High-efficiency Thermoelectric Ba₈Cu₁₄Ge₆P₂₆: Bridging the gap between tetrel-based and tetrel-free clathrates

Jian Wang,¹ Oleg I. Lebedev,² Kathleen Lee,^{1,3} Juli-Anna Dolyniuk,¹ Peter Klavins,⁴ Sabah Bux,³ Kirill Kovnir^{1,5,6*}

Supporting information

- Page S1. Figure S1. Calculated and experimental lab powder XRD of Ba₈Cu₁₄Ge₆P₂₆.
- Page S2. Figure S2. Powder X-ray diffraction patterns for the as-synthesized $Ba_8Cu_{14}Ge_6P_{26}$ sample and the sample after DSC experiment.
- Page S3. **Table S1.** Refined atomic coordinates and equivalent atomic displacement parameters for Ba₈Cu₁₄Ge₆P₂₆.
- Page S4. Table S2. Selected interatomic distances for Ba₈Cu₁₄Ge₆P₂₆.
- Page S5. **Table S3**. EDS results for selected Ba₈Cu₁₄Ge₆P₂₆ crystals.
- Page S6. Figure S3. SEM images of selected Ba₈Cu₁₄Ge₆P₂₆ crystal.
- Page S7. Figure S4. DSC results of three cycles of heating and cooling of the same $Ba_8Cu_{14}Ge_6P_{26}$ sample.
- Page S8. **Figure S5.** Thermal conductivity of Ba₈Cu₁₄Ge₆P₂₆ with electronic and lattice contributions to total thermal conductivity.
- Page S9. **Figure S6.** Comparison of thermoelectric efficiency of Ba₈Cu₁₄Ge₆P₂₆ for three different samples measured at UC Davis and JPL.

Figure S1. Calculated and experimental lab powder X-ray diffraction patterns of Ba₈Cu₁₄Ge₆P₂₆.

Figure S2. Powder X-ray diffraction patterns of for the as-synthesized $Ba_8Cu_{14}Ge_6P_{26}$ sample and the sample after DSC experiment.

Atom	Wyckoff	x/a	y/b	z/c	S.O.F.	U _{eq} (Ų) ^{a)}				
$Ba_8Cu_{14}Ge_6P_{26}$										
Ba1	2 <i>a</i>	0	0	0	1	0.0061(1)				
Ba2	6 <i>d</i>	1⁄4	1/2	0	1	0.0214(1)				
P1	6 <i>c</i>	1⁄4	0	1/2	0.61(3)	0.0066(4)				
Cu1	6 <i>c</i>	1⁄4	0	1/2	0.35(3)	0.0066(4)				
Ge1	6 <i>c</i>	1⁄4	0	1/2	0.04(3)	0.0066(4)				
P2	16 <i>i</i>	0.18502(4)	x	x	0.69(1)	0.0075(2)				
Cu2	16 <i>i</i>	0.18502(4)	x	x	0.22(1)	0.0075(2)				
Ge2	16 <i>i</i>	0.18502(4)	x	x	0.09(1)	0.0075(2)				
Р3	24 <i>k</i>	0	0.30860(4)	0.12068(4)	0.47(1)	0.0076(2)				
Cu3	24 <i>k</i>	0	0.30860(4)	0.12068(4)	0.35(1)	0.0076(2)				
Ge3	24 <i>k</i>	0	0.30860(4)	0.12068(4)	0.18(1)	0.0076(2)				

Table S1. Refined atomic coordinates and equivalent atomic displacement parameters for $Ba_8Cu_{14}Ge_6P_{26}$.

^{*a*)} U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor

Atom pairs		Distances (Å)	Atom pairs		Distances (Å)				
$Ba_8Cu_{14}Ge_6P_{26}$									
Ba1- N	V12× 8	3.225(1)	M1-	M3× 4	2.324(1)				
Ν	M3× 12	3.334(1)	M2 –	M2	2.265(1)				
Ba1- N	V1× 4	3.558(1)		M3× 3	2.331(1)				
Ν	V12× 8	3.734(1)	M3 –	M1	2.324(1)				
Ν	VI3× 8	3.393(1)		M2× 2	2.331(1)				
Ν	VI3× 4	3.862(1)		M3	2.429(1)				
N	vi3× ð VI3× 4	3.862(1)		M3	2.331(1) 2.429(1)				

Table S2. Selected interatomic distances (Å) in Ba₈Cu₁₄Ge₆P₂₆.

Note: M1 indicates the 6*c* atom site, M2 indicates 16*i* atom site, M3 indicates 24*k* atom site.

Spectrum	Composition	Cu+Ge
Spectrum 1 Spectrum 1 Spectr	$Ba_8Cu_{14.49}Ge_{5.52}P_{22.01}$	20.01
Spectrum 1	Ba ₈ Cu _{14.21} Ge _{5.47} P _{21.95}	19.68
Spectrum 1 Spectrum 1 Spectr	Ba ₈ Cu _{14.22} Ge _{5.40} P _{23.57}	19.62
Spectrum 1 Spectrum 1 Spectr	Ba ₈ Cu _{14.72} Ge _{5.51} P _{19.57}	20.23
Averaged	Ba ₈ Cu _{14.4(2)} Ge _{5.5(1)} P ₂₂₍₂₎	19.9(3)

Table S3. EDS results for selected $Ba_8Cu_{14}Ge_6P_{26}$ crystals normalized to 8 Ba atoms.

Figure S3. SEM image of $Ba_8Cu_{14}Ge_6P_{26}$ selected crystal.

Figure S4. The DSC results of three cycles of heating and cooling of the Ba₈Cu₁₄Ge₆P₂₆ sample.

Figure S5. Thermal conductivity of the slice of Ba₈Cu₁₄Ge₆P₂₆ Bridgman growth crystal at low-(circles) and high-temperature (triangles) ranges. The electronic (κ_{e}) and lattice (κ_{L}) contributions to the total thermal conductivity (κ_{total}) are shown in blue and green symbols, correspondingly.

Figure S6. Comparison of thermoelectric efficiency, zT, of slices of three different crystals of Ba₈Cu₁₄Ge₆P₂₆. Crystals 1 and 3 were measured at UC Davis and crystal 2 was measured at JPL. As stated in the experimental section, the accuracy of the zT determination is ~20%. The observed difference in the zT might be due to different instruments and measurements methods used. See below for the detailed comparisons:

1. Borup, K.A.; de Boor, J.; Wang, H.; Drymiotis, F.; Gascoin, F.; Shi, X.; Chen, L.; Fedorov, M.I.; Müller, E.; Iversen, B.B.; Snyder, G.J. *Energy Environ. Sci.* **2015**, *8*, 423

2. Wang, H.; Bai, S.; Chen, L.; Cuenat, A.; Joshi, G.; Kleinke, H.; König, J.; Lee, H.W.; Martin, J.; Oh, M.-W.; Porter, W.D.; Ren, Z.; Salvador, J.; Sharp, J.; Taylor, P.; Thompson, A.J.; Tseng, Y.C. *J. Electron. Mater.* **2015**, *44*, 4482.

3. Alleno. E.; Bérardan, D.; Byl, C.; Candolfi, C.; Daou, R.; Decourt, R.; Guilmeau, E.; Hébert, S.; Hejtmanek, J.; Lenoir, B.; Masschelein, P.; Ohorodnichuk, V.; Pollet, M.; Populoh, S.; Ravot, D.; Rouleau, O.; Soulier, M. *Rev. Sci. Instrum.* **2015**, *86*, 011301.