Supporting Information

One-pot Synthesis of Hetero[6]rotaxane Bearing Three Different kinds of Macrocycles through a Self-Sorting Process

Si-Jia Rao, Qi Zhang, Ju Mei, Xu-Hao Ye, Chuan Gao, Qiao-Chun Wang, Da-Hui

Qu* and He Tian

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 (China).

Contents

1. General Information	2
2. Synthesis	3
Preparation of compound S2:	4
Preparation of compound S3:	4
Preparation of compound S4:	5
Preparation of compound 1:	5
3. Characterization Data and Their Original Spectra	6
References:	24

1. General Information

Chemicals were purchased from Adamas-beta® and used as received unless otherwise stated. Solvents were reagent grade pure, which were dried and distilled prior to use according to standard procedures. All reactions were carried out under an atmosphere of dry nitrogen unless otherwise stated. NMR experiments (¹H NMR, ¹³C NMR, ¹H-¹H COSY and ¹H-¹H NOESY) were measured on a Brüker AV-400 spectrometer. The electronic spray ionization (ESI) mass spectra were tested on a LCT Premier XE mass spectrometer.

2. Synthesis

Scheme S1. The synthetic routes of compound C1 and hetero[6]rotaxane 8 and the stepwise formation of pseudo[2]rotaxane C2 and pseudo[4]rotaxane C3.

Compound S1^{S1}, compound 2 ^{S2}, compound 3 ^{S3}, compound 4 ^{S3}, and compound 5 ^{S3} were synthesized according to the previously reported literatures.

Compound S2: Compound S1 (0.852 g, 5.42mmol) was dissolved in dry THF and lithium aluminium hydride (1.875 g, 54.21 mmol) was slowly added in portions to the mixture under ice bath. The mixture was stirred at room temperature for 5 hours. Then 2.0 mL water and 2.0 mL 15 % aqueous sodium hydroxide were added slowly to the mixture to quench the reaction. The mixture was filtrated and the solid was washed by THF (30 mL). The collected organic phase, it was washed with water (3×30 mL). The organic layers were combined and dried over Na₂SO₄ and finally concentrated under reduced pressure. The crude product and 4-(hydroxymethyl)benzaldehyde (0.453 g, 3.10 mmol) were dissolved in toluene (15 mL) and the mixture was heated and stirred under reflux in an argon atmosphere for 24 hours. After cooling, toluene was evaporated under reduced pressure. The crude product was dissolved in dry methanol and NaBH₄ (1.266 g, 33.27 mmol) was slowly added in portions to the mixture under ice bath. The mixture was stirred at room temperature for 5 hours. Then, 15 mL water was added slowly to the mixture to quench the reaction, After the methanol was evaporated, and the residue was extracted by CH_2Cl_2 (3 × 15 mL). The organic phase was collected and washed with water (3×20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product and Boc₂O (2.658g, 12.18 mmol) were dissolved in CH₂Cl₂ (15mL). The mixture was stirred at room temperature for 6 hours. The organic phase was washed with water (3 \times 20 mL). The collected organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. After removal of the solvent, the crude product was purified by chromatography on a silica gel column (CH₂Cl₂/methanol = 100/1) to afford the compound S2 (1.321g, 63.9 %) as a yellow oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 6.7 Hz, 4H), 6.94 (dd, J = 6.6, 4.8 Hz, 2H), 4.68 (d, J = 2.4 Hz, 4H), 4.32 (dd, J = 2.4 Hz, 4.4 29.9, 16.4 Hz, 4H), 2.53 (t, J = 2.3 Hz, 1H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 156.83, 156.0, 139.9, 130.9, 127.1, 114.9, 80.1, 78.5, 75.5, 65.0, 55.8, 28.4. HRMS (ESI) (m/z): $[M+Na]^+$ calcd for C₂₃H₂₇NO₄Na: 404.1838, found: 404.1837.

Compound S3: Compound S2 (0.348 g, 0.91 mmol) was dissolved in dry THF (5.0

mL) and the solution was added to CBr₄ (0.460 g, 1.37mmol) and Ph₃P (0.493 g, 1.82 mmol) and stirred in ice bath for 2 hours. Then, 25 mL saturated brines was added and the mixture was extracted by CH₂Cl₂ (3×30 mL). The organic layers were collected and dried over Na₂SO₄ and concentrated under reduced pressure. After removal of the solvent, the crude product was purified by chromatography on a silica gel column (CH₂Cl₂/methanol = 150/1) to yield the compound **S3** (0.260g, 64.3 %) as a yellow oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.1 Hz, 2H), 7.16 (s, 4H), 6.97 – 6.90 (m, 2H), 4.69 (d, *J* = 2.3 Hz, 2H), 4.50 (s, 2H), 4.42 – 4.21 (m, 4H), 2.53 (t, *J* = 2.4 Hz, 1H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 155.9, 136.7, 129.2, 114.9, 80.2, 78.5, 75.5, 55.8, 33.3, 28.4. HRMS (ESI) (m/z): [M+Na]⁺ calcd for C₂₃H₂₆NO₃BrNa: 466.0944, found: 466.0989.

