
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017

Content

1.	X-ray diffraction analysis of compound 17	2
2.	General methods	12
3.	Synthesis of diazo compounds	13
4.	Synthesis of aminocyclopropanes	15
5.	Substrate synthesis	24
6.	Optimization of the reaction	34
7.	General procedure	35
8.	Scope of the reaction with quinolines	35
9.	Scope of the reaction with isoquinolines	55
10.	Scope of the reaction with benzo- thia/oxa-zole	58
11.	Scope of the reaction with pyridines	60
12.	Product modification	70
13.	Attempts towards the Enantioselective Dearomatization	75
14.	Spectra of new compounds	77

1. X-ray diffraction analysis of compound 17

CCDC deposition number: 1556244

Table S1. Crystal data and structure refinement for compound 17

 $Empirical \ formula \qquad \qquad C_{24}H_{20}N_2O_6$

Formula weight 432.42

Temperature 100.01(10) K
Wavelength 1.54184 Å
Crystal system Orthorhombic

Space group Pna2₁

Unit cell dimensions a = 28.9068(4) Å $\alpha = 90^{\circ}$.

b = 7.90250(10) Å $\beta = 90^{\circ}.$

c = 8.98890(10) Å $\gamma = 90^{\circ}$.

Volume $2053.39(4) \text{ Å}^3$

Z 4

Density (calculated) 1.399 Mg/m^3 Absorption coefficient 0.846 mm^{-1}

F(000) 904

Crystal size $0.509 \times 0.409 \times 0.265 \text{ mm}^3$

Theta range for data collection 5.797 to 75.495°.

Index ranges $-36 \le h \le 36, -9 \le k \le 9, -11 \le l \le 11$

Reflections collected 35518

Independent reflections 4206 [$R_{int} = 0.0326$]

Completeness to $\theta = 67.684^{\circ}$ 99.9 % Absorption correction Gaussian

Max. and min. transmission 0.850 and 0.723

Refinement method Full-matrix least-squares on F^2

Data / restraints / parameters 4206 / 1 / 348

Goodness-of-fit on F^2 1.059

Final R indices [$I > 2\sigma(I)$] $R_1 = 0.0236$, $wR_2 = 0.0639$ R indices (all data) $R_1 = 0.0243$, $wR_2 = 0.0645$

Absolute structure parameter 0.01(5)
Extinction coefficient 0.0012(2)

Largest diff. peak and hole 0.186 and -0.133 e.Å-3

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (\mathring{A}^2x 10³) for compound 17. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

I (- I)					
	X	y	Z	U(eq)	
O(1)	7071(1)	7430(2)	8003(1)	31(1)	
O(2)	6456(1)	9031(2)	8589(1)	28(1)	
O(3)	6155(1)	9739(2)	4455(2)	40(1)	
O(4)	6861(1)	10163(1)	5425(2)	28(1)	
O(5)	6107(1)	3180(2)	6928(1)	28(1)	
O(6)	4927(1)	5102(2)	3972(1)	29(1)	
N(1)	6306(1)	5697(2)	4369(2)	24(1)	
N(2)	5585(1)	4517(2)	5362(2)	22(1)	
C(1)	5855(1)	6043(2)	4984(2)	23(1)	
C(2)	5951(1)	7102(2)	6398(2)	25(1)	
C(3)	6453(1)	7729(2)	6229(2)	23(1)	
C(4)	6677(1)	6213(2)	5381(2)	23(1)	
C(5)	7124(1)	6551(2)	4597(2)	27(1)	
C(6)	7193(1)	6080(2)	3193(2)	27(1)	
C(7)	6828(1)	5288(2)	2309(2)	25(1)	
C(8)	6908(1)	4733(2)	862(2)	29(1)	
C(9)	6554(1)	4069(2)	-1(2)	31(1)	
C(10)	6111(1)	3976(2)	596(2)	29(1)	
C(11)	6021(1)	4511(2)	2044(2)	25(1)	
C(12)	6379(1)	5161(2)	2917(2)	22(1)	
C(13)	6702(1)	8019(2)	7697(2)	24(1)	
C(14)	6674(1)	9411(2)	10007(2)	32(1)	
C(15)	6464(1)	9325(2)	5267(2)	25(1)	
C(16)	6908(1)	11653(2)	4490(2)	33(1)	
C(17)	5726(1)	3275(2)	6378(2)	23(1)	
C(18)	5320(1)	2151(2)	6596(2)	22(1)	
C(19)	5265(1)	788(2)	7539(2)	27(1)	
C(20)	4835(1)	7(2)	7551(2)	31(1)	
C(21)	4476(1)	569(2)	6646(2)	29(1)	
C(22)	4533(1)	1950(2)	5694(2)	25(1)	
C(23)	4962(1)	2725(2)	5701(2)	21(1)	
C(24)	5128(1)	4247(2)	4884(2)	23(1)	

Table S3. Bond lengths [Å] and angles [°] for compound 17. (Symmetry transform. used	sed to gen. equiv. atoms)
---	---------------------------

O(1)-C(13)	1.195(2)	C(11)-H(11)	0.99(2)
O(2)-C(13)	1.339(2)	C(14)-H(14A)	0.9800
O(2)-C(14)	1.454(2)	C(14)-H(14B)	0.9800
O(3)-C(15)	1.199(2)	C(14)-H(14C)	0.9800
O(4)-C(15)	1.332(2)	C(16)-H(16A)	0.9800
O(4)-C(16)	1.453(2)	C(16)-H(16B)	0.9800
O(5)-C(17)	1.209(2)	C(16)-H(16C)	0.9800
O(6)-C(24)	1.211(2)	C(17)-C(18)	1.485(2)
N(1)-C(12)	1.389(2)	C(18)-C(19)	1.380(2)
N(1)-C(1)	1.442(2)	C(18)-C(23)	1.387(2)
N(1)-C(4)	1.464(2)	C(19)-C(20)	1.388(3)
N(2)-C(17)	1.401(2)	C(19)-H(19)	0.93(3)
N(2)-C(24)	1.405(2)	C(20)-C(21)	1.392(3)
N(2)-C(1)	1.476(2)	C(20)-H(20)	0.96(2)
C(1)-C(2)	1.547(2)	C(21)-C(22)	1.397(2)
C(1)-H(1)	0.94(2)	C(21)-H(21)	0.97(3)
C(2)-C(3)	1.542(2)	C(22)-C(23)	1.383(2)
C(2)-H(2A)	0.99(2)	C(22)-H(22)	1.03(2)
C(2)-H(2B)	0.98(2)	C(23)-C(24)	1.488(2)
C(3)-C(13)	1.520(2)	C(13)-O(2)-C(14)	114.64(13)
C(3)-C(15)	1.529(2)	C(15)-O(4)-C(16)	114.95(14)
C(3)-C(4)	1.561(2)	C(12)-N(1)-C(1)	123.82(14)
C(4)-C(5)	1.496(2)	C(12)-N(1)-C(4)	123.84(13)
C(4)-H(4)	1.02(2)	C(1)-N(1)-C(4)	111.78(13)
C(5)-C(6)	1.331(3)	C(17)-N(2)-C(24)	111.51(13)
C(5)-H(5)	1.00(2)	C(17)-N(2)-C(1)	124.65(13)
C(6)-C(7)	1.462(2)	C(24)-N(2)-C(1)	123.39(13)
C(6)-H(6)	1.00(2)	N(1)-C(1)-N(2)	114.27(13)
C(7)-C(8)	1.392(2)	N(1)-C(1)-C(2)	104.79(13)
C(7)-C(12)	1.411(2)	N(2)-C(1)-C(2)	110.32(13)
C(8)-C(9)	1.387(3)	N(1)-C(1)-H(1)	111.0(13)
C(8)-H(8)	0.98(2)	N(2)-C(1)-H(1)	106.2(12)
C(9)-C(10)	1.391(3)	C(2)-C(1)-H(1)	110.3(12)
C(9)-H(9)	0.94(3)	C(3)-C(2)-C(1)	105.19(13)
C(10)-C(11)	1.393(3)	C(3)-C(2)-H(2A)	113.3(13)
C(10)-H(10)	0.97(2)	C(1)-C(2)-H(2A)	109.5(14)
C(11)-C(12)	1.396(2)	C(3)-C(2)-H(2B)	108.8(13)

C(1)-C(2)-H(2B)	110.4(13)	O(1)-C(13)-O(2)	124.76(16)
H(2A)-C(2)-H(2B)	109.5(19)	O(1)-C(13)-C(3)	124.32(15)
C(13)-C(3)-C(15)	110.88(13)	O(2)-C(13)-C(3)	110.92(13)
C(13)-C(3)-C(2)	114.18(14)	O(2)-C(14)-H(14A)	109.5
C(15)-C(3)-C(2)	109.91(13)	O(2)-C(14)-H(14B)	109.5
C(13)-C(3)-C(4)	110.10(13)	H(14A)-C(14)-H(14B)	109.5
C(15)-C(3)-C(4)	110.35(13)	O(2)-C(14)-H(14C)	109.5
C(2)-C(3)-C(4)	101.01(12)	H(14A)-C(14)-H(14C)	109.5
N(1)-C(4)-C(5)	112.95(14)	H(14B)-C(14)-H(14C)	109.5
N(1)-C(4)-C(3)	102.39(12)	O(3)-C(15)-O(4)	124.76(17)
C(5)-C(4)-C(3)	116.76(13)	O(3)-C(15)-C(3)	123.63(15)
N(1)-C(4)-H(4)	109.5(11)	O(4)-C(15)-C(3)	111.60(14)
C(5)-C(4)-H(4)	109.1(11)	O(4)-C(16)-H(16A)	109.5
C(3)-C(4)-H(4)	105.7(12)	O(4)-C(16)-H(16B)	109.5
C(6)-C(5)-C(4)	121.74(16)	H(16A)-C(16)-H(16B)	109.5
C(6)-C(5)-H(5)	123.3(12)	O(4)-C(16)-H(16C)	109.5
C(4)-C(5)-H(5)	114.9(12)	H(16A)-C(16)-H(16C)	109.5
C(5)-C(6)-C(7)	121.79(16)	H(16B)-C(16)-H(16C)	109.5
C(5)-C(6)-H(6)	120.4(12)	O(5)-C(17)-N(2)	125.13(15)
C(7)-C(6)-H(6)	117.7(12)	O(5)-C(17)-C(18)	128.90(15)
C(8)-C(7)-C(12)	119.47(15)	N(2)-C(17)-C(18)	105.97(13)
C(8)-C(7)-C(6)	121.55(15)	C(19)-C(18)-C(23)	121.71(15)
C(12)-C(7)-C(6)	118.91(15)	C(19)-C(18)-C(17)	129.77(15)
C(9)-C(8)-C(7)	121.31(17)	C(23)-C(18)-C(17)	108.46(14)
C(9)-C(8)-H(8)	122.5(14)	C(18)-C(19)-C(20)	117.10(16)
C(7)-C(8)-H(8)	116.1(14)	C(18)-C(19)-H(19)	120.5(14)
C(8)-C(9)-C(10)	118.92(17)	C(20)-C(19)-H(19)	122.3(14)
C(8)-C(9)-H(9)	120.6(15)	C(19)-C(20)-C(21)	121.47(17)
C(10)-C(9)-H(9)	120.4(15)	C(19)-C(20)-H(20)	120.1(14)
C(9)-C(10)-C(11)	121.00(17)	C(21)-C(20)-H(20)	118.4(14)
C(9)-C(10)-H(10)	118.8(14)	C(20)-C(21)-C(22)	121.19(16)
C(11)-C(10)-H(10)	120.2(14)	C(20)-C(21)-H(21)	118.9(15)
C(10)-C(11)-C(12)	119.99(16)	C(22)-C(21)-H(21)	119.9(15)
C(10)-C(11)-H(11)	118.2(13)	C(23)-C(22)-C(21)	116.76(15)
C(12)-C(11)-H(11)	121.8(13)	C(23)-C(22)-H(22)	125.1(13)
N(1)-C(12)-C(11)	121.80(15)	C(21)-C(22)-H(22)	118.1(13)
N(1)-C(12)-C(7)	118.89(14)	C(22)-C(23)-C(18)	121.76(15)
C(11)-C(12)-C(7)	119.31(15)	C(22)-C(23)-C(24)	130.10(15)

C(18)-C(23)-C(24)	108.10(13)	O(6)-C(24)-C(23)	129.02(15)
O(6)-C(24)-N(2)	125.05(15)	N(2)-C(24)-C(23)	105.92(13)

Table S4. Anisotropic displacement parameters (Å²x 10³)for compound **17**.

The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

The aniso	otropic displ	acement factor e	xponent takes t	the form: $-2\pi^2$	h ² a* ² U ¹¹ + +	- 2 h k a* b* U ¹²]	
	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}	
O(1)	29(1)	36(1)	29(1)	-2(1)	-5(1)	5(1)	
O(2)	28(1)	31(1)	27(1)	-5(1)	0(1)	1(1)	
O(3)	38(1)	38(1)	43(1)	12(1)	-17(1)	-7(1)	
O(4)	24(1)	24(1)	35(1)	5(1)	0(1)	-2(1)	
O(5)	24(1)	33(1)	27(1)	1(1)	-6(1)	1(1)	
O(6)	23(1)	33(1)	32(1)	10(1)	-4(1)	0(1)	
N(1)	20(1)	29(1)	24(1)	-4(1)	0(1)	-3(1)	
N(2)	21(1)	23(1)	24(1)	1(1)	-1(1)	-2(1)	
C(1)	22(1)	22(1)	25(1)	1(1)	1(1)	-2(1)	
C(2)	23(1)	24(1)	29(1)	-4(1)	2(1)	-2(1)	
C(3)	22(1)	23(1)	24(1)	-1(1)	-1(1)	-1(1)	
C(4)	23(1)	22(1)	25(1)	-2(1)	-2(1)	-1(1)	
C(5)	21(1)	27(1)	32(1)	-3(1)	0(1)	0(1)	
C(6)	22(1)	27(1)	31(1)	0(1)	2(1)	0(1)	
C(7)	26(1)	22(1)	25(1)	3(1)	1(1)	2(1)	
C(8)	28(1)	30(1)	28(1)	2(1)	3(1)	3(1)	
C(9)	35(1)	34(1)	23(1)	-2(1)	-2(1)	5(1)	
C(10)	31(1)	30(1)	26(1)	-1(1)	-5(1)	1(1)	
C(11)	26(1)	25(1)	26(1)	1(1)	-2(1)	1(1)	
C(12)	26(1)	19(1)	23(1)	3(1)	-1(1)	2(1)	
C(13)	26(1)	21(1)	25(1)	0(1)	0(1)	-3(1)	
C(14)	33(1)	37(1)	27(1)	-8(1)	0(1)	-4(1)	
C(15)	25(1)	24(1)	26(1)	-1(1)	-1(1)	0(1)	
C(16)	33(1)	27(1)	39(1)	8(1)	5(1)	0(1)	
C(17)	25(1)	24(1)	20(1)	-1(1)	0(1)	1(1)	
C(18)	24(1)	22(1)	20(1)	-3(1)	1(1)	1(1)	
C(19)	31(1)	26(1)	24(1)	2(1)	-1(1)	2(1)	
C(20)	36(1)	28(1)	29(1)	7(1)	4(1)	-1(1)	
C(21)	29(1)	29(1)	30(1)	2(1)	2(1)	-6(1)	
C(22)	24(1)	27(1)	23(1)	-1(1)	0(1)	-2(1)	
C(23)	23(1)	23(1)	19(1)	-2(1)	2(1)	1(1)	
C(24)	23(1)	23(1)	22(1)	-1(1)	1(1)	1(1)	

Table S5. Hydrogen coordinates (\times 10⁴) and isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for compound 17.

	X	y	z	U(eq)
H(1)	5672(7)	6660(30)	4310(20)	23(5)
H(2A)	5722(8)	8030(30)	6470(30)	35(6)
H(2B)	5930(7)	6390(30)	7280(30)	33(6)
H(4)	6727(7)	5290(20)	6160(20)	21(5)
H(5)	7368(7)	7090(30)	5220(30)	30(5)
H(6)	7496(7)	6310(20)	2690(20)	25(5)
H(8)	7224(8)	4870(30)	490(30)	34(6)
H(9)	6615(8)	3650(30)	-960(30)	41(6)
H(10)	5861(8)	3540(30)	-20(30)	36(6)
H(11)	5700(7)	4440(30)	2410(20)	27(5)
H(14A)	7006	9584	9856	49
H(14B)	6626	8464	10694	49
H(14C)	6537	10440	10426	49
H(16A)	6898	11316	3441	49
H(16B)	7203	12211	4701	49
H(16C)	6653	12438	4697	49
H(19)	5510(8)	410(30)	8130(30)	34(6)
H(20)	4780(8)	-950(30)	8190(30)	33(6)
H(21)	4180(9)	-10(30)	6690(30)	42(6)
H(22)	4252(7)	2360(30)	5090(30)	30(5)

Table S6.	Torsion	angles [[°]	for com	pound	17 .
-----------	---------	----------	-----	---------	-------	-------------

C(12)-N(1)-C(1)-N(2)	76.2(2)
C(4)-N(1)-C(1)-N(2)	-112.13(15)
C(12)-N(1)-C(1)-C(2)	-162.91(15)
C(4)-N(1)-C(1)-C(2)	8.74(17)
C(17)-N(2)-C(1)-N(1)	59.5(2)
C(24)-N(2)-C(1)-N(1)	-128.82(16)
C(17)-N(2)-C(1)-C(2)	-58.23(19)
C(24)-N(2)-C(1)-C(2)	113.43(16)
N(1)-C(1)-C(2)-C(3)	16.44(17)
N(2)-C(1)-C(2)-C(3)	139.89(14)
C(1)-C(2)-C(3)-C(13)	-151.30(13)
C(1)-C(2)-C(3)-C(15)	83.38(16)
C(1)-C(2)-C(3)-C(4)	-33.19(16)
C(12)-N(1)-C(4)-C(5)	15.4(2)
C(1)-N(1)-C(4)-C(5)	-156.26(14)
C(12)-N(1)-C(4)-C(3)	141.81(15)
C(1)-N(1)-C(4)-C(3)	-29.84(17)
C(13)-C(3)-C(4)-N(1)	158.69(13)
C(15)-C(3)-C(4)-N(1)	-78.59(15)
C(2)-C(3)-C(4)-N(1)	37.66(16)
C(13)-C(3)-C(4)-C(5)	-77.40(18)
C(15)-C(3)-C(4)-C(5)	45.33(19)
C(2)-C(3)-C(4)-C(5)	161.57(15)
N(1)-C(4)-C(5)-C(6)	-13.2(2)
C(3)-C(4)-C(5)-C(6)	-131.54(17)
C(4)-C(5)-C(6)-C(7)	3.4(3)
C(5)-C(6)-C(7)-C(8)	-177.23(16)
C(5)-C(6)-C(7)-C(12)	5.9(2)
C(12)-C(7)-C(8)-C(9)	0.6(2)
C(6)-C(7)-C(8)-C(9)	-176.30(17)
C(7)-C(8)-C(9)-C(10)	0.6(3)
C(8)-C(9)-C(10)-C(11)	-1.1(3)
C(9)-C(10)-C(11)-C(12)	0.4(3)
C(1)-N(1)-C(12)-C(11)	-16.3(2)
C(4)-N(1)-C(12)-C(11)	173.04(15)
C(1)-N(1)-C(12)-C(7)	163.36(14)
C(4)-N(1)-C(12)-C(7)	-7.3(2)

C(10)-C(11)-C(12)-N(1)	-179.55(15)
C(10)-C(11)-C(12)-C(7)	0.8(2)
C(8)-C(7)-C(12)-N(1)	179.08(15)
C(6)-C(7)-C(12)-N(1)	-4.0(2)
C(8)-C(7)-C(12)-C(11)	-1.3(2)
C(6)-C(7)-C(12)-C(11)	175.71(15)
C(14)-O(2)-C(13)-O(1)	1.0(2)
C(14)-O(2)-C(13)-C(3)	-178.56(13)
C(15)-C(3)-C(13)-O(1)	-107.51(18)
C(2)-C(3)-C(13)-O(1)	127.69(18)
C(4)-C(3)-C(13)-O(1)	14.9(2)
C(15)-C(3)-C(13)-O(2)	72.02(16)
C(2)-C(3)-C(13)-O(2)	-52.78(18)
C(4)-C(3)-C(13)-O(2)	-165.57(13)
C(16)-O(4)-C(15)-O(3)	-1.6(3)
C(16)-O(4)-C(15)-C(3)	177.12(14)
C(13)-C(3)-C(15)-O(3)	-145.69(18)
C(2)-C(3)-C(15)-O(3)	-18.5(2)
C(4)-C(3)-C(15)-O(3)	92.0(2)
C(13)-C(3)-C(15)-O(4)	35.57(19)
C(2)-C(3)-C(15)-O(4)	162.76(14)
C(4)-C(3)-C(15)-O(4)	-86.69(17)
C(24)-N(2)-C(17)-O(5)	177.73(15)
C(1)-N(2)-C(17)-O(5)	-9.8(3)
C(24)-N(2)-C(17)-C(18)	-1.79(17)
C(1)-N(2)-C(17)-C(18)	170.73(14)
O(5)-C(17)-C(18)-C(19)	4.4(3)
N(2)-C(17)-C(18)-C(19)	-176.13(16)
O(5)-C(17)-C(18)-C(23)	-178.23(16)
N(2)-C(17)-C(18)-C(23)	1.26(17)
C(23)-C(18)-C(19)-C(20)	0.3(3)
C(17)-C(18)-C(19)-C(20)	177.37(17)
C(18)-C(19)-C(20)-C(21)	0.2(3)
C(19)-C(20)-C(21)-C(22)	-0.3(3)
C(20)-C(21)-C(22)-C(23)	-0.1(3)
C(21)-C(22)-C(23)-C(18)	0.7(2)
C(21)-C(22)-C(23)-C(24)	-176.95(16)
C(19)-C(18)-C(23)-C(22)	-0.8(2)

C(17)-C(18)-C(23)-C(22)	-178.39(15)
C(19)-C(18)-C(23)-C(24)	177.33(15)
C(17)-C(18)-C(23)-C(24)	-0.32(17)
C(17)-N(2)-C(24)-O(6)	-177.52(16)
C(1)-N(2)-C(24)-O(6)	9.9(3)
C(17)-N(2)-C(24)-C(23)	1.60(17)
C(1)-N(2)-C(24)-C(23)	-171.03(14)
C(22)-C(23)-C(24)-O(6)	-3.8(3)
C(18)-C(23)-C(24)-O(6)	178.32(17)
C(22)-C(23)-C(24)-N(2)	177.12(16)
C(18)-C(23)-C(24)-N(2)	-0.74(17)

2. General methods

All reactions were carried out in oven- or flame dried glassware under nitrogen atmosphere, unless stated otherwise. For quantitative flash chromatography, distilled technical grade solvents were used. THF, Et₂O, CH₃CN and CH₂Cl₂ were dried by passage over activated alumina under nitrogen atmosphere (H₂O content < 7 ppm, Karl-Fischer titration). NEt₃ was dried by distillation over CaH₂ under nitrogen atmosphere. All chemicals were purchased and used as received unless stated otherwise. Chromatographic purification was performed as flash chromatography using Macherey-Nagel silica 40-63, 60 Å, using the solvents indicated as eluent with 0.1-0.5 bar pressure. TLC was performed on Merck silica gel 60 F254 TLC aluminium plates and visualized with UV-light, permanganate, CAM or p-anisaldehyde stains. ¹H-NMR spectra were recorded at room temperature on a Brucker DPX-400 400 MHz spectrometer in chloroform-d or D6-DMSO; all signals are reported in ppm with the internal chloroform signal at 7.26 ppm or the internal D6-DMSO signal at 2.50 ppm as standard. The data is being reported as (s = singlet, d = doublet, t = triplet, q = quadruplet, qi = quintet, m = multiplet or unresolved, br = broad signal, integration, coupling constant(s) in Hz, interpretation). ¹³C-NMR spectra were recorded with 1H-decoupling on a Bruker DPX-400 101 MHz spectrometer in chloroform-d or D6-DMSO; all signals are reported in ppm with the internal chloroform signal at 77.00 ppm or the internal DMSO signal at 39.51 ppm as standard. Infrared spectra were recorded on a JASCO FT-IR B4100 spectrophotometer with an ATR PRO4100-S and a ZnSe prism and are reported as cm⁻¹ (w = weak, m = medium, s = strong). High resolution mass spectrometric measurements were performed by the mass spectrometry service of ISIC at the EPFL on a MICROMASS (ESI) Q-TOF Ultima API. Melting points were measured on a Buechi B-540 melting point apparatus and were not corrected.

3. Synthesis of diazo compounds

Dimethyl 2-diazomalonate (SI-2).

$$H_3CO$$
OCH₃
 $pABSA, NEt_3$
 CH_3CN
 H_3CO
OCH₃
 N_2
SI-2

Following a modified procedure,¹ triethylamine (9.23 mL, 66.6 mmol, 2.4 equiv.) and dimethyl malonate **SI-1** (3.19 mL, 27.8 mmol, 1 equiv.) were added to a solution of *p*ABSA (10.0 g, 41.6 mmol, 1.5 equiv.) in CH_3CN (111 mL, 0.25 M) at room temperature and the resulting mixture was stirred for 18 hours at room temperature. Thereafter the mixture was filtered and the solvent was evaporated. The residue was triturated with CH_2Cl_2 (50 mL), the remaining solids were filtered off and the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 10:1 to 5:1) and 4.28 g (27.1 mmol, 98%) of the title compound **SI-2** were isolated as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃): δ = 3.84 (s, 6H, CH₃).

¹H-NMR data match the literature report.¹

Dibenzyl 2-diazomalonate (SI-4).

Following a modified procedure,² triethylamine (1.33 mL, 9.60 mmol, 2.4 equiv.) and dibenzyl malonate **SI-3** (1.00 mL, 4.00 mmol, 1 equiv.) were added to a solution of pABSA (1.44 g, 6.00 mmol, 1.5 equiv.) in CH_3CN (16.0 mL, 0.25 M) at room temperature and the resulting mixture was stirred for 18 hours at room temperature. Thereafter the mixture was filtered and the solvent was evaporated. The residue was triturated with CH_2Cl_2 (20 mL), the remaining solids were filtered off and the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 10:1) and 1.19 g (3.83 mmol, 96%) of the title compound **SI-4** were isolated as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃): δ = 7.42 – 7.28 (m, 10H, Ar*H*), 5.28 (s, 4H, C*H*₂).

¹H-NMR data match the literature report. ¹

¹ F. de Nanteuil, J. Waser, *Angew. Chem. Int. Ed.*, **2011**, *50*, 12075–12079.

Bis(2,2,2-trifluoroethyl) malonate (SI-7).

Following a modified procedure, 2 H $_2$ SO $_4$ (1.00 mL, 18.8 mmol, 0.25 equiv.) was added to a solution of trifluoroethanol SI-5 (29.9 mL, 415 mmol, 5.4 equiv.) and malonic acid SI-6 (8.00 g, 77.0 mmol, 1 equiv.) in toluene (40.0 mL, 1.9 M) and the resulting mixture was heated to reflux for 8 hours. After cooling to room temperature, toluene (80.0 mL) was added and the mixture was washed with aq. NaOH (200 mL, 1 M), water (200 mL) and brine (200 mL). The organic layer was dried over MgSO $_4$ and the solvent was evaporated which afforded 6.80 g (25.4 mmol, 33%) of the title compound SI-7 as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ = 4.55 (q, J = 8.2 Hz, 4H, OCH₂), 3.61 (s, 2H, CH₂).

¹H-NMR data match the literature report.²

Bis(2,2,2-trifluoroethyl) 2-diazomalonate (SI-8).

$$F_3C$$
 O
 O
 CF_3
 CH_3CN
 F_3C
 O
 N_2
 N_2
 $SI-7$
 $SI-8$

Following a modified procedure,² triethylamine (6.00 mL, 43.3 mmol, 2.4 equiv.) and bis(trifluorethyl)malonate **SI-7** (4.84 g, 18.0 mmol, 1 equiv.) were added to a solution of pABSA (6.50 g, 27.1 mmol, 1.5 equiv.) in CH₃CN (72.0 mL, 0.25 M) at room temperature and the resulting mixture was stirred for 18 hours at room temperature. Thereafter the mixture was filtered and the solvent was evaporated. The residue was triturated with CH₂Cl₂ (50 mL), the solids were filtered off and the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 10:1 to 5:1) and 5.26 g (17.9 mmol, 99%) of the title compound **SI-8** were isolated as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃): δ = 4.63 (q, J = 8.2 Hz, 4H, OCH₂).

¹H-NMR data match the literature report.²

14

² F. de Nanteuil, J. Loup, and J. Waser *Org. Lett.* **2013**, *15*, 3738-3741.

1-tert-Butyl 3-methyl 2-diazomalonate (SI-10).

$$PABSA, NEt_3$$
 H_3CO
 $OtBu$
 $OtBu$

Following a modified procedure,³ triethylamine (1.97 mL, 14.2 mmol, 2.4 equiv.) and *tert*-butyl methyl malonate **SI-9** (1.00 mL, 5.91 mmol, 1 equiv.) were added to a solution of *p*ABSA (2.13 g, 8.87 mmol, 1.5 equiv.) in CH_3CN (23 mL, 0.25 M) at room temperature and the resulting mixture was stirred for 18 hours at room temperature. Thereafter the mixture was filtered and the solvent was evaporated. The residue was triturated with CH_2Cl_2 (25 mL), the remaining solids were filtered and the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 20:1 to 10:1) and 1.05 g (5.24 mmol, 89%) of the title compound **SI-10** were isolated as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 3.82 (s, 3H, CH₃), 1.50 (s, 9H, C(CH₃)₃). HRMS (ESI) calcd. for C₈H₁₃N₂O₄⁺ [M+H]⁺ 201.0870; found 201.0690.

¹H-NMR data match the literature report.³

4. Synthesis of aminocyclopropanes

Bimethyl 2-(1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (14).

$$H_3CO \longrightarrow OCH_3$$
 + N_2 CH_2Cl_2 CH_2Cl_2 $COOCH_3$ $COOCH_3$

Following a modified procedure,¹ a solution of dimethyldiazomalonate SI-2 (2.21 g, 14.0 mmol, 1.1 equiv.) in CH_2Cl_2 (10.0 mL) was added over 5 minutes at 0 °C to a solution of $Rh_2(esp)_2$ (19.0 mg, 25.0 µmol, 0.2 mol%) and *N*-vinyl-phtalimide SI-11 (2.20 g, 12.7 mmol, 1 equiv.) in CH_2Cl_2 (40 mL). The reaction mixture was stirred for 16 hours while warming to room temperature. Thereafter the solvent was evaporated and the residue was purified by column chromatography (silica, pentane:EtOAc 10:1 to pentane:EtOAc 4:1) affording 3.23 g (10.7 mmol, 84%) of the title compound 14 as a colorless oil.

15

³ F. de Simone, T. Saget, F. Benfatti, S. Almeida, J. Waser *Chem. Eur. J.* **2011**, *17*, 14527-14538.

¹**H NMR** (400 MHz, CDCl₃): δ = 7.84 (dd, J = 5.5, 3.1 Hz, 2H, *Phth*), 7.72 (dd, J = 5.5, 3.1 Hz, 2H, *Phth*), 3.83 (s, 3H, OC*H*₃), 3.70 (dd, J = 8.5, 6.6 Hz, 1H, C*H*-Phth), 3.62 (s, 3H, OC*H*₃), 2.71 (t, J = 6.6 Hz, 1H, CH₂), 2.04 (dd, J = 8.5, 6.6 Hz, 1H, CH₂).

¹H-NMR data match the literature report.¹

5,6-Dichloro-2-vinylisoindoline-1,3-dione (SI-14).

$$OAc$$
 + OAc + OAc OAC

Following a modified procedure, ⁷ Na₂PdCl₄ (27.0 mg, 92 μmol, 2 mol%) was added to a stirred solution of 4,5-dichlorophthalimide (**SI-13**) (1.00 g, 4.63 mmol, 1.00 equiv.) in vinyl acetate (**SI-12**) (11.5 mL, 124 mmol, 26.8 equiv.), and the mixture was heated under reflux for 48 h. After solvent evaporation, the crude was purified by Biotage (SNAP Cartridge KP-Sil 25 g, 8:2 Hexane/EtOAc) to obtain 1.25 g (4.63 mmol, 46%) of the title compound **SI-14** as a yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.96 (s, 2H, Ar*H*), 6.84 (dd, *J* = 16.4, 9.8 Hz, 1H, N-*CH*), 6.09 (dd, *J* = 16.4, 0.3 Hz, 1H, =*CH*), 5.10 (dd, *J* = 9.8, 0.3 Hz, 1H, =*CH*).

¹H-NMR data match the literature report.⁷

Dimethyl 2-(5,6-dichloro-1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (SI-15).

$$H_3CO \longrightarrow OCH_3$$
 + OCH_3 + OCH_3 + OCH_3 COOCH $_3$ COOCH $_3$ SI-2 SI-14 SI-15

Following a modified procedure,⁸ a solution of dimethyl diazomalonate (SI-2) (0.51 mL, 4.40 mmol, 1.5 equiv.) in CH_2CI_2 (8.0 mL) was added dropwise over 5 minutes to a solution of 5,6-dichloro-2-vinylisoindoline- 1,3-dione (SI-14) (72.0 mg, 3.00 mmol, 1 equiv.) and $Rh_2(esp)_2$ (4.50 mg, 5.90 μ mol, 0.2 mol%) in CH_2CI_2 (4.0 mL) at 0 °C. After stirring the resulting mixture overnight at room temperature, the solution was concentrated under reduced pressure. Purification by Biotage (SNAP cartridge KP-Sil

25 g, hexane:EtOAc 95:5 to 6:4) afforded 810 mg (2.20 mmol, 74%) of the title compound **SI-15** as a colorless solid.

¹**H NMR** (400 MHz, CDCl₃) δ = 7.92 (s, 2H, Ar*H*), 3.82 (s, 3H, OC*H*₃), 3.66 (dd, *J* = 8.5, 6.5 Hz, 1H, C*H*-Phth), 3.63 (s, 3H, OC*H*₃), 2.64 (dd, *J* = 6.5. 6.5 Hz, 1H, C*H*₂), 2.07-2.01 (m, 1H, C*H*₂).

¹H-NMR data match the literature report.⁸

5-Nitro-2-vinylisoindoline-1,3-dione (SI-17).

Following a modified procedure,⁴ PdCl₂ (92 mg, 0.52 mmol, 10 mol%) and LiCl (221 mg, 5.20 mmol, 1 equiv.) were added to a solution of 5-nitrosoindoline-1,3-dione (SI-16) (1.00 g, 5.20 mmol, 1 equiv.) in vinyl acetate (SI-12) (12.9 mL, 139 mmol, 27 equiv.) and the mixture was heated to reflux for 20 hours. After cooling to room temperature the solvent was evaporated and the residue was purified by column chromatography (hexane:EtOAc 4:1 to 1:1) affording 1.14 g (5.23 mmol, quant.) of the title compound SI-17 as a bright yellow solid.

¹H NMR (400 MHz, CDCl₃) δ = 8.68 (dd, J = 2.0, 0.5 Hz, 1H, ArH), 8.63 (dd, J = 8.1, 2.0 Hz, 1H, ArH), 8.08 (m, 1H, ArH), 6.88 (dd, J = 16.4, 9.8 Hz, 1H, CH-N), 6.14 (dd, J = 16.4, 0.5 Hz, 1H, =CH₂), 5.16 (dd, J = 9.8, 0.5 Hz, 1H, =CH₂) ppm.

¹H-NMR data match the literature report.⁴

Dimethyl 2-(5-nitro-1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (SI-18).

$$H_3CO \longrightarrow OCH_3$$
 + $OCOCH_3$ + $OCOCH_3$ + $OCOCH_3$ SI-17 SI-18

Following a modified procedure,⁴ a solution of dimethyldiazomalonate (**SI-2**) (0.12 g 0.77 mmol, 1.2 equiv.) in CH₂Cl₂ (1.0 mL) was added over 5 minutes to a solution of 5-nitro-2-vinylisoindoline-1,3-

17

⁴ F. de Nanteuil, E. Serrano, D. Perrotta, and J. Waser *J. Am. Chem. Soc.* **2014** *136*, 6239-6242.

dione (SI-17) (0.13 g, 0.64 mmol, 1 equiv.) and $Rh_2(esp)_2$ (1 mg, 1.2 μ mol, 0.2 mol%) in CH_2Cl_2 (1.6 mL) at 0 °C and the resulting mixture was stirred for 16 hours while warming to room temperature. Thereafter the solvent was evaporated and the residue was purified by column chromatography (silica, hexane:EtOAc 6:4) affording 0.18 g (0.53 mmol, 83%) of the title compound SI-18 as a colorless solid.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.61 (m, 2H, Ar*H*), 8.03 (d, *J* = 8.1 Hz, 1H, Ar*H*), 3.83 (s, 3H, OC*H*₃), 3.70 (m, 1H, C*H*-N), 3.62 (s, 3H, OC*H*₃), 2.63 (m, 1H, C*H*₂), 2.07 (m, 1H, C*H*₂).

¹H-NMR data match the literature report.⁴

1-Vinyl-1H-pyrrole-2,5-dione (SI-20).

Following a modified procedure, maleimide (SI-19) (1.30 g, 13.4 mmol, 1 equiv.), palladium(II) chloride (240 mg, 1.34 mmol, 0.1 equiv.), lithium chloride (57.0 mg, 1.34 mmol, 0.1 equiv.) and vinyl acetate (SI-12) (33.2 mL, 359 mmol, 27 equiv.) were added in a microwave tube sealed with a microwave cap. After stirring at 80 °C for 23 h, the resulting mixture was cooled down to room temperature. Purification by Biotage (SNAP cartridge KP-Sil 50 g, hexane:EtOAc 93:7 to 40:60) afforded 1.74 g (14.1 mmol, quant.) of the title compound SI-20 as a bright yellow oil.

¹H NMR (400 MHz, CDCl₃) δ = 6.74 (s, 2H, *CH-C=O*), 6.67 (dd, *J* = 16.4, 9.8 Hz, 1H, *CH-N*), 5.87 (d, *J* = 16.4 Hz, 1H, =C*H*₂), 4.94 (d, *J* = 9.8 Hz, 1H, =C*H*₂).

¹H-NMR data match the literature report.⁷

Dimethyl 2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)cyclopropane-1,1-dicarboxylate (SI-21).

Following a modified procedure,⁸ a solution of dimethyl diazomalonate (**SI-2**) (96 mg, 0.61 mmol, 1.5 equiv.) in CH_2Cl_2 (1.0 mL) was added dropwise over 5 minutes to a solution of 1-vinyl-1*H*-pyrrole-2,5-dione (**SI-20**) (50 mg, 0.41 mmol, 1 equiv.) and $Rh_2(esp)_2$ (0.7 mg, 0.9 μ mol, 0.2 mol%) in CH_2Cl_2

(2.0 mL) at 0 °C. The resulting mixture was stirred for 5 hours at room temperature and thereafter concentrated under reduced pressure. Purification by Biotage (SNAP cartridge KP-Sil 10 g, hexane/EtOAc 95:5 to 70:30) afforded 66.9 mg (0.264 mmol, 65%) of the title compound **SI-21** as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ = 6.67 (s, 2H, CH-C=O), 3.79 (s, 3H, OCH₃), 3.66 (s, 3H, OCH₃), 3.56-3.51 (m, 1H, CH-N), 2.56 (dd, J = 6.4, 6.5 Hz, 1H, CH₂), 1.96-1.91 (m, 1H, CH₂) ppm.

¹H-NMR data match the literature report.⁸

1-Vinylpyrrolidine-2,5-dione (SI-23).

Following a modified procedure,⁵ succinimide (SI-22) (1.00 g, 10.1 mmol, 1.00 equiv.), vinyl acetate (SI-12) (25.0 mL, 270 mmol, 26.8 eq) and Na₂PdCl₄ (59.0 mg, 0.202 mmol, 2.00 mol%) were heated under reflux for 72 hours. After solvent evaporation, the crude was purified by Biotage (SNAP Cartridge KP-Sil 50 g, 7:3 Hexane/EtOAc) to obtain the title compound SI-23 (1.22 g, 9.78 mmol, 97%) as a yellow solid.

¹**H NMR** (400 MHz, CDCl₃) δ = 6.68 (dd, J = 16.4, 9.9 Hz, 1H, N-CH), 6.08 (d, J = 16.4 Hz, 1H, =CH), 5.06 (d, J = 9.9 Hz, 1H, =CH), 2.72 (s, 4H, CH₂) ppm.

¹H-NMR data match the literature report.⁵

Dimethyl 2-(2,5-dioxopyrrolidin-1-yl)cyclopropane-1,1-dicarboxylate (SI-24).

$$H_3CO \longrightarrow OCH_3$$
 + $N_2 \longrightarrow OCH_3$ + $N_2 \longrightarrow OCOCH_3$ $COOCH_3$ $COOCH_3$ $COOCH_3$ $COOCH_3$ $COOCH_3$ $COOCH_3$

Following a modified procedure, ⁴ a solution of dimethyldiazomalonate (**SI-2**) (300 mg, 4.80 mmol, 1.2 equiv.) in CH_2Cl_2 (4 mL) was added over 5 minutes to a solution of *N*-vinyl-succinimide (**SI-23**) (500 mg, 4.00 mmol, 1.00 equiv.), and $Rh_2(esp)_2$ (3.0 mg, 4.0 μ mol, 0.10 mol%) in CH_2Cl_2 (15 mL) at 0 °C

-

⁵ E. Bayer, K. Geckeler, *Angew. Chem. Int. Ed.* **1979**, *18*, 533.

and the mixture was warmed to room temperature over 16 hours. Thereafter the solvent was evaporated and the residue was purified by Biotage (SNAP Cartridge KP-Sil 50 g, 1:1 hexane/EtOAc) affording the title compound **SI-24** as a yellow solid (801 mg, 3.14 mmol, 79%).

¹H NMR (400 MHz, CDCl₃) δ = 3.78 (s, 3H, OCH₃), 3.68 (s, 3H, OCH₃), 3.45 (dd, J = 8.5, 6.5 Hz, 1H, N-CH), 2.73-2.58 (m, 4H, O=C-CH₂), 2.45 (dd, J = 6.5, 6.5 Hz, 1H, CH₂), 1.93 (dd, J = 8.5, 6.5 Hz, 1H, CH₂) ppm.

¹H-NMR data match the literature report.⁴

1H-Benzo[f]isoindole-1,3(2H)-dione (SI-27).

Following a modified procedure,⁶ naphtho[2,3-c]furan-1,3-dione (SI-25) (500 mg, 2.52 mmol, 1 equiv.) and formamide SI-26 (10.0 mL, 252 mmol, 100 equiv.) were added in a 20 mL microwave vial and sealed with a microwave cap. The mixture was stirred until the product was completely dissolved. The mixture was heated twice at 200 °C for 30 sec with 10 sec pre-stirring, using Biotage Initiator 2.0 microwave reactor. The mixture was cooled to 0 °C and cold water (10 mL) was added into the tube. The solid was filtrated over a filter paper, washed with water (15 mL) and hexane (20 mL) and dried under reduced pressure to afford 432 mg (2.19 mmol, 87%) of the title compound SI-27 as a beige solid which was used without further purification.

