Electronic Supplementary Information for

Transition Metal Redox Switches for Reversible "On/Off" and "Slow/Fast" Single-Molecule Magnet Behaviour in Dysprosium and Erbium bis-Diamidoferrocene Complexes

Courtney M. Dickie^a Alexander L. Laughlin^b, Joshua D. Wofford^a, Nattamai S. Bhuvanesh^a and Michael Nippe^a *

[a] Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843 (USA)

[b] Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States.

Table of Contents

Table S1	Crystallographic data for 1	\$5
Table S2	Crystallographic data for 2	S6
Table S3	Selected geometric parameters for compound 1	S7
Tables S4	Selected geometric parameters for compound 2	S7
Figure S1	Molecular structures of 1 and 2 with Ln…Fe distances	S8
Figure S2	Unit cell packing in 1 highlighting intermolecular Fe…Fe contacts	S9
Figure S3	Field dependence of the magnetization for [1] ⁻ .	S10
Figure S4	Field dependence, temperature dependence of the magnetization for [1]	S10
Figure S5	Field dependence of the magnetization for 1 .	S11
Figure S6	Field dependence, temperature dependence of the magnetization for 1 .	S11
Figure S7	Field dependence of the magnetization for [2] ⁻ .	S12
Figure S8	Field dependence, temperature dependence of the magnetization for [2] ⁻ .	S12
Figure S9	Field dependence of the magnetization for 2 .	S13
Figure S10	Field dependence, temperature dependence of the magnetization for 2 .	S13
Table S5	Ac susceptibility data fitting parameters for the Dy ³⁺ compounds [1] ⁻ and 1	S14
Table S6	Ac susceptibility data fitting parameters for the Er ³⁺ compound [2] -	S14
Figure S11	Frequency dependence of the in-phase component (χ') of the ac susceptibility for 1 under zero dc field.	S15
Figure S12	Frequency dependence of the out-of-phase component $(\chi^{"})$ of the ac susceptibility for 1 under zero dc field.	S15
Figure S13	Frequency dependence of the in-phase (χ') component of the ac susceptibility for [2] ⁻ under zero dc field.	S16

Figure S14	Frequency dependence of the out-of-phase component (χ ") of the ac susceptibility for [2] ⁻ under zero dc field.	S16		
Figure S15	Frequency dependence of the in-phase (χ') component of the ac susceptibility for 2 under zero dc field.	S17		
Figure S16	Frequency dependence of the out-of-phase component $(\chi^{"})$ of the ac susceptibility for 2 under zero dc field.	S17		
Figure S17	Frequency dependence of the in-phase component (χ ') of the ac susceptibility for [1] ⁻ at T = 5 K with applied dc fields varying from 50 to 5000 Oe.	S18		
Figure S18	• Frequency dependence of the out-of-phase component (χ ") of the ac susceptibility for [1] ⁻ at T = 5 K with various dc fields.	S18		
Figure S19	Cole-Cole plots for [1] ⁻ at 5 K with various applied dc fields.	S19		
Figure S20	Field dependence of the relaxation times (τ) in $[1]^-$	S19		
Figure S21	Frequency dependence of the in-phase component (χ ') of the ac susceptibility for 1 at T = 2 K with various dc fields.	S20		
Figure S22	Frequency dependence of the out-of-phase component (χ ") of the ac susceptibility for 1 at T = 2 K with various dc fields.	S20		
Figure S23	Cole-Cole plots for 1 at 2 K with various applied dc fields.	S21		
Figure S24	Field dependence of the relaxation times (τ) in 1 .	S21		
Figure S25	Frequency dependence of the in-phase component (χ ') of the ac susceptibility for [2] ⁻ at 2 K with various dc fields.	S22		
Figure S26	Frequency dependence of the out-of-phase component (χ ") of the ac susceptibility for [2] ⁻ at 2 K with various dc fields.	S22		
Figure S27	Cole-Cole plots for [2] ⁻ at 2 K with various applied dc fields.	S23		
Figure S28	Field dependence of the relaxation times (τ) in [2] ⁻ .	S23		
Figure S29	Frequency dependence of the in-phase component (χ') of the ac susceptibility for 2 at 2 K with various dc fields.S24			
Figure S30	Frequency dependence of the out-of-phase component (χ ") of the ac susceptibility for 2 at 2 K with various dc fields.	S24		
Figure S31	Temperature dependence of the out-of-phase component (χ ")S25of the ac susceptibility for [1] with a 1000 Oe applied dc field.			
Figure S32	Cole-Cole plots for [1], with an applied dc field of 1000 Oe	S25		

