Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Site-isolated Manganese Carbonyl on Bipyridine-Functionalities of Periodic Mesoporous Organosilicas: Efficient CO₂ Photoreduction and Detection of Key Reaction Intermediates

X. Wang,^a I. Thiel,^b A. Fedorov,^b C. Copéret^b, V. Mougel^{*a}, and M. Fontecave^{*a}

 ^a Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université P. et M. Curie, PSL Research University, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
^b Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland.

> victor.mougel@college-de-france.fr marc.fontecave@college-de-france.fr

Table of contents
I. Characterization 3
II. Photolytic experiments 12
Figure S1. N ₂ Adsorption/Desorption isotherm for bpy-PMO
Figure S2. Powder-XRD spectrum of bpy-PMO
Figure S3. Fourier Transform Infrared (FT-IR) spectrum of bpy-PMO4
Figure S4. ¹ H MAS NMR spectrum of bpy-PMO4
Figure S5. CP MAS ¹³ C NMR spectrum of bpy-PMO5
Figure S6. CP MAS ²⁹ Si NMR spectrum of bpy-PMO
Figure S7. STEM-HAADF (1) and EDXS (2) images of material 2. The significant
Cu signal originate from the copper TEM grid used7
Figure S8. N ₂ Adsorption/Desorption isotherm for 28
Figure S9. IR spectrum of 2 after 30 min irradiation in 300 mBar of CO atmosphere
(blue) and after consequent evacuation to 10^{-5} mBar for 2 min (red)8
Figure S10. IR spectrum of 2 before (black) and after (pink) 24 h irradiation under
high vacuum (10 ⁻⁵ mBar)9
Figure S11. Low temperature (100 K) cw X-band EPR spectra of 2 collected before
(red) and after 30 min irradiation (blue)9
Figure S12. UV-diffuse reflectance spectra of 2 before (red) and after 3 h catalytic
test conditions under light irradiation (blue)10
Figure S13. FTIR spectra of 2 before (red) and after 3 h catalytic test conditions
under light irradiation (blue). Reaction conditions are described in Figure S1210
Figure S14. FTIR spectra of biph-PMO ² after reaction with [Mn(CO) ₅ Br]11
Figure S15. Evolution of the product distribution in the Mn-free control experiment
of the kinetic studies presented in Figure 4 of the manuscript

Table S1. Photolytic CO_2 reduction in the presence of different electron dono	ors12
Table S2. Photolytic CO2 reduction experiments	12

I. Characterization

Figure S1. N₂ Adsorption/Desorption isotherm for bpy-PMO.

Figure S2. Powder-XRD spectrum of bpy-PMO.

Figure S3. Fourier Transform Infrared (FT-IR) spectrum of bpy-PMO.

Figure S4. ¹H MAS NMR spectrum of bpy-PMO.

Spinning rate = 10 kHz

Supporting Information for Wang, Thiel, Fedorov, Mougel, Copéret, Fontecave

Figure S5. CP MAS ¹³C NMR spectrum of bpy-PMO.

Spinning rate 10 kHz, contact time 600 µs

240 220 200 180 160 140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 ppm

Figure S6. CP MAS ²⁹Si NMR spectrum of bpy-PMO.

Spinning rate 10 kHz, contact time 5 ms

Supporting Information for Wang, Thiel, Fedorov, Mougel, Copéret, Fontecave

1)

Figure S7. STEM-HAADF (1) and EDXS (2) images of material **2**. The significant Cu signal originates from the copper TEM grid used.

Figure S8. N₂ Adsorption/Desorption isotherm for 2.

Figure S9. IR spectrum of **2** after 30 min irradiation in 300 mBar of CO atmosphere (blue) and after consequent evacuation to 10^{-5} mBar for 2 min (red). Disappearance of bands from [Mn⁺(bpy_{PMO}^{•-})(CO)₄] species is observed.

Supporting Information for Wang, Thiel, Fedorov, Mougel, Copéret, Fontecave

Figure S10. IR spectrum of **2** before (black) and after (pink) 24 h irradiation under high vacuum (10^{-5} mBar).

Figure S11. Low temperature (100 K) cw X-band EPR spectra of **2** collected before (red) and after 30 min irradiation (blue).

Figure S12. UV-diffuse reflectance spectra of **2** before (red) and after 3 h catalytic test conditions under light irradiation (blue).