¹**H NMR** (400 MHz, [D6]-DMSO) δ = 11.5 (s, 1H, *NH*), 8.45 (s, 2H, Ar*H*), 8.26 (dd, J = 6.6, 3.3 Hz, 2H, Ar*H*), 7.76 (dd, J = 6.6, 3.3 Hz, 2H, Ar*H*).

¹H-NMR data match the literature report.⁶

-

⁶ K. Kacprzak, Synth. Commun. 2003, 33, 1499-1507.

2-Vinyl-1H-benzo[f]isoindole-1,3(2H)-dione (SI-28).

Following a modified procedure,⁷ 1*H*-benzo[*f*]isoindole-1,3(2*H*)-dione (**SI-27**) (1.70 g, 8.62 mmol, 1 equiv.), palladium(II) chloride (0.15 g, 0.86 mmol, 0.1 equiv.), lithium chloride (40 mg, 0.86 mmol, 0.1 equiv.) and vinyl acetate (**SI-12**) (21.4 mL, 231 mmol, 27 equiv.) were added in a microwave tube sealed with a microwave cap. After stirring for 31 h at 80 °C, the resulting mixture was cooled down to room temperature. Purification by silica gel chromatography (hexane:EtOAc 17:1 to 10:1) afforded 1.26 g (5.66 mmol, 66%) the title compound **SI-28** as a colorless solid.

¹**H NMR** (400 MHz, CDCl₃) δ = 8.37 (s, 2H, Ar*H*), 8.07 (dd, J = 6.3, 3.4 Hz, 2H, Ar*H*), 7.72 (dd, J = 6.3, 3.4 Hz, 2H, Ar*H*), 6.97 (dd, J = 16.4, 9.8 Hz, 1H, Phth-*CH*), 6.20 (d, J = 16.4 Hz, 1H, =*CH*), 5.12 (d, J = 9.8 Hz, 1H, =*CH*).

¹H-NMR data match the literature report.⁷

Dimethyl 2-(1,3-dioxo-1H-benzo[f]isoindol-2(3H)-yl)cyclopropane-1,1-dicarboxylate (SI-29).

$$H_3CO \longrightarrow OCH_3$$
 + N_2 $COOCH_3$ $COOCH_3$

Following a modified procedure,⁸ a solution of dimethyl 2-diazomalonate (**SI-2**) (20 mg, 1.30 mmol, 1.5 equiv.) in dichloromethane (2.00 mL) was added dropwise over 5 minutes to a solution of 2-vinyl-1H-benzo[f]isoindole- 1,3(2H)-dione (**SI-28**) (0.19 g, 0.85 mmol, 1 equiv.) and Rh₂(esp)₂ (1 mg, 1.70 μ mol, 0.2 mol%) in CH₂Cl₂ (3.00 mL) at 0 °C. After stirring the resulting mixture for 26 hours at room temperature the solution was concentrated under reduced pressure. Purification by silica gel chromatography (hexane:EtOAc 8:2 to 6:4) afforded 0.28 g (0.80 mmol, 94%) the title compound **SI-29** as a colorless solid.

⁷ N. Baret, J.-P. Dulcere, J. Rodriguez, J.-M. Pons, R. Faure, Eur. J. Org. Chem. **2000**, 1507-1516.

⁸ F. Gonzalez-Bobes, M. D. B. Fenster, S. Kiau, L. Kolla, S. Kolotuchin, M. Soumeillant, Adv. Synth. Catal. 2008, 350, 813.

¹H NMR (400 MHz, CDCl₃) δ = 8.34 (s, 2H, Ar*H*), 8.06 (dd, *J* = 6.2, 3.3 Hz, 2H, Ar*H*), 7.70 (dd, *J* = 6.2, 3.3 Hz, 2H, Ar*H*), 3.84 (s, 3H, OC*H*₃), 3.77 (dd, *J* = 8.5, 6.5 Hz, 1H C*H*-N), 3.60 (s, 3H, OC*H*₃), 2.78 (dd, *J* = 6.5, 6.5 Hz, 1H, C*H*₂), 2.08 (dd, *J* = 8.5, 6.5, 1H, C*H*₂).

¹H-NMR data match the literature report.⁸

Dibenzyl 2-(1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (SI-30).

Following a modified procedure,² a solution of dibenzyl diazomalonate **SI-4** (1.19 g, 3.83 mmol, 1.1 equiv.) in CH_2Cl_2 (5 mL) was added over 5 minutes at 0 °C to a solution of $Rh_2(esp)_2$ (6 mg, 7 μ mol, 0.2 mol%) and *N*-vinyl-phtalimide (**SI-11**) (604 mg, 3.49 mmol, 1 equiv.) in CH_2Cl_2 (9 mL). The reaction mixture was stirred for 16 hours while warming to room temperature. Thereafter the solvent was evaporated and the residue was purified by column chromatography (silica, pentane:EtOAc 10:1 to pentane:EtOAc 4:1) affording 625 mg (1.37 mmol, 39%) of the title compound **SI-30** as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ = 7.76 (dd, J = 5.5, 3.2 Hz, 2H, Phth), 7.73 – 7.66 (m, 2H, Phth), 7.35 – 7.30 (m, 5H, ArH), 7.23 – 7.12 (m, 5H, ArH), 5.29 – 5.17 (m, 2H, CH_2Ph), 5.04 – 4.95 (m, 2H, CH_2Ph), 3.78 – 3.70 (m, 1H, CH-Phth), 2.79 (dd, J = 6.5, 6.5 Hz, 1H, CH_2), 2.05 (dd, J = 8.5, 6.5 Hz, 1H, CH_2).

¹H-NMR data match the literature report.²

Bis(2,2,2-trifluoroethyl) 2-(1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (SI-31).

Following a modified procedure,² a solution of bis(trifluoroethyl)diazomalonate **SI-8** (5.26 g, 17.9 mmol, 1.1 equiv.) in CH_2Cl_2 (13 mL) was added over 5 minutes at 0 °C to a solution of $Rh_2(esp)_2$ (25 mg, 33 µmol, 0.2 mol%) and *N*-vinyl-phtalimide (**SI-11**) (2.82 g, 16.3 mmol, 1 equiv.) in CH_2Cl_2 (30 mL). The reaction mixture was stirred for 16 hours while warming to room temperature. Thereafter

the solvent was evaporated and the residue was purified by column chromatography (silica, pentane:EtOAc 10:1 to pentane:EtOAc 7:3) affording 5.18 g (11.8 mmol, 73%) of the title compound **SI-31** as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ = 7.85 (dd, J = 5.5, 3.0 Hz, 2H, *Phth*), 7.75 (dd, J = 5.5, 3.0 Hz, 2H, *Phth*), 4.62 (q, J = 8.2 Hz, 2H, CH₂CF₃), 4.53 – 4.26 (m, 2H, CH₂CF₃), 3.84 (dd, J = 8.5, 6.9 Hz, 1H, CH-Phth), 2.91 (dd, J = 6.9, 6.9 Hz, 1H, CH₂), 2.20 (dd, J = 8.5, 6.9 Hz, 1H, CH₂).

¹H-NMR data match the literature report.²

1-tert-Butyl 1-methyl 2-(1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (SI-32).

A solution of *tert*-butyl methyl diazomalonate (**SI-10**) (1.05 g, 5.24 mmol, 1.1 equiv.) in CH₂Cl₂ (5 mL) was added over 5 minutes at 0 °C to a solution of Rh₂(esp)₂ (7.2 mg, 9.5 μ mol, 0.2 mol%) and *N*-vinyl-phtalimide (**SI-11**) (826 mg, 4.77 mmol, 1 equiv.) in CH₂Cl₂ (12 mL). The reaction mixture was stirred for 16 hours while warming to room temperature. Thereafter the solvent was evaporated and the residue was purified by column chromatography (silica, pentane:EtOAc 10:1 to pentane:EtOAc 4:1) affording 1.26 g (3.65 mmol, 77%) of the title compound (**SI-32**) as a colorless oil.⁹

R_f: 0.5 (silica, pentane:EtOAc 4:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 7.77 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.67 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 6.61 – 6.52 (m, 1H, CH-Phth), 3.56 (s, 3H, OCH₃), 2.57 (dd, J = 6.4, 6.4 Hz, 1H, CH₂), 1.89 (dd, J = 8.5, 6.4 Hz, 1H, CH₂), 1.45 (s, 9H, C(CH₃)₃);

¹³C NMR (101 MHz, CDCl₃): δ = 167.9, 167.4, 166.9, 134.3, 131.4, 123.4, 82.5, 52.7, 34.3, 34.2, 27.9, 19.0 ppm;

IR (film): \tilde{v} = 2349 (w), 2139 (w), 1777 (m), 1764 (m), 1724 (s), 1438 (w), 1393 (w), 1331 (m), 1304 (m), 1275 (w), 1223 (w), 1201 (w), 1174 (w), 1132 (m), 1092 (w), 1058 (w), 982 (w), 957 (w) cm⁻¹; HRMS (ESI) calcd. for $C_{18}H_{19}NNaO_6^+$ [M+Na]⁺ 368.1105; found 368.1109.

⁹ The compound was isolated as a single diastereoisomer of which the relative configuration was not assigned.

5. Substrate synthesis

(S)-Quinolin-4-yl((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl acetate (SI-34).

Following a modified procedure,¹⁰ NEt₃ (0.71 mL, 5.1 mmol, 1.5 equiv.) followed by acetyl chloride (0.32 mL, 4.4 mmol, 1.3 equiv.) were added to a suspension of cinchonine (SI-33) (1.00 g, 3.40 mmol, 1 equiv.) in CH_2Cl_2 (17 mL, 0.2 M) at room temperature and the resulting mixture was stirred for 16 hours. Thereafter water (20 mL) was added, the mixture was stirred for 30 minutes, then sat. aq. K_2CO_3 (20 mL) was added and the mixture was extracted with CH_2Cl_2 (3 x 20 mL). The comb. org. extracts were washed with brine (20 mL) and dried over MgSO₄. The drying agent was filtered off and the solvent was evaporated. The residue was purified by column chromatography (silica, EtOAc:MeOH 30:1) and 1.10 g (3.27 mmol, 96%) of the title compound SI-34 were isolated as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 8.88 (d, J = 4.5 Hz, 1H, ArH), 8.21 (d, J = 8.6 Hz, 1H, ArH), 8.16 – 8.09 (m, 1H, ArH), 7.72 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H, ArH), 7.60 (ddd, J = 8.4, 6.8, 1.3 Hz, 1H, ArH), 7.38 (d, J = 4.5 Hz, 1H, ArH), 6.58 (d, J = 6.9 Hz, 1H, CH), 6.02 (ddd, J = 17.4, 10.5, 7.3 Hz, 1H, CH=CH₂), 5.18 – 5.02 (m, 2H, CH=CH₂), 3.30 (q, J = 8.5 Hz, 1H, CH), 2.92 (d, J = 9.2 Hz, 2H, CH₂), 2.73 (ddd, J = 22.3, 14.6, 7.0 Hz, 2H, CH₂), 2.27 (q, J = 8.4 Hz, 1H, CH), 2.13 (s, 3H, C(O)CH₃), 1.85 (dd, J = 18.2, 7.6 Hz, 2H, CH and CH₂), 1.59 – 1.51 (m, 3H, CH₂ and CH₂) ppm;

¹³C NMR (101 MHz, CDCl₃): δ = 169.8, 149.9, 148.6, 145.4, 140.2, 130.4, 129.2, 126.8, 126.0, 123.4, 118.5, 114.9, 73.7, 59.5, 49.8, 49.0, 39.7, 27.8, 26.3, 23.6, 21.1;

IR (film): \tilde{v} = 2940 (w), 2874 (w), 2364 (w), 2320 (w), 1747 (m), 1594 (w), 1510 (w), 1457 (w), 1374 (w), 1276 (m), 1264 (s), 1231 (s), 1026 (m), 911 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{21}H_{25}N_2O_2^+$ [M+H]⁺ 337.1911; found 337.1911.

The analytical data match the literature report. 10

¹⁰ J. Qi, A. B. Beeler, Q. Zhang, J. A. Porco J. Am. Chem. Soc. **2010**, 132, 13642-13644.

5-(Quinolin-3-yl)pent-4-yn-1-ol (SI-37).

Following a modified procedure, ¹¹ Pd(PPh₃)₂Cl₂ (0.14 g, 0.20 mmol, 5 mol%) and pent-4-yn-1-ol (SI-36) (1.86 mL, 20.0 mmol, 5 equiv.) were added to a solution of 3-bromo-quinoline (SI-35) (0.54 mL, 4.00 mmol, 1 equiv.) and CuI (76 mg, 0.40 mmol, 10 mol%) in triethylamine (8.00 mL, 0.5 M) at room temperature and the resulting mixture was then refluxed for 18 hours. Thereafter the reaction mixture was cooled to room temperature and filtered through a plug of Celite®. The filtrate was washed with brine (15 mL) and dried over MgSO₄. The drying agent was filtered off and the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 5:2) and 760 mg (3.60 mmol, 90%) of the title compound SI-37 were isolated as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ = 8.87 (s, 1H, Ar*H*), 8.19 (d, *J* = 1.6 Hz, 1H, Ar*H*), 8.12 (d, *J* = 8.3 Hz, 1H, Ar*H*), 7.77 (d, *J* = 8.3 Hz, 1H, Ar*H*), 7.71 (ddd, *J* = 8.3, 6.9, 1.6 Hz, 1H, Ar*H*), 7.56 (t, *J* = 6.9 Hz, 1H, Ar*H*), 3.86 (t, *J* = 6.1 Hz, 2H, CH₂-OH), 2.63 (t, *J* = 7.0 Hz, 2H, C≡C-CH₂), 1.92 (p, *J* = 6.6 Hz, 2H, CH₂-CH₂-CH₂); ¹³C NMR (101 MHz, CDCl₃): δ = 152.2, 146.3, 138.3, 129.9, 129.0, 127.4, 127.3, 127.2, 117.9, 93.2, 78.2, 61.5, 31.3, 16.1 ppm;

IR (film): $\tilde{v} = 3333$ (w), 2946 (w), 2361 (w), 2231 (w), 1570 (w), 1490 (m), 1433 (w), 1350 (w), 1266 (m), 1126 (w), 1059 (s), 947 (w), 909 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{14}H_{14}NO^{+}$ [M+H]⁺ 212.1070; found 212.1075.

The analytical data match the literature report. 11

5-(Quinolin-3-yl)pent-4-yn-1-yl acetate (SI-38).

$$Ac_2O, NEt_3$$
 OAC

 CH_2Cl_2 SI-38

 Ac_2O was added to a solution of alcohol SI-37 (200 mg, 0.947 mmol, 1 equiv.) and triethylamine (0.21 mL, 1.5 mmol, 1.6 equiv.) in CH_2Cl_2 (1.90 mL, 0.5 M) and the resulting mixture was stirred for 16 hours at room temperature. The reaction was quenched by the addition of sat. aq. NaHCO₃ (10 mL) and extracted with CH_2Cl_2 (3 x 20 mL). The comb. org. extracts were washed with brine (20 mL) and

¹¹ A. Jean, J. Blanchet, J. Rouden, J. Maddalunob, M. de Paolis *Chem. Commun.* **2013**, *49*, 1651-1653.

dried over MgSO₄. The drying agent was filtered off and the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 177 mg (0.70 mmol, 77%) of the title compound **SI-38** were isolated as a colorless oil.

R_f: 0.5 (silica, pentane:EtOAc 4:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 8.82 (d, J = 2.1 Hz, 1H, ArH), 8.10 (d, J = 2.1 Hz, 1H, ArH), 8.02 (dd, J = 8.3, 1.3 Hz, 1H, ArH), 7.68 (dd, J = 8.3, 1.3 Hz, 1H, ArH), 7.62 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H, ArH), 7.47 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H, ArH), 4.20 (t, J = 6.3 Hz, 2H, CH₂-OAc), 2.53 (t, J = 7.0 Hz, 2H, C≡C-CH₂), 2.02 (s, 3H, C(O)CH₃), 1.97 – 1.88 (m, 2H, CH₂-CH₂-CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 171.0, 152.2, 146.4, 138.2, 129.82, 129.1, 127.4, 127.3, 127.2, 117.8, 92.3, 78.5, 63.1, 27.65, 20.9, 16.3 ppm;

IR (film): $\tilde{v} = 2964$ (w), 2901 (w), 2364 (w), 2327 (w), 2233 (w), 1736 (s), 1568 (w), 1490 (w), 1366 (m), 1238 (s), 1125 (w), 1043 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{16}H_{16}NO_2^+$ [M+H]⁺ 254.1176; found 254.1185.

3-(5-((tert-Butyldimethylsilyl)oxy)pent-1-yn-1-yl)quinoline (SI-39).

TBSCI (214 mg, 1.42 mmol, 1.5 equiv.) was added to a solution of alcohol SI-37 (200 mg, 0.947 mmol, 1 equiv.) and triethylamine (0.21 mL, 1.5 mmol, 1.6 equiv.) in CH_2Cl_2 (1.60 mL, 0.5 M) and the resulting mixture was stirred for 16 hours at room temperature. The reaction was quenched by the addition of sat. aq. NH_4Cl (10 mL) and extracted with CH_2Cl_2 (3 x 15 mL). The comb. org. extracts were washed with brine (20 mL) and dried over MgSO₄. The drying agent was filtered off and the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 10:1) and 275 mg (0.85 mmol, 89%) of the title compound SI-39 were isolated as a colorless oil.

R_f: 0.5 (silica, pentane:EtOAc 10:1);

¹H NMR (400 MHz, CDCl₃): δ = 8.87 (t, J = 1.6 Hz, 1H, ArH), 8.16 (t, J = 2.6 Hz, 1H, ArH), 8.11 – 8.04 (m, 1H, ArH), 7.80 – 7.73 (m, 1H, ArH), 7.69 (m, 1H, ArH), 7.59 – 7.49 (m, 1H, ArH), 3.85 – 3.71 (m, 2H, CH₂-OTBS), 2.57 (td, J = 7.0, 1.7 Hz, 2H, C≡C-CH₂), 1.92 – 1.78 (m, 2H, CH₂-CH₂-CH₂), 0.92 (s, 9H, Si-tBu), 0.09 (s, 6H, Si- $(CH_3)_2$);

¹³C NMR (101 MHz, CDCl₃): δ = 152.5, 146.5, 138.2, 129.9, 129.3, 127.6, 127.5, 127.3, 118.3, 93.8, 78.1, 61.6, 31.7, 26.1, 18.5, 16.1, -5.2 ppm.

IR (film): \tilde{v} = 2953 (m), 2929 (m), 2856 (m), 2365 (w), 2233 (w), 1490 (w), 1472 (w), 1463 (w), 1276 (m), 1258 (s), 1103 (s), 1071 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{20}H_{28}NOSi^{+}[M+H]^{+}$ 326.1935; found 326.1945.

6-Phenylquinoline (SI-41).

Following a modified procedure, ¹² a mixture of 6-bromo-quinoline (**SI-40**) (0.70 mL, 5.00 mmol, 1 equiv.), sodium carbonate (2.12 g, 20.0 mmol, 4 equiv.), phenylboronic acid (732 mg, 6.00 mmol, 1.2 equiv.), water (4 mL), toluene (4 mL) and ethanol (2 mL) was degassed by nitrogen bubbling, then Pd(PPh₃)₄ (0.29 g, 0.25 mmol, 5 mol%) was added and the mixture was heated to 75 °C for 12 hours. Thereafter the mixture was filtered through a plug of celite®, the filtrate was diluted with water (20 mL) and extracted with CH₂Cl₂ (3 x 20 mL). The combined org. extracts were washed with brine (20 mL) and dried over MgSO₄. The drying agent was filtered off and the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1 to 1:1) and 740 mg (3.61 mmol, 72%) of the title compound **SI-41** were isolated as a red-brown oil.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.93 (dd, J = 4.3, 1.7 Hz, 1H, ArH), 8.23 (dt, J = 7.4, 2.6 Hz, 2H, ArH), 8.04 – 7.95 (m, 2H, ArH), 7.77 – 7.67 (m, 2H, ArH), 7.51 (dd, J = 8.4, 6.9 Hz, 2H, ArH), 7.47 – 7.38 (m, 2H, ArH) ppm.

¹³C NMR (101 MHz, CDCl₃): δ = 150.0, 147.2, 140.2, 139.5, 136.6, 129.6, 129.4, 129.0, 128.5, 127.8, 127.4, 125.4, 121.4 ppm.

IR (film): \tilde{v} = 3015 (w), 2326 (w), 1903 (w), 1775 (w), 1685 (w), 1591 (m), 1489 (s), 1444 (m), 1328 (m), 1276 (s), 1261 (s), 1188 (w), 1123 (m), 1040 (w), 891 (m), 845 (s) cm⁻¹.

HRMS (ESI) calcd. for $C_{15}H_{12}N^+$ [M+H]⁺ 206.0964; found 206.0967.

The analytical data match the literature report. 12

27

¹² L. Mengozzi, A. Gualandi, P.-G. Cozzi *Eur. J. Org. Chem.* **2016**, *19*, 3200-3207.

Quinoline-6-carbonitrile (SI-42).

$$\begin{array}{c} \text{Zn}(\text{CN})_2\\ \text{Pd}_2(\text{dba})_3, \, \text{dppf} \end{array}$$

$$\begin{array}{c} \text{NC}\\ \text{DMF} \end{array}$$

$$\text{SI-40} \qquad \qquad \text{SI-42}$$

Following a modified procedure, 13 6-bromoquinoline (SI-40) (0.70 mL, 5.00 mmol, 1 equiv.), $Zn(CN)_2$ (881 mg, 7.50 mmol, 1.5 equiv.) and dppf (0.28 mg, 0.50 mmol, 10 mol%) were dissolved in DMF (10 mL, 0.5 M), the mixture was degassed by N_2 bubbling for 10 minutes, then Pd_2dba_3 (0.23 g, 0.25 mmol, 5 mol%) was added and the mixture was heated to 130 °C for 14 hours. After cooling to room temperature the reaction was quenched with water (20 mL) and the mixture was extracted with EtOAc (3 x 20 mL). The comb. org. extracts were washed with brine (20 mL) and dried over MgSO₄. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by column chromatography (silica, pentane:EtOAc 5:1) and 581 mg (3.77 mmol, 75%) of the title compound SI-42 were isolated as an orange oil.

¹**H NMR** (400 MHz, CDCl₃): δ = 9.07 (dd, J = 4.3, 1.7 Hz, 1H, ArH), 8.30 – 8.16 (m, 3H, ArH), 7.88 (dd, J = 8.7, 1.7 Hz, 1H, ArH), 7.56 (dd, J = 8.4, 4.3 Hz, 1H, ArH);

¹³C NMR (101 MHz, CDCl₃): δ = 153.1, 149.0, 136.5, 134.1, 131.0, 130.2, 127.6, 122.7, 118.5, 110.5 ppm. IR (film): \tilde{v} = 2987 (s), 2901 (m), 2328 (w), 1764 (w), 1699 (w), 1543 (w), 1509 (w), 1413 (m), 1339 (m), 1233 (s), 1059 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{10}H_7N_2^+$ [M+H]⁺ 155.0604; found 155.0603.

The analytical data match the literature report.¹³

6-Methoxy-5-nitroquinoline (SI-44).

Following a modified procedure, ¹⁴ 6-methoxy-quinoline (SI-43) (1.00 mL, 7.22 mmol) was added dropwise to a mixture of H_2SO_4 (4.00 mL) and HNO_3 (4.00 mL) at 0 °C and the resulting mixture was stirred for 1 hour. The reaction was basified with sat. aq. Na_2CO_3 and extracted with CH_2Cl_2 (3 x 50 mL). The comb. org. extracts were washed with brine (50 mL) and dried over MgSO₄. The drying agent was

¹³ F. Zhao, J. Zhang, L. Zhang, Y. Hao, C. Shi, G. Xia, J. Yu, , Y. Liu *Bioorg.Med. Chem.* **2016**, *24*, 4281-4290.

¹⁴ H.-Y. Lee, J.-Y. Chang, C.-Y. Nien, C.-C. Kuo, K.-H. Shih, C.-H. Wu, C.-Y. Chang, W.-Y. Lai, J.-P. Liou J. Med. Chem. **2011**, *54*, 8517-8525.

filtered off and the solvent was evaporated. The crude product was purified by column chromatography (SiO_2 , pentane:EtOAc 1:1) and 1.14 g (5.58 mmol, 77%) of the title compound **SI-44** were isolated as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 8.88 (dd, J = 4.1, 1.5 Hz, 1H, ArH), 8.28 (d, J = 9.5 Hz, 1H, ArH), 8.08 (d, J = 8.7 Hz, 1H, ArH), 7.59 (d, J = 9.5Hz, 1H, ArH), 7.53 (dd, J = 8.7, 4.1 Hz, 1H, ArH), 4.08 (s, 3H, OCH₃).

¹³C NMR (101 MHz, CDCl₃): δ = 149.5, 149.2, 142.3, 134.6, 134.1, 129.2, 123.6, 121.4, 116.3, 57.2 ppm; IR (film): \tilde{v} = 2978 (s), 2909 (m), 2350 (w), 1648 (w), 1516 (w), 1389 (w), 1245 (w), 1068 (s), 878 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{10}H_9N_2O_3^+$ [M+H]⁺ 205.0608; found 205.0612.

The analytical data match the literature report.¹⁴

Isoquinoline-4-carbonitrile (SI-46).

Following a modified procedure, ¹⁵ Pd(PPh₃)₄ (0.29 g, 0.25 mmol, 8 mol%) was added in one portion to a solution of 4-bromoisoquinoline (SI-45) (624 mg, 3.00 mmol, 1 equiv.) and Zn(CN)₂ (352 mmol, 3.00 mmol, 1 equiv.) in DMF (5 mL, 0.6 M) and the resulting mixture was heated to 80 °C for 16 hours. The reaction was quenched with sat. aq. Na₂CO₃ (10 mL) and the mixture was extracted 3 times with CH₂Cl₂ (10 mL). The combined org. extracts were washed with brine (15 mL) and the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 4:1) and 412 mg (2.67 mmol, 89%) of the title compound SI-46 were isolated as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃): δ = 9.30 (s, 1H, Ar*H*), 8.76 (s, 1H, Ar*H*), 8.07 – 7.92 (m, 2H, Ar*H*), 7.81 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H, Ar*H*), 7.68 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H, Ar*H*);

¹³C NMR (101 MHz, CDCl₃): δ = 155.9, 147.9, 134.0, 132.7, 128.9, 128.2, 127.1, 123.6, 115.6, 105.5; IR (film): \tilde{v} = 3058 (w), 2230 (m), 1623 (m), 1578 (w), 1502 (m), 1390 (m), 1380 (m), 1268 (s), 1221 (w), 1149 (w), 909 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{10}H_7N_2^+$ [M+H]⁺ 155.0604; found 155.0602.

The analytical data match the literature report.¹⁵

29

¹⁵ J. C. Barrow, B. D. Dorsey, H. G. Selnick, P. L. Ngo WO2001070229 A1.

Methyl isoquinoline-4-carboxylate (SI-48).

COOH
$$\begin{array}{c}
COOCH_3 \\
\hline
CH_2CI_2, CH_3OH
\end{array}$$
SI-47

SI-48

TMS diazomethane (1.08 mL, 2.17 mmol, 2 m in Et_2O) was added dropwise to a suspension of isoquinoline-4-carboxylic acid **SI-47** (250 mg, 1.44 mmol) in CH_2Cl_2 (10 mL) and CH_3OH (4 mL) at 0 °C. The resulting mixture was stirred for 16 hours while warming to room temperature, then the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 3:1) affording 232 mg (1.24 mmol, 86%) of the title compound **SI-48** as a white solid.

¹**H NMR** (400 MHz, CDCl₃): δ = 9.38 (s, 1H), 9.19 (s, 1H), 8.96 (dq, J = 8.8, 0.9 Hz, 1H), 8.05 (dd, J = 8.2, 1.1 Hz, 1H), 7.91 – 7.81 (m, 1H), 7.69 (m, 1H), 4.04 (s, 3H);

¹³C NMR (101 MHz, CDCl₃): δ = 166.8, 156.9, 146.7, 133.9, 132.3, 128.4, 128.3, 127.7, 125.0, 120.5, 52.3;

IR (film): \tilde{v} = 3014 (w), 2958 (w), 1722 (s), 1624 (w), 1572 (w), 1505 (m), 1436 (m), 1378 (w), 1294 (s), 1238 (w), 1208 (s), 1143 (m), 1045 (m), 1023 (w), 918 (w), 866 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{11}H_{10}NO_2^+$ [M+H]⁺ 188.0706; found 188.0713.

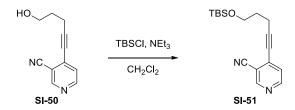
The analytical data match the literature report. 16

4-(5-Hydroxypent-1-yn-1-yl)nicotinonitrile (SI-50).

4-Pentynol (712 μ L, 7.65 mmol, 4 equiv.) was added to a degassed (pump and freeze, 3 cycles) solution of 4-bromonicotinonitrile (**SI-49**) (350 mg, 1.91 mmol, 1 equiv.) Pd(PPh₃)₂Cl₂ (67 mg, 10 μ mol, 5 mol%) and CuI (36 mg, 0.19 mmol, 10 mol%) in NEt₃ (3.8 mL, 0.5 M) and the resulting mixture was heated to 40 °C for 1.5 hours. After cooling to room temperature, sat. aq. NH₄Cl (15 mL) was added and the mixture was extracted with CH₂Cl₂ (3 x 10 mL). The combined org. extracts were washed with brine and dried over MgSO₄. The drying agent was filtered off and the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 1:1 to 1:2) and 332 mg (1.78 mmol, 93%) of the title compound **SI-50** were isolated as an orange oil.

¹⁶ J. R. Martinelli, D. A. Watson, D. M. Freckmann, T. E. Barder, S. L. Buchwald J. Org. Chem. 2008, 73, 7102-7107.

R_f: 0.2 (silica, pentane:EtOAc 1:1);


¹**H NMR** (400 MHz, CDCl₃): δ = 8.81 (s, 1H, Ar*H*), 8.69 (d, *J* = 5.2 Hz, 1H, Ar*H*), 7.36 (d, *J* = 5.2 Hz, 1H, Ar*H*), 3.85 (t, *J* = 6.1 Hz, 2H, CH₂OH), 2.67 (t, *J* = 6.9 Hz, 2H, C≡C-CH₂), 1.91 (p, *J* = 6.5 Hz, 3H, CH₂ and O*H* underneath);

¹³C NMR (101 MHz, CDCl₃): δ = 152.5, 152.3, 135.6, 125.5, 115.8, 112.2, 103.4, 75.9, 61.0, 30.6, 16.2 ppm.

IR (film): \tilde{v} = 3396 (w), 2932 (w), 2877 (w), 2235 (m), 1584 (s), 1537 (w), 1486 (w), 1409 (w), 1186 (w), 1058 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{11}H_{11}N_2O^+$ [M+H]⁺ 187.0866; found 187.0865.

4-(5-((tert-Butyldimethylsilyl)oxy)pent-1-yn-1-yl)nicotinonitrile (SI-51).

TBSCI (389 mg, 2.58 mmol, 1.5 equiv.) was added to a solution of **SI-50** (320 mg, 1.78 mmol, 1 equiv.) and NEt₃ (480 μ L, 3.44 mmol, 2 equiv.) in CH₂Cl₂ (3.4 mL) at room temperature and the mixture was stirred for 16 hours. The reaction was quenched with sat. aq. NH₄Cl (15 mL) and extracted with CH₂Cl₂ (3 x 10 mL). The combined org. extracts were washed with brine and dried over MgSO₄. The drying agent was filtered off and the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 10:1 to 5:1) and 404 mg (1.35 mmol, 78%) of the title compound **SI-51** were isolated as an orange oil.

R_f: 0.7 (silica, pentane:EtOAc 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 8.81 (d, J = 0.9 Hz, 1H, ArH), 8.68 (d, J = 5.3 Hz, 1H, ArH), 7.35 (dd, J = 5.3, 0.9 Hz, 1H, ArH), 3.77 (t, J = 5.9 Hz, 2H, CH₂OTBS), 2.63 (t, J = 7.1 Hz, 2H, C≡C-CH₂), 1.86 (tt, J = 7.1, 5.9 Hz, 2H, CH₂), 0.90 (s, 9H, C(CH₃)₃), 0.07 (s, 6H, Si(CH₃)₂);

¹³C NMR (101 MHz, CDCl₃): δ = 152.6, 152.2, 135.7, 125.6, 115.7, 112.1, 104.0, 75.6, 61.2, 31.1, 25.9, 18.3, 16.2, -5.4 ppm;

IR (film): \tilde{v} = 2956 (m), 2931 (w), 2855 (w), 2236 (w), 1583 (m), 1537 (w), 1485 (w), 1408 (w), 1107 (s), 838 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{17}H_{25}N_2OSi^+$ [M+H]⁺ 301.1731; found 301.1730.

4-(5-((tert-Butyldimethylsilyl)oxy)pentyl)nicotinonitrile (SI-52).

HO
$$H_2$$
, Pd(OH)₂/C H_3 OH H_2 , Pd(OH)₂/C H_3 OH H_2 H_3 OH H_3 OH H_4 H_4 H_5 H_5

Pd(OH)₂/C (34 mg, 20% Pd, $10\%_{\text{w/w}}$) was added to a solution of **SI-51** (340 mg, 1.13 mmol) in CH₃OH (2.3 mL, 0.5 M) and the resulting mixture was purged with hydrogen and thereafter stirred for 18 hours under H₂-atmosphere (1 atm). Then the mixture was filtered through a plug of Celite® and concentrated. The residue was purified by column chromatography (silica, pentane:EtOAc 10:1 to 5:1) affording 243 mg (0.80 mmol, 71%) of the title compound **SI-52** as a colorless oil.

R_f: 0.7 (silica, pentane:EtOAc 2:1);

¹H NMR (400 MHz, CDCl₃): δ = 8.78 (d, J = 0.8 Hz, 1H, ArH), 8.65 (d, J = 5.2 Hz, 1H, ArH), 7.26 (dd, J = 5.2, 0.8 Hz, 1H, ArH), 3.60 (t, J = 6.3 Hz, 2H, C H_2 OTBS), 2.90 – 2.77 (m, 2H, Ar-C H_2), 1.76 – 1.65 (m, 2H C H_2), 1.60 – 1.50 (m, 2H C H_2), 1.47 – 1.36 (m, 2H C H_2), 0.86 (s, 9H, C(C H_3)₃), 0.02 (s, 6H Si(C H_3)₂) ppm; ¹³C NMR (101 MHz, CDCl₃): δ = 155.3, 152.9, 152.5, 123.9, 115.9, 110.4, 62.7, 34.0, 32.3, 29.6, 25.9, 25.4, 18.3, -5.3 ppm.

IR (film): \tilde{v} = 2931 (w), 2857 (w), 2229 (w), 1590 (w), 1556 (w), 1472 (w), 1463 (w), 1407 (w), 1255 (m), 834 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{17}H_{25}N_2OSi^+$ [M+H]⁺ 301.1731; found 301.1730.

1,1,1,3,3,3-Hexafluoropropan-2-yl nicotinate (SI-54).

HO Principle Height Tempo, TCCA
$$F_3$$
 O F_3 SI-53 SI-54

Following a modified procedure, ¹⁷ TEMPO (161 mg, 1.03 mmol, 5 mol%) followed by trichloroisocyanuric acid (5.75 g, 24.7 mmol, 1.2 equiv.) were added to a solution of pyridine-3-ylmethanol (SI-53) (2.00 mL, 20.6 mmol, 1 equiv.) in CH_2Cl_2 (41.2 mL, 0.5 M) at 0 °C and the resulting mixture was stirred for 2 hours. Thereafter pyridine (6.70 mL, 82.0 mmol, 4 equiv.) followed by 1,1,1,3,3,3-hexafluoropropan-2-ol (4.40 mL, 41.2 mmol, 2 equiv.) were added and stirring was continued for 16 hours at room temperature. The reaction mixture was filtered through a plug of

-

¹⁷ J.-M. Vatéle *Synlett* **2015**, *26*, 2280-2284.

Celite® and concentrated. The residue was purified by column chromatography (silica, pentane:EtOAc 5:1) affording 4.53 g (16.6 mmol, 81%) of the title compound **SI-54** as a yellow oil.

¹H NMR (400 MHz, CDCl₃): δ = 9.28 (dd, J = 2.2, 0.8 Hz, 1H, ArH), 8.86 (dd, J = 4.9, 1.7 Hz, 1H, ArH), 8.42 (ddd, J = 8.0, 2.2, 1.7 Hz, 1H, ArH), 7.54 (ddd, J = 8.0, 4.9, 0.8 Hz, 1H, ArH), 6.02 (p, J = 6.0 Hz, 1H, CH(CF₃)₂);

¹³C NMR (101 MHz, CDCl₃): δ = 161.9, 154.5, 151.0, 138.3, 124.0, 123.4, 120.7 (q, J = 282.6 Hz), 67.1 (p, J = 67.2 Hz);

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -75.60 (d, J = 5.8 Hz);

IR (film): \tilde{v} = 1764 (m), 1595 (w), 1426 (w), 1386 (w), 1361 (w), 1297 (m), 1266 (m), 1197 (s), 1101 (s), 1017 (w), 912 (m) cm⁻¹;

HRMS (ESI) calcd for $C_9H_6F_6NO_2^+$ [M+H]⁺ 274.0297; found 274.0300.

The analytical data match the literature report. 18

Methyl 4-chloronicotinate (SI-56).

Following a modified procedure, ¹⁹ trimethylsilyldiazomethane (4.76 mL, 9.52 mmol, 1.5 equiv.) was added dropwise to a suspension of chloronicotinic acid (SI-55) (1.00 g, 6.35 mmol, 1 equiv.) in a mixture of CH_2Cl_2 (5.5 mL) and methanol (2.2 mL) at 0 °C. The resulting mixture was warmed to room temperature and stirred for 1 hour, then concentrated and the residue was purified by column chromatography (silica, pentane:EtOAc 10:1 to 5:1) affording 1.02 g (5.92 mmol, 93%) of the title compound SI-56 as a colorless oil.

¹H NMR (400 MHz, CDCl₃): δ = 9.03 (t, J = 0.6 Hz, 1H), 8.58 (dd, J = 5.4, 0.6 Hz, 1H), 7.49 – 7.28 (m, 1H), 3.97 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ = 164.2, 152.6, 152.2, 144.2, 125.9, 125.8, 52.7 ppm;

IR (film): \tilde{v} = 3003 (w), 2953 (w), 1725 (s), 1627 (w), 1573 (m), 1436 (m), 1292 (s), 1275 (s), 1130 (m), 1082 (s), 1046 (w), 955 (w), 832 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_7H_7CINO_2^+$ [M+H]⁺ 172.0160; found 172.0161.

The analytical data match the literature report. 19

¹⁸ C. B. Kelly, M. A. Mercadante, R. J. Wiles, N. E. Leadbeater *Org. Lett.* **2013**, *15*, 2222-2225.

¹⁹ D. Norton, D. Andreotti, S. E. Ward, R. Profeta, S. Spada, H. S. Price WO 2012098400 A1.

6. Optimization of the reaction

Table S7 Optimization of the annulation of quinoline (8) and cyclopropane 14.

Entry	14	Lewis Acid (mol%)	Conc.	Result ^[a]	Comment ^[b]
1	1.0 equiv.	Sc(OTf) ₃ (20 mol%)	0.1 м	30% of 17	full conversion of cyclopropane
2	1.0 equiv.	Sc(OTf) ₃ (20 mol%)	0.05 м	62% of 17	full conversion of cyclopropane
3	1.5 equiv.	Sc(OTf) ₃ (20 mol%)	0.1 м	69% of 17	full conversion of cyclopropane
4	1.5 equiv.	Sc(OTf) ₃ (20 mol%)	0.05 м	80% of 17	full conversion of cyclopropane
5	1.5 equiv.	Sn(OTf) ₂ (20 mol%)	0.05 м	no conversion	
6	1.5 equiv.	In(OTf) ₃ (20 mol%)	0.05 м	no conversion	
7	1.5 equiv.	Cu(OTf) ₂ (20 mol%)	0.05 м	no conversion	
8	1.5 equiv.	Hf(OTf) ₄ (20 mol%)	0.05 м	decomposition	
9	1.5 equiv.	FeCl ₃ (20 mol%)	0.05 м	no conversion	
10	1.5 equiv.	FeCl ₂ (20 mol%)	0.05 м	no conversion	
11	1.5 equiv.	InCl ₃ (20 mol%)	0.05 м	no conversion	
12	1.5 equiv.	MgCl ₂ (20 mol%)	0.05 м	no conversion	
13	1.5 equiv.	Yb(OTf) ₃ (20 mol%)	0.05 м	90% of 17	remaining cyclopropane
14	1.1 equiv.	Yb(OTf) ₃ (20 mol%)	0.05 м	88% of 17	
15	1.05 equiv.	Yb(OTf) ₃ (10 mol%)	0.05 м	89% of 17	reaction time: 2 days
16	1.05 equiv.	Yb(OTf)₃ (5 mol%)	0.05 м	96% of 17	reaction time: 4 days
17	1.05 equiv.	Yb(OTf)₃ (5 mol%)	0.5 м	96% of 17	reaction time: 16 hours
18	1.05 equiv.	HOTf (20 mol%)	0.2 м	no conversion	

[[]a] Yields determined by isolation; [b] remaining cyclopropane was detected by TLC.

Experimental procedure for optimization

A vial was charged with cyclopropane 14, the Lewis acid and quinoline 8 (0.10 mmol, 1.00 equiv.) in the glovebox, then capped, removed from the glovebox and CH_2Cl_2 was added. The mixture was stirred, if not stated otherwise in the table, for 16 hours, then concentrated and the residue was purified by column chromatography.

7. General procedure

A vial was charged with cyclopropane (0.21 mmol, 1.05 equiv.), $Yb(OTf)_3$ (0.01 mmol, 5 mol% or 0.02 mmol, 10 mol%) and the *N*-heterocyclic compound (0.20 mmol, 1.00 equiv.) in the glovebox, then capped, removed from the glovebox and CH_2Cl_2 was added. The mixture was stirred for the indicated time, then concentrated and the residue was purified by column chromatography to afford the title compound.

8. Scope of the reaction with quinolines

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (17).

Following the general procedure quinoline (8) (260 mg, 2.00 mmol, 1.00 equiv.), cyclopropane 14 (640 mg, 2.10 mmol, 1.05 equiv.) and $Yb(OTf)_3$ (62 mg, 0.10 mmol, 5 mol%) were stirred in CH_2Cl_2 (4.0 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 820 mg (1.90 mmol, 95%) of the title compound 17 were isolated as a yellow oil which was crystallized from EtOAc by overlaying it with pentane.