Figure S33	Cole-Cole plots for 1, with an applied dc field of 1000 Oe.	S26		
Figure S34	Cole-Cole plots for [2] ⁻ , with an applied dc field of 500 Oe.	S26		
Figure S35	Figure S35Predicted orientations of the magnetic anisotropy axes in 1 under three scenarios using MAGELLAN			
Figure S36	⁵⁷ Fe Mössbauer spectrum of [1] ⁻ at10 K with no external field.	S28		
Figure S37	⁵⁷ Fe Mössbauer spectrum of 1 , at 5 K with overall and sub- spectra for the three-site fit.	S28		
Figure S38	⁵⁷ Fe Mössbauer spectrum of 1 at 5 K, 50 K and 150 K.	S29		
Figure S39	UV-vis-NIR spectrum of [1] ⁻ in thf.	S30		
Figure S40	UV-vis-NIR spectrum of 1 in thf.	\$30		
Figure S41	UV-vis-NIR spectrum of [2] ⁻ in thf.	S31		
Figure S42	UV-vis-NIR spectrum of 1 in thf.	\$32		

Compound	$Dy(fc[NSi(t-Bu)Me_2]_2)_2(1)$		
Formula	DyFe ₂ N ₄ Si ₄ C ₄₄ H ₇₆		
Formula weight	-		
Crystal size (mm)	0.34 x 0.22 x 0.114		
T (K)	110		
Λ	0.71073		
Crystal system	Orthorhombic		
Space group	Pbca		
a, Å	20.025(4)		
b, Å	19.663(4)		
c, Å	24.499(5)		
α, °	90		
β, °	90		
γ, °	90		
Volume, Å ³	9646(3)		
Z	8		
$ ho_{ m calcd},{ m Mg/m^3}$	1.443		
F(000)	4336		
Absorption coefficient (mm ⁻¹)	2.260		
$\Theta_{\min}, \Theta_{\max}, \circ$	1.662, 24.998		
Index ranges	-23 <= h <=23		
	-23 <= k <=23		
	-29 <= 1 <= 29		
Reflections collected	89008		
Independent reflections	8495 [R(int) = 0.0859]		
Completeness to $\Theta = 24.998$ °	100 %		
Absorption correction	Semi-empirical from equivalents		
Refinement method	Full-matrix least-squares on F ²		
Data/restraints/parameters	8495 / 280 / 584		
Goodness of fit on F ²	1.125		
Final R indices $[I > 2\sigma(I)]$	$R_1^a = 0.0376, wR_2^b = 0.0753$		
R indices (all data)	$R_1^a = 0.0650, wR_2^b = 0.0947$		
Largest diff peak and hole, eÅ ³	1.093 and 0.902		
${}^{a}R_{1} = 3 F_{0} - F_{c} /3 F_{0} $. ${}^{b}wR_{2} = [3[w(F_{0}{}^{2} - F_{c}{}^{2})^{2}]/3[w(F_{0}{}^{2})^{2}]]^{\frac{1}{2}}, w = 1/\sigma^{2}(F_{0}{}^{2}) + (aP)^{2} + bP$, where $P = [\max(0, \frac{1}{2})^{2}]^{\frac{1}{2}}$			
or F_0^2) + 2(F_c^2)]/3.			

Table S1. Crystallographic data for 1

Compound	Er(fc[NSi(t-Bu)Me ₂] ₂) ₂ (1)
Formula	ErFe ₂ N ₄ Si ₄ C ₄₄ H ₇₆
Formula weight	
Crystal size (mm)	0.15 x 0.08 x 0.07
T (K)	110
λ	0.71073
Crystal system	Orthorhombic
Space group	Pbca
a, Å	19.794(2)
b, Å	19.822(2)
c, Å	24.603(2)
α, °	90
β, °	90
γ, °	90
Volume, Å ³	9653(2)
Z	8
$ ho_{ m calcd},{ m Mg/m^3}$	1.448
F(000)	4352
Absorption coefficient (mm ⁻¹)	2.449
$\Theta_{\min}, \Theta_{\max}, \circ$	1.673, 19.999
Index ranges	-19 <= h <=19
	-19 <= k <=19
	-23 <= l <= 23
Reflections collected	81679
Independent reflections	4502
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	4502 / 1008 / 516
Goodness of fit on F ²	
Final R indices $[I > 2\sigma(I)]$	$R_1^a = 0.0742$, $wR_2^b = 0.1491$
R indices (all data)	$R_1^a = 0.1587, wR_2^b = 0.1847$
Largest diff peak and hole, eÅ ³	1.353 and 1.273
$\overline{{}^{a}R_{1} = 3 F_{o} - F_{c} /3 F_{o} }$, ${}^{b}wR_{2} = [3[w(F_{o}^{2} - F_{c}^{2})^{2}]/3[w(F_{o}^{2})^{2}]$	$]]^{\frac{1}{2}}, w = 1/\sigma^2 (F_o^2) + (aP)^2 + bP$, where $P = [\max(0)^2 + bP]$
or F_0^2) + 2(F_c^2)]/3.	