Due to a larger amount of material required for UV-DRS studies with respect to typical catalytic test, the test was here scaled up to 5 mL of CO₂-saturated MeCN/TEOA (5:1, v:v) solvent mixture, using 1 μ mol/mL of material **2**, 10 mM [Ru(bpy)₃]Cl₂ and 20 mM of BIH: Solvent: MeCN/TEOA 5 mL.

Figure S13. FTIR spectra of **2** before (red) and after 3 h catalytic test conditions under light irradiation (blue). Reaction conditions are described in Figure S12.

Figure S14. FTIR spectra of biph-PMO² after reaction with [Mn(CO)₅Br].

The following conditions were used: in a Ar glovebox, the material **biph-PMO** (10 mg, 0.038 mmol biphenyl moieties) was charged into a flask and suspended in Et₂O (10 mL). A solution of $[Mn(CO)_5Br]$ (1.7 mg, 3.8 nmol) in Et₂O (2 mL) was added to this suspension. The suspension was stirred for 4 h. The suspension was centrifuged and the solid part was then washed by Et₂O (4 x 4 mL). The material was subsequently dried under CO flow to give a colorless material (**control-biph-PMO**).

II. Photolytic experiments

1. Performance of electron donors in photocatalytic CO₂ reduction

Table S1. Photolytic CO₂ reduction in the presence of different electron donors

		Products (µmols)		
Entry ^a	Electron donor	СО	formate	H_2
1	TEOA	0	0	0
2	BNAH (0.1 M)	0	1	0
3	BIH (0.1 M)	49	70	33

^a samples containing 1 µmol of catalyst 2 and 10 µmol of [Ru(bpy)₃]Cl₂ in 1 mL CO₂-saturated MeCN/TEOA (5:1, v:v) solvent mixture upon 16 hours irradiation.

2. **Control experiments**

			Products (µmols)		
Entry ^a	Catalyst (µmol)	PS (µmol)	СО	formate	H_2
1^b	2 (1)	[Ru(bpy) ₃]Cl ₂ (10)	49	70	33
2^b	2 (1)	/	0.65	0.19	0
3^b	/	[Ru(bpy)3]Cl2 (10)	1.96	3.12	0.99
4^b	2 (0.1)	[Ru(bpy) ₃]Cl ₂ (1)	5.3	10.6	2.2
5^b	/	[Ru(bpy) ₃]Cl ₂ (1)	0.92	1.20	0.30
6^b	2 (0.01)	[Ru(bpy) ₃]Cl ₂ (0.1)	0.29	1.42	0.39
7^b	3 (0.01)	[Ru(bpy) ₃]Cl ₂ (0.1)	1.68	2.92	0.72
8^b	bpy-PMO ^c	[Ru(bpy) ₃]Cl ₂ (0.1)	0.13	0.40	0.95
9^b	/	[Ru(bpy) ₃]Cl ₂ (0.1)	0.04	0.35	0.18
10^d	3 (0.01)	ZnTPP (0.1)	0.17	0.52	0
11^d	/	ZnTPP (0.1)	0.04	0.02	0
12^d	3 (0.01)	Fluorescein (0.1)	0.11	0.65	0
13 ^d		Fluorescein (0.1)	0	0.01	0
14^d	control-biph-PMO (0.01)	[Ru(bpy) ₃]Cl ₂ (0.1)	0.09	0.22	0.29

Table 52. Photolytic CO_2 reduction experiment	Table S2	. Photolytic	CO_2 reduct	tion experiments
---	----------	--------------	---------------	------------------

a: All samples were prepared in 1 mL CO2-saturated MeCN/TEOA (5:1, v:v) solvent mixture containing 0.1 M of BIH. b: 16 hours irradiation. c: 1.3 mg of bpy-PMO. d: 5 hours irradiation.

Figure S15. Evolution of the product distribution in the Mn-free control experiment of the kinetic studies presented in Figure 4 of the manuscript. Reaction mixture contains 1.3 mg of **bpy-PMO**, 0.1 mM of [Ru(bpy)₃]Cl₂ and 0.1 M of BIH in 1 mL CO₂-saturated MeCN/TEOA (5:1, v:v).

References:

- ¹X.-Q. Zhu, M.-T. Zhang, A. Yu, C.-H. Wang and J.-P. Cheng, *J. Am. Chem. Soc.*, 2008, **130**, 2501–2516.
- ² (a) M. P. Kapoor, Q. Yang and S. Inagaki, J. Am. Chem. Soc., 2002, 124, 15176–15177. (b) I. Thiel, A. Fedorov, R. Verel, S. Yakunin, M. V. Kovalenko and C. Copéret, *Phys Chem Chem Phys*, 2016, 18, 13746–13749.