8)	17.7(7)	-1.0(6)	3.7(5)	5.1(6)
O27	21.9(7)	26.2(8)	13.1(6)	1.8(6)	3.4(5)	6.0(6)
N19	26.4(8)	21.7(9)	14.8(8)	-2.8(7)	4.5(6)	-5.0(7)
C1	20.1(9)	27.4(11)	19.5(10)	-3.5(8)	6.2(7)	0.3(8)
C2	23.3(10)	40.9(13)	20.9(10)	-1.1(9)	5.0(8)	2.8(9)
C3	21.4(11)	50.3(14)	28.0(12)	-6.7(10)	1.0(9)	-7.2(10)
C4	29.0(11)	35.6(13)	32.6(12)	-9.5(10)	7.0(9)	-11.6(9)
C5	23.3(10)	27.2(11)	24.3(10)	-6.0(9)	7.5(8)	-4.8(8)
C6	36.6(12)	19.4(11)	30.1(11)	-5.2(9)	9.7(9)	-9.5(9)
C7	38.0(12)	15.3(10)	22.9(10)	-1.1(8)	7.4(9)	-0.2(8)
C8	24.9(10)	18.6(10)	14.8(9)	-0.7(8)	5.5(7)	0.8(8)
C9	27.2(10)	19.4(10)	16.4(9)	1.8(8)	4.3(8)	3.6(8)
C10	19.6(9)	22.1(10)	15.3(9)	1.1(8)	1.0(7)	0.0(8)
C11	19.1(9)	20(1)	16.0(9)	-1.5(8)	5.1(7)	-0.8(8)
C12	20.0(9)	18.6(10)	11.5(9)	0.7(7)	3.5(7)	1.0(8)
C13	20.6(9)	16.8(10)	16.4(9)	-1.2(8)	4.4(7)	0.0(8)
C14	19.5(9)	23.8(10)	17.5(10)	-4.4(8)	5.6(7)	-1.9(8)
C16	34.1(11)	29.1(12)	29.2(11)	7.6(10)	7.2(9)	7.1(10)
C18	22.6(11)	74.2(19)	32.8(12)	6.3(12)	-1.4(9)	10.1(11)
C20	33.7(11)	19.5(10)	16.4(9)	-1.0(8)	10.4(8)	0.0(8)
C21	22.5(10)	21.8(10)	17.9(9)	0.0(8)	8.0(8)	0.2(8)
C22	41.0(12)	28.6(12)	18.9(10)	-5.1(9)	7.1(9)	-12.9(10)
C24	37.2(12)	30.8(12)	25.7(11)	6.9(9)	4.8(9)	-12.2(10)
C26	21.3(11)	51.6(15)	30.3(12)	-0.5(11)	4.8(9)	6.7(10)

 $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+\ldots].$

Atom	Atom	Length/Å	Atom	Atom	Length/Å
015	C1	1.379(2)	C3	C4	1.378(3)
015	C16	1.445(2)	C4	C5	1.394(3)
017	C2	1.373(2)	C5	C6	1.459(3)
017	C18	1.432(2)	C5	C14	1.412(3)
O23	C11	1.421(2)	C6	C7	1.327(3)
O23	C24	1.428(2)	C7	C8	1.496(3)
O25	C11	1.425(2)	C8	C9	1.539(2)
O25	C26	1.427(2)	C8	C13	1.540(3)
O27	C12	1.414(2)	C9	C10	1.537(3)
N19	C10	1.469(2)	C10	C11	1.539(2)
N19	C20	1.466(2)	C11	C12	1.563(2)
N19	C22	1.461(2)	C12	C13	1.559(2)
C1	C2	1.408(3)	C13	C14	1.545(2)
C1	C14	1.395(3)	C13	C21	1.564(2)
C2	C3	1.374(3)	C20	C21	1.515(3)

Table 4: Bond Lengths for RC438 (Compound 12a).

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	015	C16	115.94(15)	N19	C10	C9	111.44(14)
C2	017	C18	116.93(18)	N19	C10	C11	116.99(15)
C11	O23	C24	115.22(14)	C9	C10	C11	108.17(14)
C11	O25	C26	116.89(14)	O23	C11	O25	110.01(13)
C20	N19	C10	115.02(13)	O23	C11	C10	106.27(14)
C22	N19	C10	113.72(14)	O23	C11	C12	111.86(15)
C22	N19	C20	109.64(15)	O25	C11	C10	109.67(15)
015	C1	C2	118.61(17)	O25	C11	C12	105.53(13)
015	C1	C14	119.93(16)	C10	C11	C12	113.52(14)
C14	C1	C2	121.13(18)	O27	C12	C11	111.83(13)
017	C2	C1	115.12(18)	O27	C12	C13	111.90(14)
017	C2	C3	124.81(18)	C13	C12	C11	111.96(14)
C3	C2	C1	120.03(19)	C8	C13	C12	105.59(14)
C2	C3	C4	119.50(19)	C8	C13	C14	110.53(15)
C3	C4	C5	121.6(2)	C8	C13	C21	111.74(15)
C4	C5	C6	119.54(18)	C12	C13	C21	110.53(14)
C4	C5	C14	119.78(19)	C14	C13	C12	112.48(14)
C14	C5	C6	120.64(17)	C14	C13	C21	106.08(13)
C7	C6	C5	121.66(18)	C1	C14	C5	117.89(17)
C6	C7	C8	120.39(18)	C1	C14	C13	122.88(16)
C7	C8	C9	111.35(15)	C5	C14	C13	118.71(17)
C7	C8	C13	114.59(15)	N19	C20	C21	115.33(15)
C9	C8	C13	111.25(15)	C20	C21	C13	117.21(14)
C10	C9	C8	113.77(15)				