Performing the reaction with quinoline **8** (26 mg, 0.20 mmol), **14** (64 mg, 0.21 mmol) and $Yb(OTf)_3$ (6 mg, 0.01 mmol) afforded 83 mg (0.19 mmol, 96%) of the title compound **17**.

mp: 127-129 °C;

R_f: 0.3 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.84 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.72 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 6.95 (td, J = 7.9, 1.6 Hz, 1H, ArH), 6.78 (dd, J = 7.4, 1.6 Hz, 1H, ArH), 6.55 (td, J = 7.4, 1.0 Hz, 1H, ArH), 6.42 (d, J = 7.9 Hz, 1H, ArH), 6.30 (dd, J = 10.2, 2.0 Hz, 1H, C=CH), 6.21 (dd, J = 8.6, 5.9 Hz, 1H, N-CH-Phth), 5.94 (t, J = 2.5 Hz, 1H, CH-N), 5.85 (dd, J = 10.2, 2.9 Hz, 1H, CH=CH), 3.82 (s, 3H, OCH₃), 3.63 (s, 3H, OCH₃), 2.98 (dd, J = 13.7, 8.6 Hz, 1H, CH₂), 2.53 (dd, J = 13.7, 5.9 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 170.0, 169.1, 167.7, 141.6, 134.3, 131.7, 129.5, 127.2, 126.2, 123.4, 120.4, 119.4, 118.0, 109.7, 67.3, 65.3, 64.4, 52.7, 52.6, 35.3 ppm;

IR (film): $\tilde{v} = 3050$ (w), 2996 (w), 2953 (w), 1721 (s), 1604 (w), 1497 (w), 1458 (w), 1442 (w), 1390 (w), 1357 (m), 1321 (m), 1273 (s), 1222 (w), 1141 (w), 1078 (w), 969 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{24}H_{20}N_2NaO_6^+$ [M+Na]⁺ 455.1214; found 455.1223.

anti-Dimethyl 5-chloro-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3a*H*)-dicarboxylate (20).

Following the general procedure 4-chloroquinoline (SI-57) (33 mg, 0.20 mmol, 1.00 equiv.), cyclopropane **14** (64 mg, 0.21 mmol, 1.05 equiv.) and $Yb(OTf)_3$ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 84 mg (0.18 mmol, 90%) of the title compound **20** were isolated as a yellow oil.

R_f: 0.3 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.84 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.73 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.32 (dd, J = 7.8, 1.6 Hz, 1H, ArH), 7.03 (td, J = 7.8, 1.6 Hz, 1H, ArH), 6.63 (td, J = 7.5, 1.0 Hz, 1H, ArH), 6.44 (d, J = 8.2 Hz, 1H, ArH), 6.20 (dd, J = 8.6, 5.9 Hz, 1H, CH-Phth), 6.06 (d, J = 3.3 Hz, 1H, CH-CCl), 5.97 (d, J = 3.3 Hz, 1H, CH-N), 3.83 (s, 3H, OCH₃), 3.66 (s, 3H, OCH₃), 3.00 (dd, J = 13.8, 8.6 Hz, 1H, CH₂), 2.51 (dd, J = 13.8, 5.9 Hz, 1H, CH₂) ppm;

¹³C NMR (101 MHz, CDCl₃): δ = 169.6, 168.7, 167.6, 142.1, 134.4, 131.5, 130.8, 129.6, 125.2, 123.5, 118.2, 118.1, 117.1, 109.9, 67.1, 65.1, 65.0, 52.9, 52.8, 35.0 ppm;

IR (film): \tilde{v} = 2955 (w), 2925 (w), 2852 (w), 1772 (w), 1732 (s), 1710 (s), 1647 (w), 1598 (w), 1491 (m), 1458 (w), 1436 (w), 1396 (w), 1354 (w), 1276 (m), 1266 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{24}H_{20}CIN_2O_6^+$ [M+H]⁺ 467.1004; found 467.0997.

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-5-methyl-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (21).

Following the general procedure lepidine (SI-58) (29 mg, 0.20 mmol, 1.00 equiv.), cyclopropane 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 83 mg (0.19 mmol, 93%) of the title compound 21 were isolated as a yellow oil.

R_f: 0.3 (silica, pentane:EtOAc 4:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 7.84 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.72 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 6.98 (td, J = 7.3, 1.3 Hz, 2H, ArH), 6.60 (td, J = 7.3, 1.3 Hz, 1H, ArH), 6.44 (d, J = 8.2 Hz, 1H, ArH), 6.22 (dd, J = 8.6, 5.9 Hz, 1H, CH-Phth), 5.87 (dd, J = 3.1, 1.6 Hz, 1H, CH-N), 5.73 (dd, J = 3.1, 1.6 Hz, 1H, CH=CCH₃), 3.82 (s, 3H, OCH₃), 3.59 (s, 3H, OCH₃), 2.98 (dd, J = 13.7, 8.6 Hz, 1H, CH₂), 2.51 (dd, J = 13.7, 5.9 Hz, 1H, CH₂), 1.98 (t, J = 1.6 Hz, 3H, CH₃);

¹³C NMR (101 MHz, CDCl₃): δ = 170.0, 169.3, 167.7, 141.8, 134.3, 131.7, 130.7, 129.3, 123.8, 123.4, 120.6, 117.8, 117.8, 109.7, 67.6, 65.2, 64.1, 52.7, 52.5, 35.3, 19.0;

IR (film): \tilde{v} 2987 (s), 2972 (s), 2902 (m), 2362 (w), 1717 (w), 1406 (w), 1395 (w), 1384 (w), 1276 (w), 1258 (w), 1231 (w), 1076 (s), 1066 (s), 1057 (s) cm⁻¹;

HRMS (ESI) calcd for $C_{25}H_{23}N_2O_6^+$ [M+H]⁺ 447.1551; found 447.1548.

(1R,3aR)-Dimethyl 5-((S)-acetoxy((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (22a) and (1S,3aS)-dimethyl 5-((S)-acetoxy((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (22b)

Following the general procedure SI-34 (67 mg, 0.20 mmol, 1.00 equiv.), cyclopropane 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, EtOAc: CH_3OH 30:1 to 20:1) and 97 mg (0.15 mmol, 76%) of the title compounds 22a and 22b were isolated as a yellow oil and 1:1 mixture of diastereoisomers.²⁰

R_f: 0.1 (silica, EtOAc: CH₃OH 30:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 7.84 (d, J = 5.7 Hz, 4H), 7.78 – 7.69 (m, 4H), 7.18 (m, 2H, Ar*H*), 7.00 (m, 2H, Ar*H*), 6.63 (m, 2H, Ar*H*), 6.44 (m, 2H, Ar*H*), 6.17 (m, 2H, C*H*-Phth), 6.06 – 5.87 (m, 6H, =C*H*-N, C*H*-O and C*H*=CH₂), 5.84 (d, J = 8.1 Hz, 2H, C=C*H*), 5.29 – 4.96 (m, 4H, =C*H*₂), 3.82 (m, 6H, OC*H*₃), 3.62 (s, 3H, OC*H*₃), 3.55 (s, 3H, OC*H*₃), 3.23 – 2.86 (m, 12H, 3 x C*H*₂), 2.63 – 2.27 (m, 4H, C*H*₂), 2.14 (s, 6H, C(O)C*H*₃), 1.97 – 1.43 (m, 10H, CH₂, 3 x CH);

¹³C NMR (101 MHz, CDCl₃): δ = 170.0, 169.6, 169.2, 169.1, 168.7, 167.8, 167.7, 142.0, 141.6, 139.1, 138.7, 134.4, 132.7, 132.2, 131.6, 130.0, 129.7, 123.5, 123.1, 118.5, 118.1, 117.4, 116.8, 115.9, 115.6, 110.4, 67.9, 66.5, 65.3, 64.7, 64.0, 63.7, 57.4, 57.3, 53.1, 52.9, 52.8, 52.7, 50.0, 49.8, 49.2, 49.0, 38.8, 38.5, 35.7, 34.9, 27.8, 27.7, 25.4, 25.1, 21.2, 21.2; ²¹

IR (film): \tilde{v} 2987 (w), 2958 (w), 2902 (w), 1732 (s), 1714 (s), 1599 (w), 1498 (w), 1458 (w), 1437 (w), 1396 (w), 1363 (w), 1328 (w), 1268 (m), 1231 (s), 1211 (m), 1126 (w), 1105 (w), 1078 (m), 1031 (m), 967 (w), 919 (w), 879 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{36}H_{38}N_3O_8^+$ [M+H]⁺ 640.2653; found 640.2647.

38

²⁰ The diastereomeric ratio was determined by integration of the methyl esters in the ¹H-NMR. Both the diastereoisomers were not individually assigned due to overlapping signals in ¹H-NMR.

²¹ Some olefinic carbons are overlapping.

anti-Dimethyl 4-bromo-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (23).

Following the general procedure 6-bromoquinoline (SI-35) (41 mg, 0.20 mmol, 1.00 equiv.), cyclopropane 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 94 mg (0.18 mmol, 92%) of the title compound 23 were isolated as an orange oil.

R_f: 0.4 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.87 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.74 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.05 – 6.90 (m, 1H, ArH), 6.76 (dd, J = 7.5, 1.5 Hz, 1H, ArH), 6.74 – 6.65 (m, 1H, CH=CBr), 6.58 (td, J = 7.5, 1.5 Hz, 1H, ArH), 6.42 (d, J = 8.2 Hz, 1H, ArH), 6.28 (d, J = 1.4 Hz, 1H, CH-N), 6.15 (dd, J = 8.4, 7.0 Hz, 1H, CH-Phth), 3.84 (s, 3H, OCH₃), 3.67 (s, 3H, OCH₃), 3.11 (dd, J = 13.0, 8.4 Hz, 1H, CH₂), 2.72 (dd, J = 13.0, 7.0 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 168.6, 168.4, 167.5, 140.2, 134.4, 131.6, 130.0, 129.5, 126.8, 123.6, 118.9, 118.6, 115.4, 109.7, 70.5, 66.8, 65.5, 52.9, 52.7, 37.1 ppm;

IR (film): \tilde{v} = 2955 (w), 2901 (w), 1772 (w), 1731 (m), 1714 (s), 1598 (w), 1495 (m), 1398 (w), 1365 (w), 1352 (w), 1264 (s), 1229 (w), 1134 (m), 1079 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{24}H_{18}BrN_2O_6$ [M+] 509.0343; found 509.0359.

anti-Dimethyl 4-(5-acetoxypent-1-yn-1-yl)-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (24).

Following the general procedure SI-38 (51 mg, 0.20 mmol, 1.00 equiv.), cyclopropane 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M)

for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 88 mg (0.16 mmol, 79%) of the title compound **24** were isolated as a yellow oil.

R_f: 0.2 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.84 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.72 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 6.93 (td, J = 8.0, 1.5 Hz, 1H, ArH), 6.75 (dd, J = 7.4, 1.5 Hz, 1H, ArH), 6.54 (t, J = 7.4 Hz, 1H, ArH), 6.50 (d, J = 1.5 Hz, 1H, CH=C), 6.38 (d, J = 8.0 Hz, 1H, ArH), 6.17 – 6.08 (m, 2H, CH-N and CH-Phth), 4.19 (t, J = 6.3 Hz, 2H, CH₂-O), 3.80 (s, 3H, OCH₃), 3.64 (s, 3H, OCH₃), 3.04 (dd, J = 13.1, 8.4 Hz, 1H, CH₂), 2.63 (dd, J = 13.1, 6.5 Hz, 1H, CH₂), 2.45 (t, J = 7.0 Hz, 2H, C≡C-CH₂), 2.06 (s, 3H, COCH₃), 1.88 (p, J = 6.7 Hz, 2H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 170.9, 169.3, 168.7, 167.5, 140.9, 134.3, 131.6, 131.4, 130.0, 127.2, 123.5, 123.4, 119.2, 118.3, 114.5, 109.5, 91.9, 79.1, 67.0, 66.6, 65.1, 63.1, 52.6, 52.5, 37.3, 27.6, 20.9, 16.4 ppm;

IR (film): \tilde{v} 2954 (w), 2851 (w), 1773 (w), 1731 (s), 1711 (s), 1597 (w), 1495 (w), 1459 (w), 1436 (w), 1397 (w), 1365 (w), 1353 (w), 1259 (s), 1242 (s), 1134 (w), 1075 (w), 1044 (w) cm⁻¹;

HRMS (ESI) calcd. for C₂₃H₂₄NO₆ [M+] 410.1598; found 410.1605.

anti-Dimethyl 4-(5-((tert-butyldimethylsilyl)oxy)pent-1-yn-1-yl)-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (25).

Following the general procedure SI-39 (65 mg, 0.20 mmol, 1.00 equiv.), cyclopropane 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH₂Cl₂ (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 6:1) and 88 mg (0.16 mmol, 81%) of the title compound 25 were isolated as a yellow oil.

R_f: 0.5 (silica, pentane:EtOAc 4:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 7.85 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.72 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 6.93 (td, J = 7.6, 1.5 Hz, 1H, ArH), 6.76 (dd, J = 7.6, 1.5 Hz, 1H, ArH), 6.60 – 6.51 (m, 1H, ArH), 6.49 (d, J = 1.5 Hz, 1H, CH=C), 6.38 (d, J = 8.1 Hz, 1H, ArH), 6.17 – 6.08 (m, 2H, CH-N and CH-Phth), 3.81 (s, 3H, OCH₃), 3.72 (t, J = 6.0 Hz, 2H, CH₂O), 3.65 (s, 3H, OCH₃), 3.05 (dd, J = 13.1, 8.4 Hz, 1H, CH₂), 2.67 (dd, J

= 13.1, 6.6 Hz, 1H, CH_2), 2.43 (t, J = 7.2 Hz, 2H, $C\equiv CCH_2$), 1.81 – 1.72 (m, 2H, CH_2), 0.90 (s, 9H, $SiC(CH_3)_3$), 0.07 (s, 6H, $Si(CH_3)_2$);

¹³C NMR (101 MHz, CDCl₃): δ = 169.3, 168.7, 167.5, 140.9, 134.3, 131.7, 130.9, 129.9, 127.2, 123.5, 119.4, 118.3, 114.9, 109.5, 93.3, 78.5, 67.2, 66.6, 65.2, 61.7, 52.6, 52.5, 37.4, 31.8, 25.9, 18.3, 16.1, -5.4;

IR (film): \tilde{v} 2953 (w), 2946 (w), 2856 (w), 1773 (w), 1731 (s), 1714 (s), 1598 (w), 1495 (w), 1460 (w), 1354 (w), 1289 (w), 1259 (m), 1134 (w), 1099 (m), 1076 (m), 836 (m) cm⁻¹;

HRMS (ESI) calcd. for C₂₇H₃₆NO₅Si [M+] 482.2357; found 482.2363.

anti-Dimethyl 7-bromo-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3a*H*)-dicarboxylate (26).

Following the general procedure 6-bromoquinoline (SI-40) (42 mg, 0.20 mmol, 1.00 equiv.), cyclopropane 14 (64 mg, 0.21 mmol, 1.05 equiv.) and $Yb(OTf)_3$ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 98 mg (0.19 mmol, 96%) of the title compound 26 were isolated as an orange oil.

R_f: 0.4 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.84 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.72 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.00 (dd, J = 8.6, 2.4 Hz, 1H, ArH), 6.86 (d, J = 2.4 Hz, 1H, ArH), 6.30 (d, J = 8.6 Hz, 1H, ArH), 6.24 – 6.19 (m, 1H, CH=CH), 6.14 (dd, J = 8.7, 5.9 Hz, 1H, CH-Phth), 5.93 – 5.86 (m, 2H, CH=CH and CH-N), 3.81 (s, 3H, OCH₃), 3.64 (s, 3H, OCH₃), 2.96 (dd, J = 13.7, 8.7 Hz, 1H, CH₂), 2.52 (dd, J = 13.7, 5.9 Hz, 1H, CH₂); 13C NMR (101 MHz, CDCl₃): δ = 169.8, 168.9, 167.6, 140.7, 134.4, 131.8, 131.5, 129.4, 125.1, 123.5, 121.8, 121.3, 111.4, 109.9, 67.1, 65.1, 64.3, 52.7, 52.7, 35.1;

IR (film): \tilde{v} = 3466 (w), 3058 (w), 2956 (w), 2851 (w), 1772 (w), 1733 (s), 1709 (s), 1490 (m), 1436 (w), 1396 (w), 1352 (w), 1327 (w), 1266 (s), 1214 (m), 1179 (w), 1156 (w), 1130 (m), 1112 (m), 1087 (m), 970 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{24}H_{18}BrN_2O_6$ [M+] 509.0343; found 509.0343.

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-7-fluoro-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (27).

Following the general procedure 6-fluoroquinoline (SI-59) (29 mg, 0.20 mmol, 1.00 equiv.), cyclopropane **14** (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 87 mg (0.19 mmol, 97%) of the title compound **27** were isolated as a yellow oil.

R_f: 0.3 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.84 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.73 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 6.64 (td, J = 8.6, 3.0 Hz, 1H, ArH), 6.51 (dd, J = 8.6, 3.0 Hz, 1H, ArH), 6.34 (dd, J = 8.9, 4.3 Hz, 1H, ArH), 6.23 (dd, J = 10.0, 2.1 Hz, 1H, CH=CH), 6.16 (dd, J = 8.6, 5.9 Hz, 1H, CH-Phth), 5.97 – 5.86 (m, 2H, CH-N and CH=CH), 3.81 (s, 3H, OCH₃), 3.63 (s, 3H, OCH₃), 2.96 (dd, J = 13.7, 8.6 Hz, 1H, CH₂), 2.52 (dd, J = 13.7, 5.9 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 170.0, 169.0, 167.7, 155.9 (d, J = 235.5 Hz), 138.1 (d, J = 1.9 Hz), 134.4, 131.6, 125.4 (d, J = 2.0 Hz), 123.5, 122.3, 120.4 (d, J = 7.5 Hz), 115.1 (d, J = 22.2 Hz), 113.7 (d, J = 23.9 Hz), 110.3 (d, J = 7.4 Hz), 67.8, 65.4, 64.4, 52.7, 52.7, 35.1;

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -127.77 (td, J = 8.6, 4.3 Hz) ppm.

IR (film): \tilde{v} = 2958 (w), 2849 (w), 1773 (w), 1732 (s), 1709 (s), 1498 (s), 1436 (w), 1396 (w), 1352 (w), 1276 (s), 1246 (s), 1219 (m), 1160 (m), 1111 (m), 1078 (m), 952 (w), 873 (m) cm⁻¹;

HRMS (ESI) calcd for $C_{24}H_{20}FN_2O_6^+$ [M+H]⁺ 451.1300; found 451.1205.

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-7-phenyl-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (28).

Following the general procedure 6-phenylquinoline (SI-41) (41 mg, 0.20 mmol, 1.00 equiv.), cycloproane 14 (64 mg, 0.21 mmol, 1.05 equiv.) and $Yb(OTf)_3$ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 98 mg (0.19 mmol, 96%) of the title compound 28 were isolated as a yellow oil.

R_f: 0.3 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.87 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.74 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.50 – 7.42 (m, 2H, ArH), 7.35 (t, J = 7.7 Hz, 2H, ArH), 7.25 – 7.19 (m, 2H, ArH), 7.06 (d, J = 2.2 Hz, 1H, ArH), 6.52 (d, J = 8.4 Hz, 1H, ArH), 6.39 (dd, J = 10.2, 2.9 Hz, 1H, CH=CH), 6.27 (dd, J = 8.6, 5.9 Hz, 1H, CH-Phth), 5.97 (dd, J = 2.9, 1.9 Hz, 1H, CH-N), 5.92 (dd, J = 10.2, 2.9 Hz, 1H, CH=CH), 3.84 (s, 3H, OCH₃), 3.67 (s, 3H, OCH₃), 3.02 (dd, J = 13.7, 8.6 Hz, 1H, CH₂), 2.57 (dd, J = 13.7, 5.9 Hz, 1H, CH₂); 13C NMR (101 MHz, CDCl₃): δ = 170.0, 169.1, 167.8, 141.1, 140.7, 134.4, 131.7, 131.0, 128.6, 128.1, 126.3, 126.2, 126.1, 125.9, 123.5, 120.9, 119.8, 110.1, 67.2, 65.3, 64.5, 52.8, 52.8, 35.4 ppm; IR (film): \tilde{v} 1774 (w), 1732 (s), 1711 (s), 1651 (w), 1609 (w), 1488 (m), 1436 (w), 1395 (w), 1352 (m), 1327 (m), 1265 (s), 1219 (w), 1180 (w), 1131 (w), 1113 (w), 1077 (m), 1019 (w), 970 (w) cm⁻¹; HRMS (ESI) calcd. for C₃₀H₂₅N₂O₆+ [M+H]+ 509.1707; found 509.1711.

anti-Trimethyl 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3,7(3aH)-tricarboxylate (29).

Following the general procedure methyl quinoline-6-carboxylate (SI-60) (37 mg, 0.20 mmol, 1.00 equiv.), **14** (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography

(silica, pentane:EtOAc 10:1 to 4:1) and 93 mg (0.19 mmol, 95%) of the title compound **29** were isolated as a yellow oil.

R_f: 0.3 (silica, pentane:EtOAc 4:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 7.84 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.73 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.64 (dd, J = 8.6, 2.0 Hz, 1H, ArH), 7.44 (d, J = 2.0 Hz, 1H, ArH), 6.43 (d, J = 8.6 Hz, 1H, ArH), 6.33 (dd, J = 10.2, 2.0 Hz, 1H, CH=CH), 6.22 (dd, J = 8.7, 6.0 Hz, 1H, CH-Phth), 5.97 – 5.93 (m, 1H, CH-N), 5.89 (dd, J = 10.2, 2.9 Hz, 1H, CH=CH), 3.81 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.63 (s, 3H, OCH₃), 2.98 (dd, J = 13.7, 8.7 Hz, 1H, CH₂), 2.53 (dd, J = 13.7, 6.0 Hz, 1H, CH₂) ppm;

¹³C NMR (101 MHz, CDCl₃): δ = 169.7, 168.7, 167.5, 166.8, 145.4, 134.5, 131.8, 131.5, 128.5, 125.8, 123.6, 120.8, 119.5, 119.0, 109.2, 66.5, 64.9, 64.3, 52.8, 52.7, 51.5, 35.1;

IR (film): \tilde{v} 2988 (w), 2956 (w), 2902 (w), 1773 (w), 1733 (m), 1708 (s), 1603 (w), 1506 (w), 1432 (w), 1393 (w), 1353 (w), 1276 (s), 1201 (m), 1151 (w), 1111 (m), 1078 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{26}H_{23}N_2O_8^+$ [M+H]⁺ 491.1449; found 491.1446.

anti-Dimethyl 7-cyano-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3a*H*)-dicarboxylate (30).

Following the general procedure methyl quinoline-6-carboxylate (SI-42) (31 mg, 0.20 mmol, 1.00 equiv.), **14** (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 85 mg (0.19 mmol, 93%) of the title compound **30** were isolated as a yellow oil.

R_f: 0.2 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.84 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.74 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.19 (dd, J = 8.5, 2.0 Hz, 1H, ArH), 6.99 (d, J = 2.0 Hz, 1H, ArH), 6.44 (d, J = 8.5 Hz, 1H, CH=CH), 6.30 – 6.23 (m, 1H, ArH), 6.17 (dd, J = 8.8, 6.0 Hz, 1H, CH-Phth), 5.97 – 5.89 (m, 2H, CH-N and CH=CH), 3.80 (s, 3H, OCH₃), 3.65 (s, 3H, OCH₃), 2.97 (dd, J = 13.8, 8.8 Hz, 1H, CH₂), 2.54 (dd, J = 13.8, 6.0 Hz, 1H, CH₂); 13C NMR (101 MHz, CDCl₃): δ = 169.5, 168.5, 167.4, 144.8, 134.5, 134.0, 131.3, 130.2, 124.8, 123.6, 122.0, 119.9, 119.6, 109.9, 100.2, 66.1, 64.7, 64.2, 52.8, 52.8, 34.8;

IR (film): \tilde{v} 2956 (w), 2925 (w), 2853 (w), 2215 (m), 1773 (m), 1749 (m), 1731 (s), 1713 (s), 1602 (m), 1505 (s), 1462 (w), 1393 (w), 1354 (w), 1277 (s), 1240 (m), 1215 (m), 1176 (m), 1146 (m), 1107 (w), 1089 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{26}H_{23}N_2O_8^+$ [M+H]⁺ 491.1449; found 491.1446.

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-9-fluoro-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (31).

Following the general procedure 8-fluoroquinoline (SI-61) (29 mg, 0.20 mmol, 1.00 equiv.), cyclopropane 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 81 mg (0.18 mmol, 90%) of the title compound 31 were isolated as a yellow oil.

R_f: 0.3 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.84 (dd, J = 5.4, 3.1 Hz, 2H, Phth), 7.71 (dd, J = 5.4, 3.1 Hz, 2H, Phth), 6.70 (ddd, J = 13.8, 8.1, 1.6 Hz, 1H, ArH), 6.59 (dd, J = 7.5, 1.6 Hz, 1H, ArH), 6.51 (td, J = 7.5, 4.4 Hz, 1H, ArH), 6.39 – 6.24 (m, 2H, CH-Phth and CH=CH), 5.96 (dd, J = 10.1, 3.1 Hz, 1H, CH=CH), 5.91 (dd, J = 3.1, 1.6 Hz, 1H, CH-N), 3.79 (s, 3H, OCH₃), 3.64 (s, 3H, OCH₃), 2.98 (dd, J = 13.8, 8.6 Hz, 1H, CH₂), 2.27 (dd, J = 13.8, 6.2 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.9, 168.9, 167.5, 150.1 (d, J = 238.3 Hz), 134.0, 131.9, 130.4 (d, J = 8.7 Hz), 125.5 (d, J = 4.0 Hz), 123.21, 123.15, 123.1 (d, J = 2.2 Hz), 122.5, 119.0 (d, J = 8.1 Hz), 117.1 (d, J = 22.9 Hz), 70.5 (s, J = 5.1 Hz), 65.7, 64.8, 52.7, 52.7, 36.2;

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -131.20 (dt, J = 13.8, 3.2 Hz);

IR (film): $\tilde{v} = 3003$ (w), 2955 (w), 2845 (w), 1773 (w), 1732 (s), 1710 (s), 1611 (w), 1475 (m), 1397 (w), 1353 (m), 1267 (s), 1246 (m), 1219 (m), 1114 (m), 1077 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{24}H_{19}FN_2NaO_6^+$ [M+Na]⁺ 473.1119; found 473.1124.

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-8-(trifluoromethyl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (32).

$$F_3C$$
 V_0 V_0

Following the general procedure 7-(trifluormethyl)quinoline (SI-62) (39 mg, 0.20 mmol, 1.00 equiv.), cyclopropane **14** (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 98 mg (0.20 mmol, 98%) of the title compound **32** were isolated as a yellow oil.

R_f: 0.4 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.87 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.74 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 6.85 (d, J = 7.6 Hz, 1H, ArH), 6.79 (dd, J = 7.6, 1.5 Hz, 1H, ArH), 6.72 (s, 1H, ArH), 6.33 (dd, J = 10.0, 1.5 Hz, 1H, CH=CH), 6.22 (dd, J = 8.7, 5.8 Hz, 1H, CH-Phth), 6.01 – 5.92 (m, 2H, CH-N and CH=CH), 3.83 (s, 3H, OCH₃), 3.65 (s, 3H, OCH₃), 2.99 (dd, J = 13.8, 8.7 Hz, 1H, CH₂), 2.58 (dd, J = 13.8, 5.8 Hz, 1H, CH₂) ppm;

¹³C NMR (101 MHz, CDCl₃): δ = 169.9, 168.9, 167.7, 141.8, 134.5, 131.5, 131.2 (q, J = 31.9 Hz), 127.2, 125.3, 123.6, 122.9, 122.3, 114.9 (q, J = 3.6 Hz), 106.4 (q, J = 3.5 Hz), 66.9, 65.2, 64.3, 52.8, 52.8, 34.9; ²² ¹⁹F NMR (376 MHz, CDCl₃) δ = -63.1 (s) ppm.

IR (film): \tilde{v} = 2959 (w), 2924 (w), 2365 (w), 1772 (w), 1732 (s), 1709 (s), 1509 (w), 1453 (m), 1436 (w), 1396 (w), 1355 (w), 1327 (w), 1270 (m), 1224 (w), 1143 (w), 1111 (m), 1078 (s), 1046 (w), 1002 (w) cm⁻¹;

HRMS (ESI) calcd for $C_{25}H_{18}F_3N_2O_6^+$ [M+H]⁺ 499.1111; found 499.1109.

46

²² The CF₃ carbon was not observed.

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-7-methoxy-6-nitro-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (34).

$$H_3CO$$
 H_3CO
 H_3C

Following the general procedure 6-methoxy-5-nitroquinoline (SI-44) (41 mg, 0.20 mmol, 1.00 equiv.), **14** (64 mg, 0.21 mmol, 1.05 equiv.) and $Yb(OTf)_3$ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 4:1) and 98 mg (0.19 mmol, 97%) of the title compound **34** were isolated as a yellow oil.

R_f: 0.1 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.85 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.75 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 6.66 (d, J = 9.0 Hz, 1H, CH=CH), 6.47 (d, J = 9.0 Hz, 1H, CH=CH), 6.22 – 6.11 (m, 2H, CH-Phth and ArH), 6.08 (dd, J = 10.5, 3.0 Hz, 1H, ArH), 5.88 (dd, J = 2.9, 2.0 Hz, 1H, CH-N), 3.81 (s, 3H, OCH_3), 3.71 (s, 3H, OCH_3), 3.67 (s, 3H, OCH_3), 2.97 (dd, J = 13.7, 8.6 Hz, 1H, CH_2), 2.53 (dd, J = 13.7, 5.9 Hz, 1H, CH_2); 13C NMR (101 MHz, $CDCl_3$): δ = 169.7, 168.7, 167.7, 142.7, 139.2, 135.9, 134.5, 131.5, 125.7, 123.6, 118.7, 113.5, 112.3, 111.5, 67.6, 65.1, 63.9, 56.8, 52.9, 35.0;

IR (film): \tilde{v} 2957 (w), 2923 (w), 2849 (w), 1771 (w), 1733 (s), 1713 (s), 1532 (m), 1494 (m), 1437 (w), 1395 (w), 1355 (m), 1329 (w), 1277 (s), 1243 (w), 1222 (w), 1133 (w), 1114 (w), 1077 (m) cm⁻¹; HRMS (ESI) calcd. for $C_{25}H_{22}N_3O_9^+$ [M+H] $^+$ 508.1351; found 508.1367.

anti-Dimethyl 1-(5,6-dichloro-1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (35).

Following the general procedure quinoline (8) (26 mg, 0.20 mmol, 1.00 equiv.), SI-15 (78 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M)

for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 87 mg (0.17 mmol, 87%) of the title compound **35** were isolated as a red oil.

R_f: 0.2 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ 7.92 (s, 2H, *Phth*), 6.94 (t, J = 7.7 Hz, 1H, ArH), 6.78 (d, J = 7.1 Hz, 1H, ArH), 6.57 (t, J = 7.1 Hz, 1H, ArH), 6.32 (dd, J = 12.6, 9.0 Hz, 2H, CH=CH and ArH), 6.18 (dd, J = 8.4, 5.8 Hz, 1H, CH-Phth), 5.93 – 5.78 (m, 2H, CH-N and CH=CH), 3.83 (s, 3H, OCH₃), 3.64 (s, 3H, OCH₃), 3.00 (dd, J = 13.7, 8.4 Hz, 1H, CH₂), 2.48 (dd, J = 13.7, 5.8 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.8, 168.9, 165.7, 141.3, 139.2, 130.7, 129.5, 127.2, 126.2, 125.5, 120.3, 119.4, 118.3, 109.5, 67.8, 65.2, 64.3, 52.8, 52.7, 35.3 ppm;

IR (film): \tilde{v} 2955 (w), 1773 (w), 1732 (s), 1708 (s), 1596 (w), 1492 (w), 1437 (w), 1386 (w), 1345 (s), 1264 (s), 1221 (m), 1134 (w), 1110 (m), 1083 (w), 955 (w), 908 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{24}H_{19}Cl_2N_2O_6^+$ [M+H]⁺ 501.0615; found 501.0615.

anti-Dimethyl 1-(5-nitro-1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (36).

Following the general procedure quinoline (8) (26 mg, 0.20 mmol, 1.00 equiv.), SI-18 (73 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 2:1) and 85 mg (0.18 mmol, 89%) of the title compound 36 were isolated as a red oil.

R_f: 0.1 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ 8.62 (d, J = 20.3 Hz, 2H, Phth), 8.04 (d, J = 6.2 Hz, 1H, Phth), 6.92 (t, J = 7.6 Hz, 1H, ArH), 6.76 (d, J = 7.0 Hz, 1H, ArH), 6.55 (t, J = 7.0 Hz, 1H, ArH), 6.30 (dd, J = 13.6, 8.8 Hz, 2H, ArH and CH=CH), 6.26 – 6.16 (m, 1H, CH-Phth), 5.92 – 5.79 (m, 2H, CH-N and CH=CH), 3.84 (s, 3H, OCH₃), 3.64 (s, 3H, OCH₃), 3.03 (dd, J = 13.0, 8.1 Hz, 1H, CH₂), 2.50 (dd, J = 13.0, 5.8 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.7, 168.8, 165.6, 165.3, 151.7, 141.2, 135.9, 133.0, 129.5, 129.4, 127.2, 126.1, 124.7, 120.2, 119.4, 118.8, 118.4, 109.5, 68.1, 65.1, 64.3, 52.8, 52.7, 35.3 ppm;

IR (film): \tilde{v} 3007 (w), 2989 (w), 2957 (w), 1780 (w), 1730 (s), 1719 (s), 1599 (w), 1542 (m), 1494 (w), 1436 (w), 1397 (w), 1340 (m), 1276 (s), 1263 (s), 1221 (w), 1137 (w), 1109 (w), 1079 (w) cm⁻¹; HRMS (ESI) calcd. for $C_{24}H_{20}N_3O_8^+$ [M+H]⁺ 478.1245; found 478.1242.

anti-Dimethyl 1-(2,5-dioxo-2,5-dihydro-1*H*-pyrrol-1-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3a*H*)-dicarboxylate (37).

Following the general procedure quinoline (8) (26 mg, 0.20 mmol, 1.00 equiv.), SI-21 (53 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 71 mg (0.19 mmol, 93%) of the title compound 37 were isolated as a colorless oil.

R_f: 0.4 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 6.96 (td, J = 7.8, 1.6 Hz, 1H, ArH), 6.78 (dd, J = 7.4, 1.6 Hz, 1H, ArH), 6.69 (s, 2H, Mal), 6.57 (td, J = 7.4, 1.0 Hz, 1H, ArH), 6.39 – 6.22 (m, 2H, CH=CH and ArH), 6.01 (dd, J = 8.6, 5.9 Hz, 1H, CH-Mal), 5.82 (dd, J = 10.1, 2.9 Hz, 1H, CH=CH), 5.78 (dd, J = 2.9, 1.9 Hz, 1H, CH-N), 3.80 (s, 3H, OCH₃), 3.61 (s, 3H, OCH₃), 2.92 (dd, J = 13.7, 8.6 Hz, 1H, CH₂), 2.38 (dd, J = 13.7, 5.9 Hz, 1H, CH₂); 13C NMR (101 MHz, CDCl₃): δ = 170.1, 169.8, 169.0, 141.5, 134.3, 129.5, 127.2, 126.3, 120.3, 119.4, 118.2, 109.5, 67.0, 65.2, 64.2, 52.7, 52.6, 35.3;

IR (film): \tilde{v} 2959 (w), 2901 (w), 1731 (s), 1704 (s), 1651 (w), 1599 (w), 1495 (w), 1460 (w), 1436 (w), 1406 (w), 1355 (m), 1265 (s), 1221 (w), 1159 (m), 1101 (w), 1081 (m), 1054 (w), 911 (w) cm⁻¹; HRMS (ESI) calcd for $C_{20}H_{17}N_2O_6$ [M+] 381.1081; found 381.1079.

anti-Dimethyl 1-(2,5-dioxopyrrolidin-1-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (38).

Following the general procedure quinoline (8) (26 mg, 0.20 mmol, 1.00 equiv.), SI-24 (26 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 61 mg (0.16 mmol, 79%) of the title compound 38 were isolated as a colorless oil.

R_f: 0.4 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 6.97 (td, J = 7.8, 1.5 Hz, 1H, ArH), 6.78 (dd, J = 7.4, 1.5 Hz, 1H, ArH), 6.57 (td, J = 7.4, 0.9 Hz, 1H, ArH), 6.34 – 6.24 (m, 2H, ArH and CH=CH), 6.04 (dd, J = 8.6, 5.9 Hz, 1H, CH-Succ), 5.84 – 5.76 (m, 2H, CH=CH and CH-N), 3.79 (s, 3H, OCH₃), 3.58 (s, 3H, OCH₃), 2.84 (dd, J = 13.6, 8.6 Hz, 1H, CH₂), 2.69 (s, 4H, Succ), 2.40 (dd, J = 13.6, 5.9 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 176.7, 169.9, 169.0, 141.6, 129.5, 127.2, 126.1, 120.4, 119.4, 118.1, 109.7, 68.2, 65.4, 64.6, 52.7, 52.6, 34.2, 28.1;

IR (film): \tilde{v} 2954 (w), 2127 (w), 1732 (s), 1702 (s), 1599 (w), 1496 (w), 1459 (w), 1436 (w), 1398 (w), 1353 (m), 1310 (w), 1266 (s), 1222 (m), 1176 (s), 1150 (w), 1100 (w), 1085 (m), 1053 (w) cm⁻¹; HRMS (ESI) calcd. for $C_{20}H_{20}N_2NaO_6^+$ [M+Na]⁺ 407.1214; found 407.1208.

anti-Dimethyl 1-(1,3-dioxo-1H-benzo[f]isoindol-2(3H)-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (39).

Following the general procedure quinoline (8) (26 mg, 0.20 mmol, 1.00 equiv.), SI-29 (74 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 78 mg (0.16 mmol, 81%) of the title compound 39 were isolated as a yellow oil.

R_f: 0.5 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 8.33 (s, 2H, *Naphth*), 8.05 (dd, *J* = 6.3, 3.3 Hz, 2H, *Naphth*), 7.69 (dd, *J* = 6.3, 3.3 Hz, 2H, *Naphth*), 6.96 (td, *J* = 8.0, 1.6 Hz, 1H, Ar*H*), 6.79 (dd, *J* = 7.3, 1.6 Hz, 1H, Ar*H*), 6.60 – 6.51 (m, 1H, Ar*H*), 6.48 (d, *J* = 8.0 Hz, 1H, Ar*H*), 6.37 – 6.22 (m, 2H, C*H*-Phth and CH=C*H*), 6.01 (dd, *J* = 2.5 Hz, 1H, C*H*-N), 5.88 (dd, *J* = 10.2, 2.5 Hz, 1H, C*H*=CH), 3.84 (s, 3H, OC*H*₃), 3.65 (s, 3H, OC*H*₃), 3.02 (dd, *J* = 13.7, 8.7 Hz, 1H, C*H*₂), 2.60 (dd, *J* = 13.7, 5.9 Hz, 1H, C*H*₂);

¹³C NMR (101 MHz, CDCl₃): δ = 170.0, 169.2, 167.4, 141.7, 135.5, 130.3, 129.6, 129.3, 127.3, 127.2, 126.3, 125.0, 120.5, 119.5, 118.1, 109.9, 67.6, 65.4, 64.5, 52.7, 52.7, 35.2;

IR (film): \tilde{v} 2955 (w), 1765 (m), 1731 (s), 1704 (s), 1650 (w), 1600 (w), 1496 (w), 1459 (w), 1339 (s), 1310 (w), 1265 (s), 1220 (m), 1149 (m), 1136 (m), 1112 (m), 1083 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{28}H_{22}N_2NaO_6^+$ [M+Na]⁺ 505.1370; found 505.1370.

anti-Dibenzyl 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (40).

Following the general procedure quinoline (8) (26 mg, 0.20 mmol, 1.00 equiv.), SI-30 (96 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 107 mg (0.18 mmol, 92%) of the title compound 40 were isolated as a yellow oil.

R_f: 0.4 (silica, pentane:EtOAc 4:1);

64.5, 35.3 ppm;

¹H NMR (400 MHz, CDCl₃): δ = 7.82 (dd, J = 5.4, 3.0 Hz, 2H, Phth), 7.70 (dd, J = 5.4, 3.0 Hz, 2H, Phth), 7.35 – 7.16 (m, 8H, ArH), 7.10 – 7.01 (m, 2H, ArH), 6.94 (td, J = 7.8, 1.5 Hz, 1H, ArH), 6.72 (dd, J = 7.3, 1.5 Hz, 1H, ArH), 6.55 (t, J = 7.3 Hz, 1H, ArH), 6.38 (d, J = 10.0 Hz, 1H, CH=CH), 6.19 – 6.10 (m, 2H, CH-Phth and ArH), 5.99 (t, J = 2.4 Hz, 1H, CH-N), 5.79 (dd, J = 10.0, 2.4 Hz, 1H, CH=CH), 5.22 (m, 2H, CH₂Ph), 5.02 (m, 2H, CH₂Ph), 3.00 (dd, J = 13.7, 8.6 Hz, 1H, CH₂), 2.54 (dd, J = 13.7, 5.8 Hz, 1H, CH₂); 13C NMR (101 MHz, CDCl₃): δ = 169.4, 168.4, 167.7, 141.5, 135.1, 134.7, 134.3, 131.6, 129.5, 128.5, 128.4, 128.3, 128.3, 128.2, 128.1, 127.3, 126.3, 123.4, 120.2, 119.4, 118.0, 109.7, 67.6, 67.3, 67.2, 65.4,

IR (film): \tilde{v} 3033 (w), 2960 (w), 1772 (w), 1730 (s), 1712 (s), 1599 (w), 1497 (w), 1459 (w), 1351 (m), 1265 (s), 1203 (m), 1134 (m), 1072 (m), 909 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{36}H_{29}N_2O_6^+$ [M+H]⁺ 585.2020; found 585.2018.

anti-bis(2,2,2-Trifluoroethyl) 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (41).

Following the general procedure quinoline (8) (26 mg, 0.20 mmol, 1.00 equiv.), SI-31 (92 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 106 mg (0.186 mmol, 93%) of the title compound 41 were isolated as a yellow oil.