Compound **S4:** The mixture of compound **S3** (0.242 g, 0.55 mmol) and 4, 4'bipyridine (0.036 g, 0.22 mmol) was dissolved in dimethyl sulphoxide (DMSO) were stirred under reflux for 14 hours. Then, the mixture was added to 15.0 mL saturated NH₄PF₆ solution. The resultant mixture was filtrated and the solid was washed by deionized water (30 mL). Then, give the compound **S4** (0.175g, 64.4 %) was afforded as a yellow solid. ¹H NMR (400 MHz, CD₃CN) δ 8.95 (d, *J* = 6.9 Hz, 4H), 8.37 (d, *J* = 6.8 Hz, 4H), 7.47 – 7.40 (m, 4H), 7.32 (d, *J* = 8.1 Hz, 4H), 7.17 (d, *J* = 8.7 Hz, 4H), 6.90 (d, *J* = 8.7 Hz, 4H), 5.79 (s, 4H), 4.70 (d, *J* = 2.4 Hz, 4H), 4.40 (s, 4H), 4.34 (s, 4H), 2.79 (t, *J* = 2.4 Hz, 2H), 1.43 (s, 18H). ¹³C NMR (100 MHz, CD₃CN) δ 157.6, 156.5, 151.1, 146.4, 132.1, 130.3, 129.8, 129.4, 128.3, 115.6, 80.6, 79.6, 76.7, 65.3, 56.4, 28.4. HRMS (ESI) (m/z): [M–PF₆]⁺ calcd for C₅₆H₆₀F₆N₄O₆P: 1029.4149, found: 1029.4155.

Compound 1: Compound S4 (0.194 g, 0.165 mmol) was dissolved in CH₂Cl₂ (3.0 mL) and added to HCl (12 mol/L, 2.0 mL) and stirred for 8 hours. Then, 15.0 mL saturated NH₄PF₆ solution was added. The crude product was washed by 30 mL deionized water to yield the compound 1 (0.182g, 87.0 %) as a yellow solid. ¹H NMR (400 MHz, CD₃CN) δ 8.96 (d, *J* = 6.9 Hz, 4H), 8.39 (d, *J* = 6.9 Hz, 4H), 7.56 (q, *J* = 8.3 Hz, 8H), 7.43 (d, *J* = 8.7 Hz, 5H), 7.32 (d, *J* = 8.5 Hz, 4H), 7.04 (d, *J* = 8.7 Hz, 4H), 5.84 (s, 4H), 4.77 (d, *J* = 2.4 Hz, 4H), 4.24 (s, 4H), 4.19 (s, 4H), 2.83 (t, *J* = 2.4 Hz, 2H). ¹³C NMR (100 MHz, CD₃CN) δ 158.1, 150.1, 145.3, 133.6, 132.0, 131.6, 130.9, 129.4, 127.2, 122.7, 114.8, 78.0, 75.8, 63.7, 55.2, 50.7, 50.1. HRMS (ESI) (m/z): [M–PF₆]⁺ calcd for C₄₆H₄₆F₁₈N₄O₂P₃: 1121.2541, found: 1121.2543.

The corresponding original spectra of the above compounds are displayed as Figures S11-35 in the following section.

3. Characterization Data and Their Original Spectra

Figure S1. Partial ¹H NMR spectra (400 MHz, 298 K, CD₃CN) of a) BPP34C10, b) BPP34C10 \supset BPY²⁺ and c) BPY²⁺.

Figure S2. Partial ¹H NMR spectra (400 MHz, 298 K, CD₃CN) of a) DB24C8, b) DB24C8⊃DBA and c) DBA.

Figure S4. Partial ¹H NMR spectra (400 MHz, 298 K, CD_3CN) of a) BPP34C10, b) compound 1, c) 1:1 mixture of 1, BPP34C10, d) 1:1:2 mixture of 1, BPP34C10, DB24C8 and e) DB24C8.

Figure S5. Partial ¹H NMR spectra (400 MHz, 298 K, CD₃CN) of a) B21C7, b) 1:1:2 mixture of **5**, B21C7 and c) compound **5**.

Figure S6. Partial ¹H NMR spectra (400 MHz, 298 K, CD₃CN) of a) equal molar mixture pseudo[4]rotaxane 6 and [2]semi-rotaxane 7, and b) one pot mixture of compound 1, BPP34C10, DB24C8, B21C7 and compound 5.