 Table 2. Crystallographic data for 2

~ 2 .	distances		
		Dy…Fe1, Å	3.792(2)
NZ NA		Dy…Fe2, Å	3.792(2) 3.368(2) 2.370(4) 2.338(4) 2.262(4)
		Dy-N1, Å	2.370(4)
Fe1		Dy-N2, Å	2.338(4)
		Dy-N3, Å	2.262(4)
and a second		Dy-N4, Å	2.252(4)
e e	angles		
		N1-Dy-N2, °	110.5(2)
		N1-Dy-N3, °	104.2(2)
		N1-Dy-N4, °	102.7(2)
		N2-Dy-N3, °	100.3(2)
		N2-Dy-N4, °	106.5(2)
		N3-Dy-N4, °	131.9(2)

 Table S3. Selected geometric parameters for compound 1.

 Table S4. Selected geometric parameters for compound 2.

distances		
	Er…Fe1, Å	3.819(5)
	Er…Fe2, Å	3.498(4)
	Er-N1, Å	2.27(1)
	Er-N2, Å	2.22(2)
	Er-N3, Å	2.29(1)
	Er-N4, Å	2.21(2)
angles		
	N1-Er-N2, °	104.8(6)
	N1-Er-N3, °	109.6(5)
	N1-Er-N4, °	104.2(6)
	N2-Er-N3, °	102.2(6)
	N2-Er-N4, °	126.7(6)
	N3-Er-N4, °	108.7(5)

Figure S1. Molecular structure of $Dy(fc[NSi(t-Bu)Me_2]_2)_2 \mathbf{1}$ (left) and $Er(fc[NSi(t-Bu)Me_2]_2)_2 \mathbf{2}$ (right). Green = Ln, orange = Fe, cyan = Si, blue = N, grey = C. Hydrogen atoms omitted for clarity. Ln…Fe distances are highlighted: Dy…Fe = 3.792(1) Å and 3.368(1) Å, Er…Fe = 3.819(4) Å and 3.498(3) Å.

Figure S2. Unit cell packing in **1**. Top: the closest Fe^{...}Fe contacts of 6.464(2) Å (intermolecular) and the longer Fe^{...}Fe contacts of 7.098(2) Å (intramolecular) are highlighted. Bottom: the intermolecular Fe^{...}Fe contacts are highlighted.

Figure S3. Field dependence of the magnetization for [1]⁻.

Figure S4. Field dependence, temperature dependence of the magnetization for [1]⁻.

Figure S5. Field dependence of the magnetization for 1.

Figure S6. Field dependence, temperature dependence of the magnetization for 1.

Figure S7. Field dependence of the magnetization for [2]⁻.

Figure S8. Field dependence, temperature dependence of the magnetization for [2]⁻.

Figure S9. Field dependence of the magnetization for 2.

Figure S10. Field dependence, temperature dependence of the magnetization for 2.

$$\tau^{-1} = \tau_0^{-1} exp\left(\frac{-U_{eff}}{kT}\right) \text{ (linear approximation)}$$

$$\tau^{-1} = \tau_{QTM}^{-1} + CT^{n_2} + \tau_0^{-1} exp\left(\frac{-U_{eff}}{kT}\right) \text{ (eqn 1)}$$

$$\tau^{-1} = AH^{n_1}T + \tau_{QTM}^{-1} + CT^{n_2} + \tau_0^{-1} exp\left(\frac{-U_{eff}}{kT}\right) \text{ (eqn 2)}$$

$$\tau^{-1} = AH^{n_1}T + \frac{B_1}{1 + B_2H^2} + D \text{ (eqn 3)}$$

Table S5. Fitting parameters for the Dy^{3+} compounds [1]⁻ and 1.