R_f: 0.4 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.86 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.74 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 6.99 (td, J = 7.9, 1.5 Hz, 1H, ArH), 6.80 (dd, J = 7.4, 1.5 Hz, 1H, ArH), 6.59 (td, J = 7.4, 0.9 Hz, 1H, ArH), 6.49 (d, J = 7.9 Hz, 1H, ArH), 6.35 (dd, J = 10.2, 2.0 Hz, 1H, CH=CH), 6.27 (dd, J = 8.7, 5.7 Hz, 1H, CH-Phth), 6.06 (dd, J = 2.9, 2.0 Hz, 1H, CH-N), 5.82 (dd, J = 10.2, 2.9 Hz, 1H, CH=CH), 4.70 – 4.55 (m, 2H, CH₂CF₃), 4.52 – 4.36 (m, 2H, CH₂CF₃), 3.07 (dd, J = 13.9, 8.7 Hz, 1H, CH₂), 2.63 (dd, J = 13.9, 5.7 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 167.7, 167.5, 166.4, 141.1, 134.4, 131.6, 129.8, 127.5, 127.3, 123.6, 122.5 (q, J = 276.4 Hz), 122.3 (q, J = 277.2 Hz), 119.1, 118.9, 118.5, 109.9, 66.7, 65.0, 64.8, (d, J = 24.9 Hz), 61.3 (q, J = 37.8 Hz), 61.2 (J = 37.0 Hz), 35.2;

¹⁹**F NMR** (376 MHz, CDCl₃) $\delta = -73.68$ (t, J = 8.4 Hz), -73.74 (t, J = 8.4 Hz);

IR (film): \tilde{v} 2976 (w), 2901 (w), 1753 (m), 1712 (s), 1600 (w), 1497 (w), 1461 (w), 1405 (w), 1352 (w), 1310 (w), 1276 (m), 1236 (w), 1166 (s), 1132 (m), 1110 (m), 1087 (m), 977 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{26}H_{18}F_6N_2NaO_6^+$ [M+Na]⁺ 591.0961; found 591.0962.

rac-(1R,3S,3aR)-3-tert-Butyl 3-methyl 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (42a) and rac-(1R,3R,3aR)-3-tert-Butyl 3-methyl 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (42b)

Following the general procedure quinoline (8) (26 mg, 0.20 mmol, 1.00 equiv.), SI-32 (73 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) affording 42a (53 mg, 0.11 mmol, 56%) and 42b (15 mg, 0.05 mmol, 16%) as yellow oils.²³

42a

R_f: 0.51 (silica, pentane:EtOAc 4:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 7.84 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.72 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 6.95 (td, J = 8.0, 1.6 Hz, 1H, ArH), 6.78 (dd, J = 7.3, 1.6 Hz, 1H, ArH), 6.55 (td, J = 7.3, 1.0 Hz, 1H, ArH), 6.41 (d, J = 8.1 Hz, 1H, ArH), 6.33 – 6.26 (m, 1H, CH=CH), 6.11 (dd, J = 8.6, 6.1 Hz, 1H, CH-Phth), 5.98 – 5.82 (m, 2H, CH-N and CH=CH), 3.81 (s, 3H, OCH₃), 2.88 (dd, J = 13.7, 8.6 Hz, 1H, CH₂), 2.51 (dd, J = 13.7, 6.1 Hz, 1H, CH₂), 1.25 (s, 9H, C(CH₃)₃);

¹³C NMR (101 MHz, CDCl₃): 169.4, 168.6, 167.7, 142.2, 134.3, 131.7, 129.5, 127.1, 126.4, 123.4, 120.5, 119.6, 118.0, 109.7, 83.0, 68.1, 66.1, 64.2, 52.5, 35.2, 27.6;

IR (film): \tilde{v} 2981 (w), 1772 (w), 1710 (s), 1600 (w), 1496 (w), 1459 (w), 1394 (w), 1367 (w), 1263 (s), 1227 (w), 1151 (m), 1134 (m), 1078 (m), 1050 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{27}H_{27}N_2O_6^+$ [M+H]⁺ 475.1864; found 475.1872.

 23 The minor diasteroisomer **30b** slowly converts into the major diastereoisomer **30a** in CDCl₃.

42b

R_f: 0.49 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.86 (dd, J = 5.6, 3.3 Hz, 2H, Phth), 7.73 (dd, J = 5.6, 3.3 Hz, 2H, Phth), 6.95 (t, J = 7.9 Hz, 1H, ArH), 6.77 (d, J = 7.2 Hz, 1H, ArH), 6.54 (t, J = 7.2 Hz, 1H, ArH), 6.40 (d, J = 7.9 Hz, 1H, ArH), 6.28 (d, J = 10.1 Hz, 1H, CH=CH), 6.19 (dd, J = 8.2, 6.5 Hz, 1H, CH-Phth), 5.95 – 5.79 (m, 2H, CH-N and CH=CH), 3.64 (s, 3H, OCH₃), 2.94 (dd, J = 13.7, 8.2 Hz, 1H, CH₂), 2.50 (dd, J = 13.7, 6.5 Hz, 1H, CH₂), 1.51 (s, 9H, C(CH₃)₃);

¹³C NMR (101 MHz, CDCl₃): 170.5, 167.7, 167.7, 141.8, 134.3, 131.8, 129.5, 127.1, 126.1, 123.5, 120.9, 119.5, 117.9, 109.7, 82.4, 67.3, 66.1, 64.3, 52.4, 35.5, 27.9 ppm;

IR (film): \tilde{v} 2981 (w), 1777 (w), 1726 (s), 1714 (s), 1600 (w), 1497 (w), 1459 (w), 1395 (w), 1354 (w), 1276 (m), 1262 (m), 1219 (w), 1149 (w), 1135 (m), 1112 (w), 1050 (w), 844 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{27}H_{27}N_2O_6^+$ [M+H]⁺ 475.1864; found 475.1868.

9. Scope of the reaction with isoquinolines

anti-Dimethyl 3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydropyrrolo[2,1-a]isoquinoline-1,1(10bH)-dicarboxylate (43).

Following the general procedure isoquinoline (SI-63) (26 mg, 0.20 mmol, 1.00 equiv.), 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 72 mg (0.17 mmol, 83%) of the title compound 43 were isolated as a yellow oil.

R_f: 0.2 (silica, pentane:EtOAc 4:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 7.86 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.73 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.55 – 7.50 (m, 1H, ArH), 7.09 (td, J = 7.5, 1.5 Hz, 1H, ArH), 7.01 (td, J = 7.5, 1.5 Hz, 1H, ArH), 6.80 (dd, J = 7.5, 1.5 Hz, 1H, ArH), 6.16 (d, J = 7.6 Hz, 1H, CH=CH-N), 6.10 (s, 1H, CH-N), 6.07 (dd, J = 9.0, 5.3 Hz, 1H, CH-Phth), 5.12 (d, J = 7.6 Hz, 1H, N-CH=CH), 3.86 (s, 3H, OCH₃), 3.35 (s, 3H, OCH₃), 3.02 (dd, J = 13.7, 9.0 Hz, 1H, CH₂), 2.85 (dd, J = 13.7, 5.3 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 170.6, 170.0, 168.1, 134.4, 134.3, 131.9, 131.8, 128.1, 127.8, 127.0, 125.3, 123.9, 123.6, 98.4, 69.6, 67.7, 64.9, 52.8, 52.5, 34.2;

IR (film): \tilde{v} 2960 (w), 2358 (w), 1774 (w), 1731 (s), 1714 (s), 1635 (w), 1462 (w), 1436 (w), 1371 (w), 1356 (w), 1329 (w), 1271 (w), 1214 (w), 1141 (w), 1093 (w), 1062 (w), 914 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{24}H_{21}N_2O_6^+$ [M+H]⁺ 433.1394; found 433.1404.

anti-Dimethyl 6-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydropyrrolo[2,1-a]isoquinoline-1,1(10bH)-dicarboxylate (44).

$$CN$$
 $+$ CO_2CH_3 CH_2CI_2 H_3COOC O CN CH_3COOC O CO_2CH_3 CO_2CH_3

Following the general procedure isoquinoline-4-carbonitrile (SI-46) (31 mg, 0.20 mmol, 1.00 equiv.), 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH₂Cl₂

(0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 3:1) and 83 mg (0.18 mmol, 91%) of the title compound **44** were isolated as a yellow oil.

R_f: 0.1 (silica, pentane:EtOAc 3:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 7.87 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.77 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.56 (d, J = 7.7 Hz, 1H, ArH), 7.25 – 7.15 (m, 2H, ArH), 7.15 – 7.07 (m, 1H, ArH), 6.98 (s, 1H, C=CH-N), 6.16 (s, 1H, CH-N), 6.11 (dd, J = 8.9, 5.2 Hz, 1H, CH-Phth), 3.89 (s, 3H, OCH₃), 3.37 (s, 3H, OCH₃), 3.03 (dd, J = 14.1, 8.9 Hz, 1H, CH₂), 2.93 (dd, J = 14.1, 5.2 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.7, 169.5, 167.6, 143.7, 134.7, 131.3, 128.8, 127.6, 126.9, 126.8, 124.7, 123.8, 122.4, 118.2, 82.3, 67.4, 67.0, 63.9, 53.1, 52.7, 34.0;

IR (film): \tilde{v} 2956 (w), 2251 (w), 2207 (m), 1835 (w), 1776 (w), 1730 (s), 1730 (s), 1713 (s), 1623 (s), 1571 (w), 1497 (w), 1457 (m), 1436 (w), 1366 (m), 1353 (m), 1327 (m), 1272 (m), 1206 (m), 1117 (m), 1092 (m), 1064 (m), 910 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{25}H_{20}N_3O_6^+$ [M+H]⁺ 458.1347; found 458.1346.

anti-Trimethyl 3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydropyrrolo[2,1-a]isoquinoline-1,1,6(10bH)-tricarboxylate (45).

Following the general procedure methyl isoquinoline-4-carboxylate (SI-48) (37 mg, 0.20 mmol, 1.00 equiv.), 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH₂Cl₂ (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 4:1 to 2:1) and 87 mg (0.18 mmol, 89%) of the title compound 45 were isolated as a yellow oil.

R_f: 0.3 (silica, pentane:EtOAc 2:1);

¹H NMR (400 MHz, CDCl₃): δ = 8.30 (dd, J = 8.1, 1.4 Hz, 1H, ArH), 7.85 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.73 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.54 (d, J = 7.7 Hz, 1H, ArH), 7.50 (s, 1H, CH=C(COOCH₃)), 7.17 (td, J = 7.7, 1.4 Hz, 1H, ArH), 7.05 (td, J = 7.7, 1.4 Hz, 1H, ArH), 6.19 – 6.11 (m, 2H, Ar-CH-N and CH-Phth), 3.87 (s, 3H, OCH₃), 3.68 (s, 3H, OCH₃), 3.32 (s, 3H, OCH₃), 3.03 (dd, J = 13.9, 9.0 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.9, 169.5, 167.6, 166.2, 144.4, 134.6, 131.4, 128.7, 128.2, 127.2, 125.5, 125.4, 123.8, 123.7, 98.5, 68.0, 67.0, 64.3, 52.9, 52.6, 50.7, 34.3; IR (film): \tilde{v} 3499 (w), 2938 (w), 2830 (w), 1738 (s), 1636 (s), 1417 (m), 1298 (m), 1246 (m), 1176 (m), 1157 (m), 940 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{26}H_{23}N_2O_8^+$ [M+H]⁺ 491.1449; found 491.1449.

10. Scope of the reaction with benzo-thia/oxa-zole

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydrobenzo[d]pyrrolo[2,1-b]thiazole-3,3(3aH)-dicarboxylate (46).

Following the general procedure benzothiazole (SI-64) (27 mg, 0.20 mmol, 1.00 equiv.), 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 83 mg (0.19 mmol, 95%) of the title compound 46 were isolated as a colorless oil.

R_f: 0.6 (silica, pentane:EtOAc 4:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 7.87 (dd, J = 5.4, 3.1 Hz, 2H, *Phth*), 7.75 (dd, J = 5.4, 3.1 Hz, 2H, *Phth*), 6.94 (ddd, J = 9.0, 7.9, 1.2 Hz, 2H, Ar*H*), 6.71 (td, J = 7.5, 1.2 Hz, 1H, Ar*H*), 6.65 (d, J = 7.8 Hz, 1H, C*H*-Phth), 6.30 (s, 1H, S-C*H*-N), 6.20 (t, J = 7.9 Hz, 1H, Ar*H*), 3.85 (s, 3H, OC*H*₃), 3.45 (s, 3H, OC*H*₃), 2.95 (d, J = 7.8 Hz, 2H, C*H*₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.4, 168.8, 167.6, 147.1, 134.4, 131.6 (3C overlapping, two of them symmetric), 125.6, 123.5, 121.2, 120.9, 109.2, 74.1, 69.9, 66.7, 53.0, 52.5, 35.0;

IR (film): \tilde{v} 2956 (w), 2364 (w), 2257 (w), 1773 (w), 1748 (m), 1724 (m), 1716 (s), 1583 (w), 1472 (m), 1393 (w), 1364 (m), 1350 (m), 1333 (m), 1297 (m), 1273 (m), 1220 (w), 1131 (m), 1070 (w), 1036 (w), 971 (w), 907 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{22}H_{18}N_2NaO_6S^+$ [M+Na]⁺ 461.0778; found 461.0773.

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydrobenzo[d]pyrrolo[2,1-b]oxazole-3,3(3aH)-dicarboxylate (47).

Following the general procedure benzoxazole (SI-65) (24 mg, 0.20 mmol, 1.00 equiv.), 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (6 mg, 0.01 mmol, 5 mol%) were stirred in CH_2Cl_2 (0.4 mL, 0.5 M) for 16 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1) and 62 mg (0.15 mmol, 73%) of the title compound 47 were isolated as a colorless oil.

R_f: 0.5 (silica, pentane:EtOAc 4:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 7.89 (dd, J = 5.3, 3.0 Hz, 2H, Phth), 7.77 (dd, J = 5.3, 3.0 Hz, 2H, Phth), 6.79 (pd, J = 7.5, 1.4 Hz, 2H, ArH), 6.75 – 6.67 (m, 3H, O-CH-N and ArH), 6.09 (dd, J = 8.4, 6.8 Hz, 1H, CH-Phth), 3.92 (s, 3H, OCH₃), 3.53 (s, 3H, OCH₃), 3.12 – 2.95 (m, 2H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 168.8, 168.3, 167.5, 149.8, 138.4, 134.4, 131.7, 123.6, 122.2, 121.9, 110.5, 108.0, 101.7, 70.5, 65.8, 53.3, 53.1, 34.3 ppm;

IR (film): \tilde{v} 2957 (w), 1737 (s), 1720 (s), 1487 (m), 1437 (w), 1363 (m), 1279 (m), 1252 (s), 1127 (m), 1054 (w), 898 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{22}H_{19}N_2O_7^+$ [M+H]⁺ 423.1187; found 423.1179.

11. Scope of the reaction with pyridines

anti-Dimethyl 7-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1(8a*H*)-dicarboxylate (48).

Following the general procedure isonicotinonitrile (SI-66) (21 mg, 0.20 mmol, 1.00 equiv.), **14** (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (12 mg, 20 μ mol, 10 mol%) were stirred in CH₂Cl₂ (0.2 mL, 1 M) for 3 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 10:1 to 3:1) and 61 mg (0.15 mmol, 75%) of the title compound **48** were isolated as a yellow oil.

R_f: 0.3 (silica, pentane:EtOAc 3:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.85 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.76 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 6.08 (dt, J = 7.5, 0.7 Hz, 1H, CH=CHN), 6.04 – 5.92 (m, 2H, N-CH-Phth and C=CH-CHN), 5.64 (d, J = 3.4 Hz, 1H, CH-N), 4.52 (dd, J = 7.4, 1.6 Hz, 1H, CH=CHN), 3.82 (s, 6H, 2 OCH₃), 2.80 (dd, J = 13.8, 8.5 Hz, 1H, CH₂), 2.64 (dd, J = 13.9, 6.1 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.8, 168.4, 167.8, 134.6, 134.6, 131.5, 125.8, 123.7, 117.5, 111.6, 91.7, 68.0, 66.7, 63.3, 53.2, 53.0, 32.1 ppm;

IR (film): \tilde{v} 2958 (w), 2226 (w), 1775 (w), 1732 (s), 1712 (s), 1633 (w), 1572 (w), 1436 (w), 1354 (w), 1328 (w), 1271 (m), 1218 (w), 1130 (w), 1088 (w), 972 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{21}H_{16}N_3O_6$ [M+] 406.1034; found 406.1036.

anti-Dimethyl 6-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1(8a*H*)-dicarboxylate (49).

Following the general procedure nicotinonitrile (SI-67) (104 mg, 1.00 mmol, 1.00 equiv.), **14** (318 mg, 1.05 mmol, 1.05 equiv.) and Yb(OTf)₃ (62 mg, 0.10 mmol, 10 mol%) were stirred in CH_2Cl_2 (1.0 mL, 1 M) for 3 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 4:1 to 2:1) and 280 mg (0.69 mmol, 69%) of the title compound **49** were isolated as a yellow oil.

Performing the reaction with SI-67 (21 mg, 0.20 mmol), 14 (64 mg, 0.21 mmol) and Yb(OTf)₃ (12 mg, $20 \mu mol$) afforded 58 mg (0.14 mmol, 71%) of the title compound 49.

R_f: 0.3 (silica, pentane:EtOAc 2:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.87 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.78 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 6.76 (t, J = 1.2 Hz, 1H, C=CH-N), 6.07 (dd, J = 8.6, 6.3 Hz, 1H, CH-NPhth), 5.81 (dt, J = 10.3, 1.7 Hz, 1H, CH=CH-CHN), 5.57 (t, J = 2.2 Hz, 1H, N-CH-CH=CH), 5.37 (ddd, J = 10.2, 2.4, 1.0 Hz, 1H, CH=CH-CHN), 3.82 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 2.82 (dd, J = 14.0, 8.6 Hz, 1H, CH₂), 2.72 (dd, J = 13.9, 6.3 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.7, 168.4, 167.5, 143.8, 134.8, 131.3, 123.9, 121.4, 119.7, 113.9, 79.4, 67.2, 66.0, 62.7, 53.1, 53.0, 32.1 ppm;

IR (film): \tilde{v} 3007 (w), 2956 (w), 2257 (w), 2203 (m), 1776 (w), 1713 (s), 1644 (m), 1577 (m), 1435 (w), 1394 (w), 1353 (m), 1332 (m), 1273 (s), 1226 (m), 1128 (m), 1100 (m), 981 (w), 910 (m) cm⁻¹; HRMS (ESI) calcd. for $C_{21}H_{18}N_3O_6^+$ [M+H]⁺ 408.1190; found 408.1186.

anti-Dimethyl 6-cyano-3-(1,3-dioxoisoindolin-2-yl)-7-methyl-2,3-dihydroindolizine-1,1(8aH)-dicarboxylate (50).

Following the general procedure 3-cyano-4-methylpyridine (SI-68) (24 mg, 0.20 mmol, 1.00 equiv.), **14** (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (12 mg, 20 μ mol, 10 mol%) were stirred in CH₂Cl₂ (0.2 mL, 1 M) for 3 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 3:1 to 2:1) and 63 mg (0.15 mmol, 75%) of the title compound **50** were isolated as a yellow oil.

R_f: 0.3 (silica, pentane:EtOAc 2:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.87 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.77 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 6.78 (s, 1H, CH=C(CN)), 6.06 (dd, J = 8.6, 6.2 Hz, 1H, N-CH-Phth), 5.51 (t, J = 2.0 Hz, 1H, N-CH-CH=C(CH₃)), 5.18 – 5.11 (m, 1H, CH=C(CH₃)), 3.81 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 2.81 (dd, J = 14.0, 8.6 Hz, 1H, CH₂), 2.71 (dd, J = 14.0, 6.2 Hz, 1H, CH₂), 1.80 (t, J = 1.6 Hz, 3H, CH₃);

¹³C NMR (101 MHz, CDCl₃): δ = 169.8, 168.6, 167.5, 144.0, 134.7, 131.4, 128.4, 123.8, 119.1, 109.4, 82.4, 67.1, 66.0, 63.5, 53.0, 52.9, 32.2, 19.4;

IR (film): \tilde{v} 3056 (w), 2956 (w), 2202 (w), 1777 (w), 1718 (s), 1660 (w), 1585 (w), 1436 (w), 1351 (w), 1329 (w), 1266 (s), 1130 (w), 1092 (m), 909 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{22}H_{19}N_3NaO_6^+$ [M+Na]⁺ 444.1166; found 444.1165.

anti-Dimethyl 7-bromo-6-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1(8aH)-dicarboxylate (51).

Following the general procedure 4-bromopyridine-3-carbonitrile (SI-49) (37 mg, 0.20 mmol, 1.00 equiv.), **14** (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (12 mg, 20 μ mol, 10 mol%) were stirred in CH₂Cl₂ (0.2 mL, 1 M) for 3 hours. The crude product was purified by column chromatography (silica,

pentane:EtOAc 4:1 to 2:1) and 68 mg (0.14 mmol, 70%) of the title compound **51** were isolated as a yellow oil.

R_f: 0.3 (silica, pentane:EtOAc 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 7.88 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.79 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 6.81 (s, 1H, N-CH=C(CN)), 6.08 (dd, J = 8.6, 6.3 Hz, 1H, N-CH-Phth), 5.70 (d, J = 2.5 Hz, 1H, C(Br)=CH), 5.58 (d, J = 2.5 Hz, 1H, N-CH-CH=C(Br)), 3.83 (s, 6H, OCH₃), 2.84 (dd, J = 14.0, 8.6 Hz, 1H, CH₂), 2.73 (dd, J = 13.9, 6.3 Hz, 1H, CH_2);

¹³C NMR (101 MHz, CDCl₃): δ = 169.3, 168.0, 167.3, 144.8, 134.9, 131.2, 124.0, 117.9, 114.3, 113.1, 83.5, 66.8, 65.7, 65.1, 53.4, 53.2, 32.1 ppm;

IR (film): \tilde{v} 2956 (w), 2208 (w), 1730 (s), 1712 (s), 1626 (m), 1577 (m), 1434 (w), 1351 (m), 1273 (s), 1133 (m), 1103 (m), 1001 (m), 912 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{21}H_{15}BrN_3O_6^+$ [M+H]⁺ 484.0139; found 484.0130.

anti-Dimethyl 7-(5-((tert-butyldimethylsilyl)oxy)pentyl)-6-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1(8aH)-dicarboxylate (52).

Following the general procedure SI-52 (61 mg, 0.20 mmol, 1.00 equiv.), 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (12 mg, 20 μ mol, 10 mol%) were stirred in CH₂Cl₂ (0.2 mL, 1 M) for 3 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 3:1 to 2:1) and 88 mg (0.15 mmol, 72%) of the title compound 52 were isolated as a yellow oil containing minor impurities which could not be removed.

R_f: 0.5 (silica, pentane:EtOAc 2:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.88 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.78 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 6.79 (s, 1H, N-CH=C(CN)), 6.07 (dd, J = 8.6, 6.3 Hz, 1H, CHPthth), 5.55 (dt, J = 2.4, 1.3 Hz, 1H, CH-CH-N), 5.12 (dd, J = 2.4, 1.3 Hz, 1H, N-CH-CH), 3.83 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.59 (t, J = 6.6 Hz, 2H, CH₂-OTBS), 2.82 (dd, J = 14.1, 8.6 Hz, 1H, CH₂-CHPhth), 2.73 (dd, J = 14.1, 6.3 Hz, 1H, CH₂-CHPhth), 2.09 (t, J = 7.6 Hz, 2H, C-CH₂), 1.56 – 1.40 (m, 4H, 2x CH₂), 1.34 (m, 2H, CH₂), 0.87 (s, 9H, C(CH₃)₃), 0.03 (s, 6H, Si(CH₃)₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.8, 168.6, 167.5, 144.4, 134.8, 132.8, 131.4, 123.9, 119.1, 109.0, 82.1, 67.2, 66.1, 63.5, 63.1, 53.0 (2 C), 33.3, 32.6, 32.3, 28.2, 26.0, 25.3, 18.3, -5.3; IR (film): \tilde{v} 2953 (w), 2931 (w), 2857 (w), 2202 (w), 1777 (w), 1716 (s), 1602 (w), 1470 (w), 1436 (w), 1394 (w), 1351 (w), 1327 (w), 1273 (w), 1217 (w), 1099 (m), 912 (m), 836 (m) cm⁻¹; HRMS (ESI) calcd. for C₃₂H₄₂N₃O₇Si⁺ [M+H]⁺ 608.2787; found 608.2767.

anti-6,7-Diethyl 1,1-dimethyl 3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1,6,7(8aH)-tetracarboxylate (54).

Following the general procedure dietyl pyridine-3,4-dicarboxylate (SI-69) (45 mg, 0.20 mmol, 1.00 equiv.), **14** (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (12 mg, 20 μ mol, 10 mol%) were stirred in CH₂Cl₂ (0.2 mL, 1 M) for 3 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 4:1 to 2:1) and 78 mg (0.15 mmol, 74%) of the title compound **54** were isolated as a yellow oil.

R_f: 0.2 (silica, pentane:EtOAc 2:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.87 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.77 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.19 (s, 1H, N-CH=C(COOEt)), 6.12 (dd, J = 8.6, 6.3 Hz, 1H, CH-Phth), 5.67 – 5.54 (m, 2H, N-CH-CH and N-CH-CH=C(COOEt)), 4.20 (qd, J = 7.1, 4.0 Hz, 2H, OCH₂), 4.06 (qd, J = 7.1, 2.5 Hz, 2H, OCH₂), 3.81 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 2.86 (dd, J = 13.9, 8.6 Hz, 1H, CH₂), 2.65 (dd, J = 13.9, 6.3 Hz, 1H, CH₂), 1.26 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 1.17 (t, J = 7.1 Hz, 3H, OCH₂CH₃);

¹³C NMR (101 MHz, CDCl₃): δ = 169.5, 168.3, 168.0, 167.4, 164.6, 142.9, 134.7, 131.4, 130.6, 123.8, 114.6, 97.9, 67.1, 65.6, 63.0, 61.0, 59.7, 53.1, 53.0, 32.6, 14.3, 14.0 ppm;

IR (film): \tilde{v} 2999 (w), 2968 (w), 2238 (w), 1786 (w), 1742 (s), 1702 (s), 1653 (w), 1557 (m), 1459 (m), 1342 (m), 1283 (s), 1166 (s), 1082 (s), 1043 (m), 982 (w), 934 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{26}H_{27}N_2O_{10}^+$ [M+H]⁺ 527.1660; found 527.1669.

anti-6,8-Diethyl 1,1-dimethyl 3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1,6,8(8aH)-tetracarboxylate (55).

EtOOC COOEt
$$V_{N}$$
 V_{N} V_{N}

Following the general procedure dietyl pyridine-3,5-dicarboxylate (SI-70) (45 mg, 0.20 mmol, 1.00 equiv.), 14 (64 mg, 0.21 mmol, 1.05 equiv.) and $Yb(OTf)_3$ (12 mg, 20 μ mol, 10 mol%) were stirred in CH_2Cl_2 (0.2 mL, 1 M) for 3 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 4:1 to 2:1) and 82 mg (0.16 mmol, 78%) of the title compound 55 were isolated as a yellow oil.

R_f: 0.3 (silica, pentane:EtOAc 2:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.88 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.77 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.42 (t, J = 1.4 Hz, 1H, N-CH=C(COOEt)), 7.30 (d, J = 1.4 Hz, 1H, (COOEt)C-CH=C(COOEt)), 6.09 (d, J = 1.4 Hz, 1H, N-CH-C(COOEt)), 5.98 (dd, J = 8.1 Hz, 1H, CH-Phth), 4.28 – 4.00 (m, 4H, 2xOCH₂), 3.83 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 2.97 (m, 2H, CH₂), 1.27 (t, J = 7.1 Hz, 3H, OCH₂CH₃);

¹³C NMR (101 MHz, CDCl₃): δ = 168.8, 167.9, 167.0, 165.2, 165.0, 145.6, 134.7, 131.7, 131.4, 123.8, 114.4, 99.0, 66.4, 65.7, 65.4, 60.2, 59.8, 52.9, 35.0, 14.4, 14.2

IR (film): \tilde{v} 2983 (w), 2956 (w), 2261 (w), 1779 (w), 1718 (s), 1687 (s), 1634 (m), 1557 (m), 1435 (w), 1368 (w), 1330 (m), 1270 (m), 1225 (s), 1131 (s), 1089 (m), 1023 (w), 910 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{26}H_{27}N_2O_{10}^+$ [M+H]⁺ 527.1660; found 527.1642.

anti-6-(1,1,1,3,3,3-Hexafluoropropan-2-yl) 1,1-dimethyl 3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1,6(8aH)-tricarboxylate (56).

Following the general procedure 1,1,1,3,3,3-hexafluoropropan-2-yl nicotinate (SI-54) (55 mg, 0.20 mmol, 1.00 equiv.), **14** (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (12 mg, 20 μ mol, 10 mol%) were stirred in CH₂Cl₂ (0.2 mL, 1 M) for 3 hours. The crude product was purified by column

chromatography (silica, pentane:EtOAc 5:1 to 4:1) and 84 mg (0.15 mmol, 73%) of the title compound **56** were isolated as a yellow oil.

R_f: 0.5 (silica, pentane:EtOAc 2:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.89 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.78 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.38 (s, 1H, (COOR)C=CH-N), 6.32 (dt, J = 10.5, 1.8 Hz, 1H, CH=CH-C(COOR)), 6.17 (dd, J = 8.7, 6.2 Hz, 1H, N-CH-Phth), 5.81 (quint, J = 6.3 Hz, 1H, CH(CCF₃)₂), 5.65 (t, J = 2.2 Hz, 1H, N-CH), 5.39 (dd, J = 10.5, 2.2 Hz, 1H, N-CH-CH=CH), 3.84 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 2.88 (dd, J = 14.0, 8.7 Hz, 1H, CH₂), 2.72 (dd, J = 14.0, 6.2 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.6, 168.4, 167.4, 161.9, 145.3, 134.8, 131.4, 123.9, 121.5, 120.7 (q, J = 282.9 Hz), 112.3, 95.8, 67.1, 65.6, 65.5 (quint, J = 34.5 Hz), 63.4, 53.1, 53.0, 32.6;

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -73.3 - -73.4 (m);

IR (film): \tilde{v} 2958 (w), 2259 (w), 1715 (s), 1638 (w), 1574 (m), 1436 (w), 1352 (m), 1274 (m), 1195 (m), 1099 (s), 982 (w), 907 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{24}H_{18}F_6N_2NaO_8^+$ [M+Na]⁺ 599.0860; found 599.0850.

anti-Trimethyl 3-(1,3-dioxoisoindolin-2-yl)-7-(trifluoromethyl)-2,3-dihydroindolizine-1,1,6(8aH)-tricarboxylate (57).

Following the general procedure methyl 4-(trifluormethyl)nicotinate (SI-71) (41 mg, 0.20 mmol, 1.00 equiv.), 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (12 mg, 20 μ mol, 10 mol%) were stirred in CH₂Cl₂ (0.2 mL, 1 M) for 3 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 4:1 to 2:1) and 75 mg (0.15 mmol, 74%) of the title compound 57 were isolated as a yellow oil.

R_f: 0.4 (silica, pentane:EtOAc 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 7.88 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.79 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.36 (s, 1H, N-CH=C(COOMe)), 6.14 (dd, J = 8.6, 6.3 Hz, 1H, N-CH-Phth), 5.97 (s, 1H, CH=C(CF₃)), 5.67 (dd, J = 2.7 Hz, 1H, N-CH-CH=C(CF₃)), 3.84 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 3.62 (s, 3H, OCH₃), 2.89 (dd, J = 13.9, 8.6 Hz, 1H, CH₂), 2.68 (dd, J = 13.9, 6.3 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.2, 168.1, 167.4, 163.9, 145.1, 134.8, 131.4, 126.0 (q, J = 32.2 Hz), 123.9, 116.6 (q, J = 7.8 Hz), 95.2, 67.1, 65.7, 62.6, 53.2, 53.1, 51.0, 32.6; ²⁴

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -63.3 (s);

IR (film): \tilde{v} 2956 (w), 2372 (w), 2350 (m), 1713 (s), 1642 (w), 1572 (m), 1436 (m), 1354 (m), 1326 (m), 1289 (m), 1222 (w), 1142 (s), 1089 (m), 1013 (m), 916 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{23}H_{20}F_3N_2O_8^+$ [M+H]⁺ 509.1166; found 509.1136.

anti-Trimethyl 7-chloro-3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1,6(8a*H*)-tricarboxylate (58).

Following the general procedure methyl 4-chloronicotinate (SI-56) (34 mg, 0.20 mmol, 1.00 equiv.), 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (12 mg, 20 μ mol, 10 mol%) were stirred in CH₂Cl₂ (0.2 mL, 1 M) for 3 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 4:1 to 2:1) and 72 mg (0.15 mmol, 76%) of the title compound 58 were isolated as a yellow oil.

R_f: 0.3 (silica, pentane:EtOAc 2:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.88 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.79 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.33 (s, 1H, N-CH=C(COOCH₃)), 6.13 (dd, J = 8.7, 6.3 Hz, 1H, CH-Phth), 5.63 (d, J = 2.7 Hz, 1H, CH=CCl), 5.46 (d, J = 2.7 Hz, 1H, N-CH-CH), 3.83 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.62 (s, 3H, OCH₃), 2.86 (dd, J = 13.9, 8.7 Hz, 1H, CH₂), 2.68 (dd, J = 13.9, 6.3 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.6, 168.3, 167.4, 164.1, 144.8, 134.8, 131.4, 127.6, 123.9, 111.3, 97.3, 67.1, 65.8, 64.8, 53.3, 53.1, 50.9, 32.7;

IR (film): \tilde{v} 2955 (w), 1777 (w), 1732 (s), 1715 (s), 1626 (w), 1566 (w), 1435 (w), 1354 (m), 1327 (m), 1263 (m), 1149 (m), 1016 (w), 917 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{22}H_{20}CIN_2O_8^+$ [M+H]⁺ 475.0903; found 475.0900.

-

²⁴ The CF₃ carbon was not observed.

anti-Dimethyl 3-(1,3-dioxoisoindolin-2-yl)-6-nitro-2,3-dihydroindolizine-1,1(8a*H*)-dicarboxylate (59).

Following the general procedure 3-nitropyridine (SI-72) (25 mg, 0.20 mmol, 1.00 equiv.), **14** (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (12 mg, 20 μ mol, 10 mol%) were stirred in CH₂Cl₂ (0.2 mL, 1 M) for 3 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 4:1 to 2:1) and 65 mg (0.15 mmol, 76%) of the title compound **59** were isolated as a red oil.

R_f: 0.2 (silica, pentane:EtOAc 2:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.90 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.87 (d, J = 1.7 Hz, 1H, C=CHN), 7.81 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 6.72 (dt, J = 10.8, 2.1 Hz, 1H, NCH=CH=CH), 6.22 (dd, J = 8.6, 6.7 Hz, 1H, CH-NPhth), 5.67 (t, J = 2.1 Hz, 1H, NCH-CH=CH), 5.43 (dd, J = 10.8, 2.1 Hz, 1H, NCH-CH=CH), 3.85 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 2.91 (dd, J = 13.9, 8.6 Hz, 1H, CH₂), 2.79 (dd, J = 13.9, 6.7 Hz, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.2, 168.0, 167.2, 141.6, 135.0, 131.2, 124.4, 124.0, 119.3, 112.5, 66.8, 65.0, 63.9, 53.3, 53.2, 32.7 ppm;

IR (film): \tilde{v} 2958 (w), 1780 (w), 1715 (s), 1635 (m), 1577 (m), 1549 (w), 1490 (w), 1435 (w), 1361 (w), 1267 (m), 1223 (m), 1181 (s), 1131 (w), 1085 (s), 982 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{20}H_{18}N_3O_8^+$ [M+H]⁺ 428.1088; found 428.1092.

anti-Dimethyl 3-(1,3-dioxoisoindolin-2-yl)-7-methyl-6-nitro-2,3-dihydroindolizine-1,1(8aH)-dicarboxylate (60).

$$O_2N$$
 + O_2N + O_2N O_2N O_2N O_2N O_2N O_2N O_2N O_2CH_3 O_2CH_3

Following the general procedure 4-methyl-3-nitropyridine (SI-73) (28 mg, 0.20 mmol, 1.00 equiv.), 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (12 mg, 20 μ mol, 10 mol%) were stirred in CH₂Cl₂ (0.2 mL, 1 M) for 3 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 3:1 to 2:1) and 65 mg (0.15 mmol, 74%) of the title compound 60 were isolated as a red oil.

R_f: 0.2 (silica, pentane:EtOAc 2:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.96 (s, 1H, C=CH-N), 7.89 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.80 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 6.21 (dd, J = 8.5, 6.8 Hz, 1H, N-CH-Phth), 5.58 (t, J = 2.0 Hz, 1H, N-CH-CH), 5.12 (t, J = 1.7 Hz, 1H, (CH₃)C=CH), 3.84 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 2.88 (dd, J = 13.9, 8.5 Hz, 1H, CH₂), 2.75 (dd, J = 13.9, 6.8 Hz, 1H, CH₂), 2.15 (t, J = 1.7 Hz, 3H, CH₃);

¹³C NMR (101 MHz, CDCl₃): δ = 169.3, 168.2, 167.1, 143.2, 134.9, 131.3, 129.2, 125.9, 124.0, 110.5, 66.8, 65.1, 64.1, 53.2, 53.1, 32.8, 21.5;

IR (film): \tilde{v} 2957 (w), 1778 (w), 1715 (s), 1671 (m), 1640 (m), 1571 (m), 1497 (w), 1434 (w), 1359 (w), 1265 (s), 1234 (m), 1169 (s), 1079 (s), 1041 (m), 942 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{21}H_{20}N_3O_8^+$ [M+H]⁺ 442.1245; found 442.1241.

anti-Dimethyl 3-(1,3-dioxoisoindolin-2-yl)-5-methyl-6-nitro-2,3-dihydroindolizine-1,1(8aH)-dicarboxylate (61).

$$O_2N$$
 + O_2N + O_2N O_2

Following the general procedure 2-methyl-3-nitropyridine (SI-74) (28 mg, 0.20 mmol, 1.00 equiv.), 14 (64 mg, 0.21 mmol, 1.05 equiv.) and Yb(OTf)₃ (12 mg, 20 μ mol, 10 mol%) were stirred in CH₂Cl₂ (0.2 mL, 1 M) for 3 hours. The crude product was purified by column chromatography (silica, pentane:EtOAc 3:1 to 2:1) and 71 mg (0.15 mmol, 80%) of the title compound 61 were isolated as a yellow oil.

R_f: 0.3 (silica, pentane:EtOAc 2:1);

¹**H NMR** (400 MHz, CDCl₃): δ = 7.87 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.79 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 6.84 (dd, J = 10.7, 2.3 Hz, 1H, CH-C(NO₂)), 6.42 (dd, J = 8.5, 6.8 Hz, 1H, CH-Phth), 5.77 (t, J = 2.3 Hz, 1H, N-CH-CH), 5.40 (dd, J = 10.7, 2.3 Hz, 1H, n-CH-CH=CH), 3.80 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 2.95 (dd, J = 13.7, 8.5 Hz, 1H, CH₂), 2.50 (dd, J = 13.7, 6.8 Hz, 1H, CH₂), 2.40 (s, 3H, CH₃);

¹³C NMR (101 MHz, CDCl₃): δ = 169.1, 167.8, 166.6, 154.7, 135.0, 130.9, 125.1, 124.0, 121.3, 110.7, 65.1, 64.9, 63.8, 53.2, 53.1, 34.9, 18.0;

IR (film): \tilde{v} 2977 (w), 2277 (w), 1788 (w), 1748 (s), 1557 (m), 1487 (w), 1282 (s), 1254 (s), 1216 (s), 1175 (s), 1105 (m), 1024 (m), 930 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{21}H_{20}N_3O_8^+$ [M+H]⁺ 442.1245; found 442.1251.

12. Product modification

Dimethyl 1,2,4,5-tetrahydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (SI-75).

Pd(OH)₂/C (3 mg, 20% Pd, $10\%_{w/w}$) was added to a solution of **17** (30 mg, $70 \mu mol$) in CH₃OH (0.4 mL, 0.17 M), the mixture was purged with H₂ and stirred for 18 hours. Thereafter the mixture was filtered through a plug of celite® and concentrated. The residue product was purified by column chromatograohy (SiO₂, pentane:EtOAc 50:1) and 14 mg (50 μmol , 70%) of the title compound **SI-75** were isolated as a yellow oil.

R_f: 0.8 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.10 – 7.04 (m, 1H, Ar*H*), 6.98 (d, *J* = 7.4 Hz, 1H, Ar*H*), 6.59 (td, *J* = 7.3, 1.1 Hz, 1H, Ar*H*), 6.39 (dd, *J* = 8.1, 1.1 Hz, 1H, Ar*H*), 4.03 (dd, *J* = 11.5, 2.9 Hz, 1H, C*H*), 3.79 (s, 3H, OC*H*₃), 3.71 (s, 3H, OC*H*₃), 3.62 (q, *J* = 8.4 Hz, 1H, C*H*₂), 3.32 (td, *J* = 9.3, 2.4 Hz, 1H, C*H*₂), 2.99 – 2.87 (m, 1H, C*H*₂), 2.80 (ddd, *J* = 16.2, 4.7, 2.4 Hz, 1H, C*H*₂), 2.73 (ddd, *J* = 13.1, 7.8, 2.4 Hz, 1H, C*H*₂), 2.34 (ddt, *J* = 12.3, 5.1, 2.7 Hz, 1H, C*H*₂), 2.22 (ddd, *J* = 13.1, 9.6, 8.8 Hz, 1H, C*H*₂), 1.37 (tdd, *J* = 12.7, 11.6, 4.7 Hz, 1H, C*H*₂);

¹³C NMR (101 MHz, CDCl₃): δ = 170.6, 169.8, 144.1, 128.3, 127.2, 121.0, 115.7, 110.2, 62.1, 61.9, 52.6, 52.4, 45.7, 31.8, 27.8, 23.9;

IR (film): \tilde{v} = 2954 (w), 2925 (w), 2854 (w), 1732 (s), 1605 (m), 1576 (w), 1506 (m), 1480 (w), 1460 (m), 1436 (m), 1365 (w), 1314 (m), 1270 (s), 1221 (m), 1199 (m), 1172 (m), 1090 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{16}H_{19}NNaO_4^+$ [M+Na]⁺ 312.1206; found 312.1205.

(35,3aR)-methyl 1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinoline-3-carboxylate (62).

LiCl (37 mg, 0.86 mmol) was added to a solution of SI-75 (50 mg, 0.17 mmol) in DMSO:H₂O 10:1 (0.88 mL, 0.2 M) at room temperature and the resulting mixture was then heated for 5 hours to 140 °C.

The mixture was cooled to room temperature, quenched with sat. aq. NH₄Cl (5 mL) and extracted with DCM (3x15 mL). The combined org. extracts were washed with brine (10 mL) and dried over MgSO₄. The drying agent was filtered off and the solvent was evaporated. The residue was purified by column chromatograohy (SiO₂, pentane:EtOAc 50:1) and 34 mg (0.15 mmol, 85%) of the title compound **62** were isolated as a yellow oil.

R_f: 0.5 (silica, pentane:EtOAc 20:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.15 – 7.04 (m, 1H, Ar*H*), 7.00 (d, *J* = 7.3 Hz, 1H, Ar*H*), 6.60 (t, *J* = 7.3 Hz, 1H, Ar*H*), 6.41 (d, *J* = 8.1 Hz, 1H, Ar*H*), 3.75 (s, 3H, OC*H*₃), 3.65 – 3.53 (m, 1H, N-C*H*), 3.43 (td, *J* = 9.1, 2.3 Hz, 1H, N-C*H*₂), 3.31 (td, *J* = 9.3, 7.5 Hz, 1H, N-C*H*₂), 2.86 (m, 1H, Ar-C*H*₂), 2.78 (m, 1H, Ar-C*H*₂), 2.67 (m, 1H, C*H*-COOMe), 2.41 – 2.19 (m, 3H, C*H*₂), 1.56 – 1.41 (m, 1H, C*H*₂) ppm;

¹³C NMR (101 MHz, CDCl₃): δ = 173.4, 144.1, 128.5, 127.2, 121.3, 115.8, 110.2, 60.5, 51.9, 50.0, 46.4, 27.8, 27.6, 26.4 ppm;

IR (film): \tilde{v} = 2952 (w), 2849 (w), 1737 (s), 1605 (m), 1506 (m), 1460 (w), 1352 (m), 1312 (w), 1279 (w), 1204 (w), 1054 (w), 1021 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{14}H_{18}NO_2^+$ [M+H]⁺ 232.1332; found 232.1339.

rac-(1R,3aS,4S,5R)-Dimethyl 4,5-diacetoxy-1-(1,3-dioxoisoindolin-2-yl)-1,2,4,5-tetrahydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (SI-76).