Figure S7. Partial ¹H NMR spectra (400 MHz, 298 K, CD₃CN) of a) compound C1, b) 1:1 mixture of C1 and BPP34C10, c) 1:1:2 mixture of C1, BPP34C10 and DB24C8, d) 1:1:4 mixture of C1, BPP34C10 and DB24C8, e) 1:1:6 mixture of C1, BPP34C10 and DB24C8, f) 1:1:6:2 mixture of C1, BPP34C10, DB24C8 and B21C7, g) 1:1:6:6 mixture of C1, BPP34C10, DB24C8 and B21C7, and h) hetero[6]rotaxane 8. The DB24C8 molar ratio was increasing from 2.0 equivalents to 6.0 equivalents (Figure S7c–S7e). It can illustrate that pseudo[4]rotaxane 6 was the primary species in the self-sorting process. The B21C7 molar ratio was increasing from 2.0 equivalents to 6.0 equivalents to 6.0 equivalents (Figure S7f–S7g) and no further change was observed upon the addition of B21C7, which indicate that the phenyl group in the terminal of the axle compound prevent the threading into the B21C7 cavity.

Figure S8. Partial ¹H NMR spectra (400 MHz, 298 K, CD₃CN) of a) compound C1, b) 1:1 mixture of C1 and BPP34C10, c) 1:1:2 mixture of C1, BPP34C10 and DB24C8, and d) compound **8**.

Figure S9. ¹H-¹H cosy spectrum of hetero[6]rotaxane 8 (400 MHz, 298 K, CD₃CN).

CD₃CN).

Figure S11. ¹H NMR spectrum of S2 (CDCl₃, 400MHz, 298K).

Figure S13. ESI-mass spectrum of compound S2 ([M+Na]⁺: 404.1837).

Elemental Composition Report

Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 92 formula(e) evaluated with 3 results within limits (up to 1 closest results for each mass) Elements Used: C: 0-23 H: 0-50 N: 0-1 O: 0-3 Na: 0-1 Br: 0-2 11-May-2016 20:41:06 1: TOF MS ES+ DH-QU ECUST institute of Fine Chem QDH-SJ-96 16 (0.568) Cm (15:16) 9.48e+002 466.0989 468.0978 100-%-438.2008 445.3121 450.3778 453.1713 469.1002 472.3622 478.3208 482.0728 484.4667 456.4372 459.3288 445.0 450 475.0 480.0 m/z 455.0 460.0 465.0 0 440.0 450.0 470.0 -1.5 Minimum: Maximum: 300.0 50.0 PPM DBE i-FIT i-FIT (Norm) Formula Mass Calc. Mass mDa -1.1 0.0 466.0989 466.0994 -0.5 10.5 6.8 C23 H26 N O3 Na Br

Figure S16. ESI-mass spectrum of compound S3 ([M+Na]⁺: 466.0989)

Figure S17. ¹H NMR spectrum of S4 (CD₃CN, 400MHz, 298K)

14

Page 1

Figure S21. ¹³C NMR spectrum of 1 (CD₃CN, 100MHz, 298K)

Figure S22. ESI-mass spectrum of compound **1** ([M–PF₆]⁺: 1121.2543).

Figure S25. ¹H NMR spectrum of C1 (CD₃CN, 400MHz, 298K)

Figure S27. ESI-mass spectrum of compound C1 ($[M-2PF_6]^{2+}$: 866.26).

Figure S28. ESI-mass spectrum of compound **C1** ([M–3PF₆]³⁺: 529.21).

Figure S29. ESI-mass spectrum of compound C1 ($[M-4PF_6]^{4+}$: 360.66).

Figure S30. ESI-mass spectrum of compound **C1** ([M–6PF₆]⁶⁺: 192.18).

Figure S31. ESI-mass spectrum of hetero[6]rotaxane **8** ([M–2PF₆]²⁺: 1939.7592).

Figure S32. ESI-mass spectrum of hetero[6]rotaxane 8 ([M-3PF₆]³⁺: 1244.8542).

Figure S33. ESI-mass spectrum of hetero[6]rotaxane **8** ([M–4PF₆]⁴⁺: 897.3967).

Figure S34. ESI-mass spectrum of hetero[6]rotaxane **8** ([M–5PF₆]⁵⁺: 688.9200).

Figure S35. ESI-mass spectrum of hetero[6]rotaxane **8** ([M–6PF₆]⁶⁺: 549.9410).

References:

(S1) Rauthu, S. R.; Shiao, T. C.; Andre, S.; Miller, M. C.; Madej, E.; Mayo, K. H.; Gabius, H. J.; Roy, R. *Chembiochem*, **2015**, *16*, 126.

(S2) Zhang, Z. J.; Zhang, H. Y.; Wang, H.; Liu, Y.; Angew. Chem. Int. Ed. 2011, 123, 11026.

(S3) Fu, X.; Zhang, Q.; Rao, S. J.; Qu, D. H.; Tian, H. Chem. Sci., 2016, 7, 1696.