	$K(thf)_5[Dy(fc[NSi(t-Bu)Me_2]_2)_2]$			$Dy(fc[NSi(t-Bu)Me_2]_2)_2$		
	[1]-				1	
dc field (Oe)	0 1000		000	1000		
Approximation	linear	eqn 1	linear	eqn 2/eqn 3	Linear	eqn 2/eqn 3
A (s ⁻¹ T ⁿ¹ K ⁻¹)	-	-	-	615	-	3.77 x 10 ³
n ₁	-	-	-	4	-	2
$B_1(s^{-1})$	-	-	-	3.22 x 10 ³	-	2.55 x 10 ¹⁴
$B_2(T^{-2})$	-	-	-	9.92 x 10 ³	-	2.36 x 10 ¹³
D (s ⁻¹)	-	-	-	162	-	0
C (s ⁻¹ K ⁻ⁿ²)	-	0.08(1)	-	0.0018(3)	-	3.63(1)
n ₂	-	5	-	7	-	5
$\tau_{\rm OTM}(s)$	-	5.03 x 10 ⁻⁴	-	-	-	8.77 x 10 ⁻⁴
$\tau_0(s)$	2.43 x 10 ⁻⁶	1.63(2) x	4.79 x 10 ⁻⁷	7.3(7) x 10 ⁻⁷	5.79 x 10 ⁻⁷	5.0(4) x 10 ⁻⁷
		10-6				
U_{eff} (cm ⁻¹)	20.9	27.3(8)	35.0	46(2)	16.8	27.2(5)

a) QTM terms were not included in the fitting of temperature dependence of [1].

Table S6. Fitting parameters for the Er^{3+} compound [2]⁻.

	K(thf) ₅ [Er(fc[NSi(<i>t</i> -Bu)Me ₂] ₂) ₂]		
	[2]-		
dc field (Oe)	500 Oe		
Approximation	Linear eqn 2/eqn 3		
A (s ⁻¹ T ⁿ¹ K ⁻¹)	-	1.29 x 10 ⁴	
n ₁	-	4	
$B_1(s^{-1})$	-	4.63 x 10 ⁴	
$B_2(T^{-2})$	-	70.8 x 10 ⁵	
D (s ⁻¹)	- 21.2		
C (s ⁻¹ K ⁻ⁿ²)	-	1.85(2) x 10 ⁻²	
n ₂	-	9	
τ^{-1} OLM	-	3.33 x 10 ⁻²	
$\tau_0(s)$	9.52 x 10 ⁻⁹	4(1) x 10-7	
U _{eff} (cm ⁻¹)	26.9	29(2)	

Figure S11. Frequency dependence of the in-phase component (χ ') of the ac susceptibility for 1 under zero dc field. Lines are a guide for the eye.

Figure S12. Frequency dependence of the out-of-phase component (χ ") of the ac susceptibility for 1 under zero dc field. Lines are a guide for the eye.

Figure S13. Frequency dependence of the in-phase (χ') component of the ac susceptibility for [2]⁻ under zero dc field (H_{dc} = 0 Oe). Lines are a guide for the eye.

Figure S14. Frequency dependence of the out-of-phase component (χ ") of the ac susceptibility for [2]under zero dc field (H_{dc} = 0 Oe). Lines are a guide for the eye.

Figure S15. Frequency dependence of the in-phase (χ') component of the ac susceptibility for 2 under zero dc field (H_{dc} = 0 Oe). Lines are a guide for the eye.

Figure S16. Frequency dependence of the out-of-phase component (χ ") of the ac susceptibility for 2 under zero dc field (H_{dc} = 0 Oe). Lines are a guide for the eye.

Figure S17. Frequency dependence of the in-phase component (χ ') of the ac susceptibility for [1]⁻ at T = 5 K with a 2 Oe switching field and applied dc fields varying from 50 to 5000 Oe. Lines are a guide for the eye.

Figure S18. Frequency dependence of the out-of-phase component (χ '') of the ac susceptibility for [1]⁻ at T = 5 K with 2 Oe switching field and applied dc fields varying from 50 to 5000 Oe. Lines are a guide for the eye.

Figure S19. Cole-Cole plots for [1]⁻ at 5 K with various applied dc fields. Open circles are experimental data, lines are fits to the generalized Debye equation.

Figure S20. Field dependence of the relaxation times (τ) in [1]⁻. Black circles are experimental data points, red line represents the fit to eqn 3 (see main text for explanation).