OsO₄ (0.38 mL, 60 μ mol, 4% in water, 5 mol%) was added to a solution of **17** (510 mg, 1.18 mmol, 1 equiv.) and NMO·H₂O (261 mg, 1.93 mmol, 1.2 equiv.) in THF:acetone:water (2:2:1, 5.0 mL, 0.23 M) at room temperature and the resulting mixture was stirred for 18 hours. The reaction was diluted with water (10 mL) and extracted with EtOAc (3 x 15 mL). The combined org. extracts were washed with brine and dried over MgSO₄. The drying agent was filtered off and the solution was concentrated. The crude product was dissolved in CH₂Cl₂ (2.0 mL, 0.58 M), DMAP (14 mg, 0.12 mmol, 0.1 equiv.), NEt₃ (0.66 mL, 4.7 mmol, 4 equiv.) and Ac₂O (0.33 mL, 3.5 mmol, 3 equiv.) were added and the resulting mixture was stirred for 16 hours. The reaction was quenched with sat. aq. NH₄Cl (10 mL) and extracted with CH₂Cl₂ (3 x 15 mL). The combined org. extracts were washed with brine (15 mL) and dried over MgSO₄. The drying agent was filtered off and the solvent was evaporated. The residue was purified by

column chromatography (silica, pentane:EtOAc 2:1) and 0.46 g (0.84 mmol, 71%) of the title compound **SI-76** were isolated as a colorless oil.

R_f: 0.3 (silica, pentane:EtOAc 1:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.82 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.71 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.22 (dd, J = 7.5, 1.6 Hz, 1H, ArH), 7.14 (ddd, J = 8.7, 7.5, 1.6 Hz, 1H, ArH), 6.67 (td, J = 7.4, 1.0 Hz, 1H, ArH), 6.55 (d, J = 8.2 Hz, 1H, ArH), 6.32 (dd, J = 8.4, 6.0 Hz, 1H, CH-Phth), 6.14 (d, J = 3.0 Hz, 1H, Ar-CH-OAc), 5.41 (d, J = 11.4 Hz, 1H, CH-N), 5.05 (dd, J = 11.4, 3.0 Hz, 1H, CH-OAc), 3.82 (s, 3H, OCH₃), 3.70 (s, 3H, OCH₃), 3.29 (dd, J = 13.5, 8.3 Hz, 1H, CH₂), 2.79 (dd, J = 13.5, 6.0 Hz, 1H, CH₂), 2.14 (s, 3H, OAc), 2.06 (s, 3H, OAc);

¹³C NMR (101 MHz, CDCl₃): δ = 170.6, 169.8, 169.2, 168.8, 167.6, 140.3, 134.3, 131.8, 131.5, 131.1, 123.6, 117.9, 117.5, 110.8, 69.3, 68.8, 62.9, 61.3, 60.0, 53.3, 52.8, 38.2, 21.3, 20.7;

IR (film): \tilde{v} = 3016 (w), 2951 (w), 1742 (s), 1716 (s), 1610 (w), 1500 (w), 1374 (m), 1266 (s), 1243 (m), 1222 (m), 1188 (w), 1139 (w), 1053 (s), 1025 (m), 968 (w), 913 (w) cm⁻¹;

HRMS (ESI) calcd. for $C_{28}H_{26}N_2NaO_{10}^+$ [M+Na]⁺ 573.1480; found 573.1490.

rac-(15,3a5,45,5R)-Dimethyl 4,5-diacetoxy-1-vinyl-1,2,4,5-tetrahydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (63).

Vinylmagnesium bromide (0.47 mL, 0.33 mmol, 0.7 M in THF, 4 equiv.) was added dropwise to a solution of dry $ZnCl_2$ (0.11 g, 0.82 mmol, 10 equiv.) in THF (1 mL) and the resulting mixture was stirred for 10 minutes at room temperature. Thereafter a solution of **SI-76** (45 mg, 82 μ mol, 1 equiv.) in THF (3.5 mL) was added dropwise and the resulting mixture was heated to 50 °C for 18 hours. Thereafter, the reaction was cooled to room temperature and quenched with sat. aq. NH_4Cl (10 mL). The mixture was extracted with CH_2Cl_2 (3 x 20 mL), the combined org. extracts were washed with brine (20 mL) and dried over $MgSO_4$. The drying agent was filtered off and the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 3:1) and 24 mg (0.056 mmol, 68%) of the title compound **63** were isolated as a colorless oil.

R_f: 0.6 (silica, pentane:EtOAc 1:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.23 – 7.11 (m, 2H, Ar*H*), 6.65 (td, *J* = 7.4, 1.0 Hz, 1H, Ar*H*), 6.56 (d, *J* = 8.2 Hz, 1H, Ar*H*), 6.15 (d, *J* = 3.0 Hz, 1H, Ar-C*H*-OAc), 5.77 (ddd, *J* = 17.1, 10.2, 7.0 Hz, 1H, C*H*=CH₂), 5.31 (dt, *J* = 17.2, 1.1 Hz, 1H, CH=C*H*₂), 5.24 (dt, *J* = 10.2, 1.1 Hz, 1H, CH=C*H*₂), 5.13 (dd, *J* = 11.3, 3.0 Hz, 1H, CH-C*H*-OAc), 4.76 (d, *J* = 11.3 Hz, 1H, N-C*H*-CHOAc), 4.47 (q, *J* = 7.6 Hz, 1H, N-C*H*-CH=CH₂), 3.78 (s, 3H, OC*H*₃), 3.68 (s, 3H, OC*H*₃), 3.07 (dd, *J* = 13.1, 7.7 Hz, 1H, C*H*₂), 2.15 (dd, *J* = 13.1, 8.0 Hz, 1H, C*H*₂), 2.10 (s, 3H, OAc), 2.01 (s, 3H, OAc).

¹³C NMR (101 MHz, CDCl₃): δ = 170.4, 169.8, 169.6, 169.0, 142.7, 138.5, 131.3, 130.5, 116.9, 116.8, 116.5, 111.9, 69.4, 69.1, 60.4, 60.2, 60.1, 53.1, 52.8, 41.1, 21.3, 20.7;

IR (film): $\tilde{v} = 2675$ (w), 2350 (w), 1739 (s), 1610 (w), 1498 (w), 1372 (w), 1261 (m), 1242 (m), 1279 (w), 1060 (s), 1026 (m), 954 (w), 912 (m) cm⁻¹;

HRMS (ESI) calcd. for $C_{22}H_{26}NO_8^+$ [M+H]⁺ 432.1653; found 432.1652.

anti-Dimethyl 6-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3,8,8a-tetrahydroindolizine-1,1(7*H*)-dicarboxylate (64).

Pd(OH)₂/C (12 mg, 10%_{w/w}, 20% Pd) was added to a solution of **49** (0.12 mg, 0.30 mmol) in methanol (3 mL), the mixture was purged with hydrogen and then stirred for 8 hours under hydrogen atmosphere. The mixture was filtered through a plug of Celite®, concentrated and the residue was purified by column chromatography (silica, pentane:EtOAc 2:1) affording 88 mg (0.22 mmol, 73%) of the title compound **64**.

R_f: 0.2 (silica, pentane:EtOAc 2:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.85 (dd, J = 5.5, 3.1 Hz, 2H, Phth), 7.77 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 6.74 (d, J = 1.6 Hz, 1H, N-CH=C(CN)), 6.02 (dd, J = 8.2, 6.6 Hz, 1H, CH-Phth), 4.35 (dd, J = 11.4, 3.3 Hz, 1H, N-CH-CH₂), 3.81 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 2.89 (qd, J = 14.0, 7.4 Hz, 2H, CH₂), 2.42 – 2.29 (m, 2H, CH₂), 2.27 – 2.18 (m, 1H, CH₂), 1.24 – 1.13 (m, 1H, CH₂);

¹³C NMR (101 MHz, CDCl₃): δ = 169.5, 168.9, 167.5, 141.2, 134.7, 131.3, 123.7, 121.6, 77.6, 65.0, 62.2, 59.8, 53.0, 52.9, 34.7, 23.4, 22.5;

IR (film): \tilde{v} = 2955 (w), 2854 (w), 2193 (m), 1776 (w), 1733 (s), 1714 (s), 1623 (s), 1438 (w), 1397 (w), 1353 (m), 1324 (m), 1272 (m), 1219 (w), 1151 (m), 1106 (m), 972 (w), 913 (m) cm⁻¹;

rac-(3*R*,7*R*,8*S*,8a*S*)-Dimethyl 7,8-bis((*tert*-butyldimethylsilyl)oxy)-6-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3,8,8a-tetrahydroindolizine-1,1(7*H*)-dicarboxylate (65).

OsO₄ (0.21 mL, 0.026 mmol, 4% in water, 5 mol%) was added to a solution of **49** (214 mg, 0.525 mmol, 1 equiv.) and NMO·H₂O (85 mg, 0.63 mmol, 1.2 equiv.) in acetone:water 20:1 (5.25 mL, 0.1 M) at 0 °C. The resulting mixture was stirred for 16 hours, while warming to room temperature, then the solvent was evaporated and the residue was dried in high vacuo. The residue was suspended in CH_2CI_2 (2.5 mL) and pyridine (0.21 mL, 2.6 mmol, 5 equiv.) followed by TBSOTf (0.48 mL, 2.1 mmol, 4 equiv.) were added. The resulting mixture was stirred for 18 hours at room temperature and thereafter quenched with sat. aq. NH_4CI (10 mL). The mixture was extracted with Et_2O (3 x 15 mL), the combined org. extracts were washed with brine (10 mL) and then dried over MgSO₄. The drying agent was filtered off and the solvent was evaporated. The residue was purified by column chromatography (silica, pentane:EtOAc 4:1) affording 231 mg (0.345 mmol, 66%) of the title compound **65** as a colorless oil.

R_f: 0.2 (silica, pentane:EtOAc 4:1);

¹H NMR (400 MHz, CDCl₃): δ = 7.87 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 7.78 (dd, J = 5.5, 3.0 Hz, 2H, Phth), 6.75 (s, 1H, N-CH=C(CN)), 6.03 (t, J = 7.8 Hz, 1H, CH-Phth), 5.09 (d, J = 10.4 Hz, 1H, N-CH-CH(OTBS)), 4.27 (d, J = 2.4 Hz, 1H, C(CN)-CH(OTBS)), 3.82 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.72 (dd, J = 10.4, 2.4 Hz, 1H, (CN)C-CH-CHN), 3.06 (dd, J = 13.2, 7.8 Hz, 1H, CH₂), 2.96 (dd, J = 13.2, 7.8 Hz, 1H, CH₂), 0.92 (s, 9H, C(CH₃)₃), 0.89 (s, 9H, C(CH₃)₃), 0.15 (s, 3H, SiCH₃), 0.13 (s, 3H, SiCH₃), 0.04 (s, 3H, SiCH₃), -0.06 (s, 3H, SiCH₃) ppm;

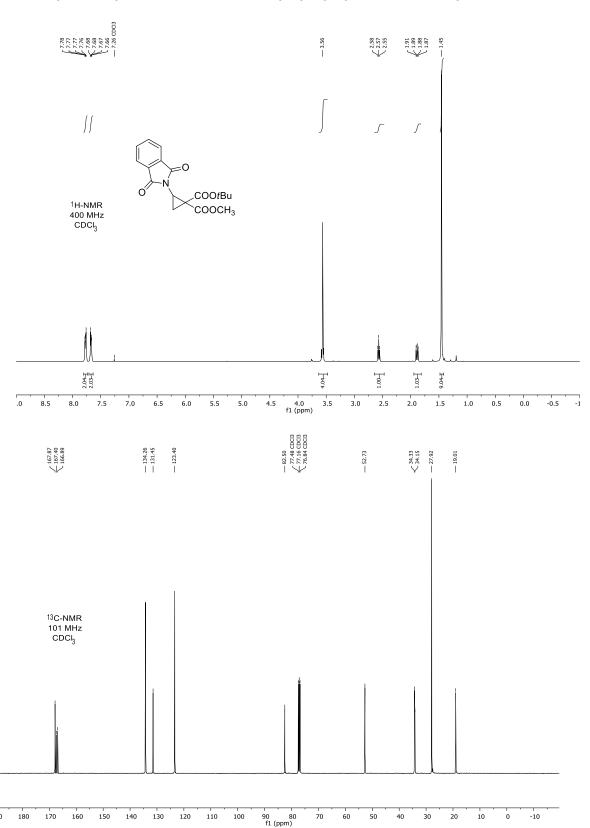
¹³C NMR (101 MHz, CDCl₃): δ = 169.0, 168.2, 167.0, 143.6, 134.8, 131.3, 123.8, 121.1, 80.2, 70.7, 67.8, 64.9, 61.2, 61.0, 53.0, 52.9, 36.5, 25.9, 25.5, 18.1, 17.9, -3.2, -3.5, -4.8, -5.5 ppm;

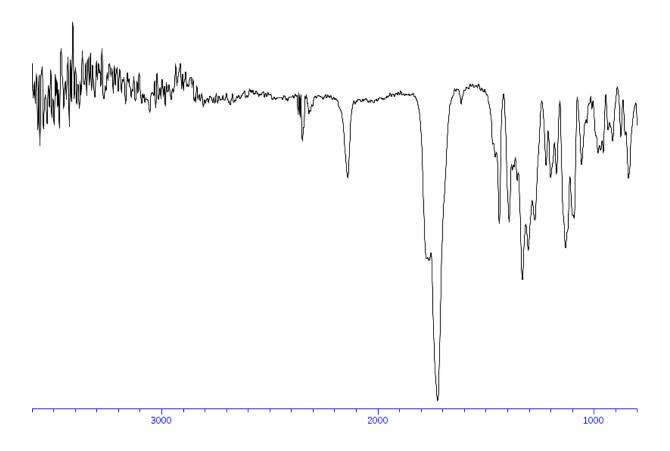
IR (film): \tilde{v} = 2954 (w), 2930 (w), 2894 (w), 2857 (w), 2195 (w), 1720 (s), 1618 (s), 1472 (w), 1360 (w), 1255 (m), 1133 (m), 1109 (m), 958 (m), 913 (m), 840 (s) cm⁻¹;

HRMS (ESI) calcd. for $C_{33}H_{47}N_3NaO_8Si_2^+$ [M+Na]⁺ 692.2794; found 692.2797.

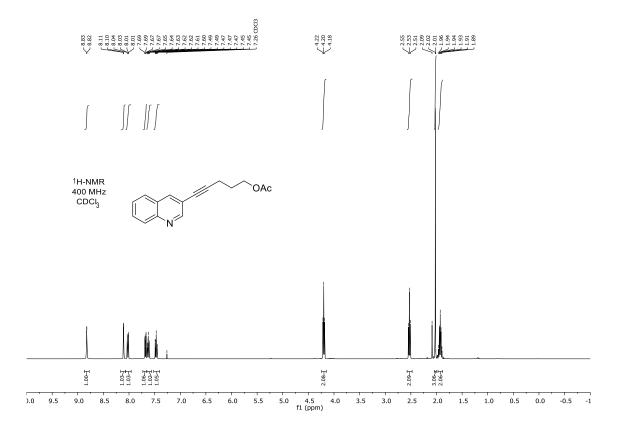
13. Attempts towards the Enantioselective Dearomatization

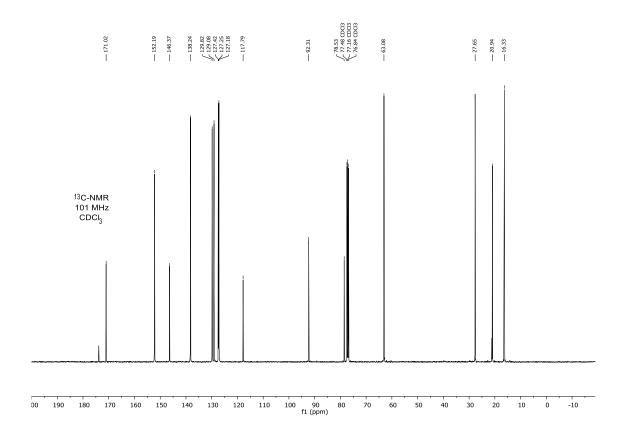
Table S8 Screening of chiral ligands for the annulation reaction.

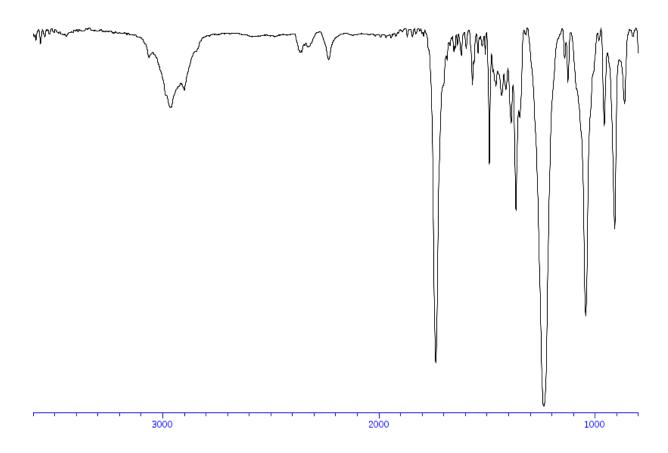

Entry	Lewis Acid	Ligand	Solvent	Yield	ee
1	Yb(OTf)₃	L1	CH ₂ Cl ₂	88%	0%
2	Sc(OTf)₃	L1	CH ₂ Cl ₂	90%	12%
3	Sc(OTf)₃	L1	PhCl	56%	9%
4	MgI ₂	L1	CH ₂ Cl ₂	81%	6%
5	La(OTf)₃	L1	CH ₂ Cl ₂	91%	10%
6	La(OTf)₃	L1	THF	84%	10%
7	Zn(OTf) ₂	L1	CH ₂ Cl ₂	no conversion	-
8	Zn(NTf ₂) ₂	L1	CH ₂ Cl ₂	9%	18%
9	Sc(OTf)₃	L2	CH ₂ Cl ₂	55%	1%
10	Sc(OTf)₃	L3	CH ₂ Cl ₂	35%	1%
11	Sc(OTf)₃	L4	CH ₂ Cl ₂	44%	2%
12	Cu(OTf)₂	L5	CH ₂ Cl ₂	no conversion	-
13	Ni(OTf) ₂	L5	CH ₂ Cl ₂	93%	6%
14	Zn(OTf) ₂	L5	CH ₂ Cl ₂	83%	10%
15	Yb(OTf)₃	L6	CH ₂ Cl ₂	93%	0%
16	Yb(OTf)₃	L7	CH ₂ Cl ₂	87%	0%
17	Sc(OTf) ₃	L7	CH ₂ Cl ₂	85%	0%
18	Yb(OTf)₃	L8	CH ₂ Cl ₂	83%	0%
19	Sc(OTf)₃	L8	CH ₂ Cl ₂	88%	0%

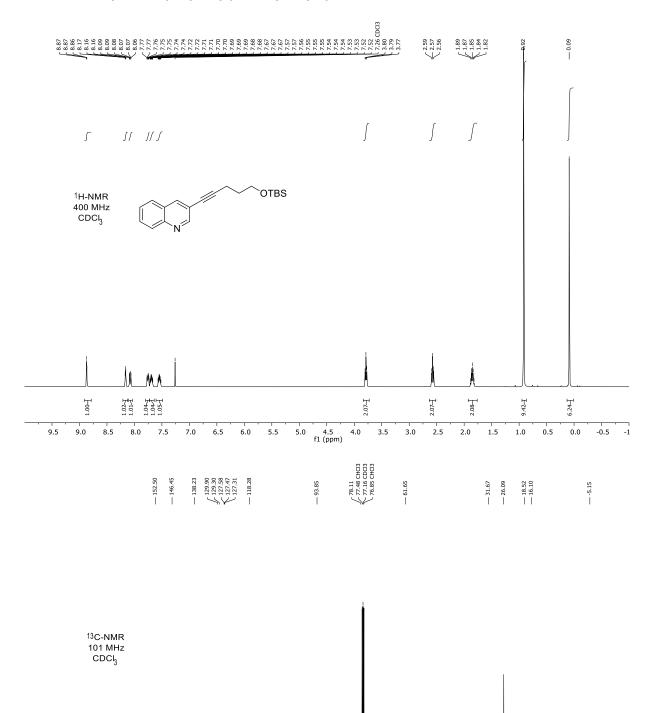

General procedure for the attempted enantioselective dearomatization

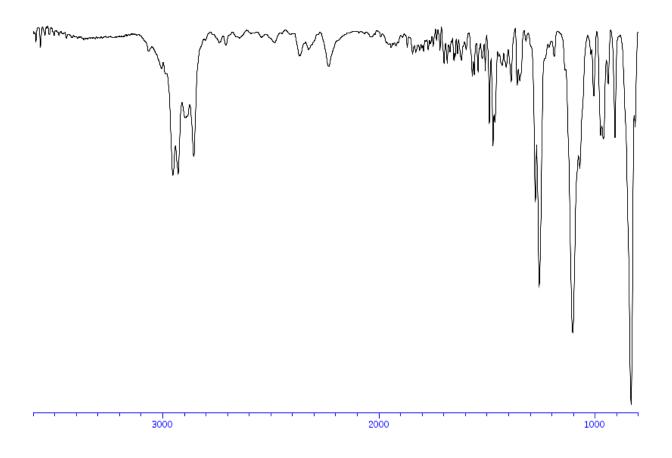
A vial was charged with the ligand (0.06 mmol, 6 mol%) and the Lewis acid (0.05 mmol, 5 mol%) in the glovebox, then CH_2Cl_2 (0.1 mL) was added and the resulting mixture was stirred for 3 hours at room temperature. Thereafter a solution of the cyclopropane **14** in CH_2Cl_2 (0.1 mL) was added, followed by quinoline **8** (0.10 mmol, 1.00 equiv.) and stirring of the mixture was continued for 16 hours at room temperature. The solvent was then evaporated and the residue was purified by column chromatography (silica, pentane:EtOAc 10:1 to 4:1). The enantiomeric excess was determined by chiral HPLC. Chiralcel IA, hexane:*i*PrOH 60:40, 1 mL/min, 31 min, t_{R1} = 10.2 min, t_{R2} 14.4 min, λ = 254 nm.

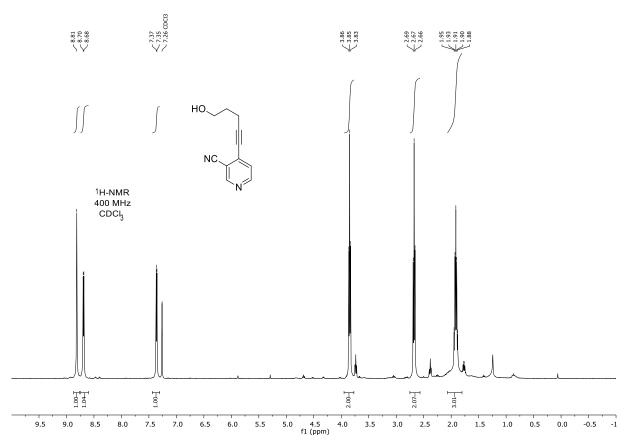

14. Spectra of new compounds

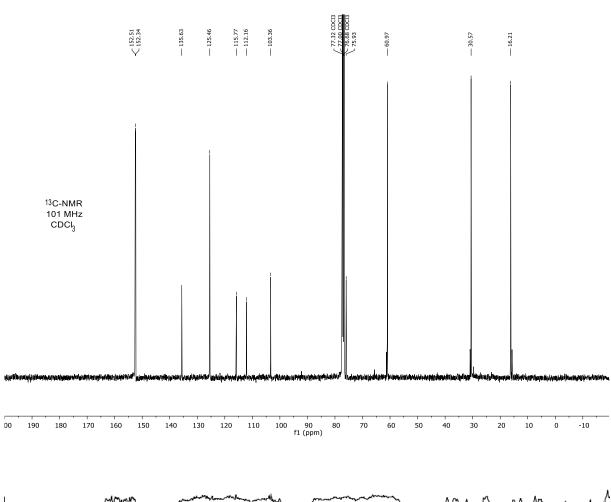

1-tert-Butyl 1-methyl 2-(1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (SI-32).

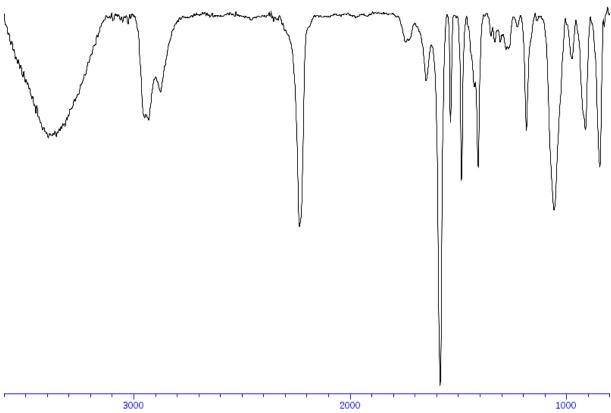


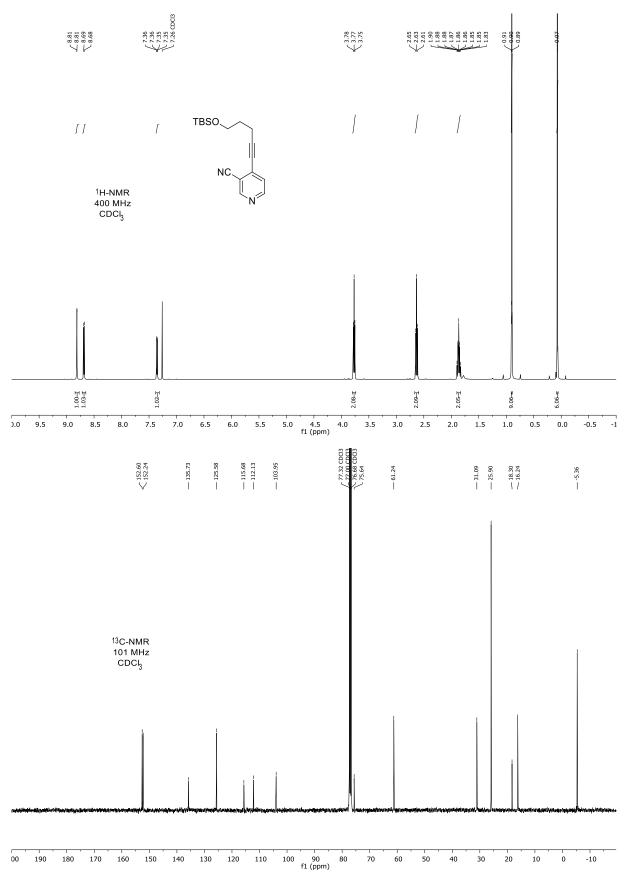

5-(Quinolin-3-yl)pent-4-yn-1-yl acetate (SI-38).

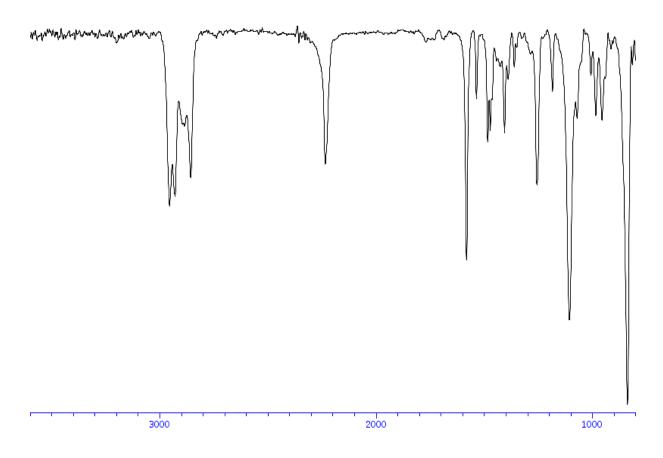


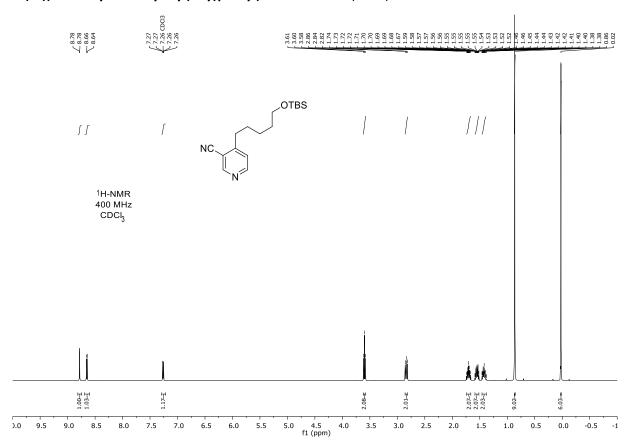


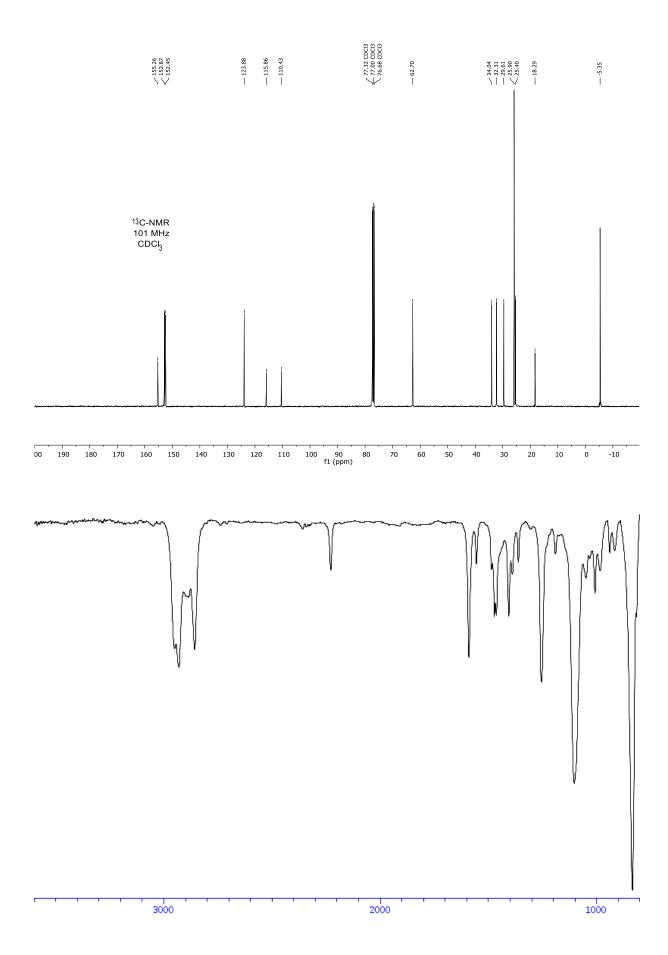

3-(5-((tert-Butyldimethylsilyl)oxy)pent-1-yn-1-yl)quinoline (SI-39).

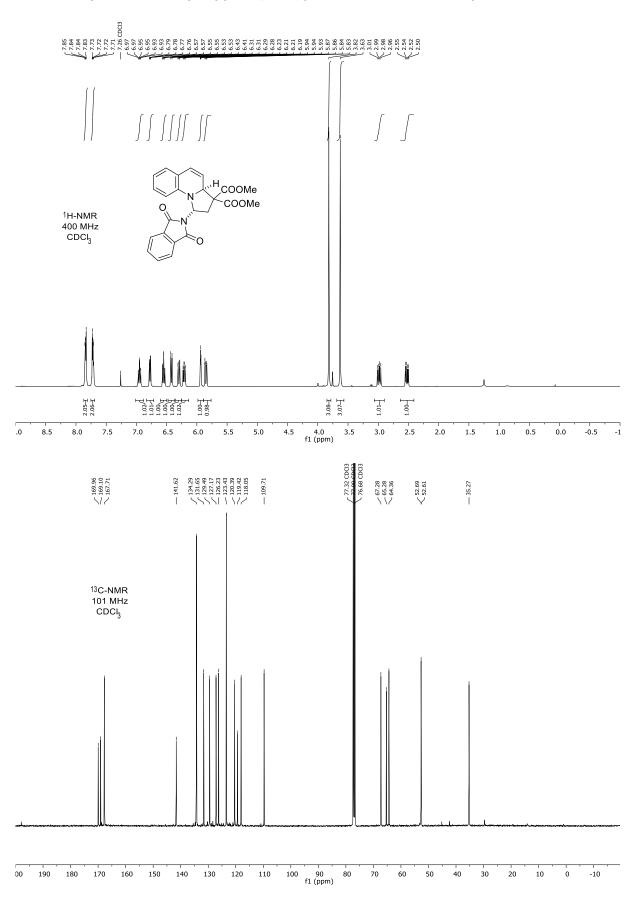


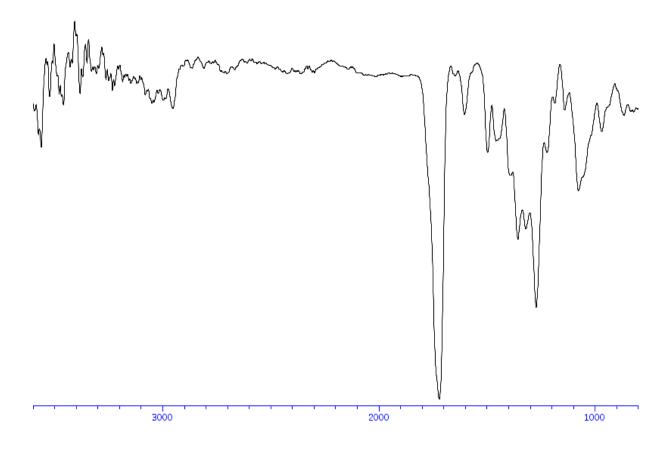

4-(5-Hydroxypent-1-yn-1-yl)nicotinonitrile (SI-50).

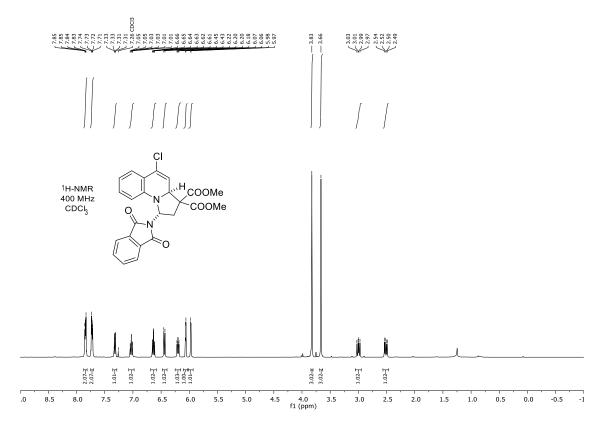


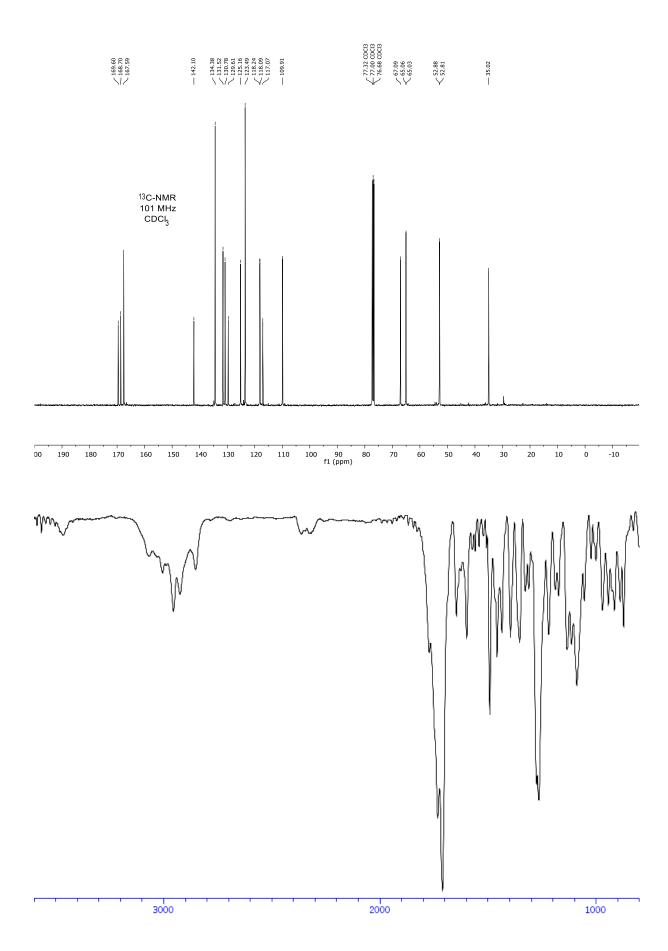


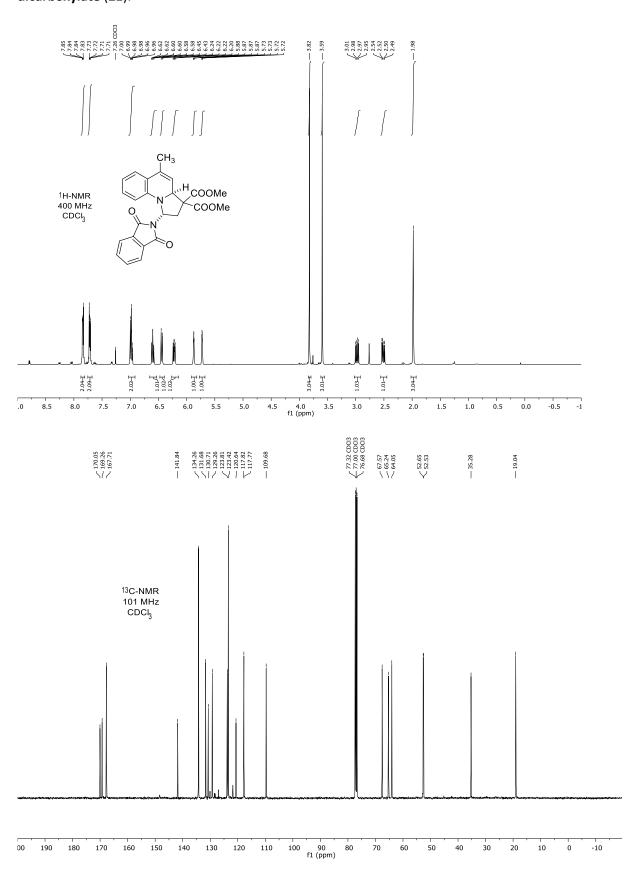

4-(5-((tert-Butyldimethylsilyl)oxy)pent-1-yn-1-yl)nicotinonitrile (SI-51).

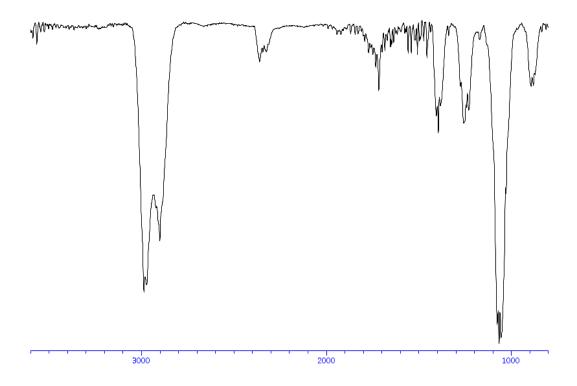


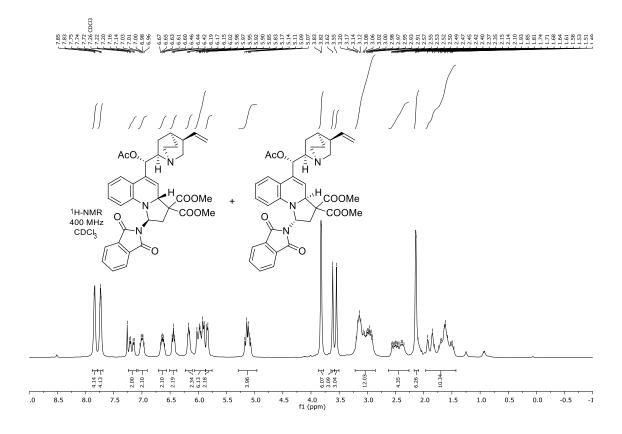

4-(5-((tert-Butyldimethylsilyl)oxy)pentyl)nicotinonitrile (SI-52).

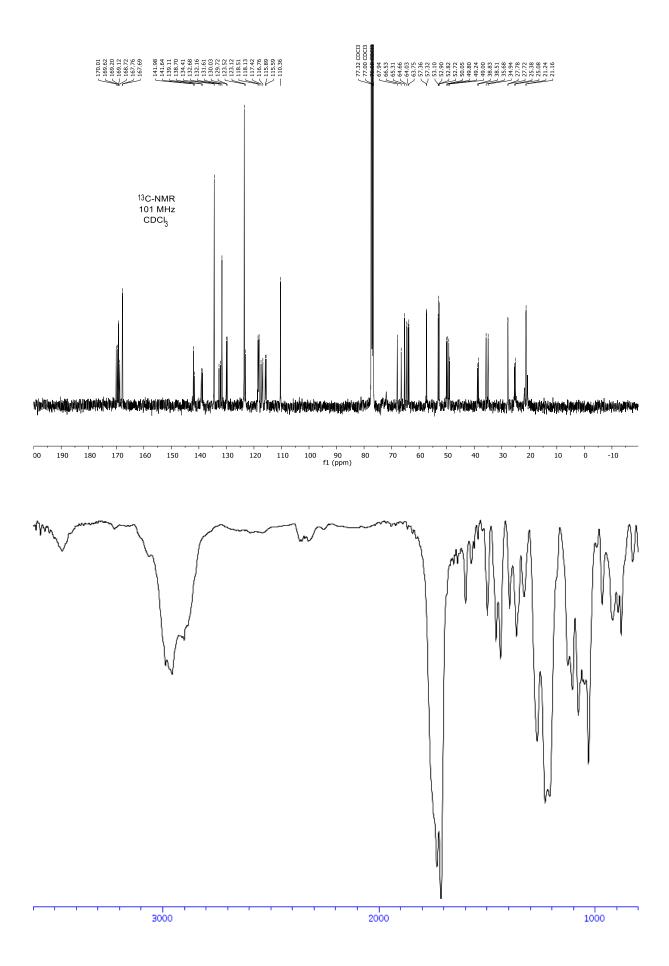


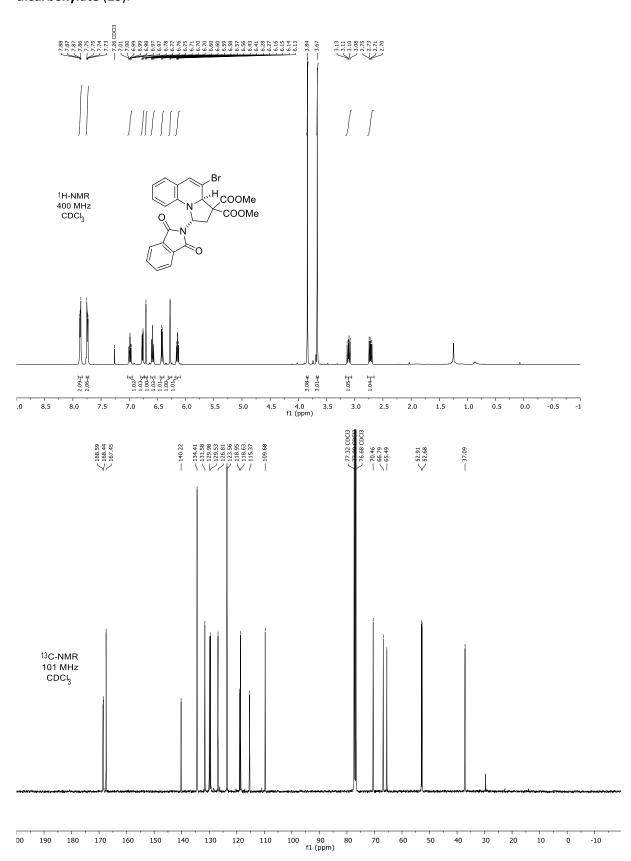

anti-Dimethyl 1,2,4,5-tetrahydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (17).