Table 5: Bond Angles for RC438 (Compound 12a)

Atom U(eq) x y z H27 H3 H4 H6 H7 H8 H9A H9B H10 H12 H16A H16B H16C H18A H18B H18C H20A H20B H21A H21B H22A H22B H22C H24A H24B H24C H26A H26B H26C

Table 6: Hydrogen Atom Coordinates (Å ×104) and Isotropic Displacement Parameters(Å 2×103) for RC438 (Compound 12a)

III) Abbreviations

Cy = cyclohexyl

DBU = 1,8-diazabicyclo[5.4.0]-7-undecene

DCC = N, N'-dicyclohexylcarbodiimide

DDQ = 2,3-dichloro-5,6-dicyano-1,4-benzoquinone

Dibal-H = diisobutylaluminium hydride

- DMF = N, N'-dimethylformamide
- DMAP = N, N'-dimethylaminopyridine

DMP = Dess-Martin periodinane

LDA = lithium diisopropylamide

L-selectride = lithium tri-sec-butylborohydride

MOMCl = chloromethyl methyl ether

MOM = methoxymethyl

Ms = methanesulfonyl

MsCl = methanesulfonyl Chloride

PCC = pyridinium chlorochromate

PivOH = pivalic acid

PIDA = [bis(acetoxy)iodo]benzene

PIFA = [bis(trifluoroacetoxy)iodo]benzene

PTSA = p-toluenesulfonic acid

 $PyH \bullet Br_3 = pyridnium tribromide$

TBAB = tetrabutylammonium bromide

TBHP = *tert*-butyl hydroperoxide

TBAF = tetrabutylammonium fluoride

TBS = *tert*-butyldimethylsilyl

TBSCl = *tert*-butyldimethylsilyl chloride

TMSCl = trimethylsilyl chloride

TsCl = *p*-toluenesulfonyl chloride

Ts = p-toluenesulfonyl

IV) References

- Bruker-AXS (2007-2013), APEX2 (Ver. 2013.2-0), SADABS (2012-1) and SAINT+ (Ver. 8.30C) Software Reference Manuals. Bruker-AXS, Madison, Wisconsin, USA.
- 2. Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.
- 3. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. *J. Appl. Cryst.* **2009**, *42*, 339–341.

V) ¹H and ¹³C NMR Spectra for Compounds

										1 1								1 1				1 1	1	· ·
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

1 1																	· · · ·	
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

	1 1		1 1			1 1		1 1				1 1	1 1		1 1	1 1		1 1	1 1		1 1	1 1	1 1	
11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.
											1	f1 (ppm)											

¹³C NMR (101 MHz, DMSO)

		1	
	1		
			1

- 1 - 1	1 1	1 1	1 1	1 1	1 1	1 1	1			1			· ·	1 1	1 1	1			1 1	1 1	- I I	
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
										f1	(ppm)											

			- I I	·	· · ·	'	- I I	· ·					· · ·	1 1						1		
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(

- I - I	- I - I	- I - I	- I - I	1	1	·			· 1				1	· · · ·		· ·	· 1		· · ·
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	З.	.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

			1 1		·	· · · ·		· 1				1 1				1 1		'	· 1	- I -
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3	3.0	2.5	2.0	1	1.5	1.0	0.5	0.0	-0.5

¹H NMR (499 MHz, CDCl₃)

			- I I			- I I	·						- I I					
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

										· .						· I	'					
11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

¹³C NMR (101 MHz, CDCl₃)

		1 .		1 1	1 .	1 .	1 .	1 .	· · ·			1 .		1	1 .	· ·	1 .	1 .	
З.	5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0

	1 1	- I - I			1 1	· · ·		'	· · · ·					· · ·		· · · ·		
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

90 f1 (ppm) . 180 . 170 . 160 . 150 . 140 . 130 120 . 110 100 . 80 . 70 . 60 . 50 . 40 30 . 20 10 (

¹H NMR (400 MHz, C₆D₆)

 ^{13}C NMR (101 MHz, CDCl_3)

1																						
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(

¹³C NMR (101 MHz, CDCI₃)

f1 (ppm)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

dihydrocodeinone

dihydrocodeine

¹³C NMR (101 MHz, CDCl₃)

MeO.

0 100

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