Figure S21. Frequency dependence of the in-phase component (χ ') of the ac susceptibility for 1 at T = 2 K with a 2 Oe switching field and applied dc fields varying from 750 to 5000 Oe. Lines are a guide for the eye.

Figure S22. Frequency dependence of the out-of-phase component (χ ") of the ac susceptibility for 1 at T = 2 K with 2 Oe switching field and applied dc fields varying from 750 to 5000 Oe. Lines are a guide for the eye.

Figure S23. Cole-Cole plots for 1 at 2 K with various applied dc fields. Open circles are experimental data, solid lines are fits to the generalized Debye equation.

Figure S24. Field dependence of the relaxation times (τ) in 1. Black circles are experimental data points, red line represents the fit to eqn 3 (see main text for explanation).

Figure S25. Frequency dependence of the in-phase component (χ ') of the ac susceptibility for [2]⁻ at 2 K with a 2 Oe switching field and applied dc fields varying from 250 to 5000 Oe. Lines are a guide for the eye.

Figure S26. Frequency dependence of the out-of-phase component (χ ") of the ac susceptibility for [2]⁻ at 2 K with 2 Oe switching field and applied dc fields varying from 250 to 5000 Oe. Lines are a guide for the eye.

Figure S27. Cole-Cole plots for [2] at 2 K with various applied dc fields. Open circles are experimental data, solid lines are fits to the generalized Debye equation.

Figure S28. Field dependence of the relaxation times (τ) in [2]⁻. Black circles are experimental data points, red line represents the fit to eqn 3 (see main text for explanation).

Figure S29. Frequency dependence of the in-phase component (χ ') of the ac susceptibility for 2 at 2 K with a 2 Oe switching field and applied dc fields varying from 500 to 1500 Oe. Lines are a guide for the eye.

Figure S30. Frequency dependence of the out-of-phase component (χ ") of the ac susceptibility for 2 at 2 K with 2 Oe switching field and applied dc fields varying from 500 to 1500 Oe. Lines are a guide for the eye.

Figure S31. Temperature dependence of the out-of-phase component (χ ") of the ac susceptibility for [1]⁻ with a 2 Oe switching field and a 1000 Oe applied dc field (H_{dc} = 1000 Oe). Lines are a guide for the eye.

Figure S32. Cole-Cole plots for [1]⁻, with an applied dc field of 1000 Oe ($H_{dc} = 1000$ Oe). Open circles are experimental data points, solid lines are fits to the generalized Debye equation.

Figure S33. Cole-Cole plots for 1, with an applied dc field of 1000 Oe ($H_{dc} = 1000$ Oe). Open circles are experimental data points, solid lines are fits to the generalized Debye equation.

Figure 34. Cole-Cole plots for [2], with an applied dc field of 500 Oe ($H_{dc} = 500$ Oe). Open circles are experimental data points, solid lines are fits to the generalized Debye equation.

Figure S35. Predicted orientations of the magnetic anisotropy axes in 1 under three scenarios using MAGELLAN (Chilton *et al*): (1) red axis: assigning both Fe-Cp2 units as charge neutral (Fe²⁺), (2) green axis: assigning +1 charge to the Fe centre that is closer to the Dy³⁺ ion, and (3) magenta axis: assigning the +1 charge to the Fe centre that is further from the Dy³⁺ ion. (ref. N.F. Chilton, D. Collison, E. J. L. McInnes, R. E. P. Winpenny and A. Soncini, *Nat. Commun.*, 2013, **4**, 1-7)

Figure S36. ⁵⁷Fe Mössbauer spectrum of [1]⁻ at10 K with no external field. Isomer shift (δ) = 0.54 mm s⁻¹, quadrupole splitting ($\Delta E_Q = 2.34$ mm s⁻¹).

Figure S37. ⁵⁷Fe Mössbauer spectrum of **1**, at 5 K. Black dots are experimental points. Black line is overall three-site fit. Blue, green and purple lines are the individual sub-spectra for the three-site fit.

Figure S38. ⁵⁷Fe Mössbauer spectrum of 1 at 5 K, 50 K and 150 K. Black dots are experimental data points. Red lines are the overall two-site fits.

Figure S39. UV-vis-NIR spectrum of [1]⁻ in thf.

Figure S40. UV-vis-NIR spectrum of 1 in thf.

Figure S41. UV-vis-NIR spectrum of [2] in thf.

Figure S42. UV-vis-NIR spectrum of 2 in thf.