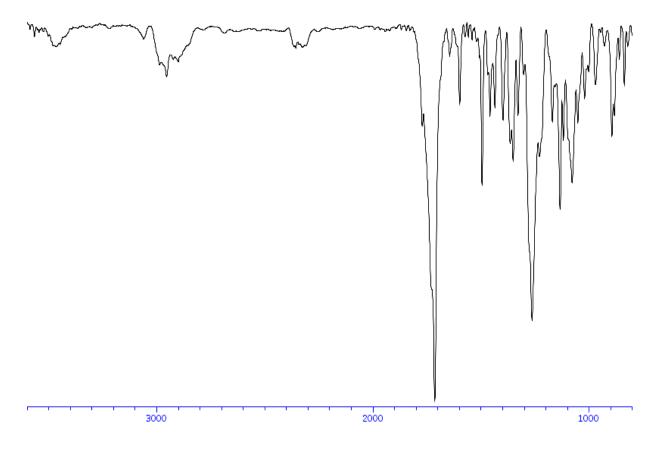


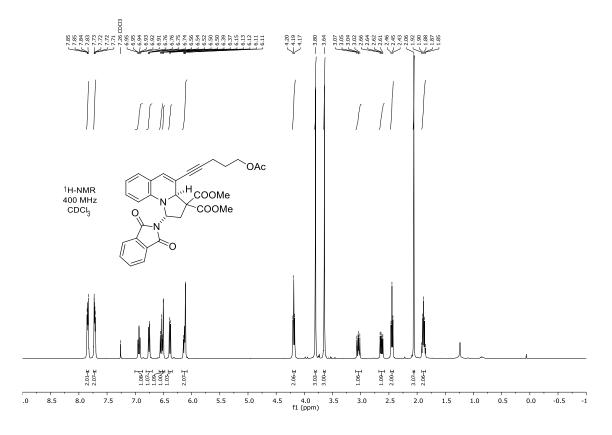

anti-Dimethyl 5-chloro-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3a*H*)-dicarboxylate (20).

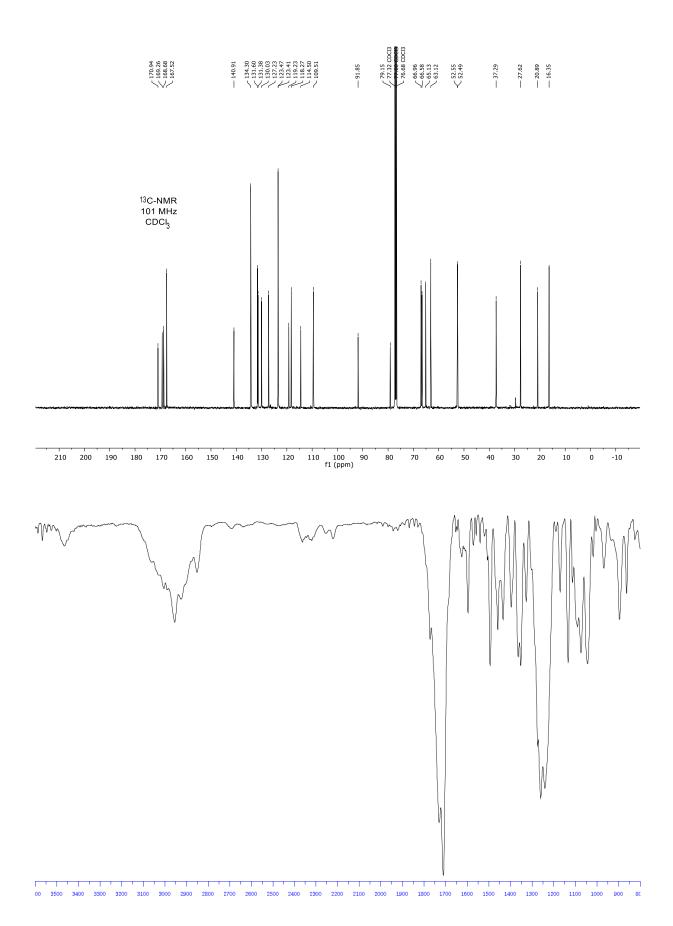


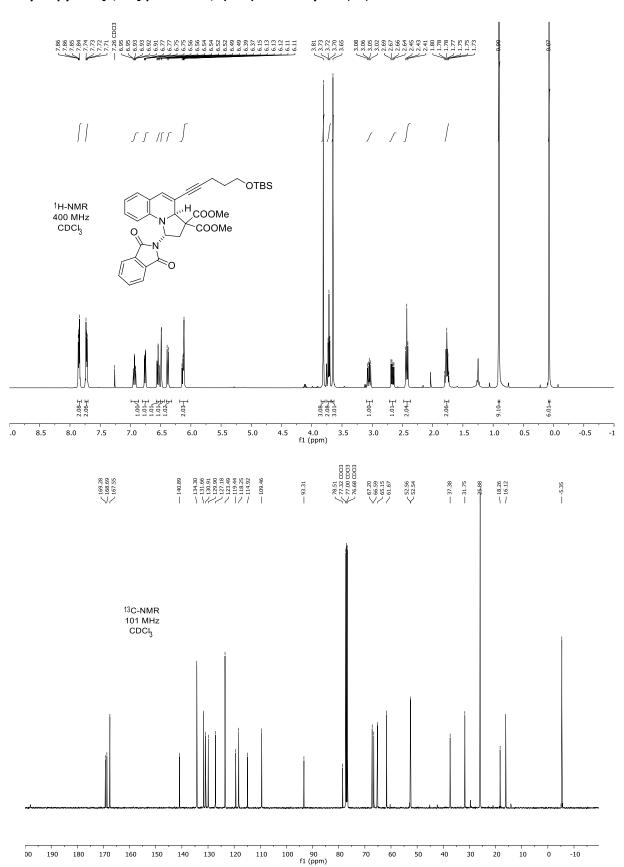

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-5-methyl-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (21).

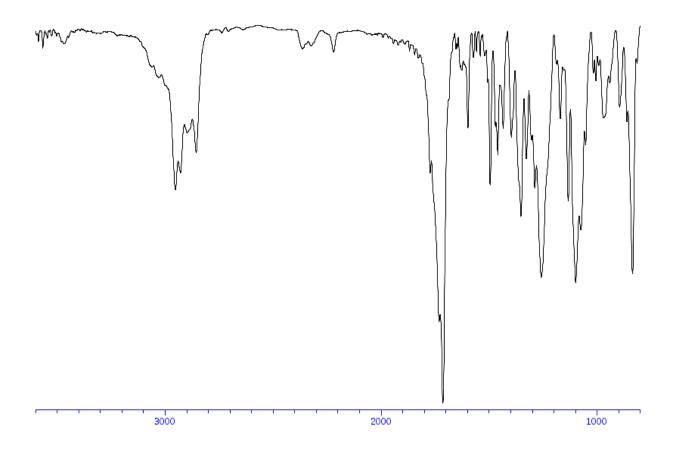


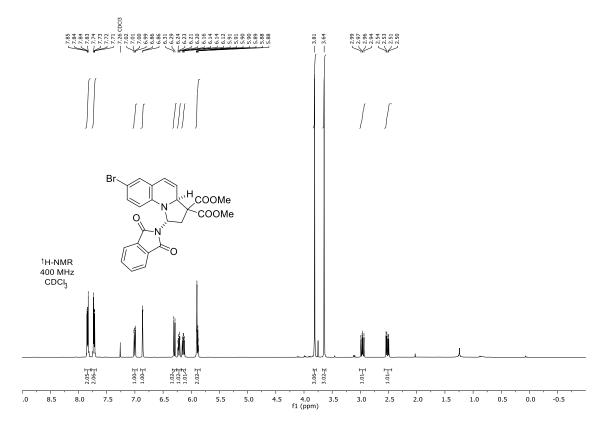

(1R,3aR)-Dimethyl 5-((S)-acetoxy((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (22a) and (1S,3aS)-dimethyl 5-((S)-acetoxy((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (22b).

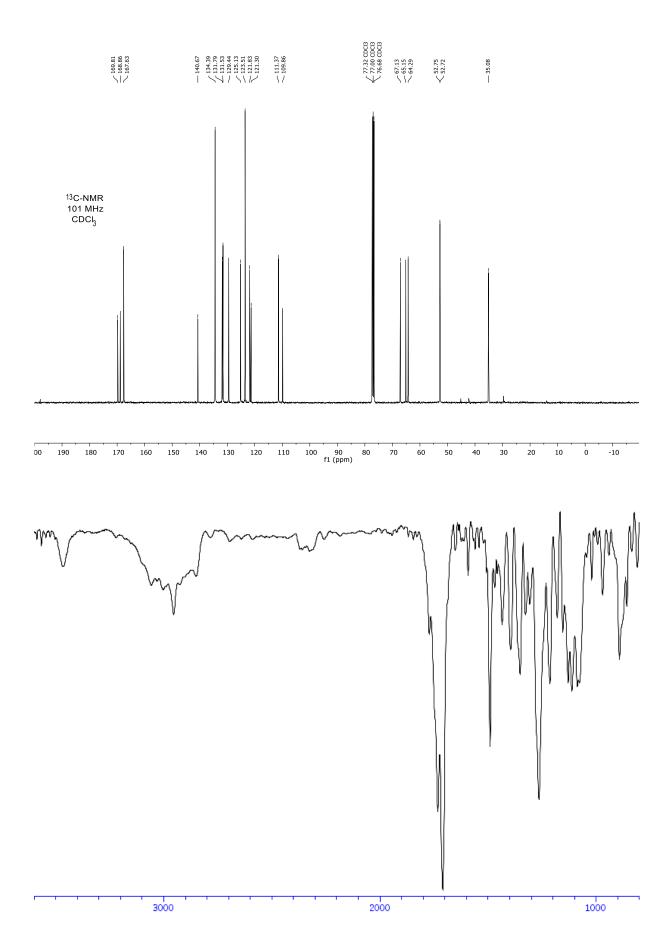


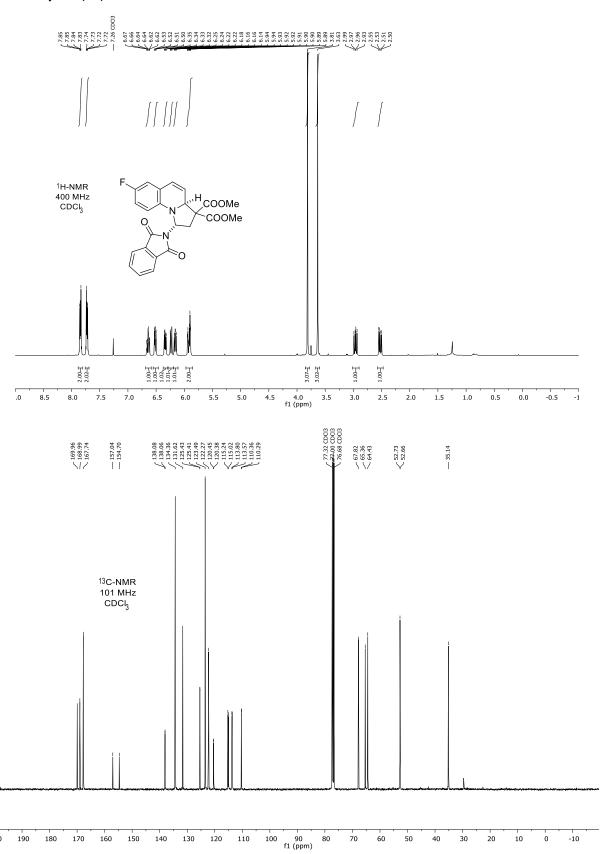

anti-Dimethyl 4-bromo-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (23).



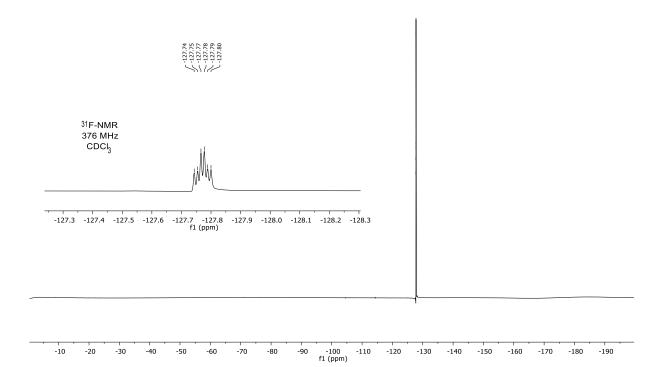

anti-Dimethyl 4-(5-acetoxypent-1-yn-1-yl)-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (24).

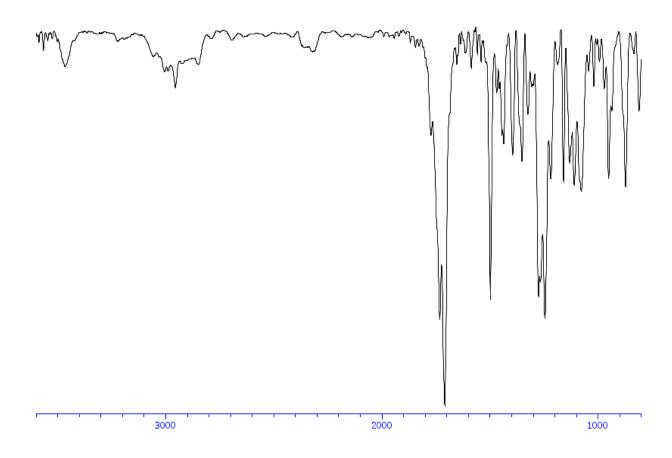



anti-Dimethyl 4-(5-((tert-butyldimethylsilyl)oxy)pent-1-yn-1-yl)-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (25).

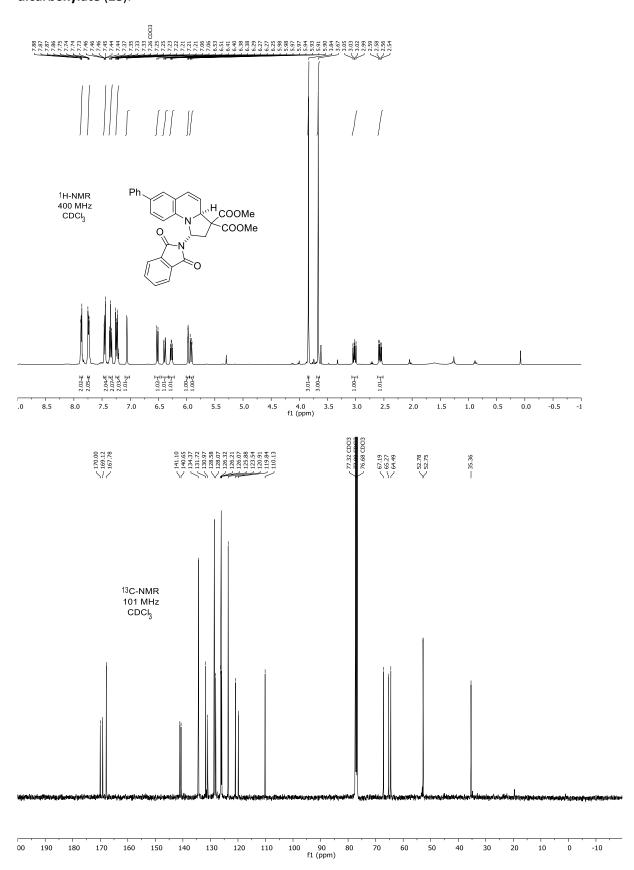


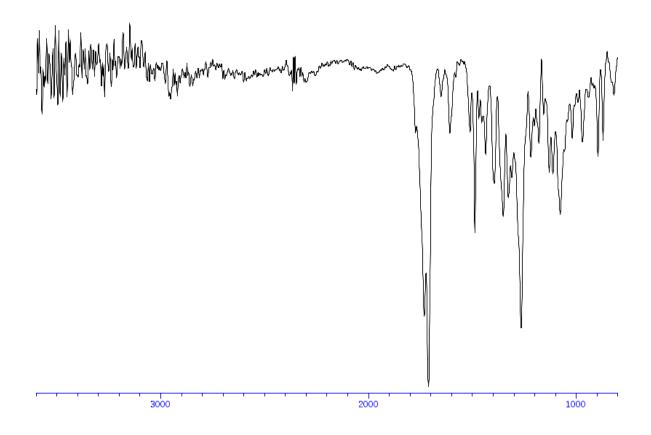
anti-Dimethyl 7-bromo-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3a*H*)-dicarboxylate (26).

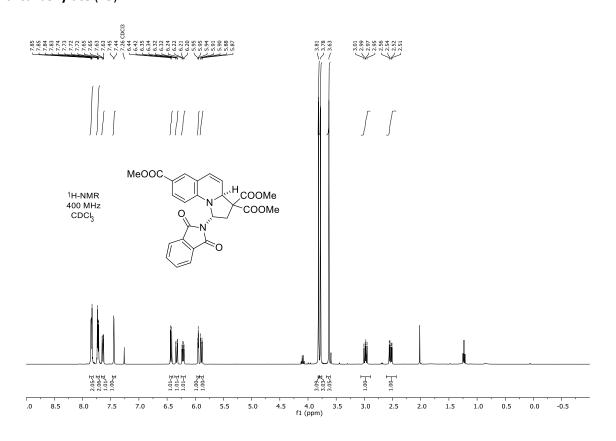


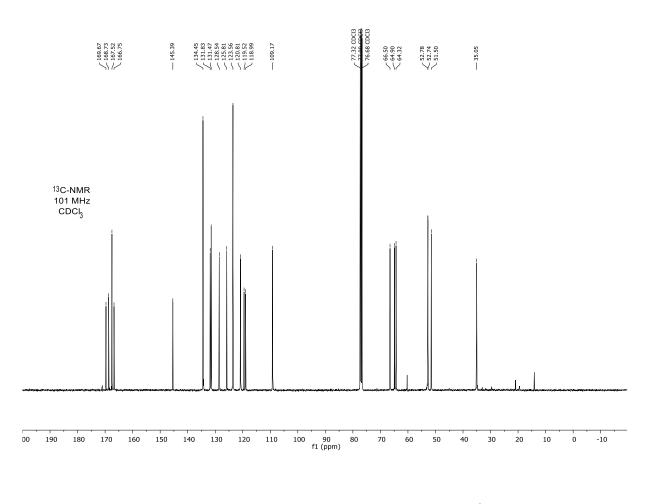


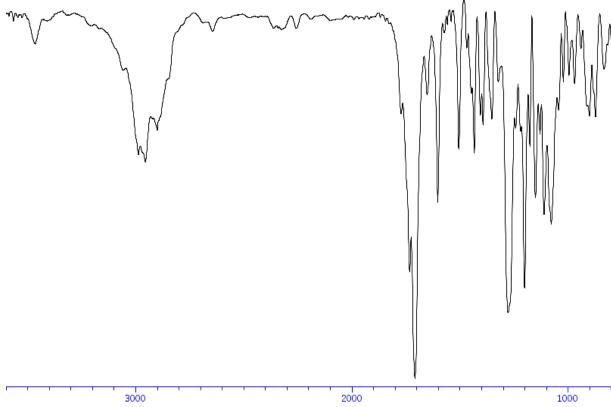
anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-7-fluoro-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (27).

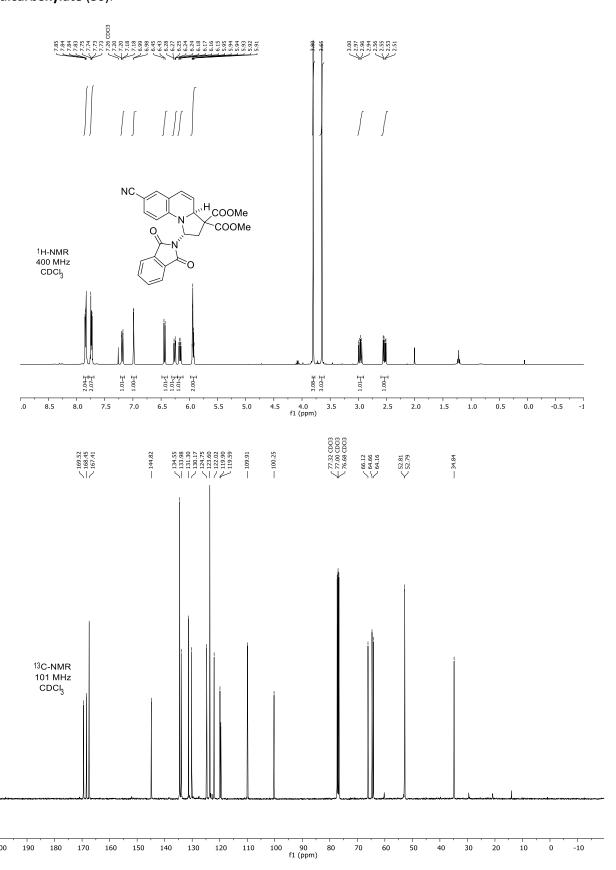


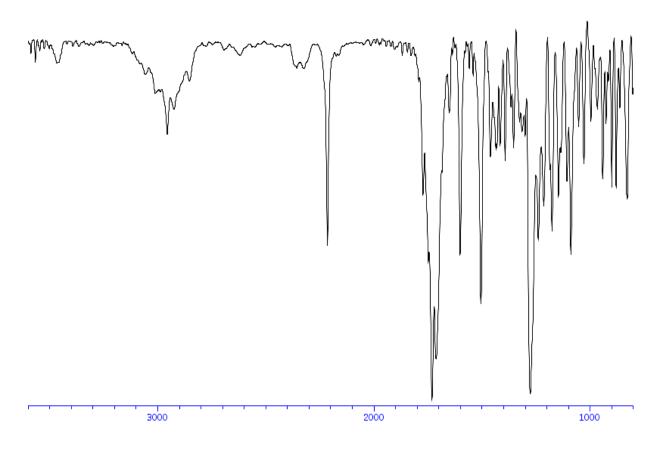


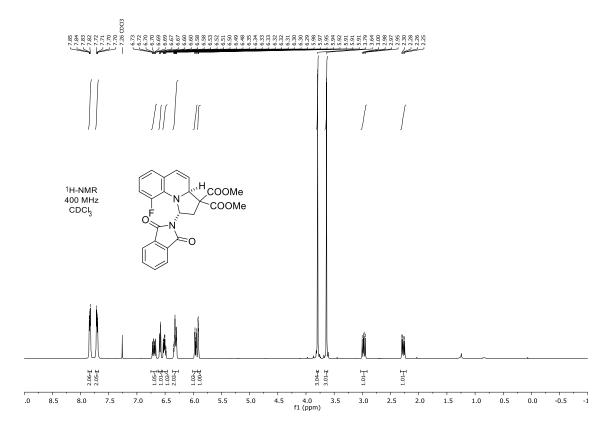


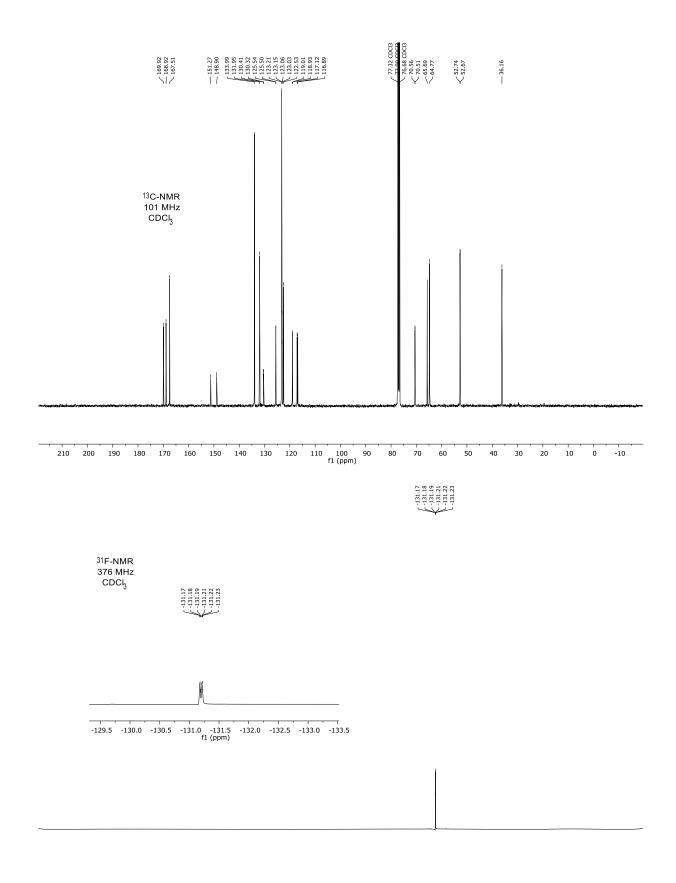

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-7-phenyl-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (28).




anti-Trimethyl 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3,7(3aH)-tricarboxylate (29).



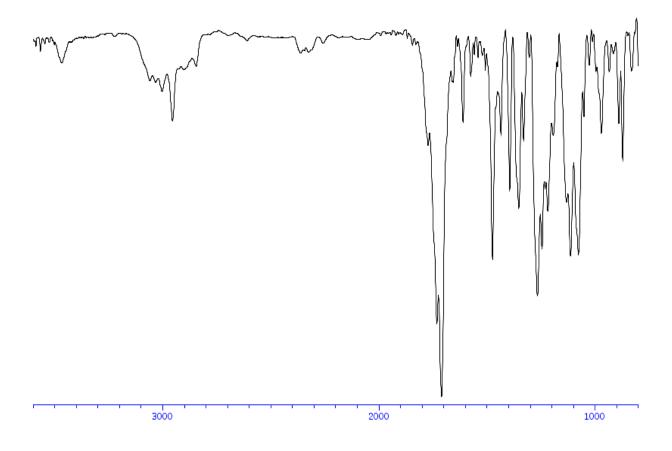



anti-Dimethyl 7-cyano-1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (30).

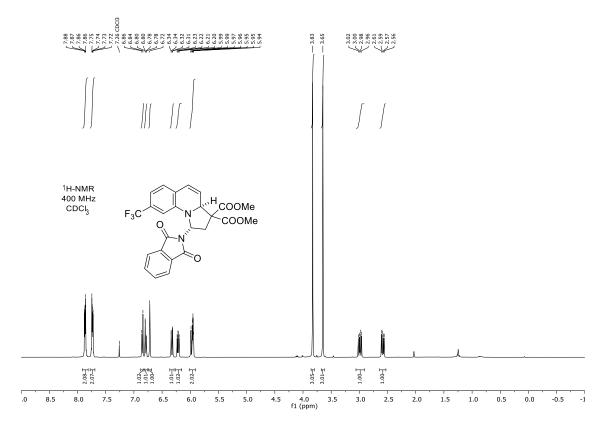
anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-9-fluoro-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (31).

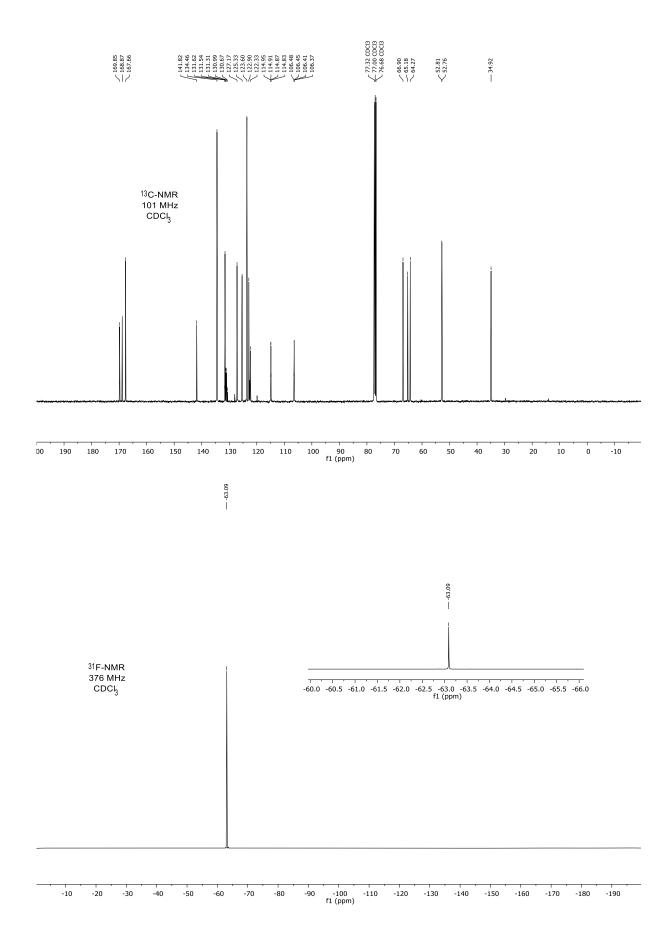
-130

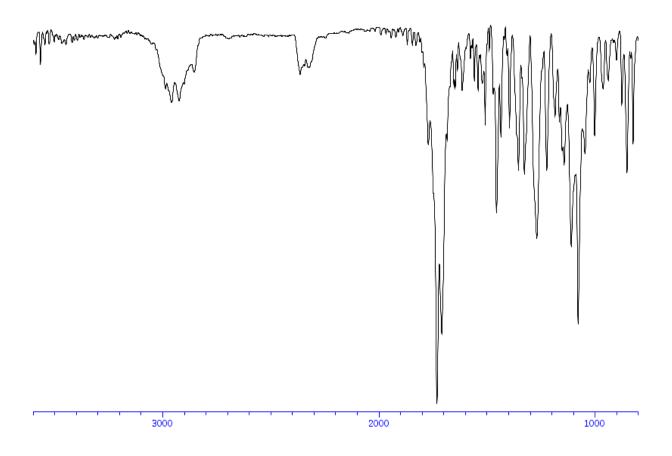
-150

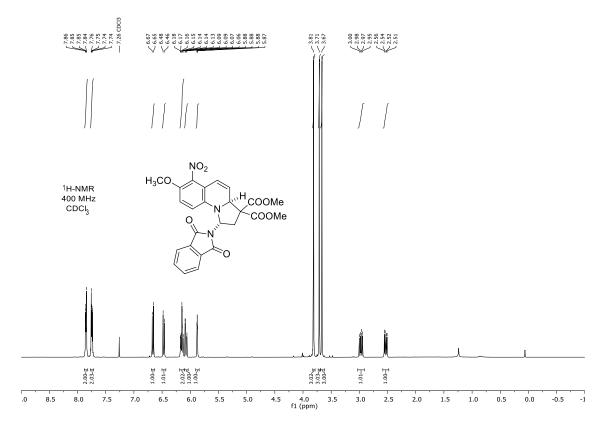

-160

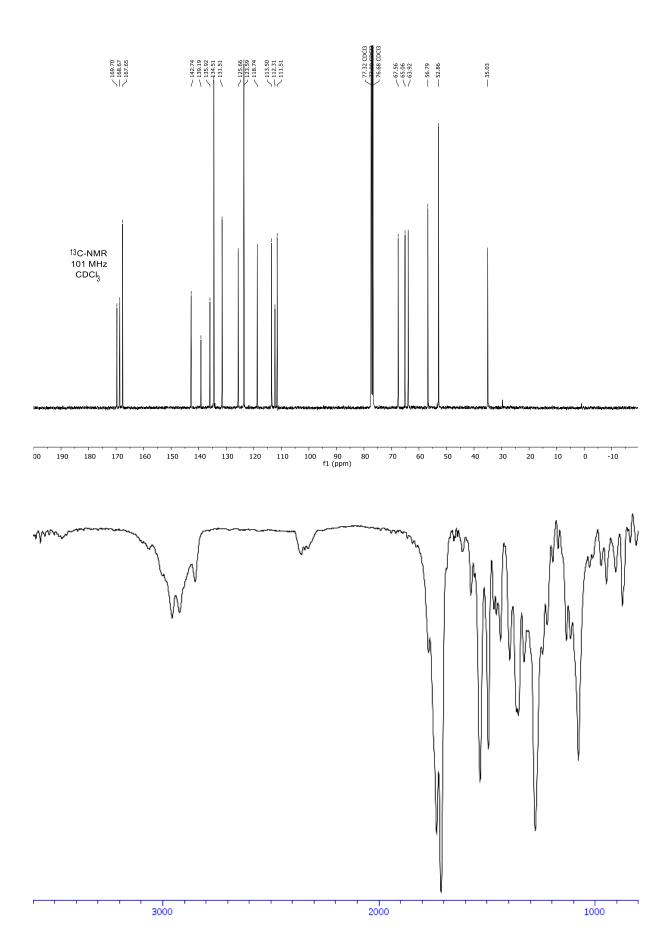
-170

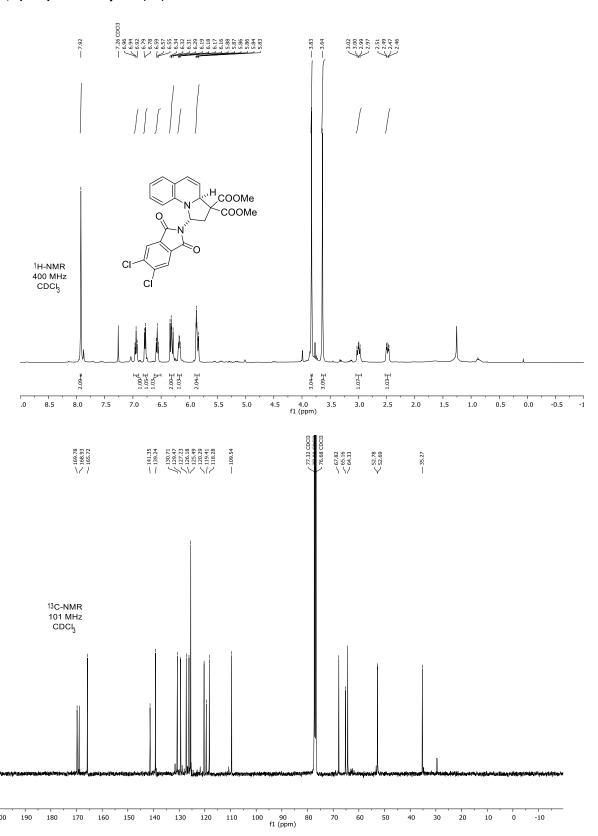

-180

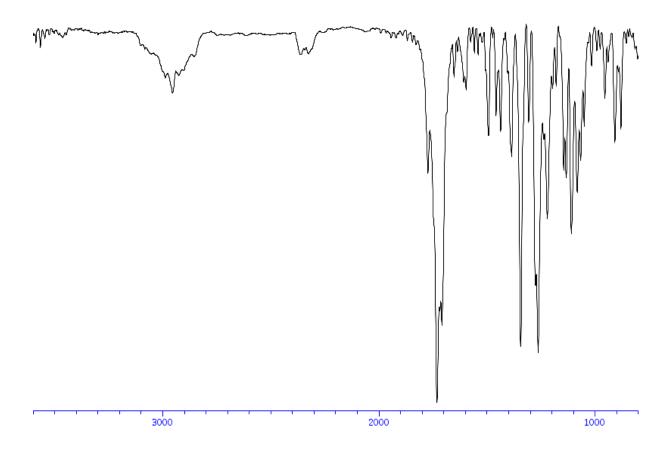

-190

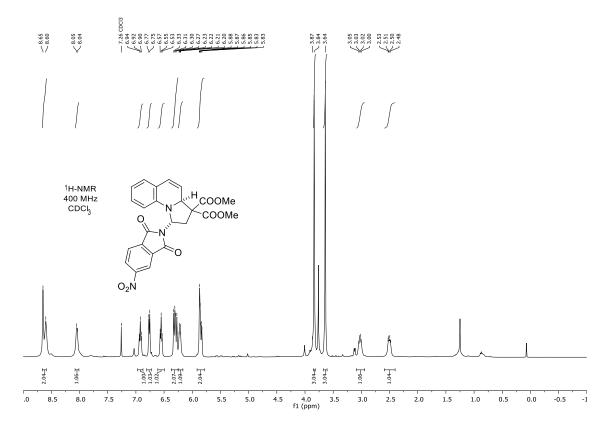

-30

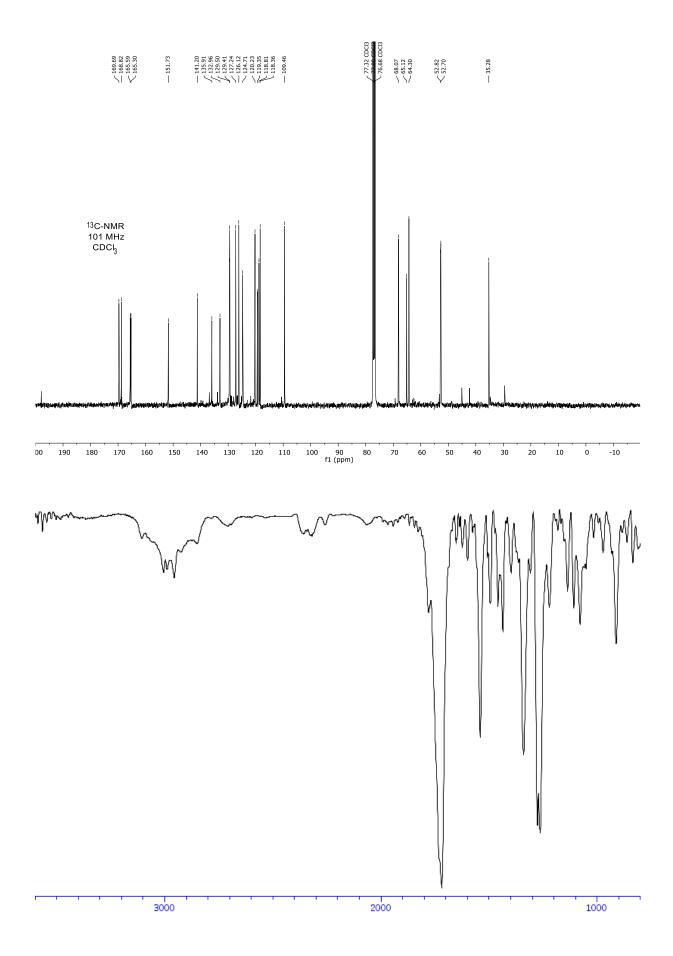

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-8-(trifluoromethyl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3a*H*)-dicarboxylate (32).

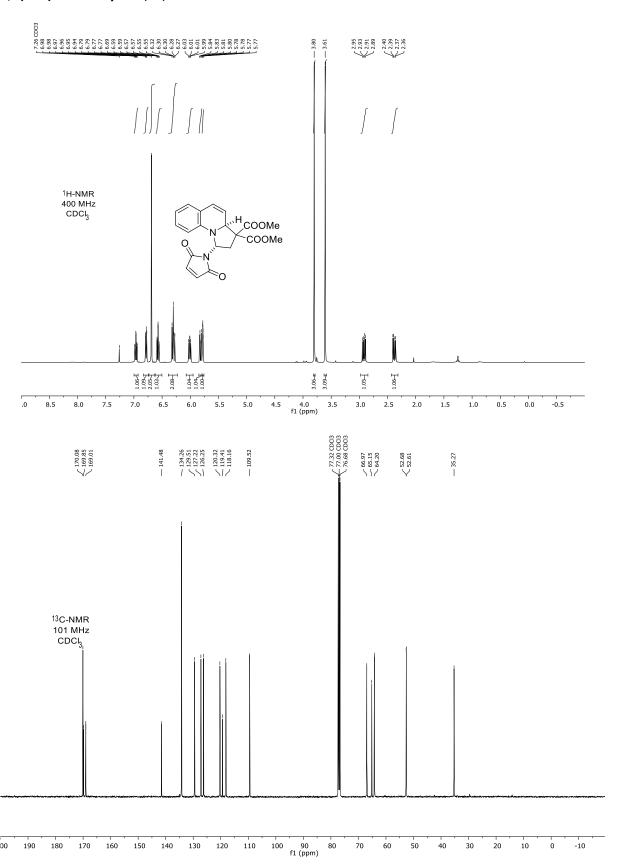


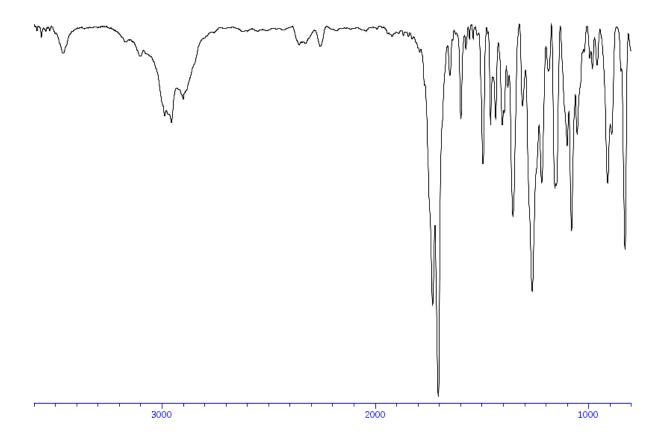


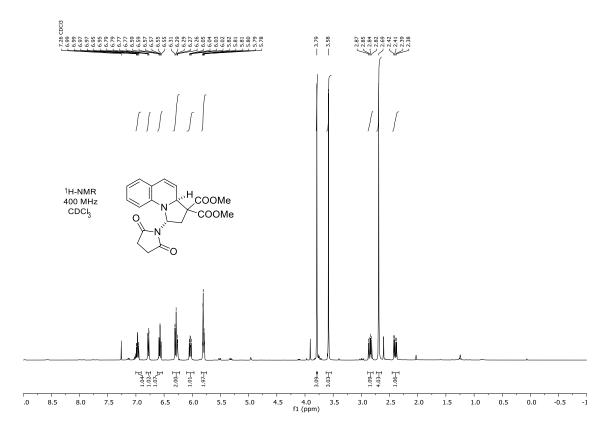

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-7-methoxy-6-nitro-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3a*H*)-dicarboxylate (34).

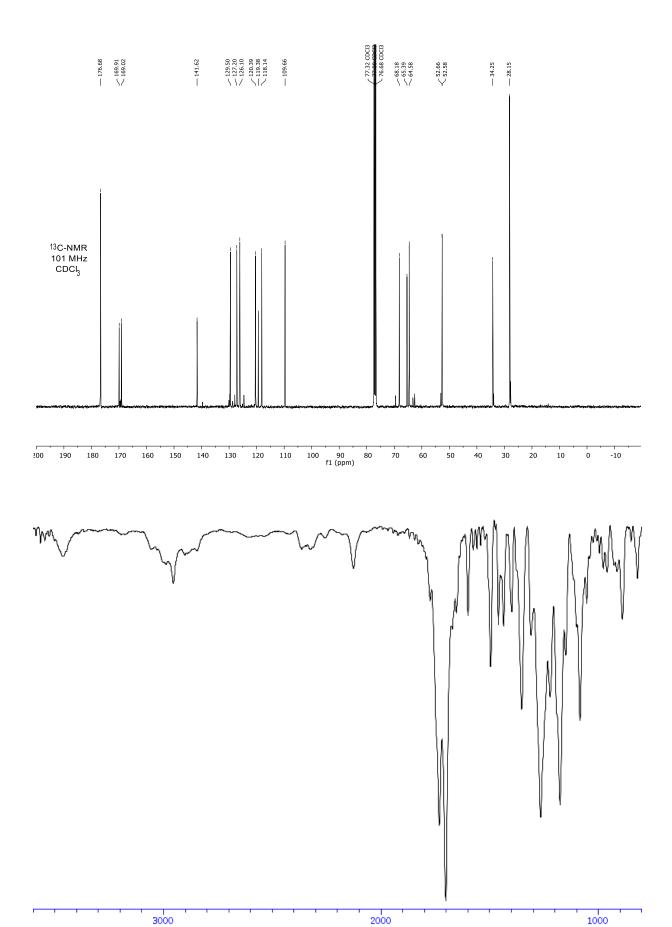


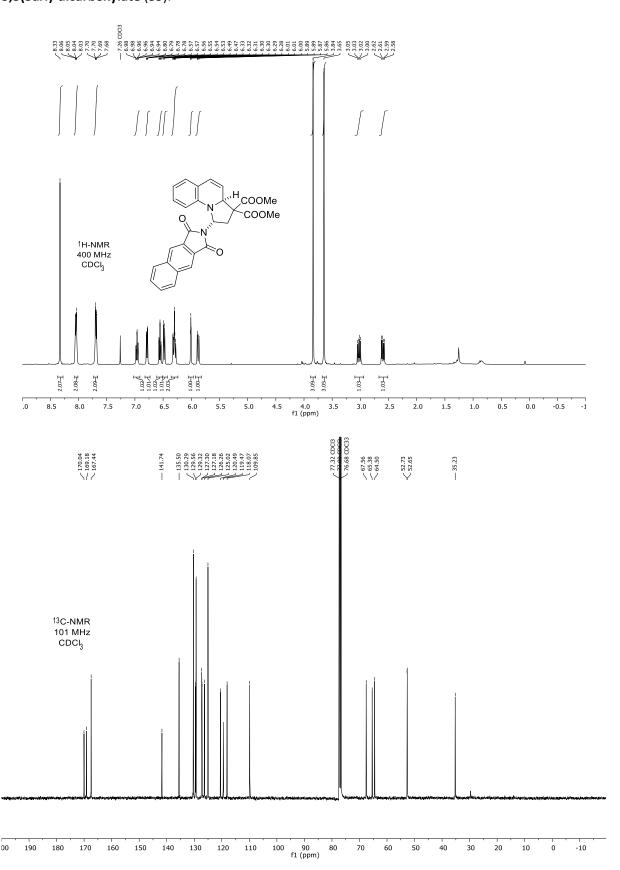

anti-Dimethyl 1-(5,6-dichloro-1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (35).

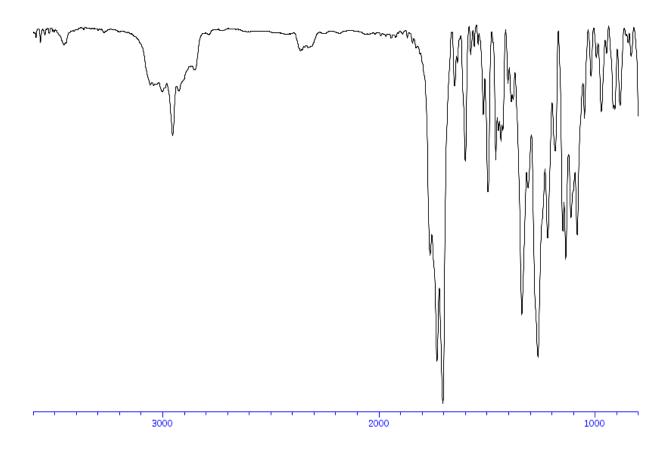


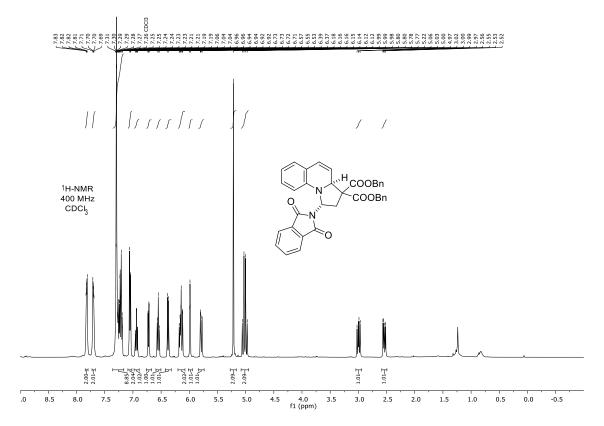

anti-Dimethyl 1-(5-nitro-1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3a*H*)-dicarboxylate (36).

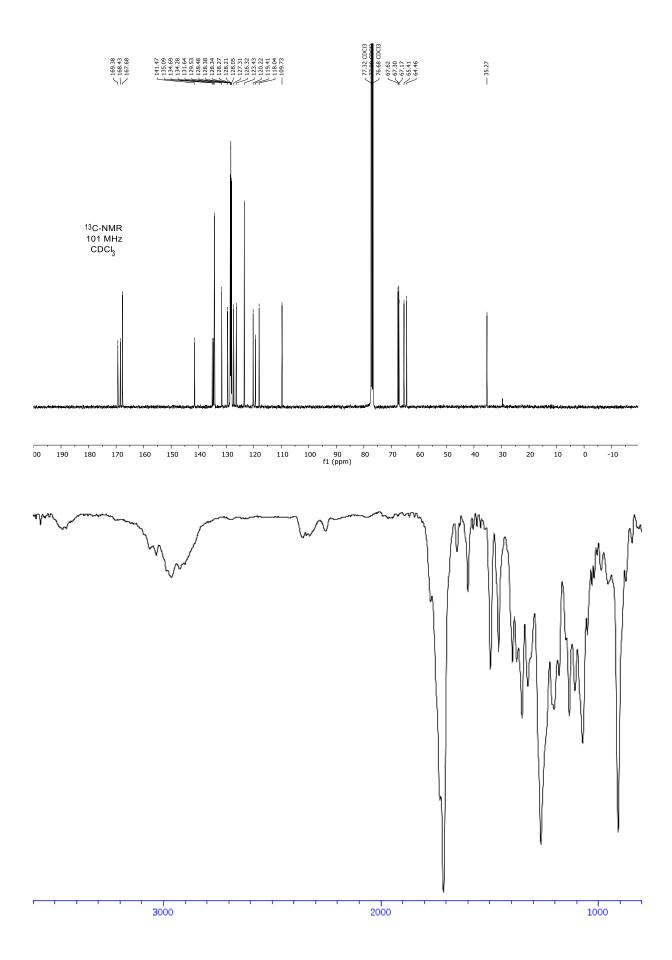


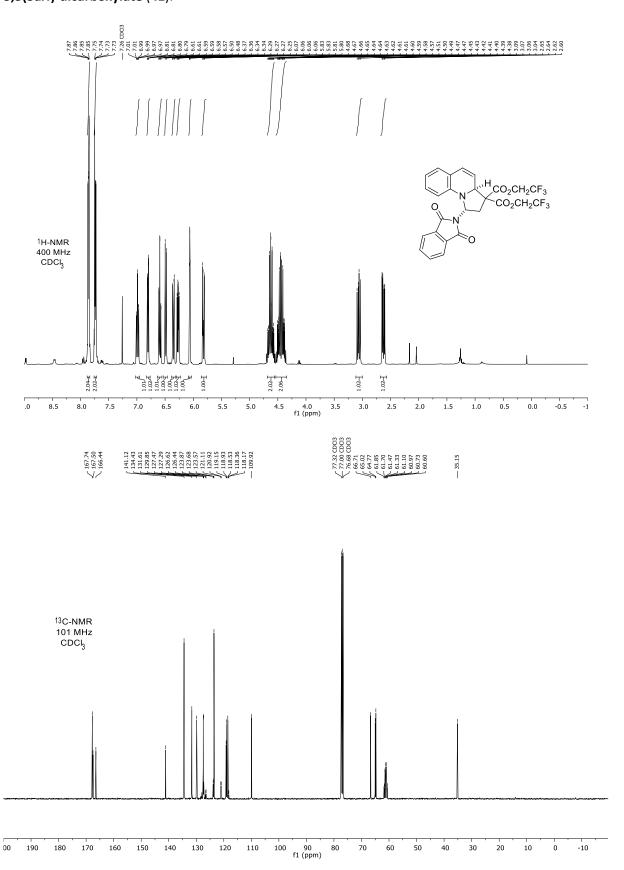

anti-Dimethyl 1-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (37).

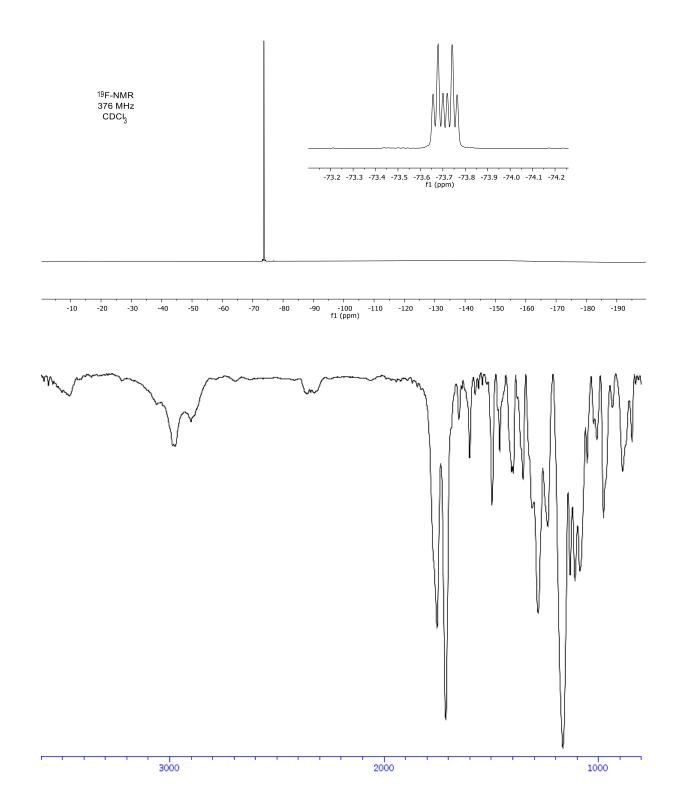


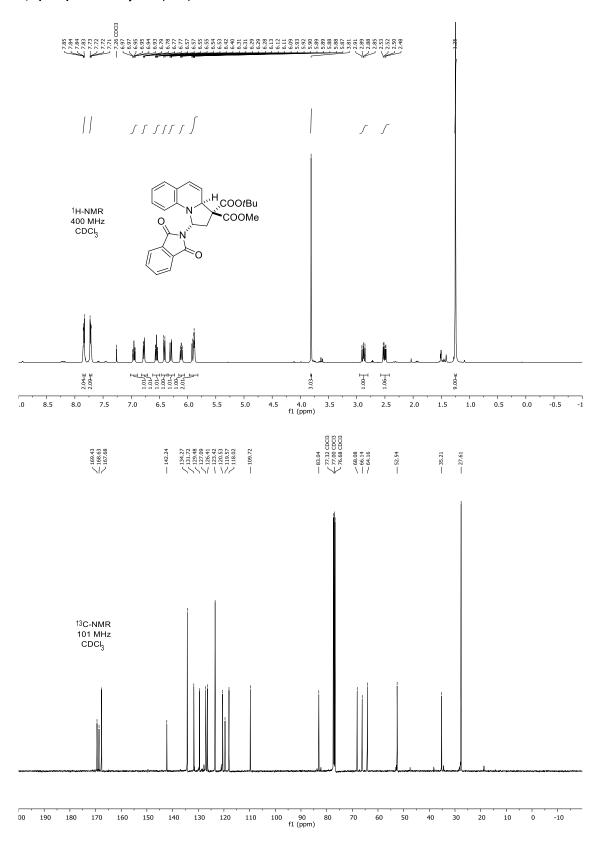

anti-Dimethyl 1-(2,5-dioxopyrrolidin-1-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (38).

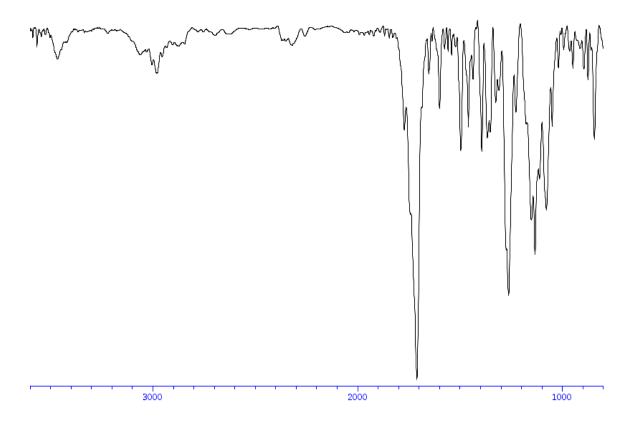


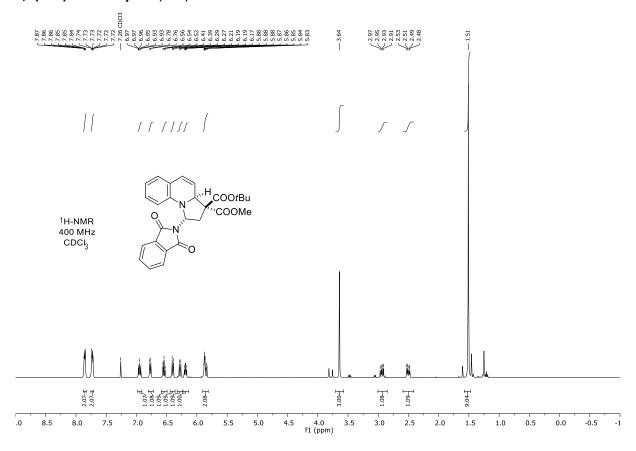

anti-Dimethyl 1-(1,3-dioxo-1H-benzo[f]isoindol-2(3H)-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (39).

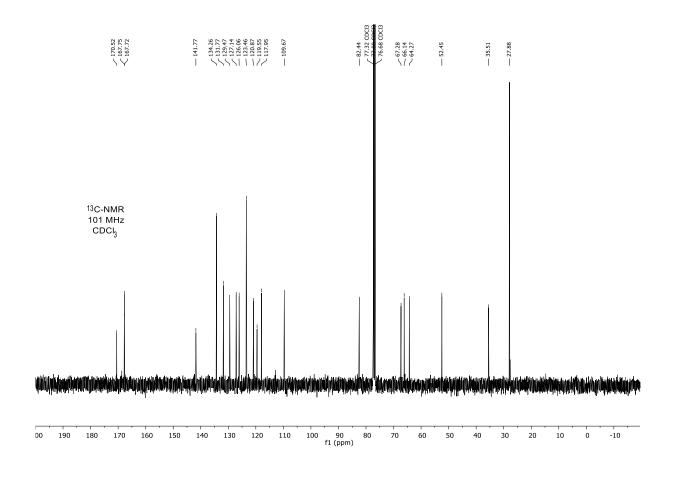


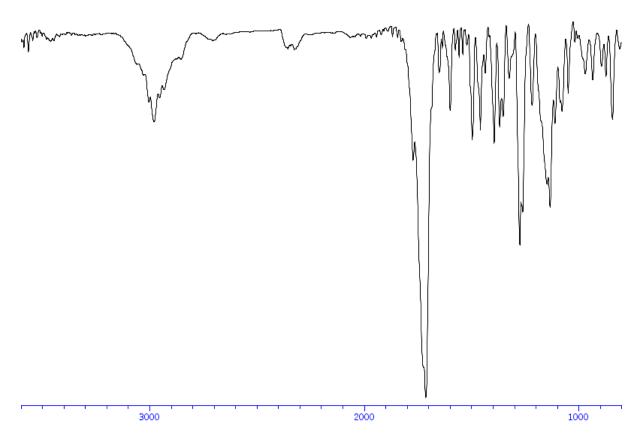

anti-Dibenzyl 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (40).

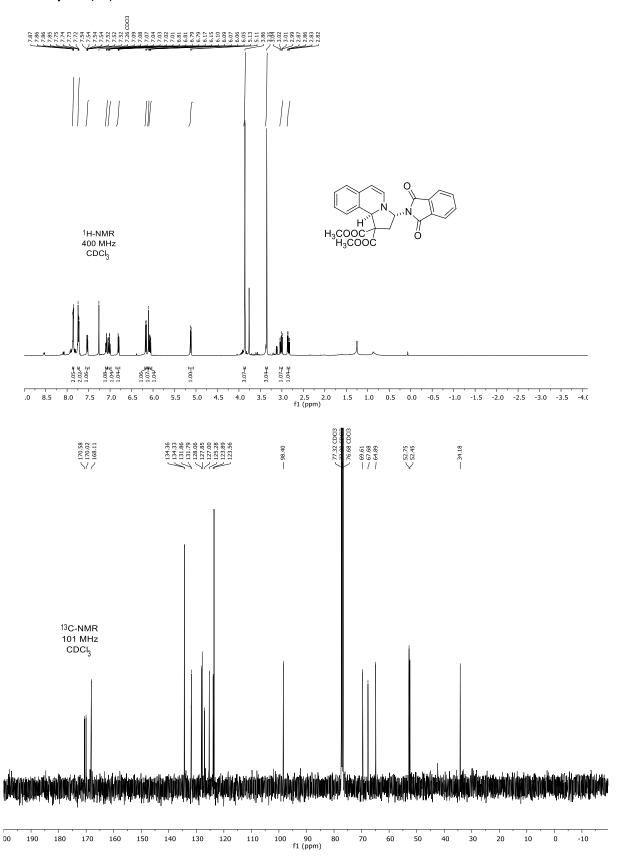


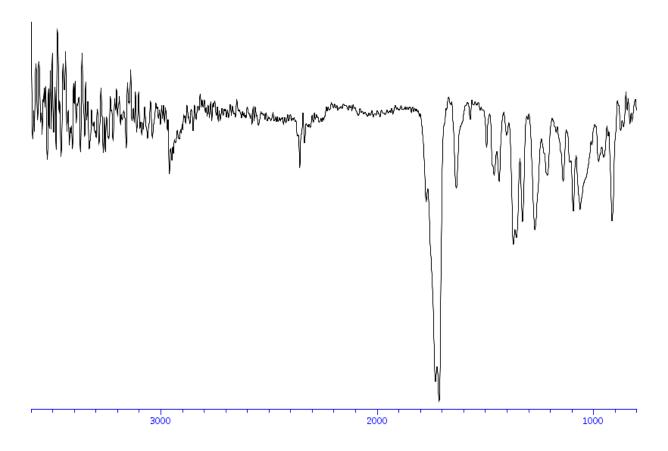

anti-bis(2,2,2-Trifluoroethyl) 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (41).

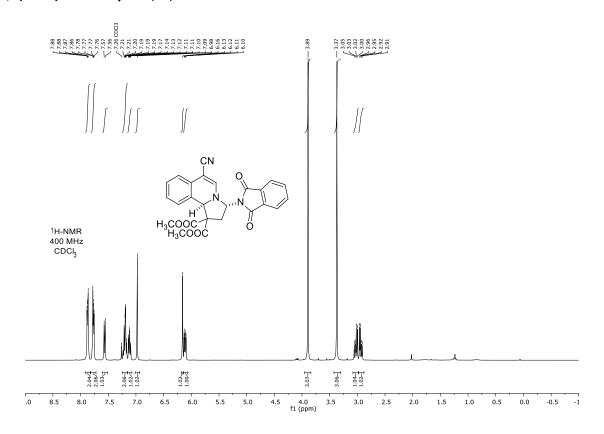


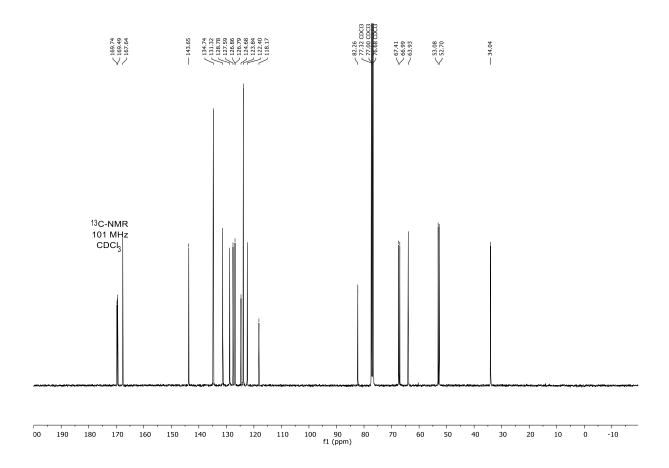

(1R,3S,3aR)-3-tert-Butyl 3-methyl 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (42a).

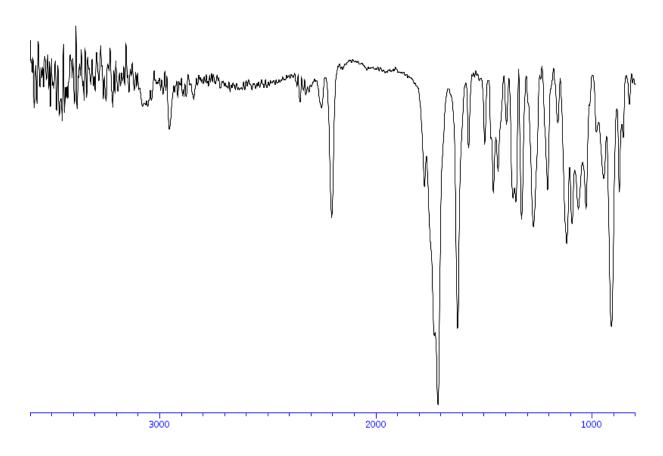


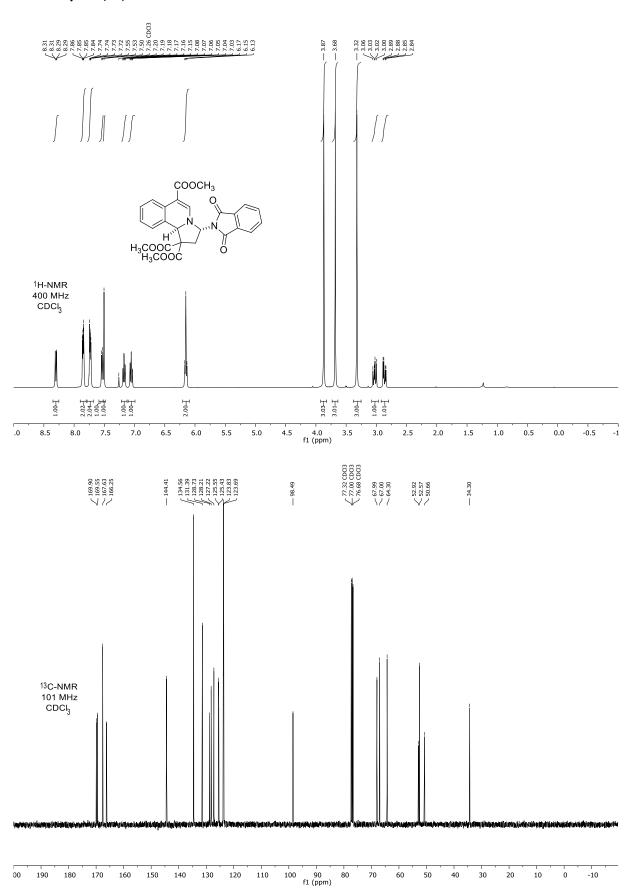

(1R,3R,3aR)-3-tert-Butyl 3-methyl 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (42b).

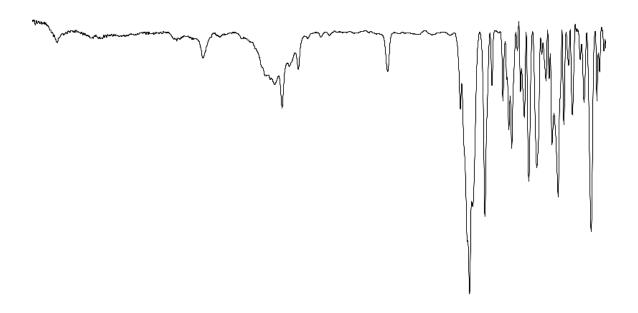


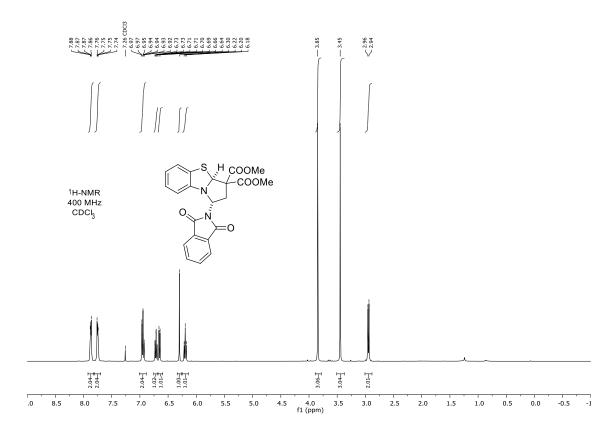


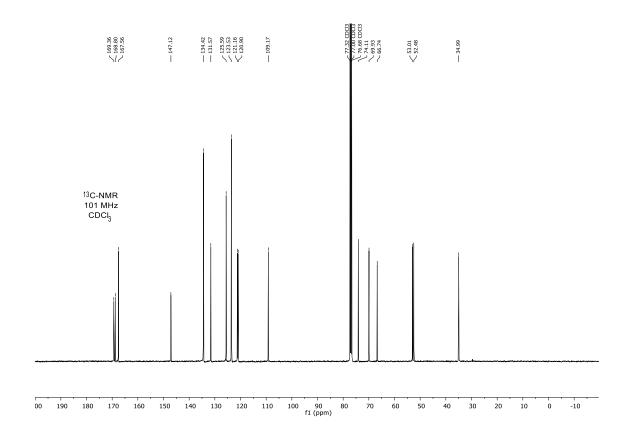

anti-Dimethyl 3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydropyrrolo[2,1-a]isoquinoline-1,1(10bH)-dicarboxylate (43).

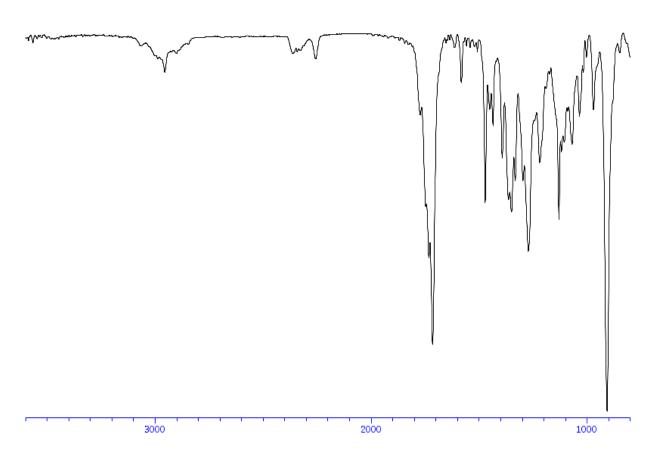


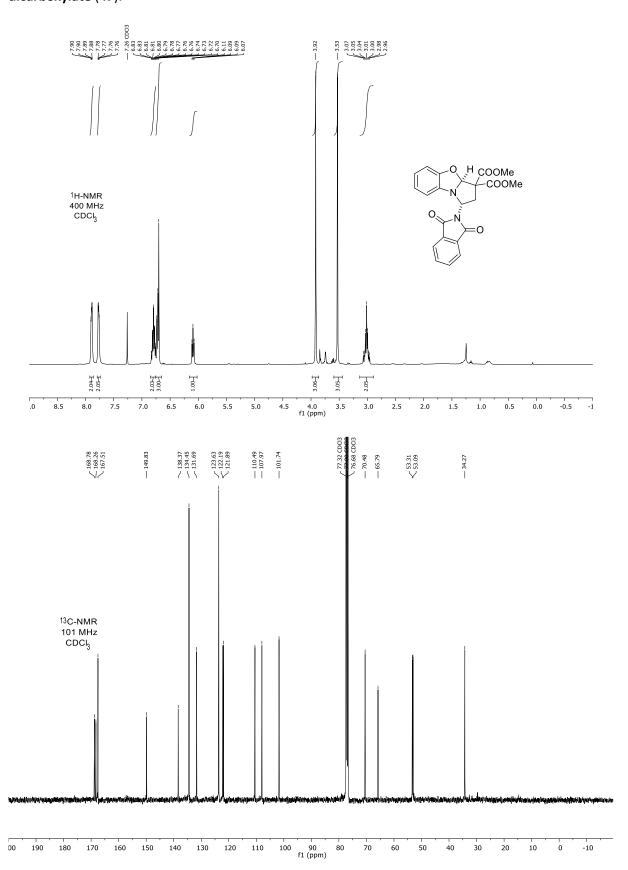

anti-Dimethyl 6-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydropyrrolo[2,1-a]isoquinoline-1,1(10bH)-dicarboxylate (44).

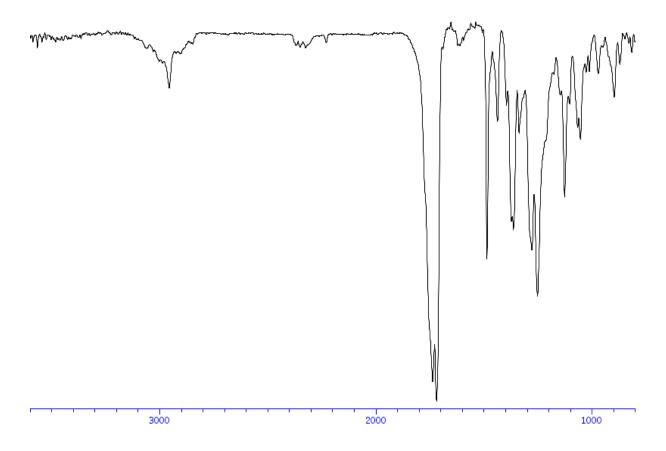


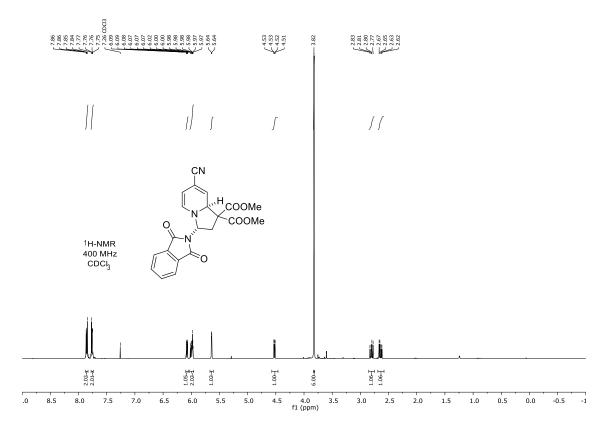

anti-Trimethyl 3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydropyrrolo[2,1-a]isoquinoline-1,1,6(10b*H*)-tricarboxylate (45).

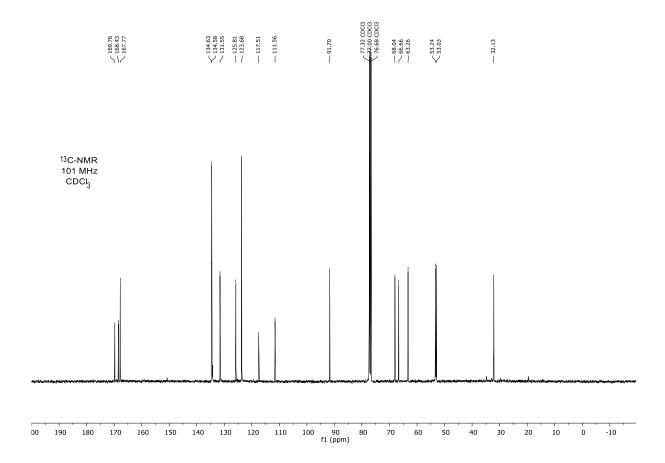


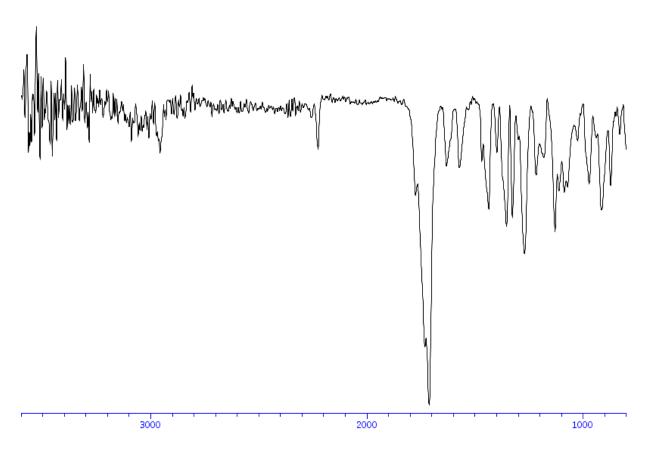


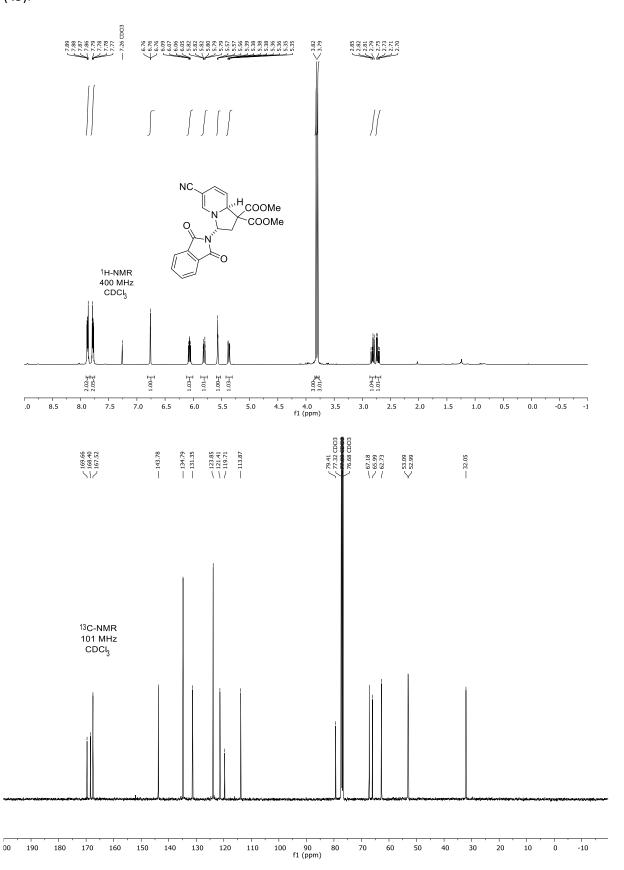

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydrobenzo[d]pyrrolo[2,1-b]thiazole-3,3(3a*H*)-dicarboxylate (46).

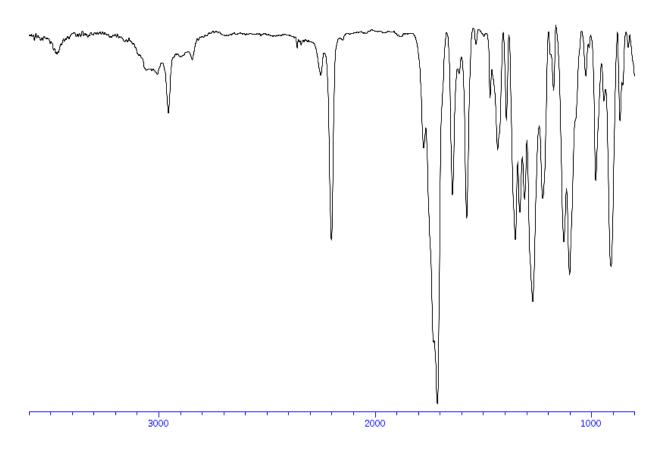


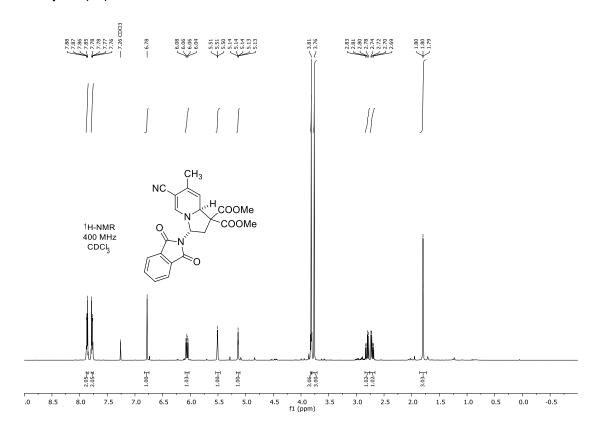


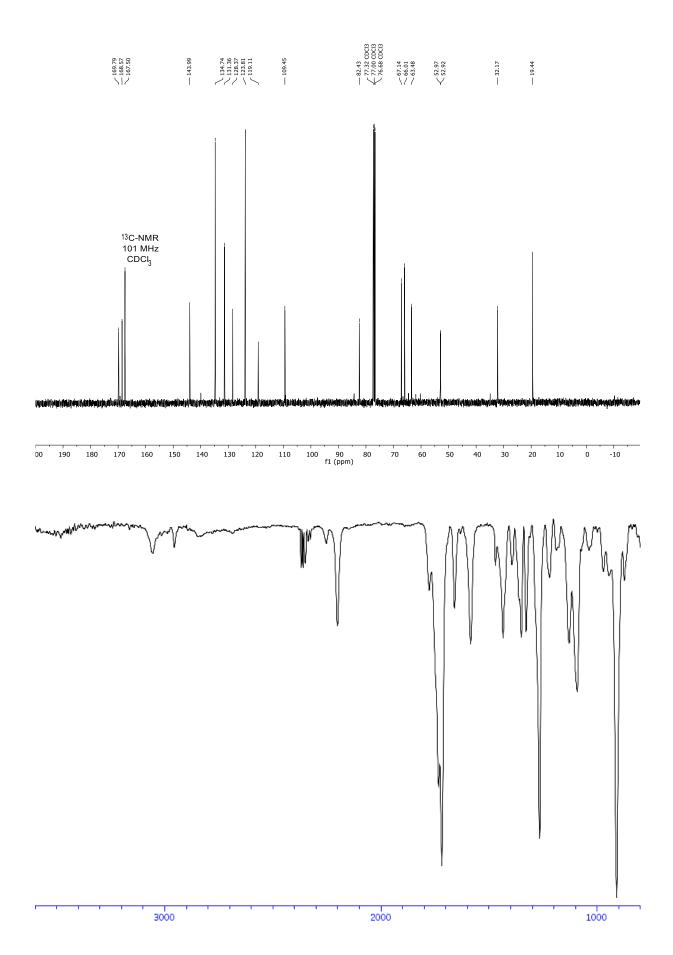

anti-Dimethyl 1-(1,3-dioxoisoindolin-2-yl)-1,2-dihydrobenzo[d]pyrrolo[2,1-b]oxazole-3,3(3aH)-dicarboxylate (47).

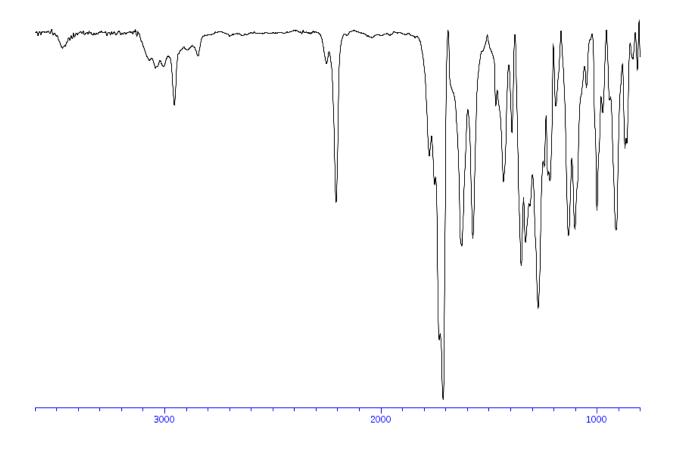


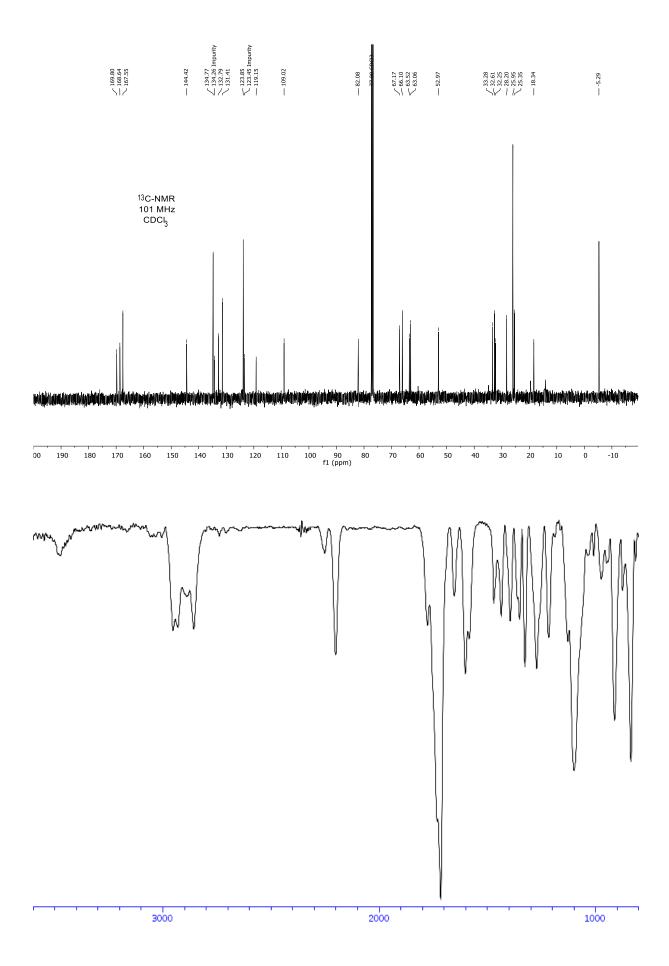

anti-Dimethyl 7-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1(8a*H*)-dicarboxylate (48).

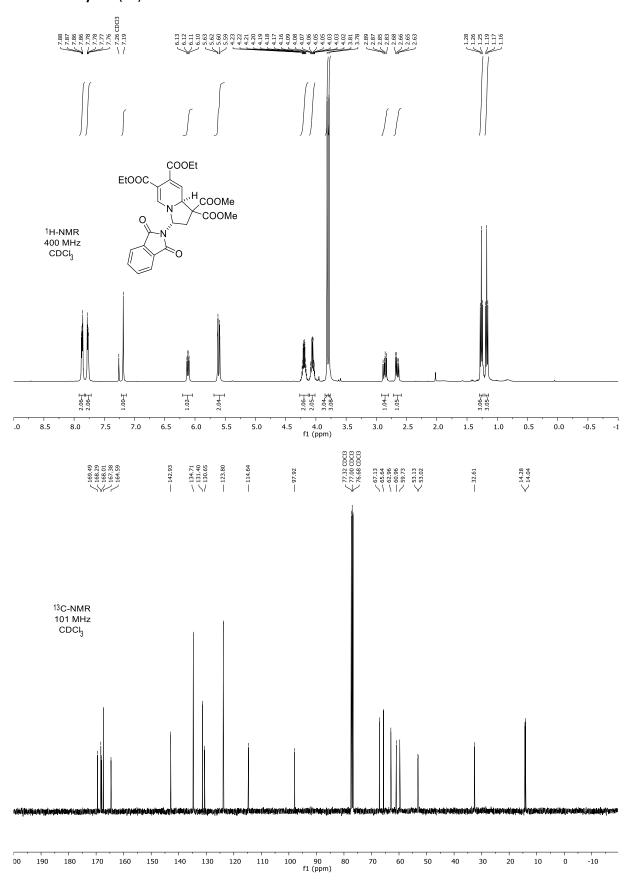


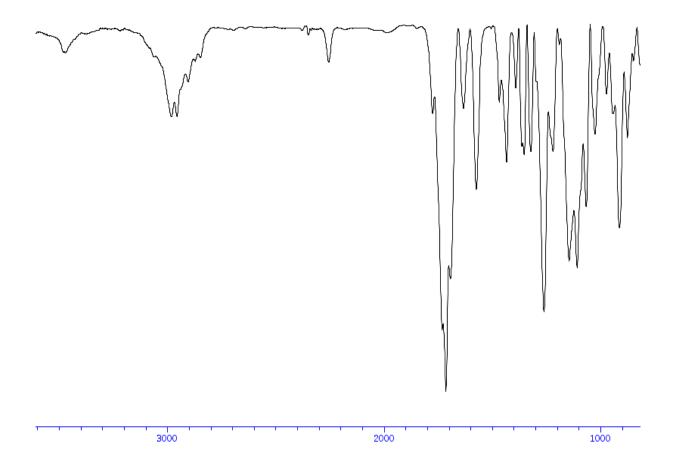


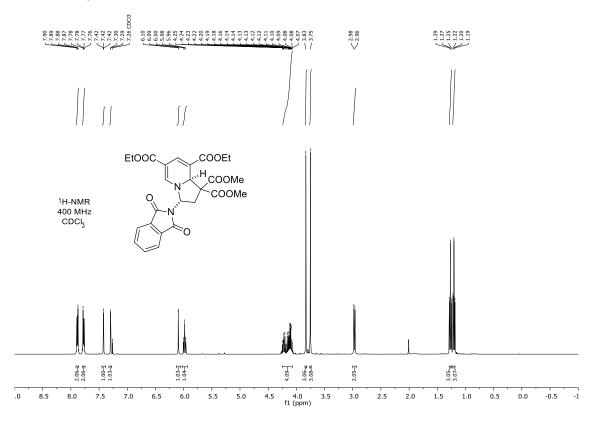

anti-Dimethyl 6-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1(8a*H*)-dicarboxylate (49).

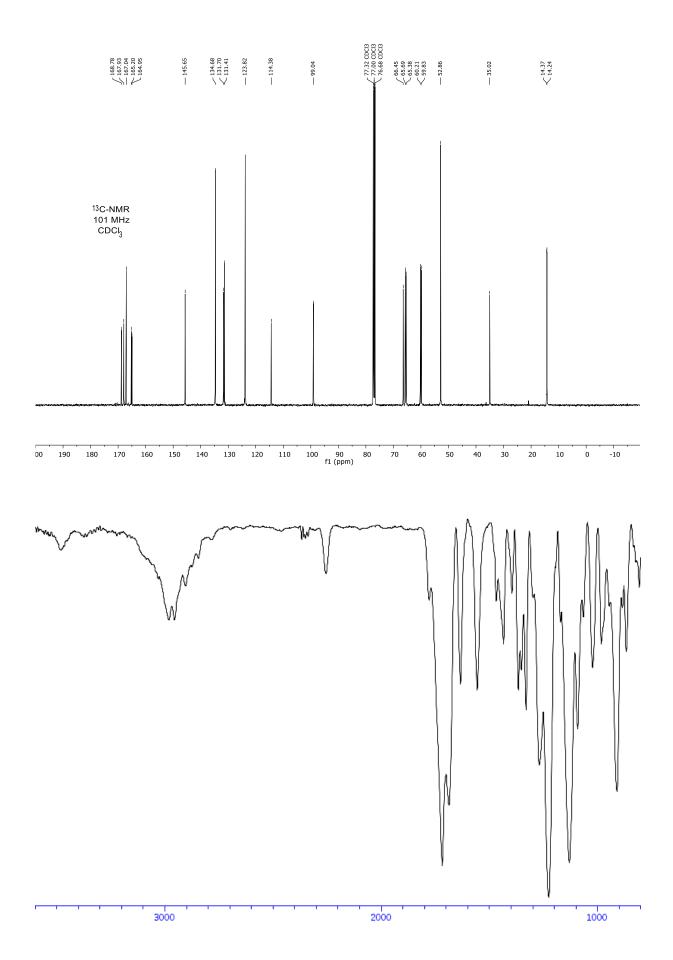

anti-Dimethyl 6-cyano-3-(1,3-dioxoisoindolin-2-yl)-7-methyl-2,3-dihydroindolizine-1,1(8a*H*)-dicarboxylate (50).

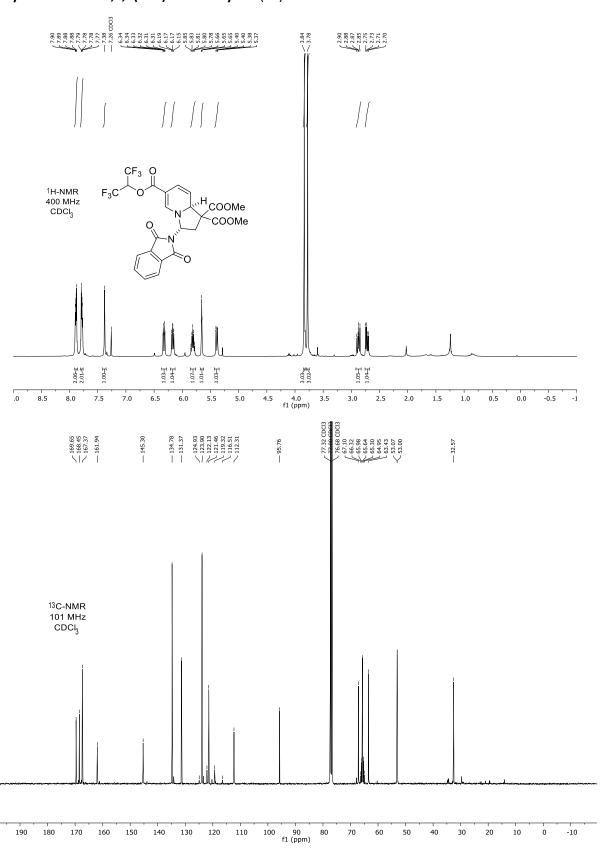

anti-Dimethyl 7-bromo-6-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1(8a*H*)-dicarboxylate (51).



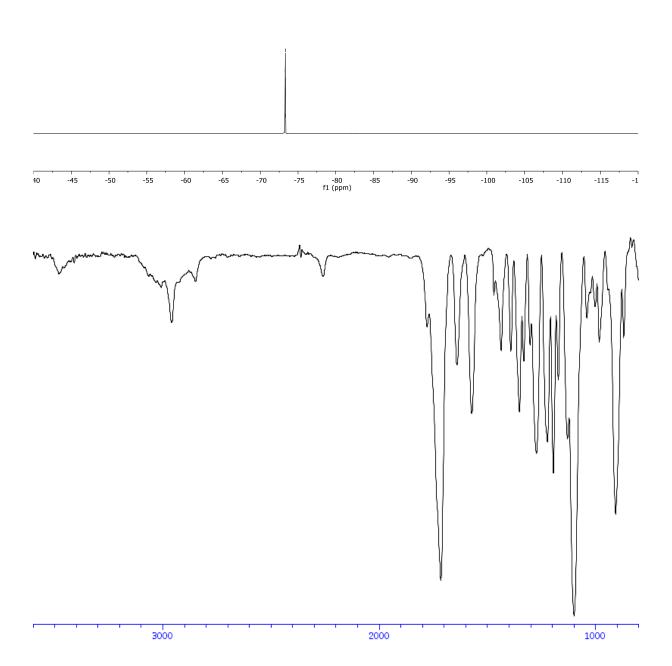

anti-Dimethyl 7-(5-((tert-butyldimethylsilyl)oxy)pentyl)-6-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1(8aH)-dicarboxylate (52).



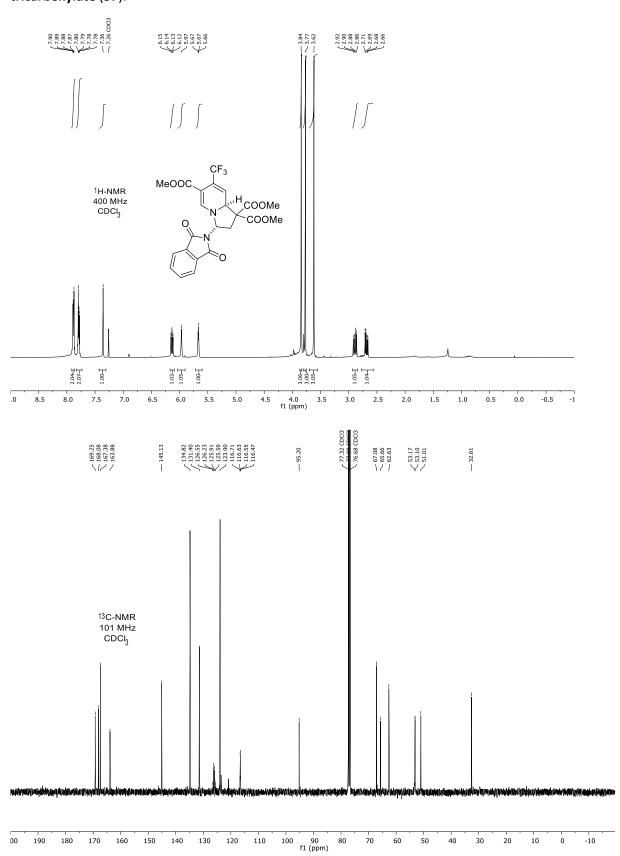

anti-6,7-Diethyl 1,1-dimethyl 3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1,6,7(8aH)-tetracarboxylate (54).

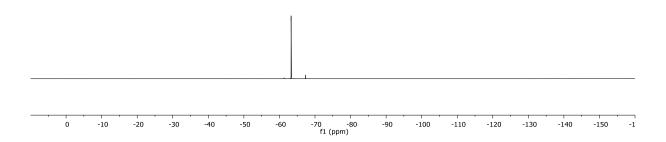


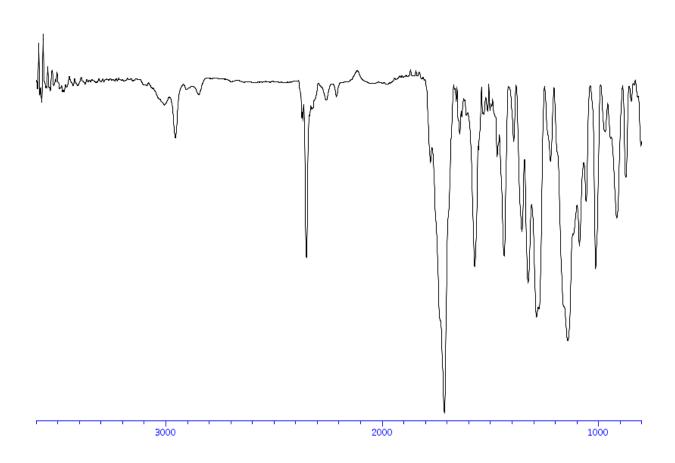
anti-6,8-Diethyl 1,1-dimethyl 3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1,6,8(8aH)-tetracarboxylate (55).



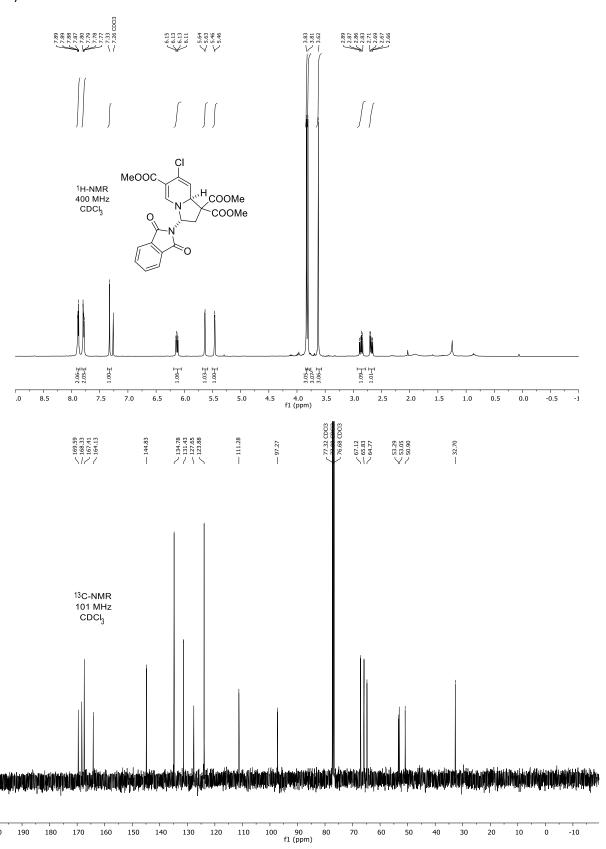
anti-6-(1,1,1,3,3,3-Hexafluoropropan-2-yl) 1,1-dimethyl 3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1,6(8aH)-tricarboxylate (56).

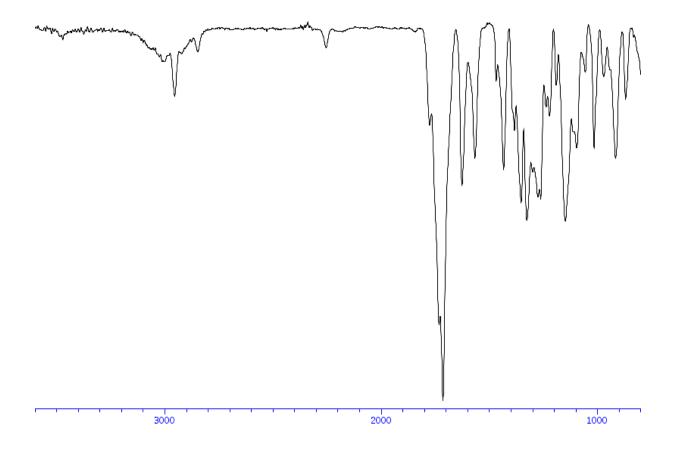


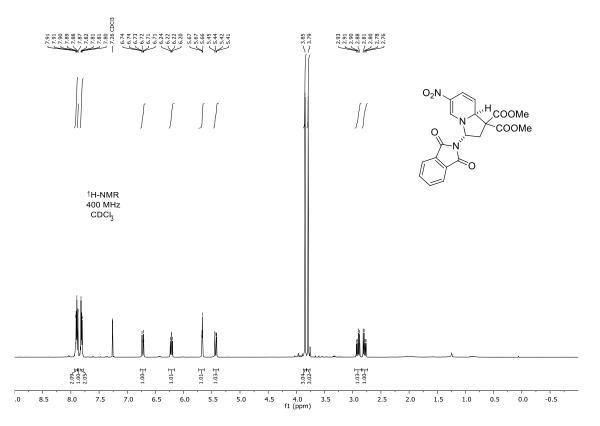

¹⁹F-NMR 376 MHz CDCl₃

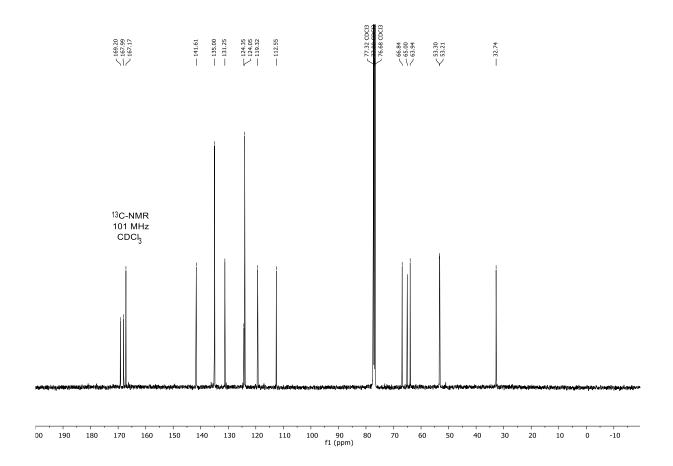


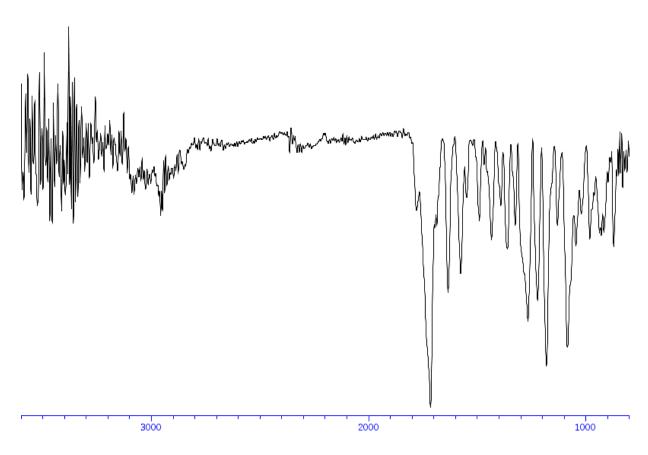
anti-Trimethyl 3-(1,3-dioxoisoindolin-2-yl)-7-(trifluoromethyl)-2,3-dihydroindolizine-1,1,6(8aH)-tricarboxylate (57).

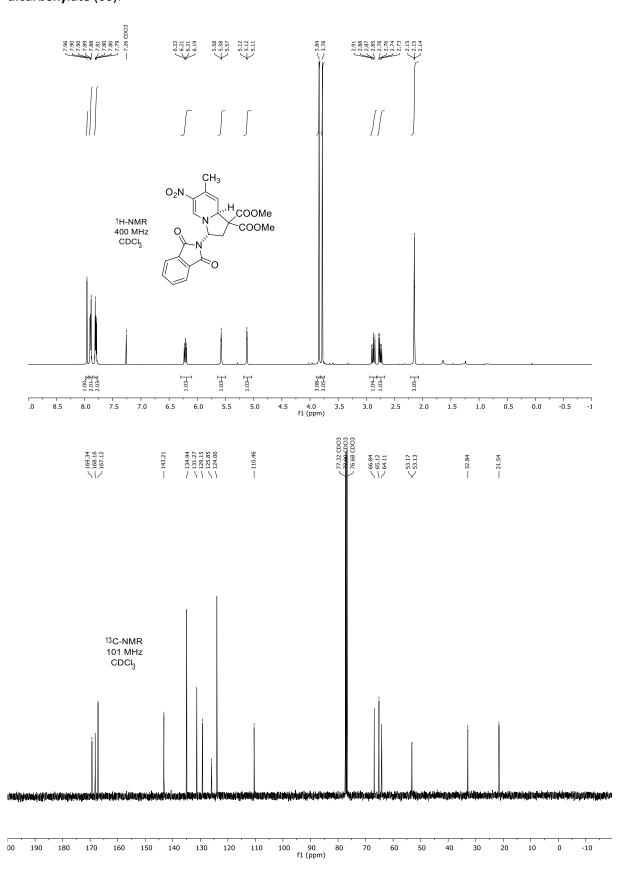


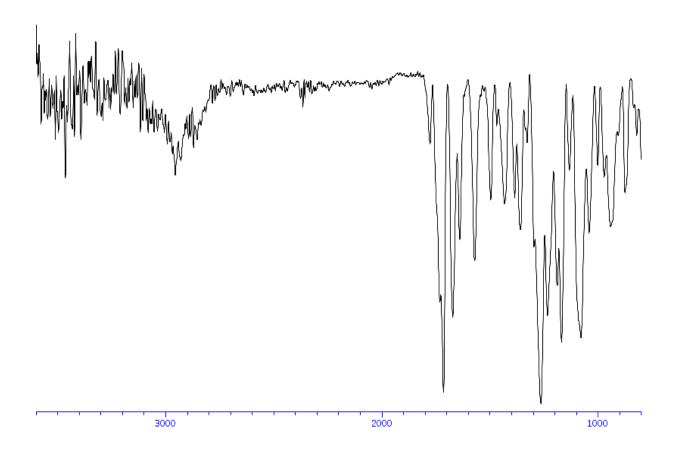

¹⁹F-NMR 376 MHz CDCl₃

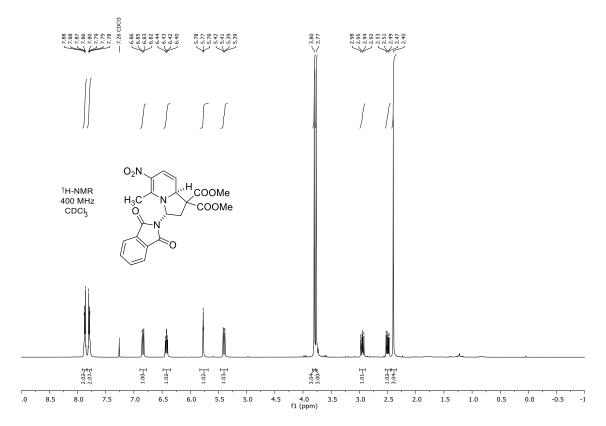


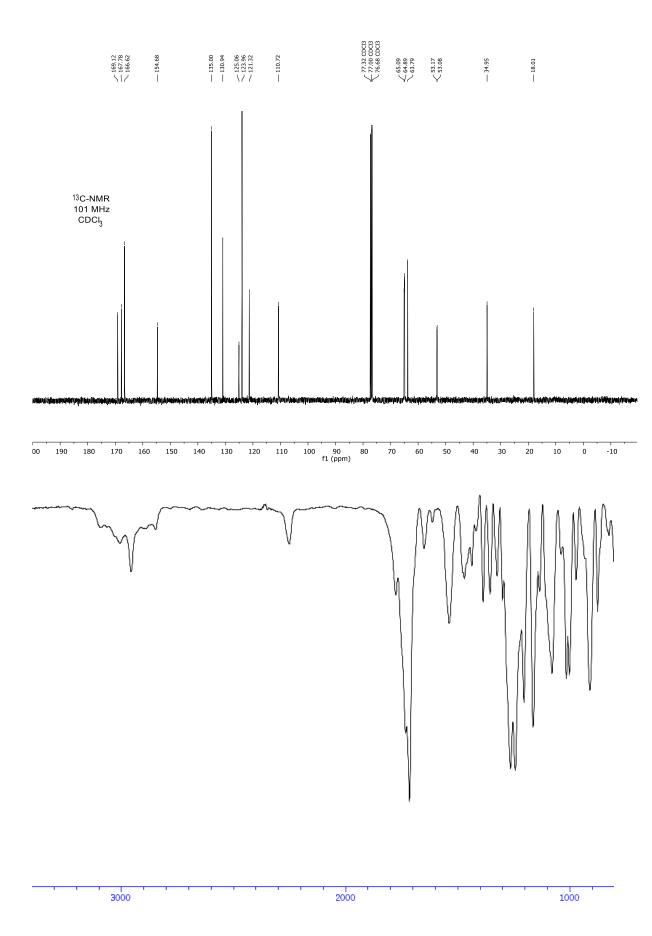

anti-Trimethyl 7-chloro-3-(1,3-dioxoisoindolin-2-yl)-2,3-dihydroindolizine-1,1,6(8a*H*)-tricarboxylate (58).

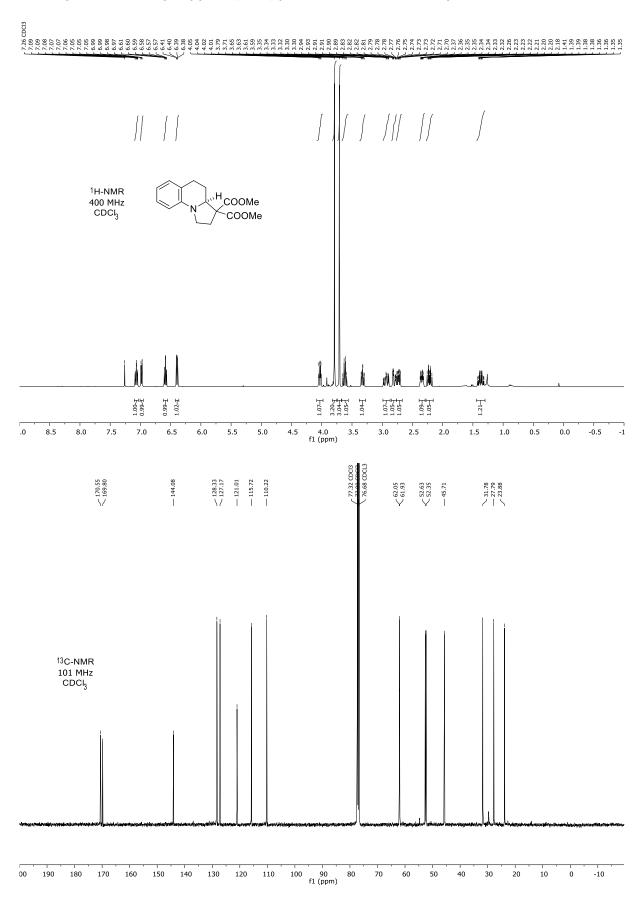


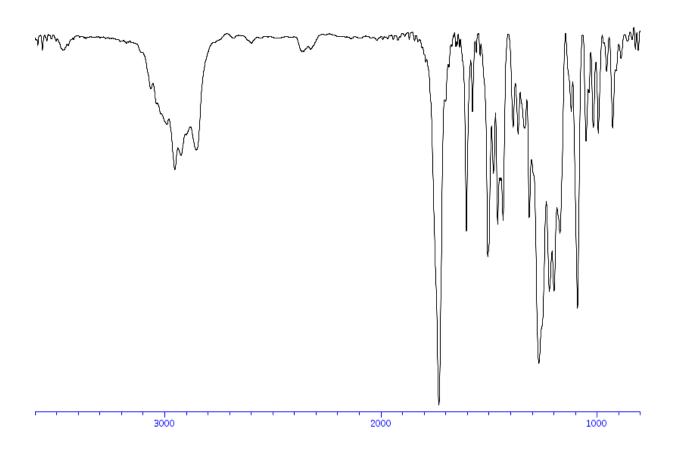

anti-Dimethyl 3-(1,3-dioxoisoindolin-2-yl)-6-nitro-2,3-dihydroindolizine-1,1(8a*H*)-dicarboxylate (59).

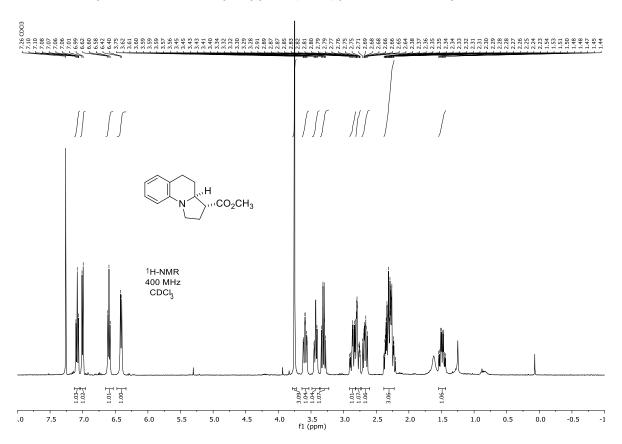


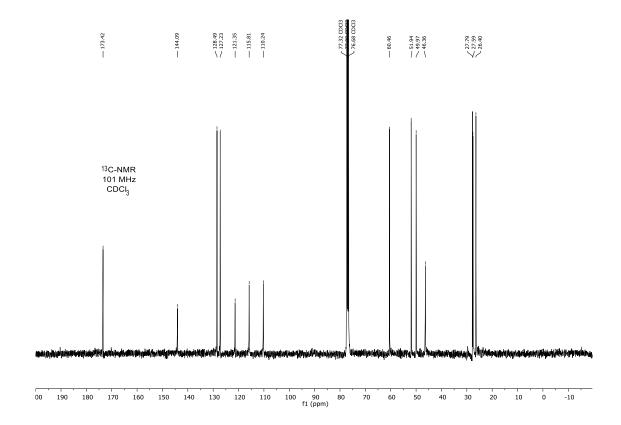


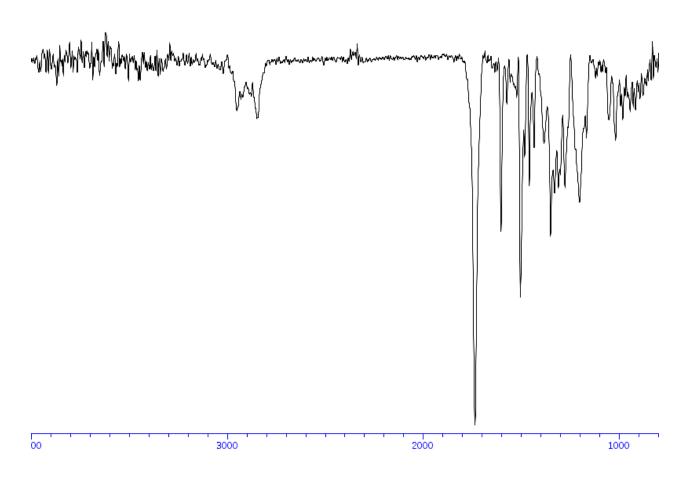

anti-Dimethyl 3-(1,3-dioxoisoindolin-2-yl)-7-methyl-6-nitro-2,3-dihydroindolizine-1,1(8a*H*)-dicarboxylate (60).

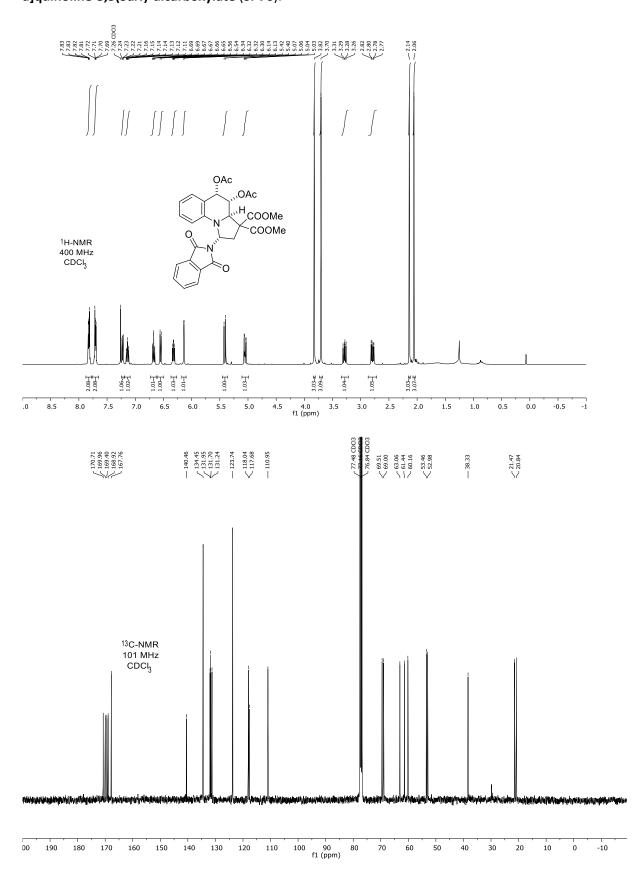


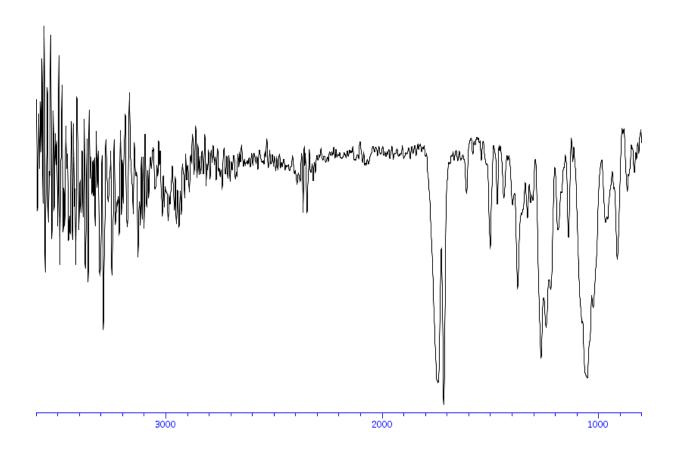

anti-Dimethyl 3-(1,3-dioxoisoindolin-2-yl)-5-methyl-6-nitro-2,3-dihydroindolizine-1,1(8a*H*)-dicarboxylate (61).

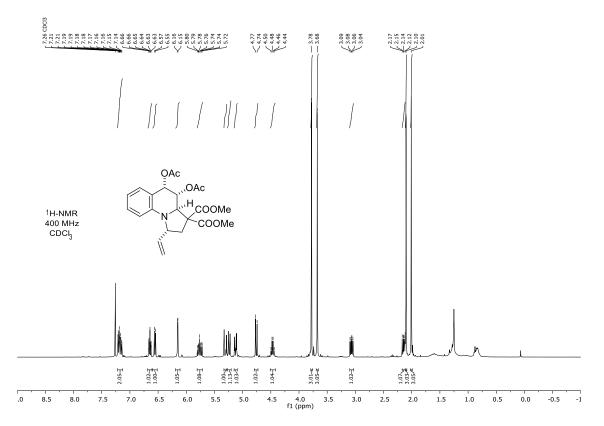


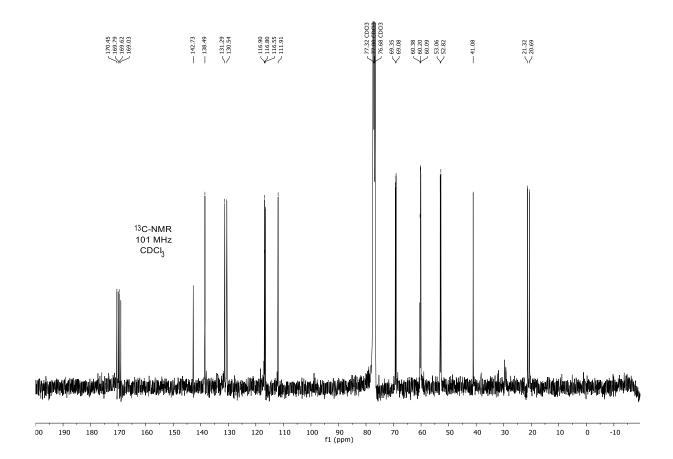

Dimethyl 1,2,4,5-tetrahydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (SI-75).

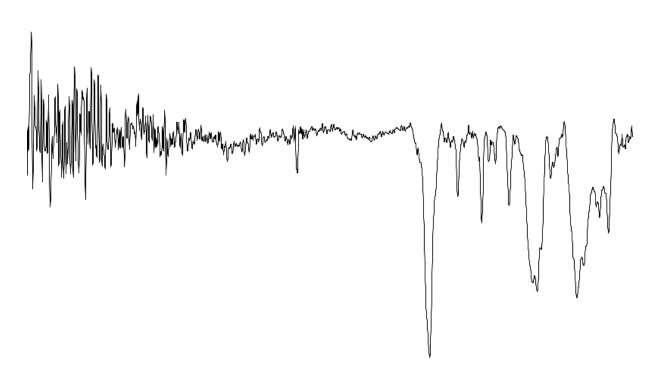


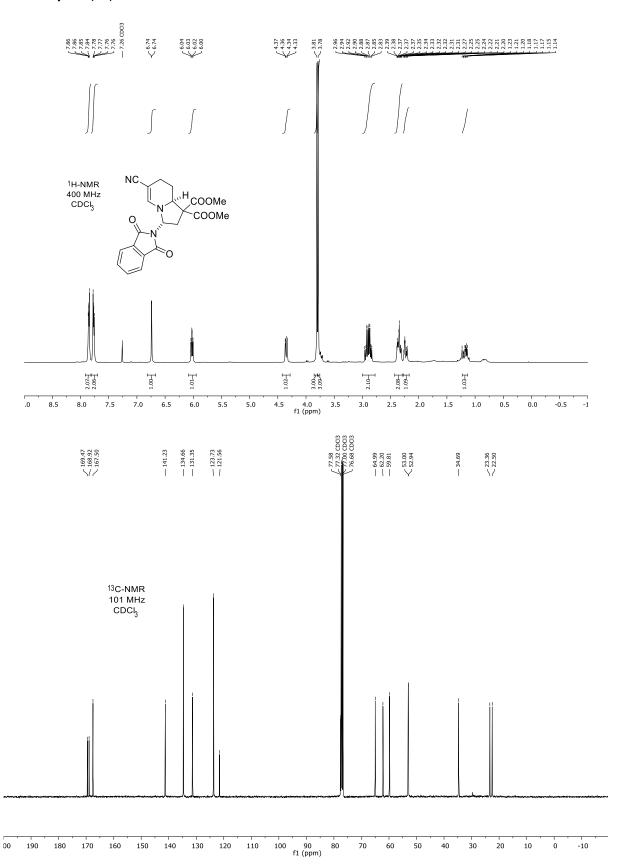

(3S,3aR)-methyl 1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinoline-3-carboxylate (62).

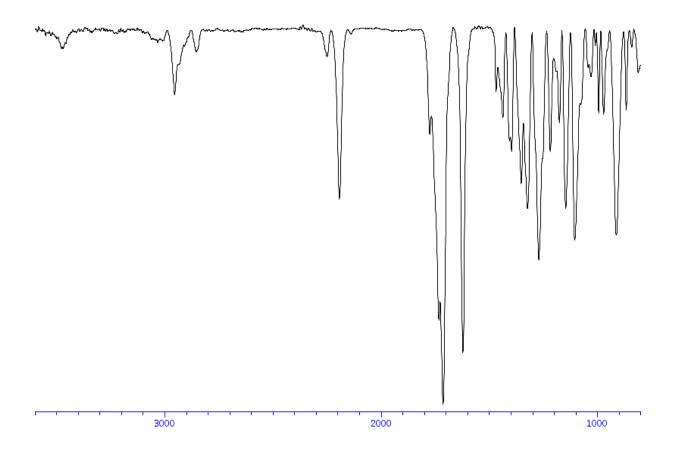


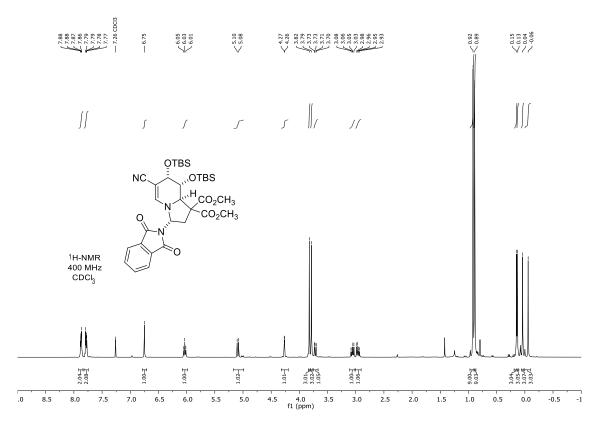


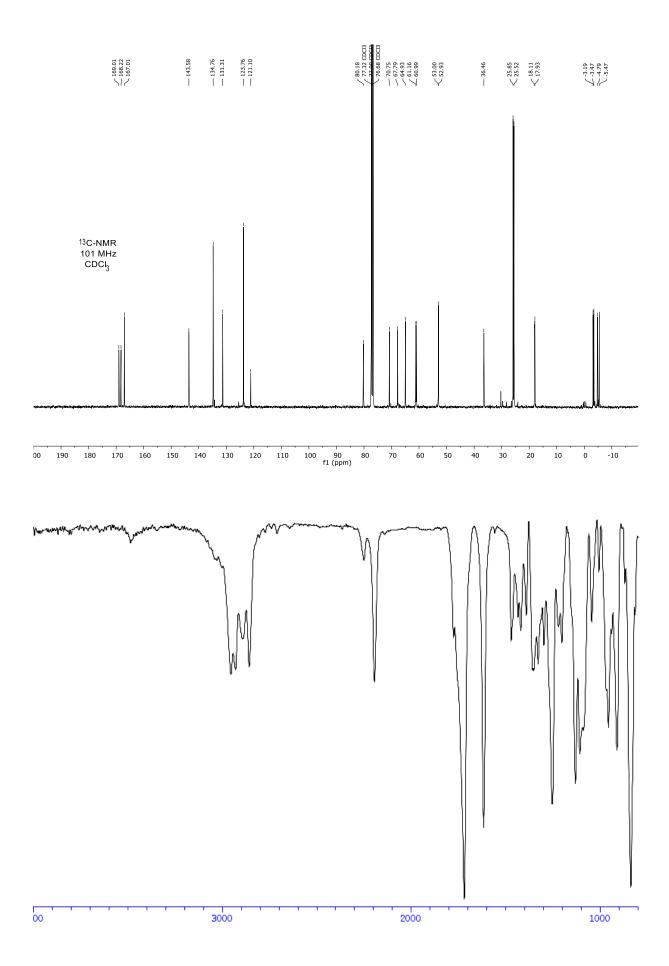

(1*R*,3a*S*,4*S*,5*R*)-Dimethyl 4,5-diacetoxy-1-(1,3-dioxoisoindolin-2-yl)-1,2,4,5-tetrahydropyrrolo[1,2-a]quinoline-3,3(3a*H*)-dicarboxylate (SI-76).




(15,3aS,4S,5R)-Dimethyl 4,5-diacetoxy-1-vinyl-1,2,4,5-tetrahydropyrrolo[1,2-a]quinoline-3,3(3aH)-dicarboxylate (63).






(3*R*,8a*R*)-Dimethyl 6-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3,8,8a-tetrahydroindolizine-1,1(7*H*)-dicarboxylate (64).

(3*R*,7*R*,8*S*,8a*S*)-Dimethyl 7,8-bis((*tert*-butyldimethylsilyl)oxy)-6-cyano-3-(1,3-dioxoisoindolin-2-yl)-2,3,8,8a-tetrahydroindolizine-1,1(7*H*)-dicarboxylate (65